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Abstract. Incomplete spatiotemporal meteorological obser-
vations can result in misinterpretations of the current cli-
mate state, uncertainties in early warning systems, or inac-
curacies in nowcasting models and can thereby pose signifi-
cant challenges in hydrology research or similar applications.
Traditional statistical methods for infilling missing precipi-
tation data demand substantial computational resources and
fail over large areas with sparse data — like temporary out-
ages of weather radars. Although recent machine learning ad-
vancements have shown promise in addressing missing me-
teorological or satellite observations, they typically focus on
spatial aspects, overlooking the complex spatiotemporal vari-
ability characteristic of precipitation, especially during ex-
treme events. We propose a deep convolutional neural net-
work enhanced with a memory component to better account
for temporal changes in precipitation fields. This approach
can analyse arbitrary sequences from before and/or after the
incomplete observation of interest. Our model is trained and
evaluated on the hourly RADKLIM dataset, which features
1 km resolution precipitation data derived from combined
radar and weather stations across Germany. By infilling both
artificial and actual data gaps of RADKLIM, we demonstrate
the model’s effectiveness, providing detailed insights into its
capabilities during significant rainfall events, such as those
in May 2012 and July 2021, including those responsible for
the Ahrtal flood. This novel approach represents a step for-
ward in hydrological applications, potentially improving the

way we predict and manage water-related events by increas-
ing the accuracy and reliability of precipitation data analysis.

1 Introduction

The process of producing accurate climate information is
crucial for informing policy as well as for applications in
various sectors, e.g. water management or agriculture. For
example, nowcasting of events such as thunderstorms, heavy
rainfall, and snowfall plays a vital role in assessing and
planning the management of water resources, flood haz-
ards, urban runoff, and climate variability for long-term
trends (James et al., 2018; Lang, 2002; Wapler et al., 2012;
Teegavarapu et al., 2018). Precipitation data collected by
weather radars are an important source of information for
such applications, but the reliability and accuracy of these
applications depend heavily on the quality of the data. How-
ever, temporally and spatially continuous systems are of-
ten plagued by outages that lead to missing values (Tee-
gavarapu et al., 2018; Geiss and Hardin, 2021; Kadow et al.,
2020; Barrios et al., 2018), and radars in particular are prone
to technical challenges such as blocking of radar beams
and near-ground dead zones (Winterrath et al., 2017; Geiss
and Hardin, 2021). To illustrate this, consider Fig. 1, which
shows three data samples taken from the RADKLIM dataset
of Germany’s meteorological service Deutscher Wetterdienst
(DWD) (Winterrath et al., 2018a). This dataset is generated
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using a process that merges radar observations with weather
station measurements to produce continuous spatial and tem-
poral precipitation pattern data across Germany at different
temporal resolutions (5 min and 1h). However, due to out-
ages, the radars were not able to monitor precipitation in the
shaded grey areas, as shown in the figure.

Such problems can lead to misinterpretation or increased
uncertainty in observations and predictions. Methods to fill
gaps in climate data range from statistical approaches such as
spatial interpolation (Smith et al., 1996; Oliver and Webster,
1990; Teegavarapu et al., 2018; Simanton and Osborn, 1980;
Teegavarapu and Chandramouli, 2005; Verworn and Haber-
landt, 2011) and linear regression (Vislocky and Fritsch,
1995) to machine learning approaches such as support vector
machines (Landot et al., 2008). Kriging (Oliver and Webster,
1990), inverse distance weighting (Simanton and Osborn,
1980), and linear weight optimization (Teegavarapu et al.,
2018) provide good estimates for pointwise reconstructions,
but their ability to provide good spatial reconstructions is
limited by nearby existing values. This is also shown by Ver-
worn and Haberlandt (2011), who estimate spatial precipita-
tion patterns in northern Germany based on nearby weather
stations and radar images. Using only weather stations and
statistical reconstruction methods results in overly smooth
precipitation maps, while including additional radar infor-
mation results in much more realistic spatial patterns. Their
study highlights not only the limitations of statistical ap-
proaches to spatial reconstruction but also the importance of
spatially complete radar images.

Data-driven image inpainting is used to repair image dam-
age caused by raindrops, to improve the quality of old im-
ages, or to increase the resolution of low-quality images (Yu
et al., 2018; Liu et al., 2018; Elharrouss et al., 2020), but
also to fill gaps in climate data by training a model on large
datasets to learn the complex patterns within the data. For
example, Shibata et al. (2018) use inpainting to reconstruct
incomplete satellite images of sea surface temperatures, and
Geiss and Hardin (2021) propose a generative adversarial
network (GAN) to fill gaps in patchy radar images. Kadow
et al. (2020) apply partial convolutions (Liu et al., 2018)
to reconstruct missing values in global surface temperature
grids. Partial convolutions are able to reconstruct missing
values in arbitrarily shaped regions, which is particularly use-
ful when dealing with missing observational data.

While data-driven techniques have shown promising re-
sults, they only take into account the spatial relationships
in the data, not the temporal variability. On the other hand,
while geostatistical approaches take into account data dis-
tributions from the past, they lack the ability to create realis-
tic spatial features, especially when considering large regions
with missing values or “moving” weather systems that drive
rainfall patterns. To address these limitations, we propose a
data-driven image inpainting model that is capable of recon-
structing arbitrarily shaped missing value regions using par-
tial convolutions by Liu et al. (2018) while also taking into
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account the spatiotemporal relationships in the data using a
convolutional long-short term memory (LSTM) approach by
Xingjian et al. (2015).

The remainder of this paper is organized as follows: Sect. 2
describes the datasets used and the methodological frame-
work implemented for the infilling of missing precipitation
data. Section 3 presents the experimental results and provides
a comprehensive discussion of the performance of the pro-
posed models. Finally, Sect. 4 summarizes the key findings of
the study and discusses potential future research directions.
The appendices provide additional details on the models’ ar-
chitectures, evaluation metrics, experimental overview, and
additional results.

2 Data and methods
2.1 Data

This study is based on the RADKLIM-dataset of DWD,
Germany’s national meteorological service. RADKLIM is a
dataset of reprocessed gauge-adjusted radar data (Winterrath
etal., 2017, 2018a). DWD operates a network of 17 weather
radar stations (C-band; Lengfeld et al., 2019) as well as a
network of several hundred ground-based rain gauges (Kas-
par and Michel, 2023). Weather radars send pulses of elec-
tromagnetic energy into the atmosphere and measure reflec-
tivity to monitor the movement, intensity, and type of pre-
cipitation, such as rain, snow, and hail. However, radars can-
not observe precipitation directly. In contrast, rain gauges can
provide only incomplete spatial information of precipitation
events, depending on the density of the network. To derive
quantitative precipitation estimates (QPEs), the signals from
weather radars can be combined with measurements from the
rain gauges. To provide timely information, especially for
water management applications, DWD derives QPEs in real
time by adjusting radar observations with data from the Ger-
man rain gauge network (RADOLAN: Radar Online Adjust-
ment). The information is stored as precipitation intensities
with an intensity resolution of 0.1 mm and a spatial resolu-
tion of 1 km?, resulting in a 900 x 1100 km grid for Germany,
and is provided in real time within 30 min of the last mea-
surement. The data are provided at 5-minute and hourly time
frequencies. The products might contain gaps caused by out-
ages of radars, e.g. due to technical failures or regular main-
tenance. The archived collection of operationally produced
RADOLAN data is also inhomogeneous in time, as it was
produced with the current hardware and software configura-
tion at the time of creation. To provide a dataset suitable for
climatological application, the radar reflectivities have been
reprocessed (i.e. the same set of algorithms for artefacts and
attenuation correction as well as adjustments to rain gauge
observations has been applied) to create a homogeneous set
of precipitation observations covering the period from 2001
onwards (“RADKLIM”, Lengfeld et al., 2019). In this study,
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Figure 1. Examples of missing precipitation recordings after radar outages in the RADKLIM dataset (Winterrath et al., 2018a) on
24 June 2002 of three sequential hours. The grey regions highlight the radars that failed to record any precipitation.

we focus on the hourly grids of RADKLIM (Winterrath et al.,
2018a) (based on RADOLAN RW) for training and evalua-
tion spanning 2001-2022.

2.2 Model

2.2.1 Image inpainting U-net

We use an image inpainting U-net (Ronneberger et al., 2015)
as a baseline model for reconstructing missing value regions
in precipitation data. This model takes a single precipita-
tion grid as input. Each data sample contains an observed
precipitation grid with no missing values (i.e. the original
RADKLIM data, considered as “ground truth” in our anal-
ysis), a binary missing value mask, and a masked grid ob-
tained by element-wise multiplication of the original obser-
vations and the mask. This allows us to simulate missing
value regions in complete radar images. We replace conven-
tional convolutional operations in the U-net with partial con-
volutions by Liu et al. (2018). The automatic mask updating
mechanism in these operations efficiently handles irregularly
shaped holes in missing value masks, outperforming other
methods trained only on regularly shaped holes (Liu et al.,
2018). Equation (1) defines partial convolution operations
that show improved inpainting results, especially for large
and irregularly shaped missing value regions. The first term
describes the masking of the input data I with the mask M
and applies a scaling factor depending on the number of ones
in M. The weight matrix W represents the trainable weights
of the network. The second term describes the mechanism
for updating the mask after each convolution. If the convo-
lution has been able to apply its output to at least one valid
input value, that position is marked as valid. The architec-
ture of our baseline convolutional neural network (CNN) is
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illustrated in Appendix Al.

; Sum (i) if sum(M) > 0
0, otherwise
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2.2.2 Temporal memory module

Precipitation estimation is a challenging spatiotemporal
problem, as it involves highly nonlinear patterns in both time
and space (Xingjian et al., 2015; Tian et al., 2019). To incor-
porate temporal information, we propose a straightforward
channel-based approach that includes sequences of precipita-
tion grids within the input data, rather than considering only
grids of single time steps. We can arbitrarily define the num-
ber of time steps to consider. The dimension of the channel
is equal to the number of time steps considered as input data.
The output of the network is a tensor representing a recon-
structed precipitation grid for a single time step. The detailed
architecture can be seen in Appendix A2.

This channel-based approach has limitations in distin-
guishing between long-term and short-term relationships in
the data. To address this, Xingjian et al. (2015) proposed
a convolutional long short-term memory (LSTM) network
for precipitation nowcasting, which extends the original fully
connected LSTM architecture of Hochreiter and Schmidhu-
ber (1997) with convolutional structures. The network takes
as input a sequence of time-continuous precipitation grids
collected from weather radars. The equations of the fully
connected LSTM are modified to incorporate convolutional
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operations, given by Eq. (2).
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The W and b variables are weights and biases that are
learnt by the model. The memory states C; and C;_1, the
hidden states H; and H,_1, and the gates f;, i;, o;, and g; are
represented as three-dimensional matrices, with input chan-
nels in the first dimension and a two-dimensional spatial pre-
cipitation field in the other two dimensions. The Hadamard
product is denoted by o, and the convolutional operation is
denoted by . The convolutional LSTM is implemented in an
encoder—decoder architecture similar to the future predictor
model proposed by Srivastava et al. (2015). The combination
of spatial data processing using CNNs and sequential data
processing using LSTMs has been shown to outperform each
technique used individually.

Instead of processing the data sequences in the channel di-
mension, the input sequence is iteratively passed through the
set of Eq. (2). Note that these operations are applied only to
the precipitation tensors, not to the mask tensors. Similar to
the autoencoder of Srivastava et al. (2015), the decoder re-
constructs the input sequence in reverse order. As a result,
the output tensors from the encoder are provided to the de-
coder in reverse order. This speeds up the weight optimiza-
tion, as the model primarily considers short-range correla-
tions (Srivastava et al., 2015). Appendix A3 shows how we
implemented the LSTM module.

2.3 Technical implementation

The models presented in this study were implemented in
Python using the PyTorch deep learning framework by Face-
book (2025), chosen for its flexibility and efficiency in de-
veloping and training neural networks. PyTorch’s dynamic
computation graph and extensive support for GPU accelera-
tion made it an ideal choice for training the models.

For model training and evaluation, we utilized A100 80
GB GPUs, which provided the necessary computational
power for handling large datasets and complex model archi-
tectures. The use of these high-performance GPUs enabled
efficient processing and reduced the training time for both the
baseline and more computationally intensive LSTM models.
The models were trained on high-performance hardware to
ensure that they could effectively scale to meet the demands
of large-scale image inpainting tasks and complex climate
data gap-filling.
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2.4 Experimental design

Due to radar outages, which are still quite common, many
grids from the RADKLIM dataset contain missing values.
We have therefore created a dataset containing only com-
plete radar images where no radar outages have occurred
and a dataset containing missing values where radar outages
have occurred. In addition, the DWD introduced three new
radar stations in 2014/2015 to the original 14 radar stations
to improve spatial coverage. Therefore, we performed sepa-
rate analyses on data from only 14 radars over the complete
time range and from all 17 radars from 2015 onwards.

An overview of the different experiments can be found in
Appendix C1, where we trained three models on each exper-
iment: the baseline, channel-based and LSTM architectures.

In order to comprehensively evaluate our proposed mod-
els, our first experiment consists of a single missing value
mask covering a significant area in central Germany. This
gap was caused by three radar outages in January 2012, re-
sulting in a 3 h data absence (see Appendix F). The chosen
area presents an additional challenge because it encompasses
the Harz Mountains, renowned for intricate precipitation pat-
terns influenced by terrain (Panziera et al., 2011).

In the second experiment, we trained the three models on
all the complete hourly data from 2001-2022 covered by 14
radars. We extracted a mask dataset by setting all missing
values from the remaining incomplete hourly data to 0 and
the existing values to 1. During training, we combined the
complete data with all the extracted missing value masks.
This gave us the most reliable models for infilling real case
scenarios with missing values.

In our third and final experiment, we looked at a recent
flood event caused by extreme precipitation, training our
models on complete data from 2015-2018, covered by all
17 radars. In July 2021, Germany was hit by massive rainfall
events, and the resulting floods caused more than 180 deaths
and billions of euros in damage. The return period of the 24 h
rainfall is estimated to be around 500 years, with an even
longer return period in the most affected area (Mohr et al.,
2023).

3 Results and discussion

Our performance evaluation relies on a range of metrics:
(1) root mean square error (RMSE inmmh™'), (2) abso-
lute mean error (AME inmmh™"), (3) temporal correlation
over the spatial mean (7xy,time), (4) mean spatial correlation
(Fxy,space)> and (5) spatial correlation of the sum over time
(7xy,sum)- Detailed explanations of these calculations are pro-
vided in Appendix B. The models were trained on complete
grids from 2001 to 2022 covered by 14 radars and excluding
the evaluation years, utilizing the missing data mask from
Appendix F. We specifically chose the years 2007, 2012, and
2016, which were not part of the training data, to allow mean-
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Figure 2. Verification metrics of the baseline model (blue) with the
channel-based memory approach (green) and the advanced tempo-
ral memory module (red). 1 and | indicate that a high value and a
low value, respectively, should be aimed for.

ingful comparisons across three distinct annual cycles. Met-
rics were then computed by infilling simulated missing val-
ues for 2007, 2012, and 2016 with the same mask and aver-
aging the results across these years.

Figure 2 (detailed in Table D1) shows that the channel-
based model outperforms the baseline model in terms of
pixel-wise (RMSE) and average (AME) precipitation re-
construction and maintains a good temporal correlation.
However, the baseline model outperforms the channel-based
model in terms of spatial metrics (7xy, space and 7xy, sum), indi-
cating that it is better at reconstructing the spatial distribution
per time step as well as the total amount of precipitation at a
fixed location. This may be due to the underestimation of pre-
cipitation in the channel-based approach, which can be seen
in Fig. 3. The final model including the temporal memory
module is the best performing model, with the highest scores
for temporal, spatial, and summed correlations and the low-
est errors (RMSE and AME).

We further explore the results of the first experiment using
the scatter plots in Fig. 4, which provides a visual compari-
son between the model predictions and the observations. The
baseline approach exhibits the largest spread with respect to
the spatial average precipitation, while the channel approach
underestimates, especially average fields with low precipita-
tion. Here, the LSTM model provides the most accurate re-
sults. In the matter of reconstructing the temporal average at
each grid point, the results of the baseline model feature the
worst overall approximation and major outliers between 0.05
and 0.1 mm h™!, indicating overestimation of precipitation at
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specific grid points. The channel-based approach reduces the
number of outliers in this range but still exhibits overesti-
mations between 0.1 and 0.15mmh~!, as well as underes-
timations at most grid points. The LSTM provides the best
estimations for the time-averaged grid points, being closest
to the red line with much smaller outliers.

In Fig. 5, we make a visual comparison of reconstructed
grids for this single missing value mask scenario. Here, we
consider a rainfall event from May 2012. The results from the
channel-based approach again show an underestimation of
precipitation during the event. On the other hand, the baseline
and LSTM approaches give very similar results compared to
the original RADKLIM data. However, the LSTM has some
artificial chequerboard patterns, which were also observed by
Liu et al. (2018) from the original partial convolutions.

Figure 6 shows results from our second experiment, a vi-
sual comparison of infilled images generated by the baseline
and LSTM models from the June 2002 radar outages, where
we have no original observations. The baseline model was
provided with a single time step for each infill application,
while the LSTM was additionally provided with the two pre-
vious and subsequent time steps. Comparing images (a) and
(b) from the baseline model (centre), a large region of pre-
cipitation disappears within 1 hour. In contrast, the LSTM
model is able to preserve this by incorporating the tempo-
ral information of the previous 2 hours. It is clear that the
LSTM model produces the most realistic results, while the
spatial patterns are also best approximated with this model.

Figure 7 shows the results from the third experiment,
which is a snapshot of the Ahrtal rainfall event (top row).
We masked out a large region of precipitation west of the lo-
cation of the largest flooding (Ahr river basin) and applied
the LSTM model to infill this region. We have also applied
the infilling of this region to 20 consecutive hours of the ex-
treme rainfall event and show the accumulated rainfall over
this period (bottom row). A complete map of the event and
the reconstruction can be seen in Appendix Fig. E1. Here, we
can see a limitation of our model, which leads to an under-
estimation of the extreme rainfall. The model predicts a total
rainfall of 70.76 mm in the Ahr basin over the 20 h period,
whereas the original observed rainfall was 101.89 mm. This
amounts to an accuracy of 69.5 %. However, in the event of
radar failure during such events, our method could still poten-
tially provide an estimate of rainfall over the affected region
based on nearby radar data and help improve flood forecast-
ing and risk assessment.

The evaluation of the proposed models shows that the
LSTM model outperforms the baseline and channel-based
approaches in terms of overall accuracy. The model con-
sistently improves performance across all evaluation metrics
(Fig. 2), as well as through visual analysis of the scatter plots
in Fig. 4 and infilled images in Fig. 6. However, it should
be noted that the LSTM model also requires significantly
more hardware resources and computing time for training
compared to the other models. For example, the baseline
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Figure 4. (a), (b), (c) show the spatial average of precipitation for each time step from 2007, 2012, and 2016. (d), (e), (f) show the temporal
average of all grids in 2007, 2012, and 2016 for each grid point. Both calculations were performed on the infilled area only. The red line

marks the optimal results.

model took approximately 10h to train for 100k iterations
on an A100 GPU, consuming around 10 GB of GPU mem-
ory. In contrast, the LSTM model required roughly 40 h for
the same number of iterations, consuming 60 GB of GPU
memory. During inference, this time is greatly reduced, with
the baseline model taking about 1s per prediction and the
LSTM model taking 5s per prediction. Nevertheless, this
may impact the feasibility and scalability of implementing
the LSTM model in certain operational settings with limited
computing resources. Hence, a careful trade-off analysis may
be necessary when choosing the most appropriate model for
a specific application.

In the final step, we filled in all hourly data from 2001
to 2022 using our LSTM model, which was trained on data
from 17 radar stations. This enhanced dataset extends radar
coverage to periods before 2014, ensuring both spatial and
temporal consistency. The infilled dataset will be made avail-
able for public access upon publication of this study. A few
selected samples from this dataset are shown in Appendix
Gl.

Hydrol. Earth Syst. Sci., 29, 3687-3701, 2025

The results of our study demonstrate that the memory-
assisted deep learning approach, particularly the LSTM-
based model, outperforms the baseline convolutional mod-
els in infilling missing radar rainfall data. This indicates
that incorporating temporal dependencies significantly en-
hances reconstruction accuracy. This finding highlights the
importance of capturing temporal dependencies in precipita-
tion reconstruction. Furthermore, our deep learning approach
avoids the excessive smoothing observed in traditional inter-
polation methods, leading to more realistic precipitation pat-
terns.

Despite the good performance, our approach has certain
limitations. One notable issue is the underestimation of ex-
treme rainfall events, as observed in the Ahrtal flood case
study. This may be due to the known inherent difficulty of
machine learning models in predicting rare and highly local-
ized extreme values, which are often underrepresented in the
training data (Charlton-Perez et al., 2024; Xu et al., 2024,
Zhong et al., 2024). Future work could address this by in-
corporating additional features such as atmospheric pressure,
wind speed, temperature, and humidity fields.

https://doi.org/10.5194/hess-29-3687-2025
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Figure 5. (a), (b) show the input to the models (simulated missing value region in grey) and the original RADKLIM data. (c), (d), (e) show
the infilled grids from our three models. This exact event was recorded on 31 May 2012 18:00 CET.

Another limitation is the computational cost of training
and deploying LSTM-based models. While they outperform
simpler methods, their training process requires significant
computational resources, which may not be feasible for oper-
ational nowcasting systems with real-time constraints. A po-
tential trade-off could involve using a hybrid approach where
simpler models handle routine infilling, while the LSTM
model is reserved for high-impact scenarios.

Nevertheless, the implications of these findings are signifi-
cant for hydrology and meteorology. Accurate rainfall recon-
structions are crucial for flood forecasting, climate monitor-
ing, and weather prediction models. By improving the relia-
bility of precipitation data, our method can enhance the ac-
curacy of early warning systems and support better decision-
making for disaster response and water resource manage-
ment:

1. More accurate rainfall estimates can lead to better flood
predictions, reducing uncertainty in early warning sys-
tems.

2. Long-term datasets with fewer gaps allow for better
trend analysis and climate change assessments.

https://doi.org/10.5194/hess-29-3687-2025

3. Reliable precipitation data inform irrigation planning
and drought mitigation strategies.

Our method can also be integrated into existing opera-
tional meteorological systems, helping to mitigate the impact
of radar outages and ensuring continuity in rainfall monitor-
ing.

While our results are promising, several avenues for future
research could enhance the model’s performance and appli-
cability:

1. Hybrid models: combining physics-based numerical
weather prediction models with deep learning tech-
niques could improve performance and efficiency, par-
ticularly for extreme events.

2. Transfer learning: training the model on a diverse set
of meteorological data, including satellite and ground-
based observations, could enhance its generalizability to
different regions and climate conditions.

3. Attention-based models: exploring attention mecha-
nisms, such as those used in transformer architectures,
could help capture long-range dependencies more effec-
tively and efficiently than LSTMs.

Hydrol. Earth Syst. Sci., 29, 3687-3701, 2025
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Figure 6. Comparison of the patchy rainfall records (top row) used as input to our infilling models with the reconstructed results from the

baseline model (centre row) and from the LSTM model (bottom row).

4. Multi-source data integration: incorporating additional
meteorological variables (e.g. temperature, wind speed,
atmospheric pressure) may improve model accuracy by
providing a more comprehensive representation of pre-
cipitation dynamics.

5. Operational deployment: research into optimizing
model efficiency for real-time applications could make
deep-learning-based infilling viable for nowcasting sys-
tems.

4 Conclusions

Incomplete precipitation data can lead to misinterpretations
of climate conditions, uncertainties in early warning sys-
tems, and inaccuracies in nowcasting models, posing chal-
lenges for hydrological and meteorological applications. Ad-
dressing this issue, we proposed and evaluated three machine

Hydrol. Earth Syst. Sci., 29, 3687-3701, 2025

learning models for infilling missing precipitation data: A
basic inpainting model, a straightforward channel-based ap-
proach that considers a sequence of time steps as input, and
an LSTM approach as an advancement of the channel-based
approach. We trained and evaluated our models on hourly
precipitation data over Germany. The results of the evalu-
ation showed that the LSTM model outperforms the base-
line and channel-based approaches in terms of overall per-
formance, the baseline model has a larger prediction error,
and the channel-based model has a tendency to underesti-
mate precipitation. However, the LSTM model also requires
significantly more hardware resources and computing time
compared to the other models, while the other models al-
ready perform quite well. Increasing the complexity of the
model can improve the results, with the understanding that
it requires more resources than other models. Our analysis
highlights the potential of machine learning models to be
used for efficiently infilling missing precipitation data. The

https://doi.org/10.5194/hess-29-3687-2025
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Figure 7. A zoomed-in illustration of the extreme precipitation event in the Ahrtal on 14 July 2021. The entire area can be seen in Fig. E1.
The Abhr river basin is highlighted by a grey border. Here, we compare the original RADKLIM data with the output of the LSTM model.
(a), (b), (c) show a reconstruction of a single hour (18:00 CET) in mm h L (d), (e), (f) show the accumulated amount of precipitation in mm

from reconstructions over 20 h (between 02:00 and 21:00 h on 14 July 2021).

tangible advantage of employing the infilled data generated
by our models requires exploration through an examination
of how the data might enhance the accuracy and performance
of other nowcasting models that depend on the same dataset.
Future applications of our research could include a cascaded
approach, using the baseline model for immediate results, the
channel-based model for better temporal estimation, and fi-
nally the best results with the LSTM model with the largest
latency. We also see scope for additional applications, be-
yond the infilling of missing radar data. By combining infor-
mation on observed rainfall data from rain gauges, additional
spatial information could be gained, and the accuracy of the
rainfall information can be improved.

https://doi.org/10.5194/hess-29-3687-2025
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Appendix A: Model
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Figure A1. The architecture of the baseline model.
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Figure A3. The architecture of the LSTM model.
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Appendix B: Formulas
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Appendix C: Experiment overview

Table C1. An overview of all the experiments that we performed.

Experiment Training time range  Evaluation time range  Training samples  Evaluation samples = Radar coverage
1 — Single Mask 2001-2022* 2007, 2012, 2016 55989 26328 14
2 — All Masks 2001-2022 2001-2022 82317 87263 14
3 — Ahrtal 2015-2018 2021 15647 20 17

* Excluding the years 2007, 2012, and 2016.

Appendix D: Metric results

Table D1. Verification metrics of the baseline model, the channel-based memory approach, and the advanced LSTM approach. 1 and |, in
the columns indicate that a high value and a low value, respectively, should be aimed for. The bold text highlights the best performing model
among the channel-based models and the advanced approaches.

Model RMSE | AME | I'xy,Time 0 T'xy,Space ) Txy,Sum 1

Baseline  0.3541 0.08 0.9402 0.4033 0.4383
Channel 0.3367 0.0793 0.9457 0.3866 0.3268
LSTM 0.3327 0.0639 0.961 0.4125 0.5413
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Appendix E: Ahrtal results

Input Ground Truth

J. Meuer et al.: Infilling of missing rainfall radar data

Output

iz Ahr River Basin tzzz Ahr River Basin
N |t

(a)’” i = (b);ﬂ

Ahr River Basin 10.00

6.00

4.00

2.50

mm/h

1.50

0.75

(@ N

130.0

78.0

52.0

32.5

19.5

mm (accumulated)

Figure E1. Illustration of the extreme precipitation event in the Ahrtal on 14 July 2021 over the entire area of Germany. The Ahr river basin
is highlighted by grey hatching. Here, we compare the original RADKLIM data with the output of the LSTM model. (a), (b), (¢) show a
reconstruction of a single hour (18:00 CET) inmmh™ L (d), (e), (f) show the accumulated amount of precipitation in mm from reconstructions

over 20 h (between 02:00 and 21:00 h on 14 July 2021).

Appendix F: Training mask

Figure F1. Real case study of radar outages that occurred in Jan-
uary 2012. Four overlapping radars failed at the same time, causing
a large region with missing values (grey) in the precipitation record-
ing.
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Appendix G: Infilled samples

Figure G1. A selection of infilled samples using the LSTM model. (a)—(d) and (i)—(1) show samples from the original dataset, and (e)—(h) and
(m)—(p) show the corresponding infilled versions.

https://doi.org/10.5194/hess-29-3687-2025 Hydrol. Earth Syst. Sci., 29, 3687-3701, 2025



3700

Code and data availability. The code used for the analysis and
simulations in this study is openly accessible at https://
github.com/FREVA-CLINT/climatereconstructionAl (last access:
29 August 2023; https://doi.org/10.5281/zenodo.3766740, Meuer
et al., 2024). The repository contains scripts written in
Python, along with detailed documentation to facilitate repli-
cation and further exploration of the methodologies employed.
The data utilized in this research were obtained from Ger-
many’s meteorological service (Deutscher Wetterdienst, DWD).
Hourly radar-based precipitation data (RADKLIM) covering
the study period are available under an open data licence:
https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002 (Win-
terrath et al., 2018b). A fully infilled version next to the original
data of the hourly precipitation data will be made available to the
public upon publication of this study.
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