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Abstract. Assimilating either soil moisture or streamflow in-
dividually has been well demonstrated to enhance the sim-
ulation performance of hydrological models. However, the
runoff routing process may introduce a lag between soil
moisture and outlet discharge, presenting challenges in si-
multaneously assimilating the two types of observations into
a hydrological model. The asynchronous ensemble Kalman
filter (AEnKF), an adaptation of the ensemble Kalman filter
(EnKF), is capable of utilizing observations from both the
assimilation moment and the preceding periods, thus holding
potential to address this challenge. Our study first merges soil
moisture data collected from field soil moisture monitoring
sites with China Meteorological Administration Land Data
Assimilation System (CLDAS) soil moisture data. We then
employ the AEnKF, equipped with improved error models, to
assimilate both the observed outlet discharge and the merged
soil moisture data into the Xin’anjiang model. This process
updates the state variables of the model, aiming to enhance
real-time flood forecasting performance. Tests involving both
synthetic and real-world cases demonstrates that assimilation
of these two types of observations simultaneously substan-
tially reduces the accumulation of past errors in the initial
conditions at the start of the forecast, thereby aiding in elevat-

ing the accuracy of flood forecasting. Moreover, the AEnKF
with the enhanced error model consistently yields greater
forecasting accuracy across various lead times compared to
the standard EnKF.

1 Introduction

Floods, as one of the most frequent natural disasters, signif-
icantly affect infrastructure and agricultural yields and may
even directly endanger the lives of local residents (Johnson et
al., 2020). The destructiveness of flash floods is particularly
notable. In recent decades, flash floods triggered by localized
torrential rains have frequently resulted in significant human
casualties (Pilon, 2002). Short-term flood forecasting, a vi-
tal non-structural approach to flood mitigation, plays a cru-
cial role in facilitating emergency responses in flood-prone
regions (Craninx et al., 2021). Hydrological models are in-
strumental in flood forecasting, utilizing mathematical and
physical representations to analyze the various components
of the catchment hydrological processes, including precipita-
tion, evaporation, and runoff, as well as their interplay. This
understanding aids in comprehending catchment hydrologi-
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cal characteristics and trends, which is crucial for simulat-
ing and forecasting hydrological processes. The Xin’anjiang
model, extensively applied in operational short-term flood
forecasting in China, stands as one of the well-known semi-
distributed hydrological models. Its broad applicability, es-
pecially in the humid and semi-humid climate zones of the
Yangtze River basin, has been substantiated by extensive
studies (e.g., Fang et al., 2017; Gong et al., 2021; Zang et
al., 2021).

However, in hydrological simulations, multiple sources
of uncertainty, such as uncertainties in model inputs, struc-
ture, and parameters, can significantly affect the accuracy of
the simulations (Beven, 1993; Ajami et al., 2007). In short-
term flood forecasting, an additional process, often referred
to as the real-time correction process, is typically employed
to mitigate these uncertainties. A notable strategy in real-
time correction involves the recursive adjustment of the hy-
drological model’s state variables based on available real-
time observational data. It helps reduce the error accumu-
lation in the initial conditions of hydrological model, a factor
that has been identified as a primary source of uncertainty
at the start of flood forecasting (Shukla and Lettenmaier,
2011; Yossef et al., 2013; Thiboult et al., 2016). This pro-
cess is sometimes termed hydrological data assimilation in
literature (e.g., Clark et al., 2008). The ensemble Kalman fil-
ter (EnKF) (Evensen, 2003), which includes ensemble fore-
casting concepts with the Kalman filter and employs Monte
Carlo methods for error statistical prediction, effectively ad-
dresses the inability of Kalman filtering to handle non-linear
systems. Its robustness, flexibility, and ease of use have led to
its widespread application in hydrological data assimilation
(Clark et al., 2008; Liu et al., 2012; Rakovec et al., 2012;
Piazzi et al., 2021).

Data assimilation typically falls into two categories: syn-
chronous and asynchronous methods. Synchronous methods
depend solely on observational data at a specific update mo-
ment, while asynchronous methods broaden this scope by
incorporating data over a time frame, including both cur-
rent and preceding time steps (Sakov and Bocquet, 2018).
This distinction is particularly crucial in sequential assimi-
lation, where commonly employed sequential filters like the
EnKF utilize a synchronous strategy. Conversely, the asyn-
chronous strategy is predominantly used in smoothers, such
as the ensemble Kalman smoother (EnKS) (Evensen and van
Leeuwen, 2000). While the EnKS augments reanalysis by
integrating future observational data backwards in time, its
forecasting efficacy (including real-time forecasting) aligns
with that of the EnKF (Evensen, 2009). The intrinsic differ-
ence between smoothers and filters is their focus: smoothers
assimilate future observational data, while filters process past
observational data (Rakovec et al., 2015). Hence, in hydro-
logical data assimilation with a focus on forecasting, filters
are generally the preferred choice over smoothers.

In recent years, researchers have made strides in integrat-
ing asynchronous strategies into filters for sequential assim-

ilation. This is notably evident in the development of the
four-dimensional ensemble Kalman filter (4D-EnKF) (Hunt
et al., 2004) and the four-dimensional local ensemble trans-
form Kalman filter (4D-LETKF) (Hunt et al., 2007). The
4D-EnKF stands out for its ability to synchronize the timing
of observations with lower computational demands, which is
particularly effective in linear dynamics. In contrast, the 4D-
LETKF builds upon the 4D-EnKF by prioritizing spatial lo-
calization and refining the handling of non-linear observation
operators. This enhancement renders it more effective and
versatile in managing high-dimensional, chaotic systems, es-
pecially in meteorology and climatology. Building on this,
Sakov et al. (2010) and Sakov and Bocquet (2018) intro-
duced the asynchronous ensemble Kalman filter (AEnKF).
Remarkably, the AEnKF and the 4D-LETKF are essentially
equivalent (Sakov et al., 2010), both employing ensemble-
based methods to update model states based on observa-
tional data. The 4D-LETKF processes asynchronous obser-
vations by amalgamating them and updating the state via en-
semble transform matrices. Conversely, the AEnKF accom-
plishes this by advancing corrections along the forecast sys-
tem trajectory, utilizing ensemble observations from the ob-
servation time, thereby efficiently assimilating both past and
future data. The AEnKF is designed to be computationally
efficient, which is noted for its relative simplicity in imple-
mentation compared to the 4D-LETKF. It modifies the stan-
dard EnKF using ensemble observations from the time of
observations, a straightforward change that does not signifi-
cantly complicate the assimilation process. The AEnKF tech-
nique was first applied by Krymskaya (2013) to the problem
of history matching in reservoir engineering. The study re-
vealed that the AEnKF outperforms the EnKF in parameter
estimation and utilizes the data with similar efficiency. The
AEnKF is recognized for its simplicity and high computa-
tional efficiency, offering significant potential in short-term
flood forecasting applications. Despite its promise, the scope
of research in this area is relatively limited. Among the few
studies conducted, Mazzoleni et al. (2018) evaluated AEnKF
assimilation in simplified flow routing models, highlighting
its exceptional performance in both lumped and distributed
flow routing. Tao et al. (2016) summarized the hydrologi-
cal forecasting test conducted during the 2014 Intense Ob-
serving Period of the Integrated Precipitation and Hydrol-
ogy Experiment (IPHEx-IOP) campaign, proposing a frame-
work for improving flood prediction in mountainous regions
through the assimilation of discharge data using the AEnKF
method, with a focus on enhancing forecast accuracy and re-
ducing uncertainty. In addition, Rakovec et al. (2015) and
our earlier study (Gong et al., 2024) applied the AEnKF to
the distributed HBV-96 model and the Xin’anjiang model,
respectively. These studies examined the effectiveness of the
AEnKF in real-time correction through the assimilation of
observed discharge in distributed and semi-distributed hydro-
logical models, revealing that the AEnKF outperforms the
standard EnKF. However, these studies assimilate only a sin-

Hydrol. Earth Syst. Sci., 29, 335–360, 2025 https://doi.org/10.5194/hess-29-335-2025



J. Gong et al.: State updating of the Xin’anjiang model 337

gle type of observational data (e.g., observed discharge) us-
ing the AEnKF method, which does not take full advantage
of the AEnKF.

In the context of real-time correction processes employing
the AEnKF, the types of observations we assimilate consti-
tute another key factor influencing the effectiveness. Popu-
lar observation types that are currently assimilated include
discharge, soil moisture, and snow data (Gong et al., 2023).
In rainfall–runoff modeling, soil moisture plays a pivotal
role in driving the runoff generation process (Massari et al.,
2014). A wealth of research has demonstrated that updat-
ing hydrological model states through the assimilation of soil
moisture significantly enhances the precision of runoff sim-
ulations and forecasts (e.g., Wanders et al., 2014; Alvarez-
Garreton et al., 2015; Chao et al., 2022). These studies typ-
ically rely on a single type of soil moisture dataset. One of
the highlights of our study is that it simultaneously consid-
ers the advantages of site observation data and soil reanal-
ysis datasets, enhancing both the timeliness and the spatial
accuracy of the soil moisture data. Specifically, in the real-
time correction process of flood forecasting, there is a high
demand for the timeliness of observational data to swiftly
respond to flood events. Satellite remote sensing data and
reanalysis products often suffer from delays in data release
or lengthy observational intervals. In contrast, ground-based
soil moisture measurements offer high accuracy and timeli-
ness but are limited to point-scale data, failing to capture the
spatial distribution of soil moisture. To overcome this limi-
tation, the weighted k-nearest-neighbor (WKNN) algorithm
(Pedregosa et al., 2011; Jung and Lee, 2017) is employed to
fuse ground soil moisture measurements with reanalysis soil
moisture data. This approach involves establishing a regres-
sion relationship between historical ground and reanalysis
data, subsequently generating real-time, spatially distributed
fusion soil moisture data from current ground observations.
On the other hand, discharge observations, due to their di-
rect relevance to flow or water level predictions crucial in
flood forecasting, are another valuable choice for assimila-
tion. They provide a comprehensive view of the hydrological
conditions of a catchment. Discharge measurements are often
more accessible and offer more timely data than soil mois-
ture readings, generally yielding greater reliability (Li et al.,
2013). Numerous studies have concentrated on assimilating
observed discharge data to enhance flood forecasting, show-
casing the substantial potential and impressive effectiveness
of this strategy across various regions (e.g., Clark et al., 2008;
Sun et al., 2020; Gong et al., 2023). Given that assimilat-
ing soil moisture or discharge alone can provide acceptable
results, exploring the simultaneous assimilation of both ob-
servation types warrants consideration. Previous studies have
highlighted the benefits of concurrently assimilating various
observation types. Techniques such as the EnKF (Meng et
al., 2017), variational assimilation (VAR) (Lee et al., 2011),
and tempered particle filter (TPF) (García-Alén et al., 2023)
have consistently shown that joint assimilation generally sur-

passes the efficiency of single-type assimilation. Although
these findings are encouraging, the advantage of joint as-
similation may not always hold. This is partly because each
observation type represents a specific hydrological process,
with correlations among variables varying across different
spatial and temporal scales. For instance, soil moisture im-
mediately responds to rainfall, while streamflow responses
are inherently delayed due to the time delay in the routing
process (Meng et al., 2017). Such delays can lead to the ac-
cumulation of uncertainties in discharge predictions, which
is an aspect often overlooked in synchronized assimilation
methods. Contrarily, the AEnKF method considers all obser-
vational data within a specific time window rather than just a
single observation at the update time, effectively considering
the time delays in routing processes and offering a novel ap-
proach for the combined assimilation of diverse observation
types. However, to our knowledge, there are no existing stud-
ies on the performance of the AEnKF in assimilating multi-
ple types of observational datasets (such as soil moisture and
discharge measurements), which could significantly improve
the accuracy of short-term flood forecasting.

In AEnKF assimilation, ensemble dispersion is achieved
by introducing pre-determined noise (commonly zero-mean
Gaussian noise) into model state variables and forcing data.
The models governing these perturbations are termed error
models, and their associated parameters are known as hyper-
parameters (Thiboult and Anctil, 2015). Improper handling
of these uncertainties can potentially impair the efficacy of
ensemble-based Kalman filters (Crow and Van Loon, 2006;
Pathiraja et al., 2018). The commonly adopted practice in-
volves setting the hyperparameters of error models based on
the empirical knowledge of hydrologists or forecasters (e.g.,
Weerts and El Serafy, 2006; Clark et al., 2008; Sun et al.,
2020). This approach is highly subjective, resulting in fore-
cast results that may significantly differ among practitioners.
The maximum a posteriori estimation (MAP) method (Li et
al., 2014; Gong et al., 2023) represents a Bayesian inference
technique specifically designed for ensemble-based Kalman
filters. This method leverages historical observational data
to objectively estimate the hyperparameters in error models,
thereby substantially mitigating the subjectivity associated
with hyperparameter configuration. Notably, the strengths of
MAP method, compared to alternatives like the kernel condi-
tional density estimation method (Pathiraja et al., 2018), in-
clude its independence from the need for sequential observa-
tions to be independent themselves. Furthermore, it enables
concurrent estimation of hyperparameters across diverse er-
ror models, making it particularly compatible with the er-
ror models employed in the AEnKF. Another challenge in
AEnKF assimilation is reducing the systematic biases that
arise from perturbations. When creating ensemble dispersion
using error models, it is implicitly assumed that the intro-
duction of noise will not lead to systematic biases in the
model outputs (Ryu et al., 2009). Nevertheless, the strong
non-linearity of hydrological models and the stringent phys-
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ical limitations on some state variables mean that even zero-
mean Gaussian perturbations may result in systematic bi-
ases (Alvarez-Garreton et al., 2015). A case in point is soil
moisture, which must stay below saturation levels. During
flooding, when soil moisture approaches saturation, perturb-
ing this variable risks breaching these physical boundaries.
Subsequent corrections made by the hydrological model to
align with saturation levels may introduce truncation errors
in the prediction of the background field. To counter this, our
study incorporates the bias-corrected Gaussian error model
(BGEM) (Ryu et al., 2009), which introduces an unperturbed
model run in parallel with the ensemble. This unperturbed
model is utilized to correct the biases induced by pertur-
bations. Our prior research (Gong et al., 2024) has shown
that the BGEM is effective in alleviating systematic biases
caused by random perturbations in soil moisture state vari-
ables. However, the performance of the AEnKF with these
enhanced error models when assimilating multiple types of
observations has yet to be further tested.

This study developed an efficient joint data assimilation
framework for real-time correction of short-term flood fore-
casting based on the AEnKF with improved error models.
One of the main highlights of this study is the considera-
tion of the inherent limitations of single-source soil moisture
data. By fusing ground-based soil moisture measurements
with reanalysis data from the China Meteorological Admin-
istration Land Data Assimilation System (CLDAS), the study
generates a reliable, real-time spatial distribution dataset of
soil moisture that aligns with the 8 h observation intervals
of monitoring sites. The second highlight is that the AEnKF
with improved error models fully accounts for the time de-
lays in routing process, enabling effective joint assimilation
of soil moisture data and discharge observations. Upon es-
tablishing the appropriate assimilation time window for the
AEnKF with improved error models, the study conducted a
detailed comparison between the joint assimilation scheme
and individual assimilation schemes (including the separate
assimilation of soil moisture or discharge observation data)
using synthetic and real-world cases. This comparison effec-
tively underscores the superior performance of the joint as-
similation framework proposed in this study.

2 Methodology

2.1 Hydrological model

The Xin’anjiang model, conceptualized by Zhao (1992), is
a commonly used hydrological model primarily based on a
saturation-excess mechanism. Renowned for its straightfor-
ward structure and explicit parameter definitions, this model
excels in simulating humid catchments, making it a popu-
lar tool for flood forecasting in China. To account for spatial
variability, the model typically divides a catchment into sub-

catchments. These sub-catchments act as computational units
for runoff generation and routing.

The Xin’anjiang model demands relatively simple forcing
data, and key inputs include the areal mean rainfall depth
(P ) and pan evaporation (EM) for each sub-catchment. The
model typically comprises four main components: evapo-
transpiration, runoff production, runoff separation, and flow
routing, involving the calibration of 16 distinct parameters.
The flow chart of the Xin’anjiang model is presented in
Fig. 1. Soil evaporation is derived from pan evaporation data
using a three-layer soil moisture module. The runoff genera-
tion is based on a saturation-excess mechanism, where runoff
is produced only when the soil moisture in the unsaturated
zone reaches field capacity. The lag-and-route method cal-
culates the outflow from each sub-catchment. Flow routing
from the sub-catchment outlets to the total catchment outlet
employs the Muskingum method to successive sub-reaches.
It is implemented by dividing the channel from each sub-
catchment outlet to the total catchment outlet into varying
numbers of sub-reaches. These sub-reaches are based on the
distance from each sub-catchment outlet to the total catch-
ment outlet. In addition, the catchment inflow to the outlet is
directly calculated by the Muskingum method.

Zhao (1992) categorized the parameters of the Xin’anjiang
model into sensitive and non-sensitive groups. In real-world
cases, non-sensitive parameters are assigned values based on
expert judgment, while optimal values for sensitive parame-
ters are derived from historical data using the shuffled com-
plex evolution (SCE-UA) method (Duan et al., 1992). For
synthetic cases, however, parameters are taken to have rec-
ommended default values. Table 1 summarizes these param-
eters.

2.2 Asynchronous ensemble Kalman filter

The asynchronous ensemble Kalman filter (AEnKF) rep-
resents a straightforward enhancement of the ensemble
Kalman filter (EnKF), utilizing the same assimilation frame-
work as the EnKF. We follow the notation of Ide et al. (1997)
and Vetra-Carvalho et al. (2018) as closely as possible, aim-
ing to make our paper accessible and practical for both data
assimilation specialists and a broader audience interested in
applying these methods. To this end, the dimensions of the
state space and observation space, denoted as Nx and Ny .
Further, the time index is always denoted in parentheses to
the right of the variable, i.e., (.)(ti). Notably, the observa-
tional data are categorized into two types: the observed dis-
charge at the catchment outlet and soil moisture across sub-
catchments. During an ensemble run of the dynamic model,
the assimilation process has two steps: the soil moisture ob-
servations are used to update the soil states, and the discharge
observations are used to update the cumulative channel flow.
Consequently, for each assimilation process, the values ofNy
can differ, and the same applies to Nx .
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Figure 1. Flow chart of the Xin’anjiang model. The variables in the boxes indicate the model state, inputs, and outputs, and the symbols
outside the corresponding blocks are model parameters.

Table 1. Parameters of the Xin’anjiang model.

Parameter ∗ Description Synthetic cases Real-world cases

K The ratio of potential evapotranspiration to pan evaporation 1.00 0.95
C Evapotranspiration coefficient of the deeper layer 0.13 0.05
WUM Averaged tension water capacity of the upper layer [mm] 12.5 19.9
WLM Averaged tension water capacity of the lower layer [mm] 75.0 64.4
B Exponent of the tension water capacity curve 0.40 0.38
WM Averaged tension water capacity [mm] 125.0 119.8
IM Percentage of impervious areas in the catchment 0.01 0.03
SM Averaged free water storage capacity [mm] 30.0 16.7
EX Exponent of the free water capacity curve 1.25 1.50
KI Daily outflow coefficient of free water storage to interflow 0.35 0.02
KG Daily outflow coefficient of free water storage to groundwater 0.35 0.68
CI Daily recession constant of the interflow storage 0.70 0.52
CG Daily recession constant of the groundwater storage 0.99 0.93
CS Daily recession constants of channel network storage 0.50 0.88
LAG Lag in time [h] 0 1
XE Parameters of the Muskingum method 0.25 0.01

∗ Bold and underlined parameters indicate that they are sensitive parameters.

2.2.1 Ensemble Kalman filter

At a given time ti , we define the model state vector as
x(ti) ∈RNx and the observation vector as y(ti) ∈RNy . In
the EnKF framework, it is crucial to generate a set of inde-
pendent model state vectors. These vectors constitute an en-
semble matrix, denoted as X(ti) ∈RNx×Ne , where Ne is the
total number of the ensemble members. The initial X(0) is
obtained by the Monte Carlo method.

The state transfer equation at the forecast step is repre-
sented by

x
f
j (ti+1)=M[xaj (ti),U(ti)] + η(ti), (1)

where M[.] : RNx →RNx signifies the dynamic model,
such as the Xin’anjiang model; U(ti) represents the forcing
data (including rainfall and evaporation); and η(ti) ∈RNx

symbolizes the process or system noise characterized by a
mean of zero and covariance matrix Q(ti). In addition, the
subscript j signifies the ensemble index, ranging from 1
to Ne. The forecasted values from the dynamic model are
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marked with a superscript f , while the analysis (updated)
values from the filter are denoted by a superscript a.

During the analysis step, we create a set of new obser-
vation vectors by perturbing the original observation vector
y(ti), as described by

yoj (ti)= y(ti)+ ε(ti), (2)

where yoj (ti) ∈R
Ny represents the perturbed observation

vector for the j th ensemble and ε(ti) ∈RNy is Gaussian
noise characterized by covariance matrix R(ti). We assume
spatial independence of observation errors, thereby designat-
ing R(ti) as a diagonal matrix. Furthermore, the state update
equation is expressed as follows:

xaj (ti)= x
f
j (ti)+K(ti) · (yoj (ti)−H[xfj (ti)]), (3)

where H[.] is the measurement operator that maps the state
space to the observation space, which is also the Xin’anjiang
model in this study, and K(ti) is the Kalman gain matrix cal-
culated by

K(ti)= Pf (ti)HT
[HPf (ti)HT

+R(ti)]−1. (4)

In scenarios where the state space dimensionality, Nx , is
substantial, bypassing the direct computation of Pf (ti) in fa-
vor of calculating Pf (ti)HT and HPf (ti)HT emerges as a
strategy to enhance computational efficiency, as highlighted
by Nerger and Hiller (2013).

2.2.2 Asynchronous variant

The AEnKF is based on the concept of joint state–
observation space, where the ensemble is replaced by a
joint ensemble that combines state and observation infor-
mation. Updating model states involves considering obser-
vations from both current and previous time steps, controlled
by the assimilation time window, tw. This window defines the
duration over which observations are considered for the anal-
ysis, for instance, including data from the previous 5 h. More-
over, when assimilating only current observations (tw= 0),
the AEnKF reverts to the standard EnKF. In the AEnKF, the
observation vector is altered to

ỹ(ti)= [y(ti)
T ,y(ti−1)

T , . . .,y ( ti−tw)
T
]
T
∈R(tw+1)·Ny , (5)

where ỹ(ti) is the joint observation vector and R̃(ti) denotes
the covariance matrix of the associated observation noise, ex-
pressed as a diagonal matrix:

R̃(ti)=


R(ti) . . . 0
... R(ti−1)

...

. . .

0 . . . R(ti−tw)

 . (6)

Similarly, the model prediction vector from the prior tw
time steps in the observation space is used to expand the state
vector:

x̃
f
j (ti)=

(
x
f
j (ti+1)

T ,H[xfj (ti−1)]
T ,H[xfj (ti−2)]

T ,

. . .,H[xfj (ti−tw)]
T
)T
∈ RNx+tw·Ny . (7)

Furthermore, the new state definition introduces an aug-
mented observation operator H̃(ti):

H̃=


H . . . 0
... Ii

...

. . .

0 . . . Ii−tw

 , (8)

where I , with the corresponding subscript, stands for a se-
ries of identity elements on the diagonal, matching the di-
mensions in Eq. (7).

Following these augmented equations for x̃fj (ti), ỹ(ti),

R̃(ti), and H̃, we can directly apply these augmented vari-
ables in the EnKF process (Sect. 2.2.1) to implement AEnKF
assimilation. Crucially, in the joint state vector x̃fj (ti), model
prediction vectors within the observation space, such as
H[xfj (ti−1)] and others, are considered diagnostic variables
instead of state variables. As a result, they are not updated
during the analysis step. Specifically, in Eq. (3), only the first
Nx elements of the vector x̃j (ti) are calculated, while others
are disregarded.

2.3 Error estimation

Both the EnKF and its variant update model states by em-
ploying a weighted average of observational data and model
forecasts. This process highlights the crucial role of model
and observational errors in determining the effectiveness of
the assimilation system. In rainfall–runoff modeling in par-
ticular, where uncertainties in both model and observations
are inherently ambiguous, generalizing these uncertainties is
instrumental in acquiring refined approximations of subop-
timal model states. A common technique involves adding
unbiased noise to observations, model forcing, and model
states.

Observations involved in this study include discharge at
the catchment outlet and observed soil moisture. We general-
ize the observational errors as Gaussian perturbations related
to the corresponding observed values (Weerts and El Ser-
afy, 2006; Clark et al., 2008; Alvarez-Garreton et al., 2015).
Given that rainfall serves as the most critical input informa-
tion for the hydrological model, we employ log-normal mul-
tiplicative perturbations to describe the errors associated with
rainfall, thereby representing the uncertainty in model forc-
ing (McMillan et al., 2011; DeChant and Moradkhani, 2012).
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Moreover, we introduce a first-order autoregressive model to
represent the temporal correlation within the observational
errors and the forcing errors.

In the assimilation of observed discharge at catchment out-
let, the key model state variable updated is cumulative chan-
nel flow. This variable represents the outflow from each sub-
catchment on the routing calculation unit (sub-reaches in this
study), denoted as QC. As Li et al. (2014) conclude, this state
variables are perturbed using a Gaussian function. When as-
similating observed soil moisture, the model state variables
representing soil humidity need to be updated. Specifically,
this refers to the tension water storage (including upper- and
lower-layer tension water) and the free water storage in the
Xin’anjiang model. In the Xin’anjiang model, the soil mois-
ture state variables receive physical constraints. The free wa-
ter storage (denoted as S) reflects the soil moisture in the
topsoil layer, specifically the humus layer (Yao et al., 2012).
Therefore, it is assumed that the free water storage can be
considered to range between the saturation moisture content
and the field capacity, with its upper limit controlled by the
parameter SM and the lower limit set to zero. On the other
hand, the tension water storage (denoted as W ) represents
the soil moisture throughout the entire soil profile, encom-
passing the whole unsaturated zone (Yao et al., 2012). Con-
sequently, the tension water storage is considered to vary be-
tween the field capacity and the wilting point, with its upper
limit governed by the parameter WM and the lower limit be-
ing zero. The WU, WL, and WD represent the upper-, lower-,
and deep-layer tension water storage, respectively, with their
upper limits controlled by the parameters WUM, WLM, and
WDM and WM=WUM+WLM+WDM. When the vari-
ables approach the upper or lower limit, the Gaussian per-
turbations may cause it to violate the physical constraints. If
the hydrological model corrects it, it will lead to the trunca-
tion error in the background field predictions. We introduce
the bias-corrected Gaussian error model (BGEM) proposed
by Ryu et al. (2009), which is aimed at reducing biases that
emerge due to adherence to physical constraints.

The aforementioned error models are controlled by pa-
rameters known as hyperparameters (Thiboult and Anctil,
2015), such as the hyperparameters for Gaussian perturba-
tions, which are the mean and standard deviation. We ap-
ply the maximum a posteriori estimation method (MAP) to
identify the globally optimal values of these hyperparameters
(Gong et al., 2023). The MAP method aims to maximize the
probability density of the hyperparameters with given the ob-
served historical flood events. Section S1 in the Supplement
provides a comprehensive introduction to the implementa-
tion of error estimation in this study.

2.4 Multi-source soil moisture data fusion

The soil moisture reanalysis data are sourced from the China
Meteorological Administration Land Data Assimilation Sys-
tem (CLDAS) near-real-time dataset (National Meteorolog-

ical Information Centre, 2017). While the CLDAS dataset
demonstrates a reasonable level of accuracy within China,
with a regional average correlation coefficient of 0.89, a
root mean squared error of 0.02 m3 m−3, and a bias of
0.01 m3 m−3 (Wang and Li, 2020), it faces limitations due
to missing values in some areas and data latency (pub-
lished with a 2 d lag), restricting its application in real-
time flood forecasting in small and medium-sized catch-
ments. On the other hand, ground station measurements of-
fer high precision and timeliness (real-time data) but repre-
sent point-scale soil moisture, while the Xin’anjiang model
simulates soil moisture as areal averages for sub-catchments,
necessitating the consideration of spatial-scale effects. To
bridge this gap and assimilate soil moisture observations
into the Xin’anjiang model, this study employs the weighted
k-nearest-neighbor (WKNN) algorithm (Pedregosa et al.,
2011) to merge CLDAS soil moisture data (hereinafter re-
ferred to as CLDAS) with in situ soil moisture data collected
from monitoring sites (hereinafter referred to as IN SITU).
This method generates real-time, spatially distributed soil
moisture data based on in situ observations and the spatial
distribution from the CLDAS dataset, ensuring compatibility
with the tension water storage and free water storage in the
Xin’anjiang model.

The Harmonized World Soil Database (HWSD) provides
a soil texture map for two layers: 0–30 cm (topsoil layer, T )
and 30–100 cm (subsoil layer, S). Initially, using the tech-
nique by Reynolds et al. (2000), soil transfer functions are
applied to the grid of the soil texture map. This process in-
volves estimating the wilting point, θwp; field capacity, θfc;
and saturation moisture content, θs, for each grid layer based
on its soil clay and sand percentage contents along with the
United States Department of Agriculture (USDA) soil texture
classification. In this study, we assume that the soil moisture
constants for each sub-catchment are the arithmetic average
of the grid-scale soil moisture constants within the corre-
sponding areas.

In the Xin’anjiang model, tension water capacity (WM),
corresponding to available water capacity, is defined as the
moisture content between the wilting point and field capac-
ity, thus representing the thickness of the unsaturated zone.
Free water capacity (SM) is defined as the moisture content
between field capacity and saturation moisture content, re-
lating to the thickness of the humus soil layer. Accordingly,
we define a conceptual soil profile in the Xin’anjiang model,
where the soil profile of tension water is divided into upper,
lower, and deep layers. The capacity of each layer is calcu-
lated as

WL=
WWM(
θfc− θwp

) , (9)

where WL is the soil profile thickness matrix of ten-
sion water, WL= (WUL,WLL,WWL), representing the
thickness of the upper, lower, and entire soil profile of
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tension water in millimeters, respectively, and WWM=
(WUM,WLM,WM). Similarly, the thickness of the concep-
tual soil profile of free water is calculated as

SL=
SM

(θs− θfc)
. (10)

Subsequently, linear interpolation is used to adjust the in
situ data and CLDAS reanalysis soil moisture data, both at
varying depths, to match the thickness of the conceptual soil
profile. This step is followed by the calculation of tension
and free water storage, derived from the transformed in situ
and CLDAS data. The calculation formula is as follows:


WOBi =

(
θ_WLi − θwp

)
·WL′,

WL′ =

 WUL 0 0
0 WLL 0
0 0 WWL

 , (11a)

SOBi = (θ_SLi − θfc) ·SL, (11b)

where SOB and WOB= (WUOB,WLOB,WWOB), re-
spectively, represent the free water storage and tension
water storage at various layers, derived from observa-
tion data. These are referred to as the observed free wa-
ter storage and observed tension water storage. θ_WL=
(θ_WUL,θ_WLL,θ_WWL) and θ_SL indicate the soil
moisture contents after linear interpolation to the respective
conceptual soil profile thicknesses. θwp = (θwp,θwp,θwp).
The subscript i indicates different datasets – namely, IN
SITU or CLDAS.

Finally, using the WKNN method, soil moisture data from
the IN SITU dataset is integrated with the CLDAS dataset.
The specific implementation steps are as follows:

1. Normalize the observed free water content and observed
tension water content from the dataset using the min–
max normalization method. Denote the normalized ob-
servation vector as PSM:

PSM i = (WOBi ′,SOBi ′). (12)

2. The Minkowski distance is used to measure the prox-
imity between the IN SITU data under evaluation and
historical samples. A smaller distance indicates a closer
match between the evaluated soil moisture content and
the historical sample. The distance is calculated as fol-
lows:

d =

(
n∑
j=1
|psmRTD

IN SITU,j − psmHD
IN SITU,j |

p

)1/p

, (13)

where psmIN SITU,j represents the j th element of
the vector PSM IN SITU and n is the dimension of

PSM IN SITU. The superscript RTD stands for the data
under evaluation, and HD denotes historical data. The
distances between the data under evaluation and each
historical sample are ranked in ascending order. The K
nearest historical samples are then selected as reference
indices based on this principle.

3. The inverse distance weighting method is used to calcu-
late the final observed free water storage and observed
tension water storage based on the K nearest historical
samples:

ωm =
1
dm

/ K∑
m=1

1
dm
, (14a)

PSMRGC =

K∑
m=1

ωmPSMCLDAS,m, (14b)

where PSMRGC is the normalized merged ob-
servational soil moisture vector, ω represents the
inverse distance weights, and PSMCLDAS,m is
the normalized CLDAS observation data vector
corresponding to the mth sample. The merged
observed tension water storage, WOBRGC =

(WUOBRGC,WLOBRGC,WWOBRGC, ) and merged
observed free water storage, SOBRGC, are obtained
after denormalization

In this study, the grid search (GS) method (Bergstra and
Bengio, 2012; Alibrahim and Ludwig, 2021) is employed to
optimize the hyperparameters K and p, accompanied by a
three-fold cross-validation. This approach ensures maximum
R2 and minimum root mean squared error for the test set,
balancing model generalizability with accuracy (Sect. S2, Ta-
ble S1). For the multi-source soil moisture data fusion, 70 %
of the historical dataset is used as the training set for model
training, while the remaining 30 % serves as the test set to
verify model generalization.

2.5 Evaluation metrics

In this study, we use four metrics to assess the assimi-
lation effectiveness, focusing on both optimal single-value
and ensemble performances, as suggested by McInerney et
al. (2020). The optimal single-value performance, indicating
the highest simulation accuracy, is represented by the ensem-
ble mean values of the simulated discharge. The ensemble
performance evaluation, in contrast, examines the simulated
discharge ensemble through the lens of the ensemble fore-
casting, covering both the overall performance of ensemble
and its reliability.

For quantitatively assessing the optimal single-value per-
formance, we employ the normalized Nash–Sutcliffe effi-
ciency coefficient (NNSE) (Nossent and Bauwens, 2012) and
the root mean squared error (RMSE). The continuous ranked
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probability score (CRPS), introduced by Hersbach (2000),
measures the overall performance of the ensemble. The re-
liability component of CRPS, denoted as RELI, focuses on
assessing ensemble reliability. For these metrics, we use the
ratios of the AEnKF to open loop (ensemble run without as-
similation), represented as RRMSE, RCRPS, and RRELI. More-
over, the event-averaged values of these ratios are denoted as
MRRMSE, MRCRPS, and MRRELI. The mean value of NNSE
for multiple flood events is denoted as MNNSE. In synthetic
cases, “synthetic true” values serve as the benchmark for all
evaluation metrics, while observed values are used in real-
world cases. Additional information about these metrics can
be found in Sect. S3.

3 Study area and data

The Wuqiangxi Catchment (Fig. 2), is located in the middle
reaches of the Yuan River, the third-largest tributary of the
Yangtze River. It covers an area of approximately 8033 km2,
with elevations ranging from 42 to 1396 m above sea level.
The geographical coordinates of the catchment extend from
109°44′ E to 111°01′ E and from 28°01′ N to 29°07′ N. Sit-
uated in the mid-subtropical monsoon humid climate zone,
the Wuqiangxi Catchment experiences abundant rainfall and
has rich water resources. The average annual precipitation
is around 1400 mm, with uneven distribution throughout
the year, predominantly during the flood season (March to
September). The catchment, located in the subtropical ev-
ergreen and deciduous broadleaf forest belt, features dense
vegetation, predominantly forests and grasslands. The soil
texture is primarily loamy. For this study, the Wuqiangxi
Catchment is divided into 10 sub-catchments, each identified
by red underlined numbers in Fig. 2b, ensuring at least one
rain gauge in each sub-catchment. Among the three discharge
stations in the study catchment,Wuqiangxibashang station
provides the outflow data at the catchment outlet, while Hexi
and Gaochetou are stations that provide inflow data for the
study area. Due to the lack of soil moisture and rainfall data
within their controlled areas, the control areas of Hexi and
Gaochetou are not included in the study. For an overview of
the data used in this study, please see Sect. S4.

4 Experimental setup

4.1 Warming-up period

In China, hydrometeorological data are typically reported at
sub-daily intervals during flood periods and on a daily ba-
sis otherwise to support flood forecasting and water resource
management. The Xin’anjiang model operates in two modes
to meet these needs: it uses hourly simulations for flood fore-
casting and daily simulations for managing water resources.
The hourly simulations require initial soil moisture for each
sub-catchment, which is derived from the daily simulations

(Chen et al., 2023). Consequently, a daily simulation must be
performed prior the hourly simulation, and we recommend
that this warming up (spin up) be at least 3 months long. This
period enables the soil moisture simulated daily, driven by
observed hydrometeorological data, to gradually approaches
actual soil moisture (Kim et al., 2018). The influence of ini-
tial soil moisture on the daily simulation becomes minimal
by the end of the warming-up period, allowing for soil mois-
ture for daily simulation to be used as initial conditions for
hourly simulation (Yao et al., 2012). The daily simulation in
this study began on 10 February 2014. Testing showed that
even in extreme cases where the initial soil moisture in the
daily simulation is set to zero or fully saturated, there is al-
most no impact on the flood simulation results. So, they can
be set arbitrarily within reason. In this study, the initial values
for the daily simulation are set, with the soil moisture content
at half of the saturation value, and the sub-reaches outflow is
set to be the observed discharge at the catchment outlet on
the start date divided by the total number of sub-reaches.

4.2 Synthetic cases

In the synthetic cases, the hydrological model operates on
an hourly time step with a maximum lead time of 24 h, and
ensemble simulations involve 100 members. The initial soil
moisture is set to half of the maximum value. To ensure con-
sistency in the length of forecast sequences and the com-
parability of results, the start time for forecasting the same
flood event under different lead times is set to the same mo-
ment – specifically, the 24 h (maximum lead time) after the
flood start time. To capture peak flows even at the maxi-
mum lead time, the start of each flood event is advanced by
24 h. However, due to the lack of hourly observations prior
to the actual onset of the flood, data for these initial 24 h
are derived by interpolating from daily observations. Syn-
thetic data are generated as follows. Firstly, historical flood
events are utilized to apply the MAP method, producing an
optimal hyperparameter set, ψ̂ . Here, σ̂lnp and α̂lnp control
the error model of forcing data (Sect. S1.1). This introduces
random perturbations into hourly rainfall observations, cre-
ating a set of random rainfall data, referred to as synthetic
true rainfall. Similarly, σ̂yd and α̂yd manage the observation
error model (Sect. S1.2), perturbing catchment inflow to pro-
duce a dataset known as synthetic true inflow. Subsequently,
the Xin’anjiang model, driven by the synthetic true rainfall
and synthetic true inflow, along with the recommended pa-
rameters (see Table 1), outputs state variables (such as ten-
sion water storage) and discharge at the catchment outlet for
each time step. These outputs are designated as the synthetic
true state variables and synthetic true discharge. In the final
phase, optimal hyperparameter sets (σ̂ys, α̂ys) and (σ̂yd , α̂yd)
are applied to the observation error model. This step in-
troduces random perturbations into the synthetic true state
variables and synthetic true discharge, resulting in the cre-
ation of synthetic observed state variables and synthetic ob-
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Figure 2. Study catchment. (a) Digital elevation map (DEM). (b) Sub-catchments and observation stations. (c) Soil texture (0 to 30 cm).
(d) Soil texture (30 to 100 cm).

served discharge. Specifically, synthetic observations of ten-
sion and free water storage are employed to update the sim-
ulated values in the Xin’anjiang model. On the other hand,
synthetic discharge observation is utilized for updating cu-
mulative channel flow. Both of these assimilation processes
are conducted at an hourly interval.

4.3 Real-world cases

In the real-world cases, the time step and number of ensem-
ble members are the same as in the synthetic cases. Similarly

to the synthetic cases, to ensure the comparability of results,
the forecast start time for all lead times is uniformly delayed
from the flood onset (the earliest available hourly data) by a
duration corresponding to the maximum lead time. For some
flood events, high flow occurred as early as in the ninth hour
after onset. To avoid missing the peak flow, the maximum
lead time is set to 8 h. The observational tension water stor-
age, WOBRGC, and free water storage, SOBRGC, as intro-
duced in Sect. 2.4, are used to assimilate the simulated ten-
sion and free water storage in the Xin’anjiang model, with
an assimilation interval of 8 h. Additionally, discharge obser-
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vation is assimilated into the cumulative channel flow with a
1 h interval. Note that in both synthetic and real-world cases
in this study, we use historical rainfall data as a perfect proxy
for rainfall prediction with the aim of assessing temporal per-
sistence of the assimilation effect without introducing uncer-
tainty from numerical weather prediction. Temporal persis-
tence refers to the duration over which the updating applied
to state variables by the AEnKF at the start of forecasting
continue to hold in the future.

By introducing the unbiased perturbations into the model
forcing and states, and running the Xin’anjiang model in en-
semble mode without assimilation, the operation is referred
to as open loop (OL). In contrast, an ensemble run integrated
with AEnKF assimilation is referred to as the AEnKF. To re-
duce the effects of random perturbations on outcomes, each
flood event in our study is subjected to five repeated ensem-
ble simulations. We then select the simulation corresponding
to the median RMSE in the forecasted discharge as our final
outcome.

5 Results

5.1 Synthetic cases

5.1.1 Hyperparameter estimation for error models

Most current assimilation methods, while suboptimal for
complex hydrological processes, still yield reliable outcomes
within a reasonably characterized uncertainty. Our approach
to error characterization, widely adopted in hydrology, in-
volves perturbing model forcing, observations, and states
from an assumed distribution. We applied the MAP method
for global hyperparameter optimization, with optimal param-
eters detailed in Table 2. These optimized hyperparameters
are used in error models for both synthetic and real-world
cases. However, given the limited number of flood events
used for calibration, the hyperparameter optimization, akin
to model parameter calibration, might exhibit uncertainty
and parameter equifinality, leading to multiple hyperparame-
ter combinations that may produce similar ensemble simula-
tions.

5.1.2 The time window of the AEnKF

The AEnKF employs observational data from both the cur-
rent and the preceding time periods for assimilation, with the
duration of the past interval defined by the time window, ω.
Determining the optimal duration for assimilating past ob-
servations is critical for the effectiveness of the AEnKF. If
the time window is set too narrowly, the system might fail to
fully capitalize on historical data to enhance assimilation pre-
cision. On the other hand, an excessively broad time window
could lead the non-linear system incorporating irrelevant in-
formation from distant past periods, potentially undermining
assimilation performance. Therefore, we conducted tests to

Table 2. Hyperparameters estimated by the MAP method.

Hyperparameter Optimal
value

σys 0.108
αys 0.340
σyd 0.106
αyd 0.312
σlnp 0.482
αlnp 0.456
σs 0.058
σd 0.220

assess the impact of varying time windows on discharge fore-
cast accuracy. Specifically, for soil moisture observations, we
explored three different time windows: ωs = 1 h, ωs = 3 h,
and ωs = 5 h. Similarly, for discharge observations, we ex-
amined time window, ωd , values of 1, 3, and 5 h. To facilitate
clarity, these assimilation time windows are denoted using
dual numerical subscripts. For instance, the AEnKF utilizing
ωs = 1 h and ωd = 3 h is designated as AEnKF13, and similar
nomenclature applies to other configurations.

The disparity in forecast discharge accuracy across differ-
ent time windows is presented in Fig. 3. It shows the MNNSE
and MRRMSE metrics for forecast discharge across lead times
of 1 to 24 h under assorted time window combinations. It is
observed that the performance of the AEnKF varies across
these time windows. The most effective assimilation across
all lead times is achieved with ωs = 3 h and ωd = 3 h. It is
important to note, however, that even with the least effective
time windows (ωs = 1 h and ωd = 5 h), performance of the
AEnKF still surpasses that of the EnKF. In more detail, the
time windows for soil moisture and discharge have complex
interactions that collectively influence the forecast results for
catchment outlet discharge. For soil moisture assimilation,
a 3 h window demonstrates the most significant benefits. In
terms of NNSE, the 5 h window outperforms the 1 h in most
cases, except when ωd = 3 h, where the reverse is true. In
the assimilation of outlet discharge, the 3 h window generally
proves most effective but with a larger soil moisture window
(ωs = 5 h), as assimilating discharge data with 1 h window
yields the best results. Almost universally, the 1 h window
performs as well as or surpasses the 5 h window. This in-
dicates that longer assimilation windows do not necessarily
yield better results. Therefore, for upcoming studies involv-
ing synthetic data cases, the AEnKF will utilize assimilation
time windows of ωs = 3 h and ωd = 3 h.

5.1.3 Multivariate observation assimilation scheme

Upon determining the assimilation time window, we meticu-
lously analyzed the variances between three unique AEnKF
assimilation strategies. These include the assimilation of
solely observed soil moisture (labeled as AEnKFS), the as-
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Figure 3. The forecasted discharge accuracy for various time windows for (a) MNNSE and (b) MRRMSE.

similation of solely observed outlet discharge (labeled as
AEnKFQ), and a joint assimilation of both observations types
(labeled as AEnKFSQ).

In our assessment of one-step (1 h) prediction of outlet dis-
charge, we examined the optimal single-value performance
and ensemble efficacy of the three schemes. The evaluation
of the optimal single-value performance was conducted us-
ing NNSE and RRMSE as metrics. Figure 4a–h illustrate the
NNSE values during eight flood events in 2023 and 2024 (re-
fer to Table S3). Significantly, in events no. 2023062100 and
no. 2023072516, the catchment experienced minimal rain-
fall (only 1 h of rainfall exceeded 3 mm), with the flood dy-
namics largely driven by catchment inflows. Consequently,
updates to soil moisture within the catchment had no influ-
ence on flood progression, and while assimilating observed
discharge data slightly enhanced flood forecasting accuracy,
the improvement was minimal and could be considered neg-
ligible. Conversely, in the other six events where rainfall pre-
dominantly influenced the flood dynamics, all three assimi-
lation schemes outperformed the OL mode in NNSE scores,
indicating improvements in one-step prediction accuracy to
varying extents. Among these, AEnKFSQ, simultaneously as-
similating observed soil moisture and discharge data, notably
surpassed the other two schemes. This superiority is fur-
ther supported by the RRMSE statistics in Fig. 4i, where the
MRRMSE for AEnKFSQ showed a decrease of 0.11 and 0.16
compared to AEnKFS and AEnKFQ, respectively. Moreover,
soil moisture assimilation and discharge assimilation exhib-
ited comparable performances, with only a marginal differ-
ence of 0.05 in MRRMSE.

Subsequently, we conducted an evaluation of the ensemble
performance across eight flood events, specifically examin-
ing the overall ensemble performance as measured by CRPS
and the ensemble reliability as indicated by the RELI met-
ric. In Fig. 5a, the distribution of RCRPS values is showcased.
For the AEnKFQ scheme, RCRPS values fluctuated between
0.8 and 1.0, averaging 0.89; for AEnKFS, the range is from

0.39 to 1.03 with an average of 0.84; and for AEnKFSQ, it
varied from 0.29 to 1.01, averaging 0.74. This demonstrates
an enhancement in the overall ensemble performance for
all schemes over the OL model, particularly for AEnKFSQ,
which significantly outshone AEnKFS and AEnKFQ. Fur-
ther, AEnKFS slightly outperforms AEnKFQ. Figure 5b il-
lustrates the RRELI scores, showing a similar trend of im-
proved ensemble reliability for all three schemes over OL.
Here, the reliability of AEnKFSQ is notably higher than that
of both AEnKFS and AEnKFQ. On the other hand, AEnKFS
is more reliable compared to AEnKFQ.

Within the context of one-step prediction, Fig. 6 presents
the RRMSE for updated state variables of the Xin’anjiang
model under three distinct assimilation schemes, involving
free water storage; tension water storage across upper, lower,
and total layers; and cumulative channel flow across all sub-
catchments. As anticipated, in the AEnKFQ scheme, which
solely updates the cumulative channel flow without involv-
ing the runoff generation process, the state variables indica-
tive of soil moisture (S, W , WU, WL) remain unaffected.
This is reflected in Fig. 6a–d, where the mean RRMSE values
associated with the grey boxes hover around 1.0. In the con-
text of cumulative channel flow, AEnKFQ generally achieves
a reduction in RMSE relative to OL.

In the case of AEnKFS, updating the soil moisture im-
pacts both runoff generation and subsequent flow routing
processes, leading to a response in all state variables. Signif-
icantly, the AEnKFS scheme demonstrates the most substan-
tial corrections in free water storage (S), consistently yield-
ing lower RMSE values than the OL scheme in all instances.
When updating the total tension water storage (W ), AEnKFS
usually attains lower RMSE values compared to OL. How-
ever, this effect is less marked than that for free water stor-
age. This is illustrated in Fig. 6b, where, except for Event 6
and Event 8, the average values associated with the red boxes
exceed those in Fig. 6a. Contrastingly, updates to the upper
and lower layers of tension water storage in the AEnKFS
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Figure 4. The optimal single-value performance of three AEnKF assimilation schemes for synthetic cases: (a–h) NNSE and (i) RRMSE.

scheme produced opposite outcomes, with the RMSE values
for these post-update state variables exceeding those of OL.
This phenomenon can be attributed to the following: firstly,
the initial soil moisture values in this study were set at half
of their maximum, and during flood periods, the saturation-
excess runoff generation mechanism ensures rapid saturation
of both the upper and the lower tension water, reaching the
maximum limits (WUM and WLM). Thereafter, due to the
physical upper bounds of these variables, the assimilation

process is hindered in effectively updating WU and WL val-
ues. Consequently, this may lead to a systematic underes-
timation of these values compared to actual measurements
and consequently higher RMSE values than OL. In contrast,
free water storage, even during flood periods, may not per-
sistently reach its maximum (SM), resulting in the most ad-
vantageous update effect for it. These results highlight the
criticality of choosing appropriate state variables for updates
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Figure 5. The ensemble performance of three AEnKF assimilation schemes for synthetic cases: (a) RCRPS and (b) RRELI.

in hydrological model state updating, particularly when uti-
lizing methods such as AEnKF.

In the case of AEnKFSQ, the updates to soil moisture
state variables show similarities to those in AEnKFS. How-
ever, when it comes to the updates of cumulative channel
flow, AEnKFSQ effectively integrates the strengths of both
AEnKFQ and AEnKFS, resulting in a more outstanding per-
formance. This outcome suggests that the concurrent assim-
ilation of both soil moisture and discharge observations can
efficiently utilize the advantages of each, leading to a greater
assimilation accuracy than the assimilation of a single obser-
vation source.

In our assessment, we analyzed the discharge simulation
precision of three assimilation schemes over lead times rang-
ing from 1 to 24 h, aiming to gauge the temporal persistence
of the assimilation effect. Figure 7a–h present the NNSE for
eight flood events. The events identified as no. 2023062100
(Fig. 7d) and no. 2023072516 (Fig. 7f) were mainly driven by
inflows, exhibiting only slight improvements in state updates,
and therefore are not included in further discussions. For
the events identified as no. 2023050416, no. 2023052008,
no. 2024040100, and no. 2024042900, the NNSE of each as-
similation scheme exceeded that of OL across all lead times,
indicating a consistent assimilation impact lasting up to 24 h.
For the event labeled no. 2023040308, the temporal persis-
tence for the AEnKFSQ, AEnKFS, and AEnKFQ schemes are
noted as 8, 8, and 2 h, respectively; in the case of the event
marked as no. 2023063000, these durations are 5, 4, and 1 h.
Importantly, it is noteworthy that even in no. 2023063000,
despite being the least effective, the NNSE discrepancy be-
tween AEnKFSQ and OL for lead times exceeding 8 h re-
mains below 0.02. Furthermore, AEnKFSQ demonstrated su-
perior performance in most flood events across all lead times
compared to both AEnKFS and AEnKFQ. The notable ex-
ception is event no. 2023052008, where AEnKFSQ excelled
within a 4 h lead time but slightly lagged behind the other two
schemes beyond this duration. Nevertheless, the variance in

NNSE for AEnKFSQ during this event stayed below 0.02.
Figure 7i statistically illustrates the RRMSE values. Notably,
the MRRMSE for each of the three assimilation schemes re-
mains below 1.0 for all lead times, signifying that in terms
of event averages, each scheme achieves a temporal persis-
tence of up to 24 h. Additionally, the discharge forecast ac-
curacy across nearly all lead times is ranked with AEnKFSQ
surpassing AEnKFS, which itself exceeds AEnKFQ.

5.2 Real-world cases

In real-world cases, the sensitive parameters of Xin’anjiang
model are calibrated based on historical flood events. Af-
ter global optimization using the SCE-UA, the Xin’anjiang
model, equipped with optimally sensitive parameters, exhib-
ited an average NNSE of 0.89 for the calibration events and
0.8 for the validation events, demonstrating reliable and cred-
ible flood simulation and forecasting capabilities.

Considering that soil moisture observations are obtained
every 8 h in real-world cases as opposed to every 1 h in syn-
thetic cases, we have drawn on synthetic case results to estab-
lish an assimilation time window for soil moisture as close as
possible to 3 h, set to 8 h. Therefore, ωs is designated to be
8 h, utilizing only the observations from the current time and
those from 8 h earlier for assimilation. For the discharge as-
similation, we set the time window to be consistent with the
synthetic cases, i.e., ωd = 3 h. Additionally, guided by the
insights from synthetic cases, in real-world cases, we incor-
porate all available soil moisture observations but limit up-
dates to the free water storage component of the Xin’anjiang
model.

5.2.1 Fusion of in situ data with CLDAS soil moisture
data

The soil moisture data fused using the WKNN model ex-
hibits enhanced timeliness, with the soil moisture in each
conceptual soil profile aligning closely with that of the
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Figure 6. Effects of three assimilation schemes on state variables. (a) Free water storage (S), (b) tension water storage (W ), (c) upper tension
water storage (WU), (d) lower tension water storage (WL), and (e) cumulative channel flow (QC).
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Figure 7. Assessment of forecast discharge accuracy across three assimilation schemes during 1 to 24 h lead times for (a–h) NNSE and (i)
RRMSE.
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Figure 8. Effects of three assimilation schemes on free water stor-
age (S).

CLDAS data (Table 3). Specifically, during the calibration
set, the correlation coefficients with CLDAS data consis-
tently exceed 0.9. Additionally, the correlation coefficients
in the validation set are 0.85, 0.80, 0.84, and 0.75, respec-
tively, indicating that the WKNN model possesses robustness
and generalizability. It effectively captures the statistical re-
lationship between point-scale and areal-scale soil moisture
datasets.

5.2.2 Multivariate observation assimilation scheme

Within the context of one-step prediction, Fig. 8 displays the
impact of updating free water storage in three different as-
similation schemes, quantified by RRMSE. For the AEnKFQ
scheme, there is no update to free water storage, leading
to expected RRMSE values oscillating near 1.0. Conversely,
both AEnKFS and AEnKFSQ successfully updated free wa-
ter states, with mean values of RRMSE for free water storage
in flood event simulations lying between 0.48 and 0.74. This
demonstrates an average reduction in RMSE of 26 % to 52 %
for free water storage across various flood events in compari-
son to the OL mode. Moreover, Fig. 8 reveals that, in the vast
majority of cases, the whiskers (representing 1.5 times the in-
terquartile range) of the red and blue boxes remain below 1.0.
This indicates that both AEnKFS and AEnKFSQ successfully
updated the free water storage in most sub-catchments for
most flood events. The effective updates to free water stor-
age will further impact the discharge process at the catch-
ment outlet, which is discussed in detail in the subsequent
sections.

We evaluate the optimal single-value performance of the
AEnKF in one-step (1 h) prediction. Figure 9 illustrates the
NNSE and RRMSE values achieved through three AEnKF as-
similation schemes. In OL, the mean NNSE stands at 0.75.
Following assimilation with three schemes, the mean values
of NNSE improve to be 0.79, 0.78, and 0.81, respectively.
The RRMSE of AEnKFQ fluctuates between 0.78 and 1.0,
with an average of 0.88; for AEnKFS, it ranges from 0.71
to 1.02, averaging 0.91; and for AEnKFSQ, it varies from
0.64 to 0.99, with an average of 0.84. These results show
that all three AEnKF assimilation schemes enhance the opti-
mal single-value performance, with AEnKFSQ outperform-
ing AEnKFQ, which in turn exceeds AEnKFS. Moreover,
AEnKFSQ achieves a higher improvement ceiling in certain
flood events. For instance, the maximum reduction in RMSE
reaches 22 % for AEnKFQ, 29 % for AEnKFS, and up to
36 % for AEnKFSQ.

Figure 10 utilizes RCRPS and RRELI metrics to evaluate
overall ensemble performance and reliability. TheRCRPS val-
ues for AEnKFQ are in the range of 0.81 to 1.0, averag-
ing at 0.90; for AEnKFS, they span from 0.71 to 1.02, av-
eraging 0.92; and for AEnKFSQ, they vary from 0.66 to
0.98, averaging 0.86. Notably, AEnKFQ exhibits the nar-
rowest box plot, indicating a more focused distribution of
RCRPS for this scheme. The average RCRPS for AEnKFS
closely aligns with that of AEnKFQ, yet its box plot shows
greater breadth at both the top and the bottom, suggesting
a higher potential for improvement in overall ensemble per-
formance but with increased instability. In contrast, the av-
erage RCRPS for AEnKFSQ is lower than those of the first
two. While the box plot width for AEnKFSQ is similar to
that of AEnKFS, the upper boundary of the box plot aligns
more closely with AEnKFQ, and the upper whisker is shorter
than that of AEnKFQ, indicating a comprehensive superi-
ority of AEnKFSQ in overall ensemble performance com-
pared to both AEnKFS and AEnKFQ. Similar findings also
emerge in the assessment of ensemble reliability. AEnKFS
and AEnKFQ exhibit similar mean RRELI values, but the box
plot for AEnKFQ is more constricted. In contrast, AEnKFSQ
shows a thorough superiority in ensemble reliability com-
pared to both AEnKFS and AEnKFQ.

We extend the examination to the temporal persistence
of assimilation effects for these schemes. Figure 11 dis-
plays discharge forecasting accuracy across various lead
times, as measured by NNSE and RRMSE. Within a lead
time range of 1 to 8 h, both AEnKFS and AEnKFSQ demon-
strate improvements in forecasting performance: AEnKFSQ
exceeds AEnKFS within both lead times. AEnKFQ shows
significantly shorter temporal persistence than the other two,
slightly outperforming AEnKFS in 1 h lead time but with
a rapid decline in accuracy as lead time increases. Past a
5 h lead time, the assimilation effect of AEnKFQ vanishes,
leading to accuracy slightly below OL. And at different
lead times, AEnKFSQ consistently outperforms AEnKFQ.
This reveals that employing AEnKF for updating cumulative
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Table 3. The correlation coefficient between the fused soil moisture data and CLDAS soil moisture data.

Sub- WWOBRGC WUOBRGC WLOBRGC SOBRGC

catchment Calibration Verification Calibration Verification Calibration Verification Calibration Verification

1 0.99 0.88 0.98 0.81 0.94 0.92 0.98 0.79
2 0.95 0.94 0.98 0.80 0.95 0.92 0.98 0.69
3 0.97 0.80 0.87 0.78 0.97 0.76 0.93 0.83
4 0.98 0.84 0.86 0.78 0.93 0.72 0.98 0.66
5 0.98 0.75 0.98 0.86 0.98 0.87 0.90 0.65
6 0.97 0.88 0.88 0.77 0.83 0.86 0.92 0.79
7 0.98 0.89 0.97 0.89 0.98 0.90 0.90 0.73
8 0.99 0.90 0.95 0.93 0.98 0.94 0.98 0.89
9 0.98 0.89 0.76 0.74 0.84 0.81 0.80 0.70
10 0.88 0.73 0.78 0.67 0.86 0.72 0.89 0.77
Average 0.97 0.85 0.90 0.80 0.93 0.84 0.93 0.75

Figure 9. The optimal single-value performance of three AEnKF assimilation schemes for real-world cases for (a) NNSE and (b) RRMSE.

channel flow may notably enhance discharge forecasting ac-
curacy in shorter lead times. While updating free water stor-
age may not be as effective as AEnKFQ initially, it ensures a
longer-lasting assimilation impact. The scheme of AEnKFSQ
merges these strengths, offering robust discharge corrections
and an extended temporal persistence of assimilation effects.

6 Discussion

6.1 Discussion of AEnKF time window in synthetic
cases

In the study of assimilation windows for the AEnKF in syn-
thetic cases, we found that longer assimilation windows do
not necessarily yield better results (Fig. 3). This is primar-
ily because a longer time window includes too much histori-
cal information, which may have a weak correlation with the
current state variables. Due to the non-linearity of the hy-
drological model, where overly long windows can result in
the system assimilating excessive noise, which negates the
benefits derived from incorporating past observations. Tao et

al. (2016) obtained similar results when studying the assimi-
lation window length (1–3 h) for the assimilation of observed
discharge only. They found that the 2 h time window gener-
ally yielded better assimilation results than the 3 h time win-
dow, while the 1 h time window performed the worst.

6.2 Discussion of two flood events in real-world cases

In flood simulation and forecasting, peak flow rates are a pri-
mary focus for researchers. Using the two flood events with
the most significant peak flow errors in the OL mode in 2023
(no. 2023040308 and no. 2023052008) as case studies, we
examined the variations in free water storage and discharge
at the catchment outlet.

Figure 12 displays the hydrographs simulated for
no. 2023040308. Black lines (and dots) signify observed val-
ues. Grey lines and bands represent the ensemble mean and
range of OL, respectively. Similarly, green lines and bands
illustrate the ensemble mean and range for the AEnKF. In
examining the time series of free water storage, it is evi-
dent that observational data points almost never fall within
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Figure 10. The ensemble performance of three AEnKF assimilation schemes for real-world cases: (a) RCRPS and (b) RRELI.

Figure 11. The accuracy of forecasted discharge under different lead times for (a) NNSE and (b) RRMSE.

the grey bands of the OL scheme. This indicates a notable
difference between the soil moisture levels simulated by
the Xin’anjiang model and those derived from observational
data. Both AEnKFS and AEnKFQ exhibit similar update pat-
terns, where the post-update ensemble mean values signifi-
cantly shift towards observational data. Concurrently, this ad-
justment expands the ensemble bands, indicating an increase
in ensemble simulation accuracy for AEnKFS and AEnKFQ
along with an increased ensemble spread. In the analysis of
the discharge time series, it becomes evident that the ensem-
ble distribution from the AEnKF aligns more closely with
observational data and presents a narrower bandwidth than
that of OL. This trend suggests that the ensemble accuracy
with the AEnKF exceeds that of the OL scheme and also
demonstrates a reduced ensemble spread. Furthermore, the
ensemble distribution observed during peak periods is more
expansive than during the onset and recession periods of
flood. This is attributed to the error models applied. These
models introduce larger perturbations in the assimilation sys-
tem during peak periods, leading to a broader ensemble dis-

tribution, which, in turn, ensures a more effective assimila-
tion during these critical periods. In examining the time se-
ries of discharge, it is noted that both AEnKFQ and AEnKFS
significantly reduced the height of the simulated flood peak.
The AEnKFQ scheme shows effectiveness around the 20th
hour, following the assimilation of approximately 20 dis-
charge observations, achieving a relative error of 17 % in the
simulated flood peak (maximum instantaneous flow) com-
pared to the observed peak. AEnKFS started effectively up-
dating the discharge following the assimilation of the third
group of soil moisture observations at the 17th hour, which
led to a flood peak relative error of 13 %. The AEnKFSQ
scheme successfully amalgamates the strengths of both, cul-
minating in a reduced flood peak relative error of merely 8 %.

In the case of the flood event labeled no. 2023052008, as
illustrated in Fig. 13, the time series exhibits a similar pat-
tern to no. 2023040308. The peak flooding occurred between
the 25th and 33rd hours, which corresponds to the period
between the fourth and fifth sets of soil moisture observa-
tions. During this interval, there is a notable and rapid in-
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Figure 12. Hydrograph during flood event labeled no. 2023040308 for the (a, b) AEnKFQ scheme, (c, d) AEnKFS scheme, and (e, f)
AEnKFSQ scheme. The left panels show the discharge at the catchment outlet, and the right panels display the free water storage in sub-
catchment 1.

crease in free water storage. Figure 13c indicates that the
AEnKFS fails to effectively adjust the discharge volumes
around the peak period. Conversely, the AEnKFQ scheme,
which focused on updating cumulative channel flow, suc-
cessfully rectified the peak flooding. Owing to the ineffec-
tiveness of free water content updates in discharge correc-
tion, the assimilation impact of AEnKFSQ closely matched
that of AEnKFQ. In summary, it is apparent that AEnKFSQ
effectively integrates the strengths of both the AEnKFS and
AEnKFQ schemes. Even when one of these strategies fails
to update effectively, AEnKFSQ still manages to enhance the
precision of discharge predictions.

6.3 Limitations

The Xin’anjiang model is a conceptual hydrological model
that generalizes the rainfall–runoff process. Its most promi-
nent feature is performing runoff production calculations
based on the saturation-excess runoff mechanism, mean-
ing net rainfall is first entirely used to replenish soil wa-
ter, and once the soil moisture content in the unsaturated
zone reaches field capacity, all subsequent net rainfall is
used to generate runoff. Therefore, the Xin’anjiang model is
mostly suitable for humid and semi-humid regions where the
saturation-excess runoff mechanism is dominant and is less
or not applicable to arid and semi-arid regions. However, it
is important to note that the state updating method proposed
in this study is not limited to coupling with the Xin’anjiang
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Figure 13. Hydrograph during flood event labeled no. 2023052008 for the (a, b) AEnKFQ scheme, (c, d) AEnKFS scheme, and (e, f)
AEnKFSQ scheme. The left panels show the discharge at the catchment outlet, and the right panels display the free water storage in sub-
catchment 1.

model. In fact, this method can be easily coupled with any
lumped or semi-distributed hydrological model that includes
state variables related to soil moisture and channel storage.
When coupled with hydrological models suitable for semi-
arid and arid regions, it can be effectively applied in those
areas.

Semi-distributed hydrological models, like the
Xin’anjiang model used in this study, have smaller state
variable dimensions, allowing for the direct application of
the proposed state updating scheme. However, in distributed
models where each computational grid (e.g., DEM-based
grids) has its own state variables, the state dimension
becomes large, making direct application inefficient or prone
to spurious correlations from distant observations. To resolve

this, we recommend applying covariance localization (Janjić
et al., 2011) to the AEnKF or other localization techniques
(Khaniya et al., 2022). For instance, in covariance localiza-
tion, a localization radius (RL) is set, and the forecast error
covariance matrix is adjusted using a correlation matrix
derived from the Schur product theorem. This study focuses
on jointly assimilating soil moisture and streamflow using
the AEnKF, and performing localization on the AEnKF
is beyond the scope of this research. We will explore this
further in future work.

Real-time flood forecasting is a dynamic prediction system
based on real-time monitoring data combined with hydrolog-
ical and/or hydrodynamic models to predict the evolution of
flood processes. It provides critical information such as the
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time of peak flow, water levels, and discharge when a flood
occurs. This type of forecasting is characterized by its high
timeliness and short forecasting window, with the lead time
generally set to several hours (e.g., Toth et al., 2000; Liu et
al., 2016). The methods proposed in this study is particularly
suited for state updating within real-time flood forecasting
as it dynamically updates the state variables of the hydro-
logical model using real-time observational data, reducing
the accumulation of errors. In real-world cases, we set the
maximum lead time to 8 h, which sufficiently meets the re-
quirements for real-time flood forecasting in medium-sized
catchments. This provides reliable real-time and near-real-
time information for emergency responses, assisting govern-
ment and flood control agencies in organizing evacuations,
resource allocation, and reservoir operations, thereby min-
imizing casualties and property damage caused by floods.
Moreover, to test the temporal persistence of the state updat-
ing method, we used historical observed rainfall as a perfect
proxy for numerical weather forecasts, thereby avoiding the
introduction of uncertainties from numerical weather predic-
tions. As the lead time increases, uncertainties in numerical
weather predictions may gradually replace the accumulation
of errors in hydrological model state variables as the primary
source of uncertainty in flood forecasting (Weerts and El Ser-
afy, 2006; Yossef et al., 2013; Thiboult et al., 2016). For
medium- to long-term flood forecasts, greater attention may
need to be given to uncertainties stemming from numerical
weather predictions.

7 Conclusions

This study uses the asynchronous ensemble Kalman filter
(AEnKF) with enhanced error models for assimilating two
types of observational data into the Xin’anjiang model. The
data include observed discharge at catchment outlet and
soil moisture gathered from multiple sources. The objec-
tive is to diminish error accumulation in the initial condi-
tions of the Xin’anjiang model at the start of flood fore-
casting, thereby enhancing initial conditions. The assimila-
tion framework includes advanced error models, such as the
BGEM model to reduce systematic biases from perturbed
soil moisture and the MAP method for the objective estima-
tion of hyperparameters in the error model. The study specif-
ically contrasts three AEnKF assimilation strategies: (1) the
AEnKFQ scheme, which updates cumulative channel flow in
the Xin’anjiang model by assimilating observed outlet dis-
charge; (2) the AEnKFS scheme, which focuses on updating
soil moisture variables in the model by assimilating fused
soil moisture observations; and (3) the AEnKFSQ, a joint as-
similation scheme, which combines both discharge and soil
moisture assimilation processes.

Generally, the AEnKF is considered an effective ap-
proach for updating hydrological model states. It integrates
a greater amount of observational data while barely increas-

ing the computational burden, making it highly suitable for
flood forecasting. The effectiveness of assimilation with the
AEnKF relates to the assimilation time window. Results for
synthetic data cases indicate that an appropriate setting in-
volves a 3 h time window for assimilating observed soil
moisture and outlet discharge. Moreover, in lead times rang-
ing from 1 to 24 h, this method consistently outperforms the
EnKF approach.

In synthetic case studies, while updating soil moisture
state variables of the Xin’anjiang model, it is observed that
effective updates are limited to free water storage and total
tension water storage. This underscores the significance of
choosing appropriate state variables for updates in the ap-
plication of the AEnKF method. Further analysis revealed
that with high-quality hourly available observational data,
all three assimilation schemes maintained their effective-
ness for up to 24 h lead time. Notably, AEnKFSQ demon-
strated enhanced optimal single-value performance, overall
ensemble performance, and ensemble reliability, surpassing
both AEnKFS and AEnKFQ. Specifically, in the one-step
forecast, the MRRMSE for AEnKFSQ decreased by 0.11 and
0.16 compared to AEnKFS and AEnKFQ, respectively; the
MRCRPS for AEnKFSQ decreased by 0.10 and 0.15, and the
MRRELI decreased by 0.20 and 0.15 compared to AEnKFS
and AEnKFQ, respectively. AEnKFSQ’s advantage in opti-
mal single-value performance persists up to a 24 h lead time.

In the real-world case studies, we merged soil moisture
data from in situ monitoring sites with the near-real-time
CLDAS soil moisture data. This fusion produces spatially
distributed data characterized by high temporal immediacy
while addressing the limitation of point-scale in in situ soil
data. In contrast to experiments using synthetic data, extend-
ing soil moisture observation intervals to 8 h impacts the per-
formance of the AEnKFS scheme. In one-step prediction,
the AEnKFSQ scheme exhibits the highest level of accu-
racy with the MRRMSE of 0.84. Concurrently, the simula-
tion precision of the AEnKFQ scheme exceeds that observed
in AEnKFS, with MRRMSE values of 0.88 and 0.91, respec-
tively. Variations in results are observed under different lead
times. AEnKFSQ and AEnKFS consistently demonstrate an
assimilation effect duration of 8 h in contrast to the 5 h tem-
poral persistence of the assimilation effect of AEnKFQ. The
use of the AEnKF for updating cumulative channel flow
markedly enhances the accuracy of discharge forecasting in
a brief lead time. In contrast, the adjustment extent of dis-
charge by updating free water storage in a single-step fore-
cast might be lower than that achieved with AEnKFQ. Nev-
ertheless, it guarantees a more sustained assimilation effect.
The AEnKFSQ integrates the strengths of the previous two
strategies, thereby improving discharge forecasting accuracy
even when a particular strategy does not update effectively
and prolonging the temporal persistence of the assimilation
effect.
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Code and data availability. Data will be made available
on request. The code of the AEnKF was developed us-
ing the Parallel Data Assimilation Framework (PDAF)
(https://doi.org/10.5281/zenodo.7861829, Nerger, 2023)
and OpenDA (https://doi.org/10.5281/zenodo.8018104,
Kramer et al., 2023). The SCE-UA algorithm was imple-
mented via the Uncertainty Quantification Python Lab-
oratory (UQ-PyL) (http://www.uq-pyl.com/, Wang et al.,
2022). The soil moisture reanalysis data are downloaded
from the China Meteorological Administration Land Data
Assimilation System (CLDAS) near-real-time dataset (http:
//data.cma.cn/data/detail/dataCode/NAFP_CLDAS2.0_NRT.html,
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