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Abstract. Amidst drastic environmental changes, the in-
tricate interplay and feedback mechanisms in the water–
vegetation–atmosphere nexus experience alteration. Previous
research primarily centres on the responses among variables
within this system, with little known about whether and how
these responses (sensitivities) change. Here, we employ the
Evapotranspiration Stress Index (ESI) to represent the equi-
librium of the nexus and develop a memory dynamic lin-
ear model based on Bayesian forward filtering. The model
takes into account the carry-over effect in the “dry gets drier”
self-amplify loop, allowing for a more effective estimation
of the ESI time-varying sensitivity to associated influencing
factors. Our analysis reveals that from 1950 to 2020, main-
land China experienced a notable 4.74 % escalation in evap-
otranspiration stress. Surface soil moisture serves as a pri-
mary driver, whose sensitivity to ESI has surged by 9.49 %
in the last decade compared to the early 2000s. Vapour pres-
sure deficit (VPD) and leaf area index (LAI) also exerted a
substantial role, with their sensitivities fluctuating approxi-

mately 22.91 % and −45.77 %, respectively. Moreover, the
greening pace is linked to an increase in soil moisture sen-
sitivity and a decrease in VPD sensitivity, suggesting that
rapid greening may alter the ecological resilience against soil
deficit and atmospheric drought. In comparison, the widely
used moving window multiple linear regression (MLR) sig-
nificantly overestimates sensitivity fluctuations, necessitat-
ing prudent interpretation of numerical estimates in related
research findings. Our findings underscore the spatiotempo-
ral variations in sensitivity, enriching the comprehension of
ecosystem reactions to external factors, and offer essential
insights for advancing greening endeavours.

1 Introduction

Over the last 2 decades, approximately one-third of land
globally has experienced vegetation greening (Chen et al.,
2019). Concurrently, 53 % to 64 % of these regions have un-
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dergone atmospheric desiccation (Yuan et al., 2019). How-
ever, research has also revealed a rise in available water re-
sources (precipitation supply minus evapotranspiration loss)
in ∼ 45 % proximate and downwind zones (Cui et al., 2022).
Contrary to greening, satellite-based studies have indicated
a 0.4-fold expansion in regions shifting from greening to
browning (De Jong et al., 2013; Liu et al., 2023). Amidst
the ongoing debates over greening or browning, and wetting
or drying, it is unequivocal that the intricate interactions and
feedback mechanisms among water, vegetation, and climate
are altered.

Defined as the ratio of actual to potential evapotranspira-
tion, the Evapotranspirative Stress Index (ESI) can compre-
hensively reflect the equilibrium between water supply, veg-
etation status, and climatic conditions (Anderson et al., 2013,
2016) (Fig. 1a and b). Potential evapotranspiration (ETp, also
known as ET0, reference crop evapotranspiration in agricul-
ture) represents the evaporation under ideal circumstances –
ample water, uniform vegetation (typically alfalfa) – and is
driven solely by climate (Allen et al., 1998; Li et al., 2022b;
Thornthwaite, 1948). Regions suffering from water scarcity
or sparse vegetation are subject to evapotranspirative stress
(Fig. 1b), whereas ample water or vigorous growth may re-
sult in actual evapotranspiration surpassing the hypothetical
potential (Liu et al., 2022) (Fig. 1a). This occurs because ETp
calculations assume fixed canopy and surface properties for
a hypothetical crop, whereas real vegetation may outperform
these assumptions. Previous research has proven the high
sensitivity of ESI to early-stage drought, as plants naturally
curtail their water consumption before drought fully mani-
fests (Nguyen et al., 2019; Otkin et al., 2018). Understand-
ing ESI dynamics is thus critical for timely drought response,
ecosystem stability, and sustaining crop yields.

The evolution of evapotranspiration (ET) stress includes
a positive “dry gets drier” land–atmosphere feedback (Fu
et al., 2022; Gentine et al., 2019; Seneviratne et al., 2010)
(Fig. 1c). Regions subject to climate-induced ET stress are
characterized by low soil moisture and weak vegetation vi-
tality. Isohydric species, in response, close their stomata to
conserve water, albeit at the cost of decreased photosynthesis
and diminished carbon accumulation (Grossiord et al., 2020;
Joshi et al., 2022). On the one side, this reduction in water
vapour release into the atmosphere intensifies atmospheric
dryness, further reinforcing climate constraints. On the other
side, prolonged stress may lead to plant mortality due to hy-
draulic failure and carbon starvation, further decreasing veg-
etation cover (Kono et al., 2019; Mantova et al., 2022). Such
a self-amplify loop highlights the necessity to consider tem-
poral connections when exploring the ET stress dynamics.
Research based on data analysis and field experiments has
uncovered that such internal memory effects are particularly
pronounced in water-limited areas (Liu et al., 2018; Richard
et al., 2008; Xiao et al., 2024a). Statistically, the autocorrela-
tion component can serve as a good representation of inter-
nal memory effects (Forzieri et al., 2022; Smith et al., 2022).

For example, Kusch et al. (2022) employed a lagged nor-
malized difference vegetation index (NDVI) as a representa-
tion of intrinsic-vegetation memory and compared its impact
with external meteorological factors. An increasing autocor-
relation coefficient signals declining ecosystem resilience or
nearing critical thresholds (Liu et al., 2019; Scheffer et al.,
2009). Unfortunately, much existing research has focused on
external factors, neglecting the role of internal memory in
ET stress dynamics (Feng et al., 2020; Fu et al., 2024b; Jung
et al., 2010; Liu et al., 2020c; Peng et al., 2019). Therefore,
integrating the co-regulation of external forcing factors with
internal memory effects is essential for an in-depth investiga-
tion into the dynamics of ET stress and ecological responses.

Differences in regional evaporation stress patterns arise
from different response to relevant factors. Soil moisture
acts as the supply side of evaporation, while vapour pressure
deficit (VPD), as the demand side, pulls water from soil pores
and plant stomata into the atmosphere (Dong et al., 2020; Liu
et al., 2020b). Increased ambient CO2 can mitigate evapora-
tion by enhancing water use efficiency (Li et al., 2023; Liu
et al., 2017). Among external drivers, moisture and VPD are
found to be particularly sensitive (Liu et al., 2020a; Sulman
et al., 2016; Zhang et al., 2021a; Zhong et al., 2023), but veg-
etation structure, measured by the leaf area index (LAI), also
influences evapotranspiration by regulating surface energy
and land–atmosphere coupling (Fu et al., 2022). In addition
to regional characteristic dependence, the differing sampling
time spans are also important contributors to the inconsistent
results. In an ever-changing world, the sensitivity of evapo-
ration stress to environmental changes may also evolve (Hsu
and Dirmeyer, 2023). However, research on the time-varying
sensitivity is still in its infancy. Existing research investigates
these temporal changes by segmenting time series, such as
Zeng et al. (2022) using a 5-year moving window for NDVI
sensitivity to precipitation or Li et al. (2022a) using machine
learning to assess LAI sensitivity to soil water over 3-year
blocks. However, these approaches only yield an average re-
sponse for each segment, rather than the true “instantaneous
or dynamic” sensitivity. Fortunately, the application of a dy-
namic linear model based on Bayesian forward filtering, as
demonstrated by Zhang et al. (2022) in their recent research
of global NDVI sensitivity to precipitation, offers a promis-
ing avenue to elucidate this problem.

Over the past 2 decades, China’s mean air temperature
has increased at a rate of 0.24 °C per decade, exceeding the
global average of 0.20 °C per decade. Concurrent with cli-
mate warming and large-scale ecological restoration initia-
tives – including the Three-North Shelter Forest Program,
Grain for Green Program, and Plain Greening Project (Fu
et al., 2024a) – the regional leaf area index (LAI) has risen by
7.66 % (4.21 % per decade, p< 0.001), the highest rate glob-
ally (Chen et al., 2019). However, surface soil moisture has
simultaneously declined at 0.08 % per decade, signalling hy-
drological trade-offs. These rapid environmental transforma-
tions, driven by both climate variability and anthropogenic
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Figure 1. Conceptual diagram of evapotranspiration stress and its self-amplify loop. (a) ESI represents the water–vegetation–atmosphere
equilibrium, defined as the ratio of actual evapotranspiration (ETa) to potential evapotranspiration (ETp). When using the parameters of
crops assumed in the PM equation to calculate ETp (also known as ET0, reference crop evapotranspiration in agriculture), ESI values greater
than 1 may occur. (b) As regions experience more severe water deficiency or sparser vegetation cover, the balance tilts further to the right,
and the ESI value decreases. A smaller ESI value indicates more severe drought conditions. (c) Schematic of the self-amplify feedback loop,
where Gs represents stomatal conductance, GPP stands for gross primary productivity, and VPD denotes vapour pressure deficit. Blue lines
depict the atmospheric feedback pathway, while green lines represent the terrestrial surface process pathway.

activities, have established China as a critical natural labora-
tory for studying coupled hydrological–ecological–climatic
interactions (Bai et al., 2020; Li et al., 2018; Zheng et al.,
2022)

Here, a memory dynamic linear model (MDLM) integrates
intrinsic lagged effects and concurrent extrinsic forcing to
quantify both the response of the evapotranspiration stress
index (ESI) to environmental changes and its temporal vari-
ability. Utilizing the MDLM, we calculate the time-varying
sensitivity of ESI to key drivers at pixel scale in China over
the past 2 decades, with 8 d temporal granularity. The ro-
bustness of the results is verified through a moving-window
multiple linear regression model. Prior to model implemen-
tation, interpretable machine learning algorithms leverag-

ing two classifiers are employed to screen key drivers of
ESI across diverse climate–vegetation zones at 8 d, 16 d, and
monthly timescales. This study aims to (a) untangle the dy-
namic trajectory of ET stress, (b) investigate the potential
driving mechanisms of ESI, and (c) quantify the time-varying
sensitivity of ESI to principal external drivers upon the in-
corporation of intrinsic memory effects. Our findings are ex-
pected to narrow the knowledge gap in temporal variability of
evapotranspiration stress response, enhance our comprehen-
sion of the complex water–vegetation–climate interactions,
and inform potential improvements for Earth system models.
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2 Materials and methods

2.1 Datasets

The Evapotranspiration Stress Index (ESI) (Eq. 1) is the ratio
of ETa to ETp. Although ETp lacks consensus in definitions
and estimation methods, the Penman–Monteith (PM) equa-
tion is adopted here due to its consistency with the ESI frame-
work. The ERA5-derived ETp product satisfies this crite-
rion, delivering integrated radiation, surface temperature, and
wind speed data required by the PM equation. To avoid po-
tential overestimation of ETp, we implement the Yang et al.
(2019)-modified PM formula, which incorporates the CO2
water-saving effect and is widely adopted in evapotranspira-
tion studies (Lian et al., 2021; Zhang et al., 2023). CO2 data
were obtained from CarbonTracker (CT2022) for the period
2001–2020 at a 3°× 2° spatial resolution. Appendix A de-
tails the calculation procedures of ESI. Additionally, we as-
sess the efficacy of three other mainstream evaporation prod-
ucts in representing ESI spatial patterns across China, bench-
marking these against observational data from 26 flux sta-
tions.

ESI=
ETa

ETp
(1)

In addition to the meteorological and CO2 data utilized in
ETp calculations (Eq. A4), total precipitation (Prec), atmo-
spheric pressure (P ), and soil volumetric water content (svm)
across different soil layers from ERA5 are also considered as
influencing factors for the ESI. The root zone of vegetation
serves as a critical interface for water–plant–atmosphere in-
teractions (Gao et al., 2014, 2024; Wang-Erlandsson et al.,
2016). Utilizing root zone depth estimations based on an 80-
year drought return period from Stocker et al. (2023), we
computed the spatial distribution of root-zone soil moisture
(Rsvm) across China through a weighted averaging algo-
rithm, as detailed in Appendix B.

Vegetation factors, key drivers of the Evaporative Stress
Index (ESI), were incorporated through the Global Land
Surface Satellite (GLASS) datasets, including the Leaf
Area Index (LAI; version V60) and Fractional Vegeta-
tion Cover (FVC; version V40) (Liang et al., 2013, 2014,
2021). These datasets feature an 8 d temporal resolution
and 0.05° spatial resolution spanning 2001–2020. Addi-
tionally, Moderate Resolution Imaging Spectroradiometer
(MODIS) datasets, including the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) (MOD13C1) with a 16 d temporal resolution, were
employed. Besides, to mitigate saturation effects and en-
hance robustness to noise, kernel density estimation was
applied to smooth the NDVI data, creating kernel NDVI
(kNDVI) (Camps-Valls et al., 2021) (Eq. 2).

kNDVI= tanh(NDVI2) (2)

Grids with NDVI values below 0.1 are omitted to elimi-
nate barren, rocky, sandy or snow areas. The Aridity Index
(AI) is calculated as a multiyear average (2001–2020) by the
ratio of annual Prec to ETp using the ERA5 dataset. Lower AI
values indicate drier regions, classifying the study area into
sub-humid (0.5≤AI< 0.65), semi-arid (0.2≤AI< 0.5), and
arid (0.05≤AI< 0.2), with regions exceeding an AI of 0.65
being categorized as non-dryland areas (Spinoni et al., 2015).
To mitigate the effects of land-use change, the annual China
Land Cover Dataset (Yang and Huang, 2021), featuring a
30 m grid spacing for the years 2001–2020, is employed.
Only grids with consistent land cover types (cropland, forest,
or grassland) throughout the study duration were selected for
analysis, as depicted in Fig. A1.

The datasets and pre-processing procedures are summa-
rized in Table S1 in the Supplement. All variables were in-
terpolated to a spatial resolution of 0.1° to match the ERA5
dataset and were composited over three distinct temporal
scales: 8 d, 16 d, and monthly. The selection of datasets was
guided by criteria that included high accuracy, fine spatial
resolution, and a broad temporal coverage.

2.2 Identification of the key drivers

Hydrothermal conditions and vegetation variables can each
be represented by multiple proxies. For vegetation health, in-
dicators like FVC, LAI, NDVI, and kNDVI are commonly
used. In contrast, the energy conditions considered in this
study are limited to T and Rn. A disparity in the number
of variables may introduce bias, potentially favouring some
feature groups over others, which may distort feature im-
portance assessments (Liu et al., 2024). More critically, a
high degree of correlation between features – known as mul-
ticollinearity – may cause overfitting, where the model be-
comes excessively tailored to the training data, compromis-
ing its ability to generalize.

To identify the principal factors influencing ET stress, we
use Explainable machine learning (SHapley Additive exPla-
nations), specifically XGBoost and Random Forest (RF) re-
gressors. These models provide a robust approach for fea-
ture selection, with SHAP values used to evaluate the im-
portance of each driver, where higher SHAP values indicate
greater influence (Lundberg and Lee, 2017). Both XGBoost
and RF reduce overfitting risks due to their ensemble nature
(Breiman, 2001; Chen and Guestrin, 2016). To optimize the
regression model, we use grid search techniques and 5-fold
cross-validation for parameter refinement. Furthermore, reg-
ularization and the “early stopping” mechanism help man-
age overfitting and control model complexity. Table S2 in the
Supplement presents the performance metrics of two models.
Despite the above efforts to prevent overfitting, the relatively
low validation accuracy still reveals the SHAP model’s sus-
ceptibility to misallocating feature importance among highly
correlated variables. To address this, we generated multi-
ple training subsets through categorical divisions of tempo-
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Figure 2. Illustration of time-series decomposition and procedures for sensitivity analysis. (a) Conceptual diagram of the time-series struc-
ture, where the blue line denotes the intra-annual sequence, the green line signifies the interannual trend, and the brown line illustrates the
seasonal cycle pattern. (b) The output of the MDLM. (c) The results from the 5-year moving window multiple linear regression model, in
which Y represents the anomaly of ESI, X denotes the driving factors, θ symbolizes the sensitivity of Y to changes in X, and the subscript
denotes the specific time point.

ral scales (8 d, 16 d, monthly) and spatial partitions (drought
gradient and land cover types: cropland, forest, grassland).
This approach enabled us to obtain diverse importance rank-
ings across China’s regions and derive statistically robust
importance hierarchies through distribution analysis (Figs. 4
and S3 in the Supplement).

Moreover, we employ partial dependence plots (PDPs) to
elucidate the effects of key drivers on the ESI, which show
how the model’s predictions change in response to variations
in individual drivers, while keeping other variables constant
(Friedman, 2001; Štrumbelj and Kononenko, 2014). To en-
hance the robustness, we performed 30 iterations with vary-
ing random seeds and averaged the results.

Persistent common trends and analogous seasonal pat-
terns can result in overfitting, thereby concealing the actual
causal relationships (Li et al., 2022a) (Fig. 2a). In our SHAP
model, we input deseasonalized and detrended anomalies of
each variable. Seasonality is mitigated by subtracting the
climatological mean, and long-term trends are eliminated
through the application of a locally weighted smoothing filter
(LOWESS) with a span of 0.3 (Cleveland, 1979).

2.3 Exploration of the time-varying sensitivity

The sensitivity of evaporative stress to key drivers (identi-
fied in Sect. 2.2) proxies the ESI’s response to driver varia-
tions. Given self-amplify mechanisms, the previous state of
evaporative stress is modelled by a lag-5 autocorrelation. The
mathematical expression for sensitivity is as follows:

δESIt = θESI1δESIt−1 ∼ θESI5δESIt−5+ θHydrδHydrt
+ θEnerδEnert + θClimδClimt + θVegeδVeget + ε,

(3)

where δHydrt , δEnert , δClimt , and δVeget are anomalies
in hydrological, energy, climatic, and vegetation conditions,
respectively, with subscripts indicating that the anomalies
are calculated from the current time (t). The correspond-
ing θ represents the sensitivity of evaporative stress inves-
tigated in this study, and ε is the error term. θESI1δESIt−1 ∼

θESI5δESIt−5 denote the stress states from the previous 1 to
5 stages. Considering the lagging effect, we constructed a
memory dynamic linear model based on Bayesian forward
filtering (MDLM) to analyse the time-varying sensitivity of
ESI. This model draws upon the foundational work of Liu
et al. (2019) and Zhang et al. (2021b), which primarily ex-
amines the vegetation’s response to antecedent growth states
and prevailing climatic conditions.

Dynamic linear models serve as a sophisticated statisti-
cal methodology for modelling time-series signals by incor-
porating various contributing factors (Prado et al., 2021).
For each pixel, we developed a MLDM that integrates long-
term evaporation stress trends, seasonal cycles, the effects
of internal memory from the previous five stages, and ex-
ternal drivers. DLM decomposes the ESI series into three
components: local mean and trend, seasonal pattern, and re-
gression part. The MDLM, utilizing Bayesian forward fil-
tering, captures the dynamic relationship between ESI’s re-
gression components and driving factors at each time step,
providing an “instantaneous” response. Additionally, this ap-
proach allows sensitivity analysis in both stationary and non-
stationary scenarios (Liu et al., 2019; Zhang et al., 2021b),
with model precision increasing as the sample size grows.
Therefore, we calibrated MLDM using an 8 d resolution, the
finest temporal scale available, with data allocation compris-
ing 80 % for training and 20 % for validation. Further details
are available in Text S1 in the Supplement.
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We also employed multiple linear regression (MLR) with
a 5-year moving window to calculate a rough sensitivity se-
quence for comparison. To remove seasonality and isolate
the relationship between ESI anomalies and drivers, we sub-
tracted the long-term average over an 8 d interval and ap-
plied the LOWESS method to eliminate local trends. Using
Eq. (3), we established a MLR model and analysed the re-
gression coefficients (sensitivity coefficients) for each win-
dow. It is crucial to acknowledge that the sensitivity de-
rived from the MLR model represents an average response
across a designated window (Fig. 2c), providing only a rough
sequence of sensitivity to confirm the overarching trend
throughout the study period.

The regression coefficients obtained by the two methods
are partial regression coefficients, reflecting the magnitude
and direction of the relationship between the variable and the
ESI while holding other independent variables constant to re-
move the obfuscating effects of collinearity (Toyoda, 2024).
The precise elucidation of real-world phenomena’s intrica-
cies necessitates incorporating a broad spectrum of represen-
tative drivers. To prevent overfitting due to multicollinearity,
we evaluated the variance inflation factor (VIF) for the inde-
pendent variables before modelling (Belsley, 1991) (Table S4
in Supplement).

2.4 Other statistical analysis

Besides, we employed Sen’s slope estimator (Sen, 1968) to
quantify the temporal trend and the Mann–Kendall (MK)
test to ascertain the statistical significance (Kendall, 1949;
Mann, 1945). The slope> 0 signifies a positive trend, and a
slope< 0 denotes a negative trend over time.

This study comprehensively investigates the dynamic tra-
jectory of evaporative stress by comparing the ESI calcu-
lated using the conventional PM formula from 1950 to 2020
with the ESI derived from the PM formula incorporating CO2
water-saving effects from 2001 to 2020, enabling a detailed
examination of its variation characteristics. Subsequent anal-
yses are conducted using the latter due to limitations in the
influencing factors’ data series. The SHAP model is applied
at 8 d, 16 d, and monthly scales to obtain temporally robust
importance rankings. Furthermore, to calculate sensitivity,
the MDLM operates at an 8 d temporal resolution, as a larger
sample size enhances parameter accuracy. The temporal evo-
lution patterns of sensitivity coefficients are explored at an
interannual scale.

3 Results

3.1 Evapotranspiration stress is intensifying in China

Mainland China demonstrated a pronounced decline in the
ESI from 1950 to 2020 (total change of 4.74 %, decreas-
ing by 0.54 %d−1, p< 0.001). While the CO2 water-saving
effect partially offset the decline, the downward trend re-

mains largely parallel to the long-term series, indicating
a continued exacerbation of evaporative stress (−0.70 %
per decade, p= 0.31). Annual tracking over 70 years en-
hances statistical significance due to the expanded sample
size (Fig. 3a). Collectively, the ESI for each month is on a
downward trend, with stability in the early growing season
(0.58± 0.08). Commencing in April, the onset of the grow-
ing season prompts a marked increase in ESI and culminates
in a peak between 0.9 and 1.0 by August (Fig. 3b).

Spatially, over one-quarter (28.01 %) of the regions na-
tionwide have registered a significant reduction in ESI
(p< 0.05), concentrating in the North China Plain and the
Northeast, where the rate surpassing 2.40 % per decade. Con-
currently, stress in the Northwest and the middle to lower
Yangtze River basin is easing (Fig. 3c). ESI declines more
sharply in dryland (total change of 7.63 %, decreasing by
0.91 % per decade, p< 0.001) than in non-dryland lands
(total change of 2.92 %, decreasing by 0.32 % per decade,
p< 0.01) (Figs. 3d and S2 in the Supplement). This de-
cline is observed universally across various land-use cate-
gories, with cropland seeing the greatest reduction and the
highest percentage of areas (−1.14 % per decade, p< 0.001;
7.59× 105 km2, 50.24 % of the total cropland area) (Figs. 3c,
e, S1, and S2 in the Supplement). Similar dynamics are
observed in ESI factoring in the water conservation ben-
efits attributed to CO2. Even so, the decline in ESI for
drought-prone and agriculture-intensified regions over the
past 2 decades has outpaced that of the preceding 70 years
(−1.63 vs−0.91 % per decade in dryland,−1.60 vs−1.14 %
per decade in cropland), highlighting the increasing water
stress in these areas.

3.2 Soil moisture as the primary external driver

Both RF and XGBoost models pinpoint shallow soil mois-
ture (0–7 cm) as the paramount driver, indicating that its
scarcity is most likely to trigger evaporative stress, espe-
cially in water-limited regions, consistent with Liebig’s law
of the minimum (Danger et al., 2008; Tang and Riley, 2021).
Among vegetation proxies, LAI performs the best, likely at-
tributable to its strong correlation with stomatal conductance
(Fig. 4b). Similar importance ranking distributions were ob-
served using RF regressor (Fig. S3b). Comparatively, the
XGBoost regressor exhibited enhanced stability across mul-
tiple subsets, with minimal divergence between training and
validation metrics (Table S2), prompting its selection for sub-
sequent importance quantification analysis. Cross-validation
reveals that, across an 8 d interval, water, energy, climate,
and vegetation factors on ESI variability decline sequentially,
contributing 42 %, 24 %, 21 %, and 11 % to ESI, respec-
tively (Fig. 5b). Within each category, the drivers exerting the
greatest influence are svm0–7 (0.19), Rn (0.18), VPD (0.14),
and LAI (0.03) (Fig. 5a). Monthly-scale analysis reveals am-
plified hydrological regulation (water contribution= 0.56),
with concurrent suppression of vegetation and energy con-
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Figure 3. Dynamic trajectory of ESI across China from 1950 to 2020. (a) Time series and linear regression of the mean regional ESI, with
the traditional PM-equation-derived ESI shown in dark green and the CO2 water-conservation-adjusted ESI in light green. (b) Intra-annual
distribution of ESI, with each line corresponding to a different year and darker hues indicating more recent years. (c) ESI trend over the
preceding 7 decades, quantified by Sen’s slope, where lighter shaded regions denote statistically significant trends at the 0.05 level. The inset
graphically summarizes the significant (darker shades) and non-significant (lighter shades) changes of ESI across various vegetation types.
Panel (d) and (e) illustrate the distribution of ESI trends in both arid and humid zones, as well as across diverse land-use categories.

trols (Figs. 5b, S4, and S5 in the Supplement), demonstrating
scale-dependent hierarchy in ecosystem stress controls.

Following collinear variable filtering, we identified svm0–
7, Rn, T , VPD, U , P , CO2, and LAI as critical external
drivers of evaporative stress (parameter set R0). Given pre-
cipitation’s secondary ranking to svm0–7, we established
scenario R1 substituting precipitation to examine hydrolog-
ical driver divergence (Appendix C). SHAP model calibra-
tion across temporal scales revealed ESI response patterns
for both variable sets. Reduced multicollinearity enhanced
model stability (Table S3 in the Supplement). ESI generally
exhibits a nonlinear relationship with several critical factors
(Fig. 5c–j), decreasing with a higher VPD, T , and Rn but
increasing with U , LAI and svm0–7. Similar patterns are
observed across temporal resolutions, reinforcing the robust-
ness of our findings (Figs. S4 and S5). Moreover, the non-
monotonic interactions between P and CO2 with ESI high-
light the imperative for further investigation into how these
factors exacerbate or mitigate evaporative stress across var-

ious numerical ranges. However, except for Rn, increasing
temporal scale generally decreases the linearity and mono-
tonicity of PDPs (Fig. 5c–j), likely due to data averaging or
noise distortion obscuring relationships (Figs. 5, S4, and S5).

3.3 Undergoing dramatic changes in sensitivity of key
drivers

To quantify the influence of these variables on the ESI, de-
noted by sensitivity parameter θ (Table S5 in the Supple-
ment), factorial simulations are conducted using the MDLM
and MLR model. The findings demonstrate solid stability and
powerful interpretability after successfully passing the mul-
ticollinearity test (Table S4).

Soil moisture stands out as the paramount and most sensi-
tive factor, demonstrating a significant upward trend in both
models, albeit with quantitative differences (Fig. 6b). MDLM
results indicate θsvm increased by 9.49 % over the past
2 decades (0.03± 0.01 yr−1, p< 0.001), peaking at a 13 %
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Figure 4. Identification of the key external drivers of evapotranspiration stress index (ESI). (a) Matrix plot employs bubble size to repre-
sent the absolute values of SHAP, with a colour gradient from blue to red denoting negative and positive effects, respectively. Numerical
annotations within each bubble denote the rank of importance for the variables, with higher values signifying greater influence. These ranks
are obtained from an explainable machine learning utilizing XGBoost regressors. (b) Box plot provides a statistical representation of the
variable rankings across varying underlying surface conditions (corresponding to the row it’s in), where the black line denotes the mean
ranking and the red dot signifies the median ranking. The analysis incorporates vegetation factors such as FVC, EVI, NDVI, kNDVI, and
LAI; meteorological factors including atmospheric pressure (P ), carbon dioxide (CO2) concentration, wind speed (U ), and VPD; energy
factors encompass air temperature (T ) and net radiation (Rn); and water supply factors, which account for precipitation (Prec) and the soil
volumetric water content (svm) across various soil layer depths, with subscripts specifying the depth range, with 0–7 indicating the soil layer
from 0 to 7 cm, and Rsvm representing root-zone soil moisture. Inputs to the model are the anomalies of all aforementioned variables.

rise from the previous decade in 2016. In contrast, the MLR
model, with a slightly lower mean θsvm (2.36 vs. 2.98), exhib-
ited a stronger growth trend (0.05± 0.01 yr−1, p< 0.001),
peaking earlier in 2014. This shift in peak timing is an inher-
ent consequence of the moving average process. Similarly,
Tang et al. (2025) reported analogous evolutionary patterns
and attributed this phenomenon primarily to climatic drivers.
Among other pivotal drivers, θVPD and θLAI exhibit consid-
erable numerical values and trends (Figs. 6 and S6 in the
Supplement). On average, a 1 kPa rise in VPD correlates
with an ∼ 16.84 % rise in evaporative stress according to the
MDLM, slightly lower than the 19.74 % increase estimated
by the MLR. The MLR also predicts a higher annual growth
rate (0.37± 0.07 vs 0.24± 0.05 %yr−1, p< 0.001) (Fig. 6c).
Regarding LAI, the MLR projects a greater decline, with a
cumulative reduction of 82.16 % (compared to 45.77 % in
the MDLM) and an annual rate of −0.19± 0.02 %yr−1 (vs.-

0.16± 0.03 %yr−1 in the MDLM, p< 0.05) (Fig. 6d). This
suggests that the perceived decline in vegetation greening ef-
ficacy for drought relief, as assessed by conventional MLR
methods, might be overstated. The consensus result from Pa-
rameter Set R1 corroborates the robustness of this observa-
tion (Fig. S6d).

Spatially, θsvm is predominantly higher in the southeast
and lower in the northwest, while θPrec exhibits a com-
plementary pattern (Figs. 7a and S10a in the Supplement).
This indicates that in humid regions, ESI is primarily af-
fected by soil moisture regulation, whereas in arid regions,
short-term precipitation can substantially alleviate evapo-
rative stress. The specific mechanisms are discussed in
Sect. 4.2. Additionally, θsvm also varies by land-use type,
with forest showing the strongest sensitivity and most dras-
tic changes, followed by cropland and grassland (MLDM:
4.27> 3.60> 1.17, Fig. 8a and d). A plausible explanation
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Figure 5. Importance and partial dependence of external driving factors influencing ESI. (a) Relative importance of hydrologic, energy,
climatic, and vegetation factors in explaining ESI, with each category encompassing multiple indicators. The significance of these indicators
is visually encoded by the colour scheme of the bars matching their labels on the left. (b) Pie chart illustrates the proportion of the four
categories described in (a). (c–j) Partial dependence graphs correspond to the following variables, in order: P , U , CO2 concentration, VPD,
T , Rn, LAI, and soil moisture content for the top 0–7 cm. The thickened lines indicate the average effects, and the light lines around them
indicate 30 random incidents from the datasets. This figure is based on an 8 d data series and generated through a SHAP model employing a
XGBoost regressor, which processes the anomalies of the variables as inputs.

is that regions endowed with optimal water conditions and
robust ecological structure exhibit increased sensitivity due
to the magnified impacts resulting from the disequilibrium
of hydrology, climate, and vegetation (Forzieri et al., 2022).
Notably, sensitive hotspots were distributed near the “Hu
Line” and in the lower Yangtze River basin (Fig. 7a). Given
the recent shifts in forest composition (large-scale plant-
ing of single tree species) coupled with the increasing ex-
treme climatic events (Ruan et al., 2022; Yin et al., 2022),
these areas warrant special attention. Furthermore, sizeable
areas (MDLM: 4.00× 106 km2, approximately 48.3 % of
China mainland) experienced a rise in θsvm (Sen’s slope> 0,
Fig. 7a), with a similar pattern observed in MLR (Fig. S9a
in the Supplement). However, MLR underestimates θsvm in
nearly all vegetated areas (∼ 93.6 %), while markedly over-
estimating its increasing trend in ∼ 58.5 % of these areas,
particularly in the south (Figs. 7d and S9a).

Similarly, MLR shows a comparable spatial pattern of un-
derestimation in values and overestimation in trends when
estimating θVPD (Figs. 7b, e and S9b). It exhibits notable

regional disparities, with dryland encountering a 1.64-fold
greater increase in ET stress per unit of VPD compared to
wet regions (MDLM: −23.02 % vs −14.07 %). θVPD is de-
creasing in arid regions (−0.89 % per decade, p< 0.01), in
contrast to the increasing trend in humid regions (3.36 % per
decade, p< 0.001); therefore the discrepancy between dry-
land and non-dryland is anticipated to widen (Fig. 8b and e).
Notably, MLR indicates an even greater trend divergence be-
tween dryland and non-dryland regions (−2.41 % vs. 6.58 %
per decade, p< 0.001, Fig. 8e). Interestingly, the response
of evaporative stress to LAI (θLAI) exhibits in both positive
and negative ways. Approximately 29.6 % (2.81× 106 km2),
counterintuitively, experienced an increase in LAI coupled
with intensified ET stress (θLAI < 0), mainly in the Loess
Plateau, North China Plain, and lower Yangtze River region
(Fig. 7c). In these areas, rapid greening and intensive agri-
cultural expansion are linked to heightened water deficits
(Feng et al., 2016; Lu et al., 2018; Wang et al., 2024). In the
lower Yangtze River region, increased LAI is associated with
reduced evaporation (Zhang et al., 2021c), possibly due to
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Figure 6. Sensitivity of the ESI to external drivers and its dynamic trajectory. (a) Distributions ofR2, RMSE, and MAE for MLR and MLDM
models across all grid cells in training and validation sets, with triangles marking median positions. (b–i) θ time series derived from MLDM
(red) and MLR (blue). Dashed lines indicate linear or quadratic fit trends, with shaded regions representing 95 % confidence intervals of the
fits. Text annotations display Sen’s slope estimates with statistical significance, along with R2 values and fit significance; quadratic fits were
applied when linear trends were insignificant. Box plots illustrate θ distributions: boxes denote interquartile ranges (25th–75th percentiles),
horizontal lines represent medians, dots indicate means, whiskers span 5th–95th percentiles, and text annotations specify t test significance
of differences between model results.

shading effects that lower surface radiation, soil temperature,
and soil evaporation (Forzieri et al., 2020). Regions where in-
creased LAI alleviated stress are predominantly near the “Hu
Line” (θLAI > 0, 4.01× 106 km2, ∼ 42.27 %), where sensi-
tivity trends showing a significant decline (Sen’s slope < 0,
Fig. 7c). This region is a focal point for China’s afforesta-
tion efforts (Zhan et al., 2023), implying that the benefits of
sustained greening in reducing ET stress might be lessening.
Additionally, artificial agronomic regulation renders minimal
and stable θLAI in cropland (MLDM: θLAI= 1.11 %, Sen’s
slope=−0.48 % per decade, Fig. 8c and f). Figure 8 further

illustrates that the values and trends of θsvm, θVPD, and θLAI,
as estimated by MLDM and MLR, display statistically sig-
nificant differences (p< 0.001) across most climate zones
and vegetation types, underscoring substantial methodolog-
ical discrepancies. Within the same land-use categories, the
MLR model consistently demonstrates more dispersed sen-
sitivity trend distributions and higher intra-group variability
(Fig. 8).
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Figure 7. Spatiotemporal heterogeneity in sensitivity of ESI to svm0–7, VPD, and LAI. (a–c) Spatial distributions of temporal trends
(estimated by Sen’s slope) for θsvm (sensitivity of ESI to svm0–7), θVPD, and θLAI, respectively. Orange indicates increasing trends, and blue
denotes decreasing trends, with hatched patterns marking significance at p< 0.05 (Mann–Kendall test). Insets display spatial distributions
of multi-year mean θ . (d–f) Discrepancies in Sen’s slope estimates and multi-year mean values between MLR- and MDLM-derived θ (a–c).
Pie charts quantify the proportion of land area exhibiting corresponding trend patterns. Grey indicates non-vegetated areas.
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Figure 8. Sensitivity comparisons between MDLM and DLM models across regional land types. (a–c) Distributions of sensitivity param-
eters θ (ESI to svm, VPD, and LAI) in dryland, non-dryland, forest, cropland, and grassland. Box plots show interquartile ranges (25th–
75th percentiles, boxes), medians (central lines), means (dots), and data ranges (5th–95th percentiles, whiskers). Corresponding probability
density curves are plotted alongside. Top asterisks indicate t test significance between different groups: three asterisks (∗) denote p< 0.001,
N.S.= non-significant differences.

3.4 Sensitivity of soil moisture increases with enhanced
greening

Given the prominent greening tendency in China, we further
explored the connection between greening and the sensitiv-
ity of dramatically changing variables (Fig. 9). In extremely
humid regions (AI > 1.5), faster greening trends are associ-
ated with lower θsvm values (Fig. 9a). Conversely, in less hu-
mid regions (AI < 1.5), particularly in semi-arid and semi-
humid zones (0.2<AI < 0.65), both θsvm and its trend in-
crease alongside the gradient of greening trends, suggesting
higher sensitivity and greater acceleration (Fig. 9a and b).
Specifically, when 0.2<AI < 0.5, θsvm rises progressively
from 1.30 to 2.20, while the associated trend simultaneously
escalates from ∼ 0 to 0.2.

Unlike θsvm, θVPD and θLAI (and their trends) do not ex-
hibit a co-varying gradient pattern along the greening trends
(Fig. 9d–i). Remarkably, drier regions with slower pace
of greening display greater absolute θVPD values (|θVPD|,
Fig. 9d), suggesting that heightened VPD amplifies ET stress
per unit increase. However, in rapid greening areas, |θVPD|

tends to be diminished (Fig. 9d), likely because denser veg-
etation enhances transpiration, increasing atmospheric mois-
ture and partially offsetting moisture deficit stress (Fig. 9d
and f). These findings imply that vegetation greening may,
to some extent, improve the ecosystem’s resilience to atmo-
spheric drought. Concerning θLAI, a faster LAI increase cor-
responds to a steeper decline in θLAI, reducing the efficacy of
LAI in mitigating ET pressure (Fig. 9h and i). Consequently,
greening-induced water stress mitigation may be less pro-
nounced than anticipated.

4 Discussion

4.1 Mechanistic advancements of the MDLM

Previous research has largely focused on the long-term av-
erage response of individual variables in the hydrological–
climatic–vegetation nexus. Our study employs the ESI as a
metric to assess the dynamic equilibrium of the system and
introduce the MDLM to capture its time-varying response
(Fig. 1). The MDLM, characterized by its mechanism-
driven architecture and operational simplicity, can inherently
detrend and deseasonalize data, eliminating the need for
anomaly pre-processing. It shows a 44.26 % improvement
in simulation accuracy over the moving-window MLR (R2

increasing from 0.61 to 0.88, Figs. 6a, and S6–S8), consis-
tent with high fitting accuracies (> 0.90) reported in other
studies (Zhang et al., 2021b). This improvement is primar-
ily attributed to Bayesian forward filtering embedded in the
MDLM for dynamic parameter estimation and its capability
to approximate nonlinear dependencies as quasi-linear rela-
tionships at discrete temporal nodes (Fig. 3). Consequently, it
provides time-specific analyses, unlike the window-averaged
sensitivity produced by MLR (Liu et al., 2019; Zhang
et al., 2022). Pixel-scale model comparisons indicate that the
MDLM outperforms the MLR across the entire study area
(Figs. S7 and S8 in the Supplement), demonstrating its high
flexibility and broad applicability to diverse climatic and
terrain conditions. More importantly, comparing the θ se-
quences for key variables (svm, VPD, and LAI) reveals that
the MLR significantly overestimates their temporal trends
(Figs. 6–8, S6, S9, and S10). These MLR processes – trun-
cating sequence, smoothing, and simplifying nonlinear dy-
namics – not only lead to signal loss but also cause sub-
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Figure 9. Sensitivity and its trend of ESI to svm0–7, VPD, and LAI along greening and aridity gradient. (a) The grouping statistics of θsvm
across different bins, categorized by differing degrees of aridity and trends in LAI. Median value is shown for each grid and the number
of grid points within each bin is shown in Fig. S12 in the Supplement. Similar to (a), (b) pertains to the grouping statistics of the trends
of θsvm. (c) The conceptual diagram delineates the covariation between LAI trends and θsvm, including their respective trends, in regions
with an Aridity Index (AI) below 1.5. It offers a conceptual interpretation of the patterns depicted in (a) and (b) for these areas. Note that an
increase in ESI indicates a mitigation of evaporative stress. Panels (d–f) and (g–h) are analogous to (a–c); however, their main focus is VPD
and LAI, respectively. In panels (c–i), the upper right corner indicates the aridity of regions adhering to the specified pattern. A red line with
a “+” sign denotes direct proportionality, whereas a “−” sign accompanied by a blue line indicates inverse proportionality. A grey dashed
line represents an ambiguous relationship, and a black dashed line highlights the sensitivity parameter θ and its corresponding trend.

stantial differences in θ evolution trajectories (Figs. 6g, h
and S6g). These findings highlight the need to re-evaluate
the suitability of traditional moving average methods for de-
termining inter-variable coupling strength or temporal sensi-
tivity trends.

4.2 Enhanced evapotranspiration stress and its
moisture-driven mechanisms

Our findings indicate that despite the water-saving bene-
fits of elevated atmospheric CO2 levels, various regions
in China have distinctly experienced increased evaporative
stress (Figs. 3a, b and S1). This phenomenon is in concor-
dance with several recent detrimental environmental shifts,
including land surface desiccation, rising evaporation de-
mand, and groundwater depletion (Jasechko et al., 2024;
Qing et al., 2023; Yuan et al., 2019). The pronounced in-
crease in ET stress in dryland and cropland underscores the
vulnerability of these ecosystems (Figs. 3c–e, S1, and S2a,

c), primarily attributed to the considerable desiccation of
soil moisture (Fig. S11a in the Supplement). Soil moisture,
as the exclusive direct water supply source for terrestrial
evaporation processes – whether from land surface or plant
transpiration – exerts a paramount role (Smith and Boers,
2023; Zhao et al., 2023) (Figs. 4–6 and S3–S6). Over the
past 20 years, increased soil water sensitivity and variabil-
ity has led to greater ET stress intensification (Figs. 6b,
7a, and S11a). Sporadic studies on time-varying sensitivity
also reveal that water supply increasingly impacts ecosys-
tems (Hu et al., 2023; Li et al., 2022a; Zeng et al., 2022;
Zhang et al., 2022). Our simulations, using precipitation as
a water proxy for moisture, also corroborated these findings
(Figs. S6b and S10). Hence, addressing the threats posed by
soil moisture deficits in arid cropland is crucial for ensuring
water and food security.

Intriguingly, our research identifies a complementary spa-
tial pattern between θsvm (southern high–northern low)
and θPrec across China (Figs. 7a and S10a). In northern
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arid/semi-arid regions with low initial soil moisture, pre-
cipitation acts as an “instantaneous input” that rapidly re-
plenishes soil moisture and substantially alleviates evap-
orative stress, exhibiting higher sensitivity. Conversely, in
southern humid regions where soils maintain near satura-
tion, surpassing the pre-existing hydro-equilibrium threshold
triggers disproportionately severe ecosystem perturbations.
Consequently, ESI in these regions demonstrates height-
ened dependence and sensitivity to soil moisture dynamics.
Analogously, despite a relatively moderate increase in for-
est ET stress (Figs. 3c–e and S2), soil moisture sensitiv-
ity emerges both highly pronounced and rapidly enhanced
recently (Fig. 8a). In regions with favourable hydrological
conditions and stable ecological structures, the collapse of
the hydrological–climatic–vegetation system can precipitate
profoundly adverse effects (Forzieri et al., 2022). Further-
more, in the face of increasingly intense and severe extreme
climatic events, complex ecosystems require closer monitor-
ing to formulate proactive strategies.

4.3 Ecological implications of “greening but drying”
feedbacks in a changing climate

Additionally, the pace of greening may influence ecosys-
tems’ ability to withstand different types of water stress. On
the one hand, in semi-arid and semi-humid regions, the sen-
sitivity of ESI to soil moisture and its variability are pro-
portional to the greening trend (Fig. 9a–c). Therefore, once
a soil drought occurs, the adverse impact on ET stress in-
creases, suggesting that overly rapid greening can diminish
an ecosystem’s resilience to soil drought. Specifically, when
afforestation surpasses the carrying capacity dictated by re-
gional hydroclimatic conditions, a slight soil deficit can trig-
ger the self-amplify cycle and result in vegetation degra-
dation and mortality, known as overshoot drought (Zhang
et al., 2021b). From a long-term lens, reliance on irrigation
during the early stages of artificial vegetation establishment,
aimed to ensure plant survival, can hamper the formation of
deep root systems (Moreno-Mateos et al., 2020; Xiao et al.,
2024b). This practice weakens the plant–groundwater link-
age in drylands, subsequently diminishing their resilience
(Wang et al., 2023). On the other hand, VPD sensitivity and
the greening trend exhibit an inverse gradient (Fig. 9d), par-
ticularly in arid lands with high θVPD values Fig. 8b), indicat-
ing that greening in drylands has improved the ability to cope
with atmospheric drought. Two mechanisms may explain this
phenomenon:

1. In certain arid zones, deep-rooted vegetation accesses
deep soil moisture during droughts, releasing it into the
atmosphere via transpiration, which increases humidity
but may also worsen soil aridity (Liang et al., 2024; Sun
et al., 2021).

2. Greening reduces surface albedo, limiting surface
temperature rise and mitigating atmospheric drought
through indirect thermal regulation (Zhang et al., 2024).

Concerning LAI, a faster greening trend correlates with a
diminishing contribution of LAI growth in alleviating water
stress (Figs. 9d, 8h, and S13h in the Supplement). In certain
regions, enhanced LAI may exacerbate water stress (Fig. 7c).
Gleason et al. (2017) found that high vegetation density may
exacerbate inter-species competition for water, leading to in-
creased water stress for individual plants or specific com-
munities, providing a cogent explanation for our findings.
Collectively, although greening has traditionally been con-
sidered a positive environmental adjustment, we advocate
for a more critical and dialectical understanding. In adher-
ence to sustainable development imperatives, policymakers
and decision-makers are tasked with the precise identifica-
tion of regions amenable to greening initiatives and the es-
tablishment of quantifiable benchmarks that will safeguard
ecological equilibrium and foster enduring sustainability.

4.4 Research limitations and prospects

Although this study provides valuable insights into the inter-
play between regional greening and complex ecological cou-
plings in China, it remains subject to certain limitations in
methodology and data. First, the observational sample size
from flux stations is insufficient, as it has been employed
solely for the screening of reanalysis products rather than dy-
namic factorial simulations. Second, deviations in Parameter
Set R0 and R1 indicate that other local factors such as soil
texture, vegetation acclimation, plant demographic rates, and
vegetation–groundwater dependency may exert considerable
influence (Abel et al., 2024; Fu et al., 2024b; Patel et al.,
2021). More in-depth studies based on long-term ecophysio-
logical observations and purpose-built field experiments are
needed to further unravel the complex mechanisms of VPD,
soil moisture, and LAI in land–atmosphere interactions.

Finally, what are the key implications given the glimpse
of intensifying evapotranspiration stress coinciding with its
increasing sensitivity to soil water deficits in a greening
China? Soil water variability would lead to greater changes in
the ecosystems undergoing rapid greening. That is, stronger
drought effects can be expected when soil water is anoma-
lously low. Concurrently, the increase in LAI may not al-
leviate evaporative stress as much as expected. Combined
with the increasing frequency and severity of extreme cli-
mate events, a “greening but drying” trend may thus be more
prevalent in the future, potentially raising the risk of ecosys-
tem imbalance.

5 Conclusions

Our study introduces a memory-driven dynamic linear model
(MDLM) that integrates the “dry gets drier” legacy effects
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to evaluate time-specific sensitivities of evapotranspiration
stress drivers in China under rapid vegetation greening. Us-
ing the Evapotranspiration Stress Index (ESI) as a proxy
for ecosystem water–atmosphere–vegetation equilibrium, we
documented a 4.74 % intensification of ET stress across
mainland China from 1950 to 2020. Soil moisture sensitiv-
ity was the dominant driver, rising by 9.49 % during 2001–
2020. Enhanced vegetation greening exhibited stronger cou-
pling with elevated soil moisture sensitivity but reduced VPD
sensitivity, reflecting greater susceptibility to soil drought
but enhanced resilience to atmospheric aridity. Compared to
the conventional moving-window multiple linear regression
(MLR) method, the MDLM framework increased the coeffi-
cient of determination (R2) by 44.26 %, offering more accu-
rate sensitivity estimates. Methodologically, this work under-
scores the need to critically re-evaluate trend overestimation
inherent in traditional MLR methods. Our findings advance
mechanistic understanding of complex regional ecosystem
dynamics and offer guidance for steering greening strategies
toward a more stable equilibrium among water, atmosphere,
and vegetation.

Appendix A: Calculation and validation of the ESI

We utilize the ratio of actual evapotranspiration (ETa) to
potential evapotranspiration (ETp) to calculate the Evapo-
transpiration Stress Index (ESI). Before investigating the
dynamic changes of ESI, we compared three widely used
datasets: the Global Land Evaporation Amsterdam Model
v3.7a (daily, 0.25°), the Terra Moderate Resolution Imag-
ing Spectroradiometer (MODIS) MOD16A2GF Version 6.1
(8 d, 500 m), and the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5-Land (hourly, 0.1°).
The results are subsequently validated against observational
data from 26 eddy covariance (EC) stations (Fig. A1),
sourced from various observation networks (station details
in Table S1 in the Supplement). Each site has at least
1 year of continuous observations and energy balance resid-
uals < 35 Wm−2 (calculated using Eq. A1). Outliers are
removed using a 3-standard-deviation method, and rainy
day observations are excluded. Subsequently, data imputa-
tion is conducted using the IterativeImputer tool in Python.
The latent heat measured at the EC station is converted to
ETa (Eq. A2), and ETp is calculated using the traditional
Penman–Monteith method (Eq. A3).

Residual= Rn−G−LE−H, (A1)

where Rn represents net radiation; G denotes soil heat flux,
which is zero on a daily scale; LE refers to daily latent heat;
and H represents sensible heat flux, with all units expressed
in Wm−2.

ETa =
LE
λ

(A2)

In Eq. (A2), the unit of ETa is mmd−1, with the constant
value of λ at 0 °C taken as 28.94.

ETp =
0.4081(Rn−G)+ γ

900
T+273U(es− ea)

1+ γ (1+ 0.34U)
, (A3)

where the unit of ETp is mmd−1; 1 is the slope of the satu-
ration vapour pressure versus temperature curve (kPa°C−1);
γ is the psychrometric constant (kPa°C−1); U is wind speed
at 2 m (ms−1); T is surface air temperature (°C); and es and
ea are saturated and actual vapour pressure (kPa) and whose
difference serves as a crucial indicator of atmospheric mois-
ture deficit, known as vapour pressure deficit (VPD). At the
grid scale, all climatic variables used to calculate ETp, in-
cluding Rn, T , and U , are obtained from the ERA5 dataset.
VPD is calculated based on the Clausius–Clapeyron relation
using 2 m temperature and dew point temperature (Held and
Soden, 2006; Zhong et al., 2023).

To avoid overestimating ETp, we employed the formula
developed by Yang et al. (2019) to calculate grid ETp, ac-
counting for the CO2 water-saving effect (Eq. A4). This for-
mula has been widely recognized and applied in recent stud-
ies, providing a solid theoretical basis for accurate evap-
otranspiration estimates (Lian et al., 2021; Zhang et al.,
2023). All meteorological data used in the formula came
from ERA5, while monthly CO2 data from CarbonTracker
(CT2022) covered 2001–2020 at a 3°× 2° resolution. After
considering the water-saving effect of CO2, the mean, max-
imum, and minimum values of ETp in China decreased by
9.48, 30.85, and 19.42 mm, respectively, while the pattern is
mirrored (Fig. A2a, b, and d). The conventional ETp calcula-
tion method overestimated values across 99.6 % of mainland
China, particularly in northern arid regions (Fig. A2c).

ETp =
0.4081(Rn−G)+ γ

900
T+273U(es− ea)

1+ γ {1+U [0.34+ 2.4× 10−4([CO2] − 300)]}
, (A4)

where 2.4× 10−4([CO2] − 300) denotes the effect of atmo-
spheric CO2 concentration (ppm) on surface stomatal resis-
tance.

Figure A3 compares the ESI derived from three datasets,
revealing substantial discrepancies attributable to method-
ological differences. For ETp estimation, MODIS and ERA5
apply the PM formula calibrated for idealized vegetation
types, consistent with our research hypotheses in Fig. 1. In
contrast, GLEAM integrates actual vegetation heterogeneity.
The ETa <ETp constraint in MODIS and GLEAM limits
their ability to capture water surplus conditions (Fig. A3c
and d), whereas ERA5 – free of this restriction – pro-
duces ESI spatial patterns aligned with eddy covariance
(EC) flux measurements (Fig. A3a and b). Incorporating
CO2 water-saving effects into ETp calculations identifies an
expansion of non-water-limited regions, enhancing aridity-
humidity characterization ontological congruence (Fig. A3a,
b, and e). Note that our research is dedicated to analysing
the temporal dynamics of the ESI, particularly in relation to

https://doi.org/10.5194/hess-29-3379-2025 Hydrol. Earth Syst. Sci., 29, 3379–3404, 2025



3394 Y. Liu et al.: ET stress intensifies with enhanced sensitivity to soil moisture deficits

the intensification of drought conditions. The conceptual di-
agram (Fig. 1) demonstrates that lower ESI values signify
increasingly severe imbalances and stress levels. The study
does not address how often the threshold of 1 is crossed, and
it does not explore the physical significance of this threshold.

Figure A1. Location of the study area and distribution of multi-year average ESI. The extent of the study area, employing a tri-chromatic
map to differentiate between cropland, forest, and grassland; dots denote the positions of EC flux stations, with colours representing the
International Geosphere-Biosphere Programme (IGBP) classifications and shapes indicating observational sources. The inset displays time-
series plots of regional average air temperature (red), surface soil moisture (blue), and LAI (green) over the past 20 years, with a dashed black
line denoting the linear trend. The red slanted line denotes the position of the “Hu Line” (also known as the Hu Huanyong Line), with its
neighbouring transitional area defined as the “Hu Zone”, fundamental geographical demarcation in China that characteristically differentiates
regional hydrological regimes, vegetation coverage gradients, and demographic distribution patterns (Hu, 1935; Li et al., 2024).
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Figure A2. Comparison of the spatial distribution of the multi-year average potential evapotranspiration (ETp). (a) Calculated by the tradi-
tional PM equation and (b) the modified PM equation that incorporates the CO2 water-saving effect. The maximum value, minimum value,
and average value are marked in the lower left corner of the figure. (c) The spatial distribution of the difference between ETp and ETpPMCO2.
(d) The probability density curves of the two.

Figure A3. Spatial distribution of the multi-year average of ESI calculated from ETa and ETp products from different datasets. (a) was calcu-
lated using flux tower observational data, (b) derived from ERA5, (c) originated from GLEAM, (d) obtained from MODIS, and (e) sourced
from ERA5 but incorporating the CO2 water-saving effect in ETp calculation.
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Appendix B: Spatiotemporal patterns of Rsvm in China

Previous studies typically generalized the 0–100 cm soil
layer as the root zone. However, since the root zone is a
highly dynamic interface for water–vegetation–atmosphere
interactions, employing more realistic root zone soil mois-
ture data as an indicator for evapotranspiration stress is of
critical importance (Gao et al., 2014, 2024; Wang-Erlandsson
et al., 2016). This research utilizes root depth data based on
an 80-year drought recurrence interval, estimated by Stocker
et al. (2023) through the mass accumulation curve method-
ology. We calculated actual root zone soil moisture (Rsvm)
using the weighted averaging method with ERA5 layered soil
moisture data (2001–2020). For cases where root depth ex-
ceeded 289 cm (the maximum depth covered by ERA5 data),
the weighted average soil water content from 0–289 cm was
adopted as the Rsvm for this pixel. The computational pro-
cedure is outlined below.

The ERA5 soil moisture dataset is stratified into four lay-
ers (Layer 1–4), corresponding to soil depths of 0–7, 7–28,
28–100, and 100–289 cm. For each pixel, the contribution of
each ERA5 layer to the root zone was calculated based on
root depth parameters.

Layer 1 (0–7 cm):

d1 =min(7, root depth). (B1)

Layer 2 (7–28 cm), activated only when root depth> 7 cm:

d2 =max[0,min(28, root depth)− 7]. (B2)

Layer 3 (28–100 cm), activated only when root
depth > 28 cm:

d3 =max[0,min(100, root depth)− 28]. (B3)

Layer 4 (100–289 cm), activated only when root
depth > 100 cm:

d2 =max[0,min(289, root depth)− 100]. (B4)

The Rsvm is

Rsvm=
d1× svm1+ d2× svm2+ d3× svm3+ d4× svm4

root depth
, (B5)

where root depth denotes actual root depth (cm), d1–4 repre-
sent weighted thicknesses of individual layers (cm), svm1–4
indicates soil moisture values per layer, and Rsvm corre-
sponds to root zone soil moisture (m3 m−3).

Figure B1 investigates the spatiotemporal patterns of
root zone soil moisture across China. The regional mean
root depth is 2.33 m, with northern arid/semi-arid regions
dominated by shallow-rooted vegetation (e.g., grasslands
and shrubs) exhibiting lower root zone moisture values
(< 0.30 m3 m−3). Deeper root systems (> 15 m) occur in
northwestern arid zones and southern karst regions, where
vegetation taps into groundwater via deep roots (Fig. B1a).

The 20-year mean Rsvm is 0.33 m3 m−3, displaying a clear
south-to-north gradient, which corresponds to precipitation
patterns (Fig. B1b–d). Notably, over 50 % of vegetated ar-
eas exhibit declining Rsvm trends, particularly in north-
western China and the North China Plain, where rates ex-
ceed 0.002 m3 m−3 yr−1 (Fig. B1c). These regions have mean
annual temperatures of 18–26 °C and annual precipitation
below 900 mm (Fig. B1d). These soil-drying trends likely
arise from climatic stressors and unsustainable groundwa-
ter extraction, calling for urgent policy interventions to pro-
tect agricultural productivity and ecosystem stability. Con-
versely, northeastern and southeastern China demonstrate
rising Rsvm trends, where annual precipitation remains
abundant. This hydrological shift requires systematic assess-
ment of potential reductions in flood mitigation capacity,
underscoring the need for enhanced monitoring protocols
in watershed management to address evolving hydrological
risks.
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Figure B1. Spatiotemporal patterns of root-zone soil moisture (Rsvm) in China. (a) Spatial distribution of root depth. (b) Multi-year mean
Rsvm (2001–2020). The inset illustrates the probability density distribution with red and blue markers denoting the mean and median values,
respectively. (c) Sen’s slope of Rsvm during 2001–2020, where shaded areas indicate regions with statistically significant trends (p< 0.05).
The inset displays areal proportions of Rsvm changes: orange represents decreasing trends, blue increasing trends, and grey indicates no-data
regions. (d) Climatological phase space diagram corresponding to (a)–(c), with the x axis showing multi-year mean air temperature and
the y axis representing precipitation. Colour gradations within bins reflect median values, while dots mark regions exhibiting statistically
significant Rsvm trends (p< 0.05).
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Appendix C: Comparative impacts of precipitation and
surface soil moisture on ESI

Since precipitation ranked second in importance among pa-
rameters (after svm0–7), we developed a comparative Pa-
rameter Set R1 using precipitation anomalies to investigate
the distinct influences of precipitation and soil moisture on
the ESI. SHAP analysis across multiple temporal scales in
China revealed contrasting feature importance patterns be-
tween parameter sets (see Table S3 for model performance
metrics): R1 displayed a broader distributions of contribu-
tion indicating more balanced interactions among parame-
ter, while R0 prioritized dominant parameters (svm0–7, Rn).
Both configurations consistently showed Rn, VPD, and T
negatively regulating ESI, contrasting with positive regula-
tion by LAI and U (Fig. C1). Notably, Prec and svm0–7 syn-
ergistically enhanced ESI through moisture supply mecha-
nisms (Figs. C1, C2, 5j, S4j, and S5j), consistently ranking as
top predictors. In R1, Prec showed persistent secondary influ-
ence to VPD, whereas svm0–7 dominated feature importance
at both 16 d and monthly scales (Fig. C1b and c). Unlike the
linear relationship of soil moisture, precipitation anomalies
induced a biphasic “plateau-ramp” ESI response, requiring
anomalies exceeding −5 to 0 mm for stress mitigation. Con-
versely, svm0–7 exhibited acute sensitivity with near-vertical
monthly response gradients (Fig. S5j), indicating immediate
drought relief from minimal moisture replenishment (−0.02
to −0.01 m3 m−3) during extreme deficits. Our deseasoned-
detrended anomaly analysis inherently accommodates nega-
tive values. Subsequent research should prioritize identifying
precise response thresholds and turning points.
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Figure C1. Multi-temporal beeswarm plots between Parameter Set R0 (a–c) and R1 (d–f). Parameter set R0 includes svm0–7, Rn, T , VPD,
U , P , CO2, LAI, with R1 substituting svm0–7 with Prec. Red denotes high feature values with substantial impacts on ESI. High feature
values distributed along the SHAP positive half-axis signify positive contributions to ESI. All features are arranged in descending order of
contribution magnitude, where wider x-axis distributions reflect stronger model impacts.

Figure C2. Precipitation PDPs under Parameter Set R1 across temporal scales, with soil moisture counterparts shown in Figs. 5j, S4j, and S5j.
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Data availability. Detailed sources of observations from
26 eddy covariance flux towers are shown in Table S1 in
the Supplement. The Global Land Evaporation Amsterdam
Model v3.7a can be downloaded from the GLEAM home/-
landing page (https://www.gleam.eu/, Martens et al., 2011).
The Terra Moderate Resolution Imaging Spectroradiome-
ter (MODIS) MOD16A2GF Version 6.1 is accessed from
https://doi.org/10.5067/MODIS/MOD16A2GF.061 (Running et al.,
2021). Meteorological variables are available from the European
Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-
Land (https://doi.org/10.24381/cds.e2161bac, Muñoz Sabater,
2019). The monthly CO2 data were obtained from CarbonTracker
(CT2022) (https://gml.noaa.gov/ccgg/carbontracker/download.php,
Jacobson et al., 2023). LAI (V60) and FVC (V40) from the Global
Land Surface Satellite (GLASS) datasets are obtained from http://
www.glass.umd.edu/LAI/MODIS/0.1D/ (last access: 15 July 2023)
and http://www.glass.umd.edu/FVC/MODIS/500m/ (last access:
15 July 2023). NDVI and EVI in version MOD13C1 are derived
from https://doi.org/10.5067/MODIS/MOD13C1.061 (Didan,
2021). The annual China Land Cover Dataset with a resolution
of 30 m originates from https://doi.org/10.5281/zenodo.8176941
(Yang and Huang, 2023).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/hess-29-3379-2025-supplement.
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