Selected Model structures

Description of Hydro-meteorological process

Urban Land Surface Models (ULSMs)

Bulk Models: 2-tiles SUEWS

Urban Canopy Models: Single Layer

VUCM, SLUCM, TEB, TARGET, UT&C Multi Layers

BEP, VCWG

Building resolved:

3D

VTUF-3D,

Solene-Microclimate model

Urban Hydrology Models (UHMs)

Hydraulic models:

SWMM

Hydraulic-hydrological models:

Multi-Hydro model, URBS, WEP

Summary and comparison

Urban surface energy balance

Net radiation Anthropogenic heat Sensible heat flux Latent heat flux

Urban canopy near-surface condition

Temperature Humidity Wind

Precipitation Runoff Irrigation

Depression storage and Infiltration

Evaporation and transpiration

Urban subsurface water cycle

Moisture transfer in and between soil layers

Pipe system

Summary and comparison

Challenges and future developments

Model coupling significance and strategies:

Urban thermal environment adaptation

Urban flooding forecasting

Interdisciplinary collaboration in urban geoscience

Collaboration within and across disciplines:

Standardized modelling protocol

Potential AI and machine learning benefits

practical technical framework

Compound extreme events analysis