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Supplementary Texts 

Text S1. Bayesian Memory Dynamic Linear Model to estimate time-varying sensitivity 

We employ the Multivariate Dynamic Linear Model (MDLM) to ascertain the time-varying sensitivities of the ESI 

with respect to its own lags over the previous 1-5 periods, as well as to various external driving factors. The MDLM, 

an extension of the Dynamic Linear Model (DLM), comprises both an observation equation and a state evolution 

equation: 

𝑦𝑡 = 𝐅𝑡
𝑇𝜽𝑡 + 𝑣𝑡 (𝑆1𝑎) 

𝜽𝑡 = 𝑮𝜽𝑡−1 +𝐰𝑡 (𝑆1𝑏) 
The model disaggregates the ESI time series observations (𝑦𝑡) into three distinct components: the local/trend 

(subscript 𝑙), seasonal (subscript 𝑠), and regression (subscript 𝑟) elements. Correspondingly, the regressor vector 

(𝑭𝑡), state vector (𝜽𝑡, representing the sensitivity coefficients), and state evolution matrix (𝑮) are each comprised of 

three analogous components. The observation noise 𝑣𝑡, adheres to a Gaussian distribution with a mean of zero, 

while the state evolution noise 𝐰𝑡, also conforms to a Gaussian distribution with a mean of zero and is independent 

from 𝑣𝑡. 

𝑭𝑡 = [

𝑭𝑙

𝑭𝑠

𝑭𝑟,𝑡

] , 𝜽𝑡 = [

𝜽𝑙,𝑡
𝜽𝑠,𝑡
𝜽𝑟,𝑡

] , 𝑮 = [

𝑮𝑙 0 0
0 𝑮𝑠 0
0 0 𝑮𝑟

] (𝑆2) 

The local component is the mean and trend of the ESI, with 

𝐹𝑙 = [
1
0
] , 𝜃𝑙,𝑡 = [

𝜃𝑙1,𝑡
𝜃𝑙2,𝑡

] , 𝑮𝑙 = [
1 1
0 1

] 

where 𝜃𝑙1,𝑡 and 𝜃𝑙2,𝑡 indicate the local mean and trend of ESI in the time 𝑡, respectively. 

The seasonal component comprises a blend of three Fourier series representing seasonality, with frequencies 

at 𝜔1 =
𝜋

6
, 𝜔2 =

𝜋

3
, and𝜔3 =

2𝜋

3
 , 

𝑭𝑠 = [

𝑭𝑠1

𝑭𝑠2

𝑭𝑠3

] , 𝜽𝑠,𝑡 = [

𝜽𝑠1,𝑡
𝜽𝑠2,𝑡
𝜽𝑠3,𝑡

] , 𝑮𝑠 = [

𝑮𝑠1 0 0
0 𝑮𝑠2 0
0 0 𝑮𝑠3

] 

where  

𝑭𝑠(𝑖) = [
1
0
] , 𝜽𝑠(𝑖),𝑡 = [

𝜃𝑠(𝑖),1,𝑡
𝜃𝑠(𝑖),2,𝑡

] , 𝑮𝑠(𝑖) = [
cos⁡𝜔𝑖 sin⁡ 𝜔𝑖

−sin⁡ 𝜔𝑖 cos⁡ 𝜔𝑖
] , 𝑖 ∈ {1,2,3} 

Based on historical data up to time step 𝑡, the expected value of the seasonal component at time 𝑡 + 𝑘 can be 

represented by the sum of three cosine functions, each characterized by distinct frequencies, amplitudes, and phases. 

𝔼[𝑦𝑠,𝑡+𝑘|𝑦𝑠,1, … , 𝑦𝑠,𝑡] = 𝑭𝑠
𝑇𝜽𝑠,𝑡+𝑘

=∑  

3

𝑖=1

𝑭𝑠(𝑖)
𝑇 𝑮𝑠(𝑖)

𝑘 𝜽𝑠(𝑖),𝑡

=∑  

3

𝑖=1

[1⁡⁡⁡0] [
cos𝜔𝑖𝑘 sin𝜔𝑖𝑘
− sin𝜔𝑖𝑘 cos𝜔𝑖𝑘

] [
𝜃𝑠(𝑖),1,𝑡
𝜃𝑠(𝑖),2,𝑡

]

=∑  

3

𝑖=1

𝐴𝑖,𝑡cos⁡(𝜔𝑖𝑘 + 𝜙𝑖,𝑡)

(𝑆3) 

where 𝐴𝑖,𝑡 and 𝜙𝑖,𝑡 represent the magnitudes and phases of the harmonic components, respectively. Both 𝐴𝑖,𝑡 and 

𝜙𝑖,𝑡 are dictated by 𝜽𝑠(𝑖),𝑡.  

The regression component employs a set of independent variables (𝑥1, 𝑥2, . . . , 𝑥𝑝) to model their impact on the 

dependent variable 𝑦𝑡. 
𝑭𝑟,𝑡 = [𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝑝,𝑡]𝑇, 𝑮𝑟 = 𝑰𝑝 

where 𝑰𝑝 is the identity matrix of dimension 𝑝. The set of independent variables comprises the deseasonalized and 

detrended anomalies of the ESI from the preceding five time periods (Lag1~Lag5), as well as the anomalies of the 

driving factors for the current time step. These deseasonalized and detrended ESI anomalies are derived by applying 

a DLM devoid of regression elements, effectively eliminating the trend and seasonal fluctuations from the ESI time 

series. The terms Lag1~Lag5 refer to the cumulative average of the respective preceding time periods. Specifically, 
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Lag1 corresponds to the immediate prior interval, encompassing the past 8 days; Lag2 covers the time span from 8 

to 16 days prior, exclusive of Lag1; and so forth. Consideration is limited to Lag1 through Lag5 because the impact 

of more distant time periods is deemed sufficiently minimal to warrant exclusion.  

To address the aforementioned MDLM, we employed a technique known as forward filtering. This approach is 

conceptually akin to Kalman Filtering but incorporates an extra step to retroactively refine the posterior estimate of 

𝑦𝑡 in order to derive the posterior estimate of 𝜽𝑡. Initially, we presuppose that the variances of the noise components 

𝑣𝑡 and 𝐰𝑡 are predetermined. 

(1) Posterior at 𝑡 − 1. Given all observations 𝐷𝑡−1 = {𝑦1, 𝑦2, … , 𝑦𝑡−1}, 𝜽𝑡−1is assumed to follow a multivariate 

normal distribution: 

𝜽𝑡−1|𝐷𝑡−1 ∼ 𝑁(𝒎𝑡−1, 𝑪𝑡−1) (𝑆4) 
where 𝒎𝑡−1 is the predicted mean, and 𝑪𝑡−1 is the variance matrix.  

(2) Prior at 𝑡. Together with Eq. 2, we can get the prior distribution of 𝜽𝑡, 
𝜽𝑡|𝐷𝑡−1 ∼ 𝑁(𝒂𝑡 , 𝑹𝑡) (𝑆5) 

where 

𝒂𝑡 = 𝑮𝑡𝒎𝑡−1, 𝑹𝑡 = 𝑮𝑡𝑪𝑡−1𝑮𝑡
𝑇 +𝑾𝑡  

(3) One step forecast. Together with Eq. 1, the predictive distribution of 𝑦𝑡 is 

𝑦𝑡|𝐷𝑡−1 ∼ 𝑁(𝑓𝑡 , 𝑞𝑡) (𝑆6) 
where 

𝑓𝑡 = 𝑭𝑡
𝑇𝒂𝑡 , 𝑞𝑡 = 𝑭𝑡

𝑇𝑹𝑡𝑭𝑡 + 𝑣𝑡 
 

(4) Posterior at 𝑡. Compared with the observed 𝑦𝑡, the posterior estimate of 𝜽𝑡 based on all observations up to time 𝑡 
is derived using Bayes' rule: 

𝑝(𝜽𝑡|𝐷𝑡) = 𝑝(𝜽𝑡|𝑦𝑡, 𝐷𝑡−1) ∝ 𝑝(𝜽𝑡|𝑦𝑡 , 𝐷𝑡−1)𝑝(𝑦𝑡|𝜽𝑡 , 𝐷𝑡−1) = 𝑁(𝒎𝑡 , 𝑪𝑡) (𝑆7) 
with 

𝒎𝑡 = 𝒂𝑡 + 𝑨𝑡𝑒𝑡 , 𝑪𝑡 = 𝑹𝑡 − 𝑞𝑡𝑨𝑡𝑨𝑡
𝑇 

where 

𝑒𝑡 = 𝑦𝑡 − 𝑓𝑡 , 𝑨𝑡 = 𝑹𝑡𝑭𝑡/𝑞𝑡 
Here, 𝑨𝑡 is the matrix of adaptive coefficients, 𝑒𝑡 represents the one-step forecast errors. When 𝑦𝑡 is missing due to 

cloud or snow, the prior from historical data 𝑝(𝜽𝑡|𝐷𝑡−1) from Eq. 4 is used to estimate 𝜽𝑡. 
In practice, the variance of noise 𝜈 and 𝑾𝑡 are unknown. Consequently, we have refined the process for variance 

estimation. Initially, we posit that 𝑣𝑡 ∼ 𝑁(0, 𝜈) and 𝒘𝑡 ∼ 𝑁(0, 𝜈𝑾𝑡
∗). Both 𝜈 and 𝑾𝑡

∗ are unknown parameters, with 

𝑾𝑡
∗ being a rescaled version of 𝑾𝑡. Given 𝜈, Eqs. 4-7 adheres to a consistent format, 

𝜽𝑡−1|𝐷𝑡−1, 𝜈 ∼ 𝑁(𝒎𝑡−1, 𝜈𝑪𝑡−1
∗ ) (𝑆8) 

𝜽𝑡|𝐷𝑡−1, 𝜈 ∼ 𝑁(𝒂𝑡 , 𝜈𝑹𝑡
∗) (𝑆9) 

𝑦𝑡|𝐷𝑡−1, 𝜈 ∼ 𝑁(𝑓𝑡 , 𝜈𝑞𝑡
∗) (𝑆10) 

𝜽𝑡|𝐷𝑡 , 𝜈 ∼ 𝑁(𝒎𝑡 , 𝜈𝐶𝑡
∗) (𝑆11) 

We assume the variation of observational error (𝜈) follows an inverse-gamma (IG) distribution, 

𝜈|𝐷𝑡−1 ∼ 𝐼𝐺(𝑛𝑡−1/2, 𝑑𝑡−1/2) (𝑆12) 
𝜈|𝐷𝑡 ∼ 𝐼𝐺(𝑛𝑡/2, 𝑑𝑡/2) (𝑆13) 

𝑛𝑡 = 𝑛𝑡−1 + 1 

𝑑𝑡 = 𝑑𝑡−1 + 𝑒𝑡
2/𝑞𝑡

∗ 

where 𝑛𝑡 is the degree of freedom, and 

𝜽𝑡−1|𝐷𝑡−1 ∼ 𝑇(𝒎𝑡−1, 𝑠𝑡−1𝑪𝑡−1
∗ ) (𝑆14) 

𝜽𝑡|𝐷𝑡−1 ∼ 𝑇(𝒂𝑡 , 𝑠𝑡−1𝑹𝑡
∗) (𝑆15) 

𝑦𝑡|𝐷𝑡−1 ∼ 𝑇(𝑓𝑡 , 𝑠𝑡−1𝑞𝑡
∗) (𝑆16) 

𝜽𝑡|𝐷𝑡 ∼ 𝑇(𝒎𝑡 , 𝑠𝑡𝑪𝑡
∗) (𝑆17) 

𝑠𝑡−1 = 𝑑𝑡−1/𝑛𝑡 
𝑠𝑡 = 𝑑𝑡/𝑛𝑡 

We estimate 𝑾𝑡 using a discounting approach. Based on Eq. 5, the prior variance of 𝜽𝑡 as 𝑉𝑎𝑟(𝜽𝑡| = 𝐷𝑡−1) = 𝑹𝑡 =
𝑮𝑡𝑪𝑡−1𝑮𝑡

𝑇 +𝑾𝑡 = 𝑷𝑡 +𝑾𝑡, where 𝑷𝑡 is the variance without stochastic noise, that is, 𝑾𝑡 = 0. If 𝑾𝑡 ≠ 0, we assert 

that 𝑹𝑡 = 𝑷𝑡/𝛿, with the parameter 𝛿 ∈ (0,1]. This indicates that stochastic noise leads to an inflation of the 

variance by a factor of 
1

𝛿
− 1 at each step, correspondingly diminishing the degrees of freedom from 𝑛𝑡 to 𝛿𝑛𝑡. 

Consequently, a smaller 𝛿 incurs more significant fluctuations in 𝜽𝑡, and the inverse is true. To ensure the stability 

of local trends and seasonal components, minimally influenced by anomalies, we employ diverse 𝛿 values, selected 

through a grid search algorithm from the set [0.97,0.98,0.99,0.995,0.999]. We initialize the model at time step 0 
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using non-informative priors 𝒎0 = 0, 𝑪0 = 𝑰, 𝑛0 = 𝑝, 𝑑0 = 0.22𝑛0, permitting the parameter 𝜽𝑡 to fluctuate freely 

initially and then gradually converge with the accumulation of more observations. To mitigate the effects of the 

initial substantial fluctuation and facilitate a gradual convergence of variance, we employ the first five years of ESI 

and drivers' data twice in a preparatory phase known as the "spin-up" period. 

The model parsing process, influenced by Bayesian updating and Markov assumptions, introduces error terms and 

noise, necessitating the optimization of the 𝛿 value(Simoen et al., 2013; Zhang et al., 2011). For each pixel, the 

original sequence is partitioned into a training set and a validation set with an 80:20 ratio. Subsequently, we 

compute the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) by 

comparing the original ESI sequence with the aggregate of the three components post-MDLM decomposition for 

both segments. This approach facilitates the evaluation of MDLM's precision in deconstructing and tracking the 

influence and reaction of evolving environmental conditions on evaporation stress (Fig. S10 for verification results). 
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Supplementary Figures 

 

 

Figure S1. Spatial distribution of the tendency in ESI over the past 20 years. Same as Figs. 3cde in the main 

text, but ESI is calculated based on ETp that takes into account the CO2 effect, with the time span from 2001 to 

2020.  

 

Figure S2. Time series and linear fitting of the regional average ESI. Same as Fig. 3a, but here it is for different 

climate zones and land use types, where (a) is dryland, (b) is non-dryland, (c) is cropland, (d) is grassland, and (e) is 

forest. 
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Figure S3. Identification of the key external drivers of ESI.  Same as Fig. 4, but applying the RF regressor. It is 

consistent with the overall results identified by the XGBoost classifier, except that it fails to distinctly differentiate 

between surface soil moisture and precipitation. 
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Figure S4. Importance and partial dependence of external drivers influencing ESI. Same as Fig. 5, but here 

examines the 16-day temporal resolution. The hierarchy of importance is as follows: water, climate, energy, and 

then vegetation. Compared to the 8-day temporal resolution findings, the importance of water and vegetation factors 

remains virtually unchanged, with svm0-7, VPD, Rn and LAI as the most influential variables within their 

respective categories.  
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Figure S5. Importance and partial dependence of external drivers influencing ESI. Same as Fig. 5 & S4, but 

here analyze monthly series data. The order of importance is water > climate > vegetation > energy. Compared to 

the results from the 8-day and 16-day temporal results, the significance of water is amplified (with an increase to 

0.56), whereas the contributions of vegetation and energy factors are diminished, with the latter being particularly 

affected. Factors such as svm0-7, VPD, LAI, and Rn continue to be the most influential within their respective 

categories, aligning with observations from the other temporal scale. The dependency direction of the pivotal factor 

aligns with that of the other two temporal dimensions.  
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Figure S6. Sensitivity of the ESI to pivotal external drivers and its dynamic trajectory. Same as Fig. 6, but here 

the models establish the sensitivity profile for the following external factors: Precipitation -Prec, Rn, T, VPD, U, 

CO2, and LAI (Parameter Set: R1). In Figure a, the MDLM model demonstrated significantly higher accuracy in 

both the training and validation sets compared to MLR. The sequences of Prec, VPD, LAI, Rn, and T derived from 

the two models exhibited substantial differences, highlighting the MDLM model’s notable improvement in 

predicting key variables. Except for Rn, the sensitivity of additional factors displayed a consistent pattern in both 

magnitude and directional trend. The observed trend of key factors aligns with the R0 scenario that corroborates the 

robustness of research findings. These findings indicate heightened sensitivity to both water supply and VPD, 

coupled with a diminished sensitivity of LAI. 
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Figure S7. Simulation accuracy and validation of the MDLM model. For each pixel, the dataset was partitioned 

into a training set and a validation set at a ratio of 8:2, facilitating the evaluation of the model's ability to accurately 

fit the actual ESI sequence, along with its local, seasonal, and trend components. This process is exemplified 

through the analysis of a single pixel in (g), with the method detailed in Text S1. (a-c) The distribution of the R2, 

RMSE, and MAE for the training set, with R0 parameter set. These figures include insets that show the distributions 

across the region, with the mean and median values delineated by red and green dashed lines, respectively. (d-f) The 

model's performance for the validation set. The analyses reveal that the MDLM model achieves a consistently high 

fitting accuracy, evidenced by an average R2 of 0.88, an RMSE of 0.04, and an MAE of 0.03. It is noted that results 

exhibit suboptimal performance in certain areas of the southeastern region, however, remain relatively high 

credibility in other areas. 
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Figure S8. Simulation accuracy and validation of the MLR model. (a-c) The distribution of the R2, RMSE, and 

MAE for model with Parameter Set R0. The model achieved an average R² of 0.60, RMSE of 0.13, and MAE of 

0.09 across the entire region. (d-f) The model's performance using the Parameter Set R1, with an average R² of 0.59, 

RMSE of 0.13, and MAE of 0.09 across the entire region. 

 

 

 



 

 

12 

 

 

Figure S9. Spatiotemporal heterogeneity in svm0-7, VPD, and LAI sensitivity. Same as Fig. 7a-c, but the 

sensitivity is derived from the MLR model with the external driving factors input (R0): svm0-7, Rn, T, VPD, U, 

CO2, and LAI. Given that the MLR model generates an averaged sensitivity series within a 5-year moving window, 

and the MLDM produces time-specific sequences, the figure is not numerically comparable to Figure 8. Instead, it 

serves to contrast the spatial distribution patterns and relative magnitudes across different categories. The patterns 

for 𝜽𝒔𝒗𝒎 𝜽𝑽𝑷𝑫 and 𝜽𝑳𝑨𝑰 depicted in figures (a-f) are consistent with Fig. 7, with similar area proportions, affirming 

the results' robustness. Here, the same color scheme as Fig. 7 (a-f) is used, which also reveals the MLR model's 

significant overestimation of sensitivity trend.  
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Figure S10. Spatiotemporal heterogeneity in sensitivity of ESI to Prec. Same as Fig. 9a，Fig. S9a and Fig. 9d, 

but the sensitivity is derived from the MDLM（a） and MLR（b） model with the external driving factors input 

(R1): Prec, Rn, T, VPD, U, CO2, and LAI. The main figure displays the spatial distribution of the Sen’s slope for 

𝜽𝑷𝒓𝒆𝒄, whereas the inset presents the spatial distribution of the multi-year average of 𝜽𝑷𝒓𝒆𝒄. Figure (c) delineates the 

differences between (a) and (b). This figure further corroborates the analogous patterns in the simulation outcomes 

of the two models, along with the MLR model’s overestimation of the intensity of change trends, where both 

positive and negative trends are more pronounced. 
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Figure S11. Spatiotemporal patterns of regional hydrological, meteorological, and vegetation variables over 

the period from 2001 to 2020. (a) Surface soil water at 0-7 cm depth (svm0-7); (b) total precipitation (Prec); (c) net 

radiation (Rn); (d) air temperature at 2m (T); (e) Vapor Pressure Deficit (VPD); (f) wind speed at 2m (U); (g) 

atmospheric pressure (P); (h) atmospheric CO2 concentration; (i) Leaf Area Index (LAI). 
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Figure S12. The number of grids in each bin grouped along the greening trend and aridity across mainland 

China. 
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Supplementary Tables 

Table S1. Summary of the dataset applied in this study. 

Role Variable Abbreviation Unit 
Source/Obtained 

Process 

Spatial 

Resolution and 

Range 

Temporal 

Resolution and 

Span 

Compute ESI 

Actual Evapotranspiration ETa 
mm ERA5 0.1°, Global Daily, 1950-2020 

Potential Evapotranspiration ETp 

ETp considering the CO₂ water-

saving effect 
ETpPMCO2 mm Calculated by Eq.(A4). 

As 

Influencing 

Factors 

Water supply 

Total Precipitation Prec mm 

ERA5 0.1°, Global Daily, 2001-2020 
Multi-layer Soil Moisture 

svm0-7; svm7-28, 

svm28-100, svm100-

289 

m3·m-3 

Root-zone Soil Moisture Rsvm m3·m-3 Calculated using Eq. Bx. 

Energy 

Conditions 

2m Air Temperature T ℃ ERA5 0.1°, Global Daily,2001-2020 

Net Radiation Rn MJ·m-2 
Calculated by summing net solar radiation and net thermal radiation from 

ERA5. 

Atmospheric 

Conditions 

Atmospheric Pressure P kPa ERA5 0.1°, Global Daily, 2001-2020 

CO2 Mole Fraction CO2 ppm CT2022 3×2°, Global 3-hourly, 2001-2020 

2m Wind Speed U m·s-2 

10m wind speed is calculated using the Pythagorean theorem with ERA5 10m 

u- and v-components of wind, then converted to 2m wind speed with the 

formula:  𝑈 = 𝑈10 ∗
4.87

ln⁡(67.8∗10−5.42)
. 

Vapor Pressure Deficit VPD kPa 
Calculated based on the Clausius-Clapeyron relation using 2m temperature and 

dew point temperature from ERA5 (Held and Soden, 2006; Zhong et al., 2023). 

Vegetation 

Status 

Leaf Area Index LAI m2·m-2 GLASS V60 
500m, Global 8-day, 2001-2020 

Fractional Vegetation Cover FVC Dimensionless GLASS V40 

Normalized Difference Vegetation 

Index 
NDVI 

Dimensionless MOD13C1 0.05°, Global 16-day, 2001-2020 

Enhanced Vegetation Index EVI 

kernel NDVI kNDVI Dimensionless Calculated based on NDVI data using Eq.(2). 

Auxiliary Data 

Aridity Index AI Dimensionless Calculated by the ratio of annual Prec to ETp from the ERA5 dataset. 

China Land Cover Dataset - - Yang and Huang, (2021) 30m, China Annual, 2001-2020 

Root Depth - mm Stocker et al. (2023) 0.05°, Global - 
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Table S2. Performance metrics for the RF and XGBoost regressor models. 

It presents performance metrics (R², RMSE, MAE) of RF and XGBoost regressor models across 8-day, 16-day, and monthly temporal scales. Results are 

reported for both training and validation sets (70:30 split). Higher R² values (closer to 1) and lower RMSE/MAE values (approaching 0) indicate superior model 

performance. It reveals that XGBoost regressor model demonstrates higher accuracy than RF on the validation set, with a smaller accuracy discrepancy between 

the training and validation sets, thereby demonstrating superior generalization capability of the XGBoost model. 

 

  8day 16day Month 

  Training Validation Training Validation Training Validation 

Classification Metrics RF XGBoost RF XGBoost RF XGBoost RF XGBoost RF XGBoost RF XGBoost 

Cropland 

R2 0.93 0.90 0.74 0.77 0.93 1 0.67 0.71 0.95 0.89 0.69 0.65 

RMSE 0 0.001 0.002 0.002 0 0 0.002 0.002 0 0 0.001 0.002 

MAE 0.017 0.022 0.034 0.032 0.013 0.003 0.034 0.032 0.010 0.017 0.028 0.029 

Forest 

R2 0.93 0.93 0.67 0.74 0.92 0.86 0.63 0.62 0.93 0.98 0.45 0.51 

RMSE 0 0.001 0.004 0.003 0 0.001 0.002 0.002 0 0 0.002 0.002 

MAE 0.020 0.021 0.042 0.039 0.016 0.024 0.034 0.035 0.011 0.006 0.035 0.033 

Grassland 

R2 0.93 0.98 0.63 0.66 0.92 0.83 0.59 0.59 0.93 1 0.54 0.58 

RMSE 0 0 0.001 0.001 0 0 0.001 0.001 0 0 0.001 0.001 

MAE 0.010 0.005 0.021 0.021 0.009 0.013 0.020 0.020 0.007 0.001 0.019 0.019 

NonDryland 

R2 0.97 0.92 0.70 0.72 0.95 0.97 0.61 0.61 0.86 0.85 0.52 0.52 

RMSE 0 0 0.001 0.001 0 0 0.001 0.001 0 0 0.001 0.001 

MAE 0.011 0.015 0.028 0.027 0.009 0.006 0.023 0.023 0.010 0.011 0.021 0.021 

Dryland 

R2 0.98 0.96 0.83 0.85 0.97 1 0.80 0.84 0.97 1 0.70 0.69 

RMSE 0 0 0 0 0 0 0 0 0 0 0 0 

MAE 0.006 0.009 0.018 0.016 0.006 0.003 0.016 0.015 0.006 0 0.017 0.017 

SemiHumid 

R2 0.95 0.93 0.74 0.75 0.95 0.94 0.73 0.73 0.96 0.86 0.60 0.64 

RMSE 0 0 0.001 0.001 0 0 0.001 0.001 0 0 0.001 0.001 

MAE 0.012 0.015 0.026 0.026 0.011 0.012 0.026 0.026 0.008 0.015 0.023 0.023 

SemiArid 

R2 0.97 0.98 0.80 0.82 0.96 0.99 0.79 0.81 0.96 0.98 0.56 0.66 

RMSE 0 0 0.001 0.001 0 0 0.001 0.001 0 0 0.001 0.001 

MAE 0.010 0.007 0.025 0.024 0.011 0.005 0.025 0.023 0.008 0.006 0.028 0.025 

Arid 

R2 0.98 0.97 0.92 0.92 0.93 0.98 0.80 0.84 0.98 0.99 0.80 0.82 

RMSE 0 0 0 0 0 0 0 0 0 0 0 0 

MAE 0.005 0.007 0.011 0.011 0.007 0.005 0.014 0.013 0.004 0.003 0.011 0.011 
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Table S3. Performance metrics for the XGBoost regression model after variable pre-screening. 

The input variables for parameter sets in the table were configured as follows: 

- R0: svm0-7, Rn, T, VPD, U, P, CO2, and LAI 

- R1: replaced svm0-7 with Prec while retaining all other variables from R0 

 

  8day 16day month 

Classification Metrics Training Validation Training Validation Training Validation 

R0 

R2 0.82 0.64 0.85 0.62 0.86 0.62 

RMSE 0 0.001 0 0.001 0 0 

MAE 0.017 0.023 0.012 0.019 0.009 0.015 

R1 

R2 0.82 0.65 0.93 0.58 0.85 0.52 

RMSE 0 0.001 0 0.001 0 0.001 

MAE 0.018 0.024 0.009 0.021 0.010 0.018 

 

Table S4. List of Variance Inflation Factor. 

For each grid, collinearity tests were conducted on the anomaly series of variables across three temporal 

scales. The table lists the average values of the VIF (Variance Inflation Factor) for all grids, along with the 

5th percentile (superscript) and the 95th percentile (subscript). Two scenarios, R0 and R1, have been 

established based on different combinations of input parameters to isolate and contrast the effects of soil 

moisture and precipitation. 

 

Parameter Set: R0  

Temporal 

resolution 
svm0-7 Rn T VPD U P CO2 LAI 

8day 1.592.14
1.20 2.043.18

1.09  2.103.32
1.34 2.854.15

1.87 1.372.03
1.06 1.431.98

1.07 1.011.02
1.00 1.081.23

1.01 

16day 1.642.30
1.20 2.053.19

1.11 2.143.40
1.33 3.004.65

1.84 1.432.25
1.07 1.401.90

1.07 1.011.03
1.00 1.111.30

1.02 

month 1.672.41
1.19  2.093.35

1.15 2.273.87
1.35 3.165.21

1.84 1.542.60
1.09  1.421.89

1.07 1.011.04
1.00 1.151.39

1.03 

 

 

Parameter Set: R1 

Temporal 

resolution 
Prec Rn T VPD U P CO2 LAI 

8day 1.852.64
1.45 2.303.53

1.21 2.283.69
1.37 2.964.72

1.95  1.382.05
1.06 1.011.02

1.00 1.452.00
1.09 1.051.16

1.01 

16day 1.983.01
1.49  2.313.54

1.18 2.374.28
1.37 3.235.73

1.99  1.442.28
1.07 1.011.02

1.00 1.421.92
1.09 1.081.24

1.01 

month 2.073.32
1.46 2.283.60

1.17 2.525.13
1.37 3.596.73

2.09 1.542.62
1.09  1.011.03

1.00 1.441.92
1.08 1.121.35

1.02 

 

 

 

 

 



 

 

2 

 

Table S5. Interpretation of sensitivity obtained from Memory Dynamic Linear Model. 

Absolute values of 𝜃 depict the evapotranspiration stress resistance to anomalies in each variable. Large 

absolute values indicate strong evapotranspiration stress responses to corresponding variable anomalies. 

 

Classify Description Sign 

Water-related 

Factors 

𝜃𝑠𝑣𝑚 
Positive - Wetter conditions than average induce positive ESI 

anomalies, meaning that evaporative stress is alleviated. 
𝜃𝑃𝑟𝑒𝑐 

Vegetation-

related Factors 
𝜃𝐿𝐴𝐼 

Positive - Denser and healthier vegetation conditions than average 

induce positive ESI anomalies, meaning that evaporative stress is 

alleviated. 

Energy-related 

Factors 

𝜃𝑅𝑛 
Negative - Above-average thermal conditions induce negative ESI 

anomalies, meaning that evaporative stress is aggravated. 
𝜃𝑇 

Atmosphere-

related Factors 

𝜃𝑈 
Positive - Faster wind speeds than average induce positive ESI 

anomalies, meaning that evaporative stress is alleviated. 

𝜃𝑉𝑃𝐷 

Negative - More deficient atmospheric vapor pressure than 

average induce negative ESI anomalies, meaning that evaporative 

stress is aggravated. 

𝜃𝑃 

Negative - Higher atmospheric pressure than average induce 

negative ESI anomalies, meaning that evaporative stress is 

aggravated. 

𝜃𝐶𝑂2 

Negative - Higher 𝐶𝑂2 concentration than average induce 

negative ESI anomalies, meaning that evaporative stress is 

aggravated. 
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Table S6. Site characteristics of Eddy Covariance Flux Tower.   

No. 
Site 

Name 

Lon 

(°E) 

Lat 

(°N) 

Vegetat

ion 

Type 

(IGBP) 

Altitude 

(m) 
Duration Source 

Residual 

Energy 

(W/m2) 

Reference 

1 CBF 128.10 42.40 DBF 2180m 2003.01-2010.12 

ChinaFlux  

21.50 

(Yu et al., 2006, 2008, 

2014) 

2 DXG 91.08 30.85 GRA 4400m 2004.01-2010.12 -15.65 

3 DHF 112.53 23.17 MF  2003.01-2010.12 15.90 

4 HBGS 101.33 37.67 GRA 3400m 2003.01-2010.12 2.09 

5 NMG 116.40 43.33 GRA  2004.01-2010.12 9.85 

6 QYF 115.07 26.73 ENF  2003.01-2010.12 15.14 

7 YCA 116.57 36.83 CRO 30m 2003.01-2010.12 6.46 

8 BNXF 101.27 21.90 CVM  2010.07-2014.12 23.85 (Yu et al., 2021) 

9 HZF 121.02 51.78 DNF 773m 2014.01-2018.12 34.45 (Yan et al., 2023) 

10 XLG 116.67 43.55 GRA 1250m 2006.01-2015.12 8.76 (Wang et al., 2023) 

11 ALF 101.03 24.54 EBF 
2400-

2600m 
2009.01-2013.12 12.20 

(Qi et al., 2021) 

12 ZOG 102.55 32.80 GRA 3500m 2015.06-2020.12 18.63 
(Chen et al., 2023) 

13 CLC 123.47 44.60 CRO 143 2018.06-2020.12 16.47 
(Dong et al., 2023) 

14 CN-Du2 116.28 42.05 GRA 1324m 2006.01-2008.12 

FLUXNET  

6.11 (Chen et al., 2009; 

Pastorello et al., 2020) 

15 CN-Cng 123.50 44.58 GRA 171m 2007.01-2010.12 -0.60 

(Pastorello et al., 2020) 
16 CN-Du3 116.28 42.06 GRA 1324m 2009.01-2010.12 19.73 

17 CN-Sw2 111.90 41.79 GRA 1456m 2010.01-2012.12 12.96 

18 DZF 109.48 19.55 EBF 144m 2010.01-2018.12 

Chinese Academy of 

Tropical Agricultural 

Sciences (CATAS) 

22.74 
(Yang et al., 2022) 

19 WSC 116.05 36.65 CRO 30m 2005.05-2006.09 
(Tsinghua University) 

THU 
13.26 

(Lei and Yang, 2010a, b) 

20 DSG 98.94 38.84 GRA 3739m 2015.01-2017.12 HiWATER  -42.08 
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21 EJB 100.24 38.01 BSV 1054m 2015.06-2017.09 3.82 

(Che et al., 2019; Liu et al., 

2011, 2016, 2018, 2023) 

22 HZB 100.32 38.76 BSV 1731m 2018.01-2020.12 -8.16 

23 EJM 101.13 41.99 MF 874m 2013.08-2017.12 -1.13 

24 JYG 101.11 37.84 GRA 3750m 2018.08-2020.12 4.38 

25 XYG 101.86 37.56 GRA 3616m 2019.04-2020.12 Cold and Arid 

Research Network of 

Lanzhou university 

(CARN) 

10.79 

(Changming Zhao and 

Renyi Zhang, 2021) 
26 MQB 103.67 39.21 BSV 1020m 2019.08-2020.12 31.06 

According to the International Geosphere-Biosphere Programme (IGBP) classification, BSV = Barren Sparse Vegetation, CRO = Croplands, CVM = 

Cropland/Natural Vegetation Mosaics, DBF = Deciduous Broadleaf Forests, DNF = Deciduous Needleleaf Forests, EBF = Evergreen Broadleaf Forests, ENF = 

Evergreen Needleleaf Forests, GRA = Grasslands, MF = Mixed Forests, WET = Permanent Wetlands 

 

 



 

 

1 

 

 

References 

Changming Zhao and Renyi Zhang: Cold and Arid Research Network of Lanzhou university (eddy 

covariance system of Guazhou station, 2020), https://doi.org/10.11888/Meteoro.tpdc.271477, 2021. 

Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., 

Wang, J., and Yang, X.: Integrated hydrometeorological, snow and frozen-ground observations in the 

alpine region of the Heihe River Basin, China, Earth Syst. Sci. Data, 11, 1483–1499, 

https://doi.org/10.5194/essd-11-1483-2019, 2019. 

Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J., and Han, X.: Energy balance and 

partition in Inner Mongolia steppe ecosystems with different land use types, Agricultural and Forest 

Meteorology, 149, 1800–1809, https://doi.org/10.1016/j.agrformet.2009.06.009, 2009. 

Chen, W., Wang, S., and Niu, S.: A dataset of carbon, water and heat fluxes of Zoige alpine meadow from 

2015 to 2020, China Scientific Data, 8, https://doi.org/10.11922/11-6035.csd.2023.0009.zh, 2023. 

Dong, G., Wang, Y., Wang, K., Jiang, S., and Shao, C.: A dataset of carbon and water fluxes in the 

Changling alkali-saline paddy rice fields in the Songnen Plain, China (2018 –2020), China Scientific Data, 

2023. 

Lei, H. and Yang, D.: Interannual and seasonal variability in evapotranspiration and energy partitioning 

over an irrigated cropland in the North China Plain, Agricultural and Forest Meteorology, 150, 581–589, 

https://doi.org/10.1016/j.agrformet.2010.01.022, 2010a. 

Lei, H. and Yang, D.: Seasonal and interannual variations in carbon dioxide exchange over a cropland in 

the North China Plain, Global Change Biology, 16, 2944–2957, https://doi.org/10.1111/j.1365-

2486.2009.02136.x, 2010b. 

Liu, S., Xu, Z. W., Wang, W. Z., Jia, Z. Z., Zhu, M. J., Bai, J., and Wang, J. M.: A comparison of eddy-

covariance and large aperture scintillometer measurements with respect to the energy balance closure 

problem, Hydrol. Earth Syst. Sci., 15, 1291–1306, https://doi.org/10.5194/hess-15-1291-2011, 2011. 

Liu, S., Xu, Z., Song, L., Zhao, Q., Ge, Y., Xu, T., Ma, Y., Zhu, Z., Jia, Z., and Zhang, F.: Upscaling 

evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land 

surfaces, Agricultural and Forest Meteorology, 230–231, 97–113, 

https://doi.org/10.1016/j.agrformet.2016.04.008, 2016. 

Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., Li, 

H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., and Ren, Z.: The Heihe Integrated 

Observatory Network: A Basin‐Scale Land Surface Processes Observatory in China, Vadose Zone Journal, 

17, 1–21, https://doi.org/10.2136/vzj2018.04.0072, 2018. 

Liu, S., Xu, Z., Che, T., Li, X., Xu, T., Ren, Z., Zhang, Y., Tan, J., Song, L., Zhou, J., Zhu, Z., Yang, X., 

Liu, R., and Ma, Y.: A dataset of energy, water vapor, and carbon exchange observations in oasis–desert 

areas from 2012 to 2021 in a typical endorheic basin, Earth Syst. Sci. Data, 15, 4959–4981, 

https://doi.org/10.5194/essd-15-4959-2023, 2023. 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., 

Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., Van Ingen, C., 

Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., 

Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., 

Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., 

Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, J., 



 

 

2 

 

Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, 

S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, 

C., Cremonese, E., Curtis, P. S., D’Andrea, E., Da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., 

Grandcourt, A. D., Ligne, A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, 

P. D., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., 

Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S., 

Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., et al.: The 

FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci Data, 7, 225, 

https://doi.org/10.1038/s41597-020-0534-3, 2020. 

Qi, D., FEI, X., SONG, Q., ZHANG, Y., SHA, L., LIU, Y., ZHOU, W., LU, Z., and FAN, Z.: A dataset of 

carbon and water fluxes observation in subtropical evergreen broad-leaved forest in Ailao Shan from 2009 

to 2013, China Scientific Data, 6, https://doi.org/10.11922/csdata.2020.0089.zh, 2021. 

Simoen, E., Papadimitriou, C., and Lombaert, G.: On prediction error correlation in Bayesian model 

updating, Journal of Sound and Vibration, 332, 4136–4152, https://doi.org/10.1016/j.jsv.2013.03.019, 

2013. 

Wang, Y., You, C., and Chen, S.: A dataset of carbon and water fluxes of mowing grasslands in Xilinhot, 

Inner Mongolia during 2006-2015, China Scientific Data, 2023. 

Yan, Y., Zhou, G., Jia, B., Song, J., and Zhang, S.: A dataset of carbon and water fluxes of the boreal forest 

ecosystem in Huzhong (2014 – 2018), China Scientific Data, 2023. 

Yang, S., Liu, J., Yang, C., Lan, G., Song, B., and Wu, Z.: A dataset of carbon and water fluxes and 

micrometerological elements in Danzhou rubber plantation (2010-2018), China Scientific Data, 2022. 

Yu, G., Wen, X.-F., Sun, X.-M., Tanner, B. D., Lee, X., and Chen, J.-Y.: Overview of ChinaFLUX and 

evaluation of its eddy covariance measurement, Agricultural and Forest Meteorology, 137, 125–137, 

https://doi.org/10.1016/j.agrformet.2006.02.011, 2006. 

Yu, G., Zhang, L., Sun, X., Fu, Y., Wen, X., Wang, Q., Li, S., Ren, C., Song, X., Liu, Y., Han, S., and Yan, 

J.: Environmental controls over carbon exchange of three forest ecosystems in eastern China, Global 

Change Biology, 14, 2555–2571, https://doi.org/10.1111/j.1365-2486.2008.01663.x, 2008. 

Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., and Zhu, X.: High carbon dioxide uptake 

by subtropical forest ecosystems in the East Asian monsoon region, Proc. Natl. Acad. Sci. U.S.A., 111, 

4910–4915, https://doi.org/10.1073/pnas.1317065111, 2014. 

Yu, H., QI, D., ZHANG, Y., SHA, L., LIU, Y., ZHOU, W., DENG, Y., and SONG, Q.: An observation 

dataset of carbon and water fluxes in Xishuangbanna rubber plantations from 2010 to 2014, China 

Scientific Data, 6, https://doi.org/10.11922/csdata.2020.0090.zh, 2021. 

Zhang, E. L., Feissel, P., and Antoni, J.: A comprehensive Bayesian approach for model updating and 

quantification of modeling errors, Probabilistic Engineering Mechanics, 26, 550–560, 

https://doi.org/10.1016/j.probengmech.2011.07.001, 2011. 

 

 


