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Abstract. At the global scale, droughts can be described
by many variables, expressing their extent, duration, dy-
namics, and severity. To identify common features in global
land drought events (GLDEs) based on soil moisture, we
present a robust method for their identification and classifica-
tion (cataloging). Gridded estimates of root-zone soil mois-
ture from the SoilClim model and the mesoscale Hydrologic
Model (mHM) were calculated over global land from 1980—
2022. Using the 10th-percentile thresholds of soil moisture
anomalies and OPTICS clustering of the gridded data in
a 10d interval, a total of 775 GLDEs from SoilClim and
630 GLDEs from mHM were identified. By utilizing four
spatiotemporal and three motion-related characteristics for
each GLDE, we established threshold percentiles based on
their distributions. This information enabled us to catego-
rize droughts into seven severity categories (ranging from ex-
tremely weak to extremely severe) and seven dynamic cate-
gories (ranging from extremely static to extremely dynamic).
Our global-scale synthesis revealed the highest relative pro-
portions of extremely severe and extremely dynamic GLDEs
in the South American region, followed by North America,
while the longest and most extensive single GLDEs occurred
in Eurasia. The severity and dynamic categories overlapped
substantially for extremely severe and extremely dynamic
droughts but very little for less severe/dynamic categories,
despite some very small droughts that were occasionally very
dynamic. The frequency of GLDEs has generally increased
in recent decades across different drought categories but is

statistically significant only in some cases. Overall, the cat-
aloging of GLDEs presents a unique opportunity to analyze
the evolving features of spatiotemporally connected drought
events in recent decades and provides a basis for future inves-
tigations of the drivers and impacts of dynamically evolving
drought events.

1 Introduction

Droughts represent an important natural hazard with sig-
nificant consequences for several areas of human activities,
such as agriculture, forestry, and water management. Recent
warming may significantly increase the extent, duration, and
severity of drought events in commonly affected, dry areas
of the world, as well as in parts of the world that have not
often been strongly affected in the past (e.g., Trenberth et al.,
2014; Naumann et al., 2018; IPCC, 2021). The frequent oc-
currence of severe droughts, particularly since the 2010s, in
different parts of the world has greatly increased according
to past studies that have analyzed such events (e.g., Shmakin
et al., 2013; Van Dijk et al., 2013; Griffin and Anchukaitis,
2014; Erfanian et al., 2017; Ionita et al., 2017; Marengo et al.,
2017; Spinoni et al., 2017, 2019; Deng et al., 2020; Chiang
et al., 2021; Moravec et al., 2021; Rakovec et al., 2022; Liu
et al., 2023; Arias et al., 2024; Garrido-Perez et al., 2024). In
this context, the compound effects of droughts with, e.g., heat
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waves have appeared to be a problem in recent years, as doc-
umented in many studies that have analyzed their spatiotem-
poral variability at the global (e.g., Mukherjee et al., 2020;
Mukherjee and Mishra, 2021; Afroz et al., 2023; Wang et
al., 2023) or continental (e.g., for Europe: Bezak and Mikos,
2020; Sutanto et al., 2020; Ionita et al., 2021) scale.

To understand the spatiotemporal variability and severity
of droughts, meteorological drought indices (e.g., Standard-
ized Precipitation Index — SPI; Standardised Precipitation-
Evapotranspiration Index — SPEI; or Palmer Drought Sever-
ity Index — PDSI) have traditionally been used (e.g., Spinoni
et al., 2014, 2015, 2019; Chiang et al., 2021; Fuentes et al.,
2022; Vicente-Serrano et al., 2022), enabling longer time se-
ries to be analyzed due to their simplicity. Drought indices
based on satellite observations provide a new opportunity
to study both the climatic aspects of drought and the land
surface response to drought in a spatially explicit manner
(e.g., Anderson et al., 2011; Khan and Gilani, 2021; Nikraftar
et al., 2021). A relatively complex approach is soil mois-
ture modeling through hydrological and land surface mod-
els in drought studies. These models either can use outputs
of general circulation models to predict future soil mois-
ture changes (e.g., Berg and Sheffield, 2018; Trugman et al.,
2018) or can be used in a retrospective mode, employing
station-based data or reanalysis data as input (e.g., Kumar et
al., 2013; Murray et al., 2023; Rehof et al., 2024b). The main
focus of these existing analyses is usually to assess long-term
trends and locate drying hotspots worldwide. However, their
scope tends to be limited to basic statistical characteristics,
as they either do not assess droughts as individual events at
all or delimit and quantify drought events for predefined re-
gions and do not study their actual spatiotemporal evolution
as a tool for drought cataloging. Existing drought catalogs
also do not use temporal resolutions finer than 1 month at the
global scale; therefore, these catalogs have very limited po-
tential in terms of understanding motion-related characteris-
tics and studying the movement of individual drought events.
Thus, there is great potential for research that implements
event-focused approaches employing high-spatiotemporal-
resolution datasets to catalog droughts via the synthesis of
various characteristics at the global scale, while few such cat-
alogs exist at the regional scale, e.g., Moravec et al. (2019) or
Cammalleri et al. (2023). Such a catalog could also become
a basis for subsequent studies investigating the drivers and
impacts of dynamically evolving drought events.

The aim of this paper is to present a robust method for the
detection and cataloging of droughts for global land by com-
bining different characteristics describing the occurrence,
spatiotemporal evolution, intensity, and dynamics of selected
drought events. The methods of severity and dynamic classi-
fications of global land drought events are applied to selected
soil moisture variables calculated from the SoilClim model
and the mesoscale Hydrologic Model for 1980-2022.
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2 Data
2.1 SoilClim model

The SoilClim water balance model (Hlavinka et al., 2011;
Trnka et al., 2020; Rehof et al., 2021) is used to calculate
the dynamics of plant-available soil moisture in four soil lay-
ers (0.0-0.1, 0.1-0.4, 0.4-1.0, and 1.0-2.0m) by compar-
ing the inflow and outflow water balance components. Soil-
Clim accounts for soil water-holding capacity and vegetation
cover type, seasonal phenological development, or leaf area
index dynamics, and the model simulates root growth and
snow cover (Trnka et al., 2010; Rehof et al., 2021 ). SoilClim
was applied to each grid with a daily input of meteorological
variables that consisted of precipitation, temperature at 2m
above the ground, dew-point temperature at 2 m, wind speed
at 10 m, and incoming shortwave radiation, which originates
from ERAS5-Land (Mufioz-Sabater et al., 2021), as well as
input consisting of the leaf area index (LAI) and land use
and terrain inputs, also taken from the ERAS5-Land dataset.
The plant-available water capacity of the soil was computed
as the difference between the field capacity and wilting point
based on the inputs from the SoilGrids database (Hengl et al.,
2014, 2017). SoilClim reproduces changes in long-term soil
moisture dynamics in topsoil well (Trnka et al., 2015; Rehof
et al., 2024b). The calculated volumetric soil moisture was
converted into relative available water (AWR), where 100 %
represents the full field capacity and 0 % represents the wilt-
ing point (for more details, see Rehof et al., 2024b). This
study used data for the 2.0 m soil depth obtained by aggregat-
ing all four modeled layers. The prepared SoilClim dataset
covers global nonglaciated land with a 0.5° resolution, ex-
cluding latitudes above 72° N and all of Antarctica.

2.2 Mesoscale Hydrologic Model

The mesoscale Hydrologic Model (mHM; Samaniego et al.,
2010; Kumar et al., 2013) simulates hydrological processes
at the mesoscale. This model considers the complex inter-
play of land surface and subsurface properties through mul-
tiscale parameter regionalization using land cover, terrain,
and soil characteristics, and it simulates major water fluxes,
such as evaporation, infiltration, river runoff, or groundwa-
ter flow. This study considers soil moisture (SM) simula-
tions averaged over the entire 2m soil column depth (ag-
gregating values over six soil layers) to quantify shallow-
water availability. The daily meteorological inputs (i.e., pre-
cipitation and air temperature) originate from the ERAS re-
analysis (Hersbach et al., 2020). The daily minimum, max-
imum, and mean temperatures are also used to obtain po-
tential evapotranspiration estimates (Hargreaves and Samani,
1985). Our simulations are based on the existing model setup
using the digital elevation model from the USGS (Danielson
and Gesch, 2011), soil characteristics from SoilGrids (Hengl
et al.,, 2017), land cover from ESA (Arino et al., 2012),
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and LAI climatology from NASA (Tucker et al., 2005). The
mHM is one of the seven global hydrological models that
the WMO has evaluated and used for the development of
the annual State of Global Water Resources reports since
2011, focusing on > 500 major hydrological basins world-
wide (WMO, 2022). The mHM dataset prepared for this
study covers global nonglaciated land with a 0.5° resolution,
excluding latitudes above 72° N and all of Antarctica.

3 Methods
3.1 Preparation and clustering of the drought datasets

The daily AWR data obtained from the SoilClim model and
the daily SM data from the mHM were aggregated into 10d
intervals. Then, 10th-percentile thresholds for AWR and SM
were calculated for each grid and each 10d interval (by
applying a 30d window to smooth the annual variation)
for the entire 1980-2022 period to represent drought con-
ditions. Drought occurrence has been identified using the
10th-percentile drought, which is in line with the use of this
threshold in US Drought Monitoring (Svoboda et al., 2002)
since 1995 for the “D2” category (“Severe Drought”) defi-
nition and in the Czech Drought Monitor System (Trnka et
al., 2020; Intersucho, 2024) since 2012 as the “S2” (“Mod-
erate Drought”) category. To assess the most severe drought,
the 2nd-percentile drought (i.e., 50-year return period) was
calculated using the same approach.

Both 10th-percentile drought datasets were further clus-
tered by the “ordering points to identify the clustering struc-
ture” (OPTICS) method (Ankerst et al., 1999), which was
applied to the whole three-dimensional dataset (spatiotem-
poral) covering 43 years. OPTICS is suitable for delimiting
clusters of varying density and shape, without requiring the
specification of the number of clusters beforehand. To elim-
inate regional cases with very small drought-affected areas,
clusters that included fewer than 50 grids for one 10d in-
terval, that included fewer than 500 grids overall, or that
appeared in fewer than three 10d intervals were excluded
from both datasets, after which 775 clusters (further drought
events) remained in the SoilClim dataset and 630 remained in
the mHM dataset. In the case of both models, selected global
land drought events (GLDEs) comprise around 15 % of the
original clusters but include over 80 % of all grids included
in the clustering.

3.2 Severity classification of global land droughts

To describe the severity of the identified drought events, four
spatiotemporal characteristics were calculated as follows:

(a) the maximum areal extent of a drought event during its
duration,

(b) the total sum of the areal extent of a drought event for
all individual 10d intervals during its duration,
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(c) the duration of a drought event at 10d intervals,

(d) the drought intensity expressed as the total sum of the
areal extent of the 2nd-percentile drought within the
drought event during its duration.

Subsequently, for each of these characteristics and both
datasets, the identified drought events (775 for SoilClim and
630 for mHM) were placed in order from the lowest to the
highest values of the given characteristic, and orders of the
values were used as scores. For example, a score of 1 was
attributed to the event with the lowest value of the given
characteristic and a score of 775 or 630 was attributed to
the event with the highest value of this characteristic for
SoilClim and mHM, respectively. In cases where multiple
events shared the same value for a given characteristic, their
mean order was assigned to all of them. Then, for each
drought event, sums of the scores of the four above charac-
teristics were calculated and used for severity classification.
These final scores were further divided based on percentile
thresholds to classify individual events into the following
seven severity categories (for each dataset) of global land
droughts: 1s, extremely weak drought (< 5th percentile); 2s,
very weak drought (5th-20th percentile); 3s, weak drought
(20th—-35th percentile); 4s, average drought (35th—65th per-
centile); 5s, severe drought (65th—80th percentile); 6s, very
severe drought (80th—95th percentile); and 7s, extremely se-
vere drought (> 95th percentile).

3.3 Dynamic classification of global land droughts

For each identified drought event and each 10 d interval of its
duration, centroids were calculated using the median of the
longitudes and latitudes for individual grids. Subsequently,
three dynamic characteristics of these centroids for individ-
ual drought events were calculated as follows:

(a) the total sum of geographic distances between centroid
positions for all individual 10d intervals,

(b) the maximum distance between two centroid positions
during the entire duration of a drought event,

(c) the mean geographic distance between centroid posi-
tions for all individual 10d intervals.

Furthermore, analogously to the severity classification, for
each of these characteristics and both datasets, the drought
events were ordered from the lowest to the highest value of
a given characteristic, and their orders were used as scores.
Then, the sums of scores from all three characteristics of each
identified drought event were divided by percentile thresh-
olds to classify them according to SoilClim and mHM into
the following seven dynamic categories: 1d, extremely static
drought (< 5th percentile); 2d, very static drought (5th—20th
percentile); 3d, static drought (20th-35th percentile); 4d,
drought of average movement (35th—65th percentile); 5d,
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dynamic drought (65th—80th percentile); 6d, very dynamic
drought (80th—95th percentile); and 7d, extremely dynamic
drought (> 95th percentile).

4 Results

4.1 Global land droughts according to the SoilClim
and mHM models

4.1.1 Severity classification

By applying a clustering approach to gridded daily AWR
data from SoilClim, a total of 775 global land drought events
(GLDEs) from 1980-2022 were detected, while based on
mHM, 630 GLDEs were detected. For their severity classifi-
cation, four severity characteristics and the methodology of
their analysis, described in Sect. 3.2, were used. The com-
plete list of all identified GLDEs is included in Tables S1
and S2 in the Supplement. Figure 1 shows the interrelation-
ships among the four basic characteristics used for severity
classification. Although individual GLDEs exhibit signifi-
cant spatiotemporal variability, there is a noticeable group-
ing pattern of GLDE categories in the scatterplots. However,
for less severe categories, the individual characteristics are
variable, often compensating for each other; for extremely
severe droughts (category 7s), all characteristics consistently
display very high scores for both models. Some plots of pairs
from the four characteristics in Fig. 1 display the grouping of
GLDE:s into lines because there are many GLDEs with the
same value (meaning the same score assigned to them) in the
case of a single-digit number of 10d intervals. The largest
scatter appears in the duration—-maximum extent relationship
(Fig. li(a—c)), which shows that drought with a longer dura-
tion does not necessarily have to reach very large extent. On
the other hand, the relationship between duration and total
extent is much stronger, as it is a cumulative value. The de-
scribed features of the scatterplots in Fig. 1 are confirmed in
the boxplots of these categories, as shown in Fig. 2, where ex-
tremely severe droughts (7s) were characterized by the high-
est values of all boxplot parameters (median, lower and upper
quartile, maximum and minimum), decreasing stepwise over
the categories of very severe (6s) and severe droughts (5s) to
average droughts (4s). The decreases in the four characteris-
tics from average droughts over weak (3s) and very weak (2s)
to extremely weak droughts (1s) were much smaller, as there
were many more GLDEs with small spatiotemporal extents.

Figure 3 shows the distribution of GLDEs among indi-
vidual continents, which corresponds well with the size of
individual continents (Europe and Asia are considered to-
gether as Eurasia). According to SoilClim (Fig. 3i), Eura-
sia experienced the greatest number of GLDEs (337, 43.5 %
of all GLDEs), followed by North America (193/24.9 %),
Africa (115/14.8 %), South America (82/10.6 %), and Aus-
tralia (48/6.2 %). However, concerning severity category 7s
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of the GLDEs, most occurred in North America (14), fol-
lowed by Eurasia (12), while Eurasia was dominant in cat-
egory 6s, with 57 detected GLDEs. In terms of the relative
distribution across seven categories within a given continent
(as shown in Fig. 3i(b)), North America had the highest pro-
portion of GLDEs in category 7s (7.3 %), followed by South
America and Africa (6.1 %), while Australia had the high-
est proportion of GLDEs in category 6s (20.8 %). Severe
droughts (5s) had the highest proportion of 19.5 % in South
America. Extremely weak droughts (1s) accounted for 7.8 %
of the total drought in Africa, and very weak (2s) and weak
(3s) droughts were the most frequently occurring in South
America (19.5 % and 17.1 %, respectively).

In the case of mHM (Fig. 3ii), the predominance of Eura-
sia with 298 GLDEs, which accounts for 47.3 % of all events,
appears to be slightly more pronounced than in the SoilClim
data, followed by North America with 152 events (24.1 %).
Only 50 GLDEs (7.9 %) were detected in Australia, which
is fewer than in South America (58 events and 9.2 %) and
Africa (72 events and 11.4 %). Concerning the relative pro-
portions of seven categories over each continent, the maxi-
mum proportions are as follows (Fig. 3ii(b)): s, 3s, and 5s
— Africa (6.9 %, 20.8 %, and 16.7 %, respectively); 2s — Aus-
tralia (22.0 %); 4s and 6s — North America (35.5 and 15.8 %,
respectively); and 7s — South America (8.6 %).

Of the 10 most extreme GLDEs selected according to
drought severity classification based on SoilClim model, 4
occurred in Eurasia, 3 occurred in North America, 2 occurred
in Africa, and 1 occurred in South America (Table 1a). Ex-
cept for GLDEs in Eurasia from July 1982-August 1988
and from June 1991-August 1994 and partially the GLDE in
North America from July 1999—June 2004, the other seven
appeared after 2000. For each of these four continents, one
of these most extreme droughts was still ongoing in the last
decade of the analyzed dataset, ending in 2022. The most
extreme identified drought, which began in November 2004
in eastern Eurasia, was still ongoing until December 2022,
achieved a maximum extent of 6.7 x 10° km? in 2021, and
was moving through particularly Eastern Europe and Siberia
during this period, changing its location and extent. The sec-
ond most extreme drought, which began in May 2019 and
continued after 2022, occurred in South America and ex-
ceeded its maximum area of 8.5 x 10° km? in 2020. Accord-
ing to the final scores, the third most common event was
an event lasting from October 2014 to November 2019 in
Africa; however, it had a maximum area of 4.8 x 106 km?
in 2019, behind the other drought in Africa starting in Febru-
ary 2020 and continuing after December 2022. The latter had
a maximum extent of 5.9 x 10® km? in 2022. The maximum
extent of the three most extreme GLDESs based on SoilClim
model is shown in Fig. S1.

Concerning the mHM-based analysis (Table 1b), 3 of the
10 most extreme GLDEs occurred in Eurasia and North
America, 2 occurred in South America, 1 occurred in Africa,
and 1 occurred in Australia. Except for two GLDEs in
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Figure 1. Relationships between four basic severity characteristics of global land drought events (a: maximum extent; b: total extent; c:
duration, d: intensity) according to (i) SoilClim and (ii) mHM models divided into seven drought categories for the 1980-2022 period.

North America from January 1980-May 1982 and Octo-
ber 1987-July 1991, the other eight events appeared af-
ter 2000. For each continent except for Australia, one of
these droughts was still ongoing in the last decade of the
analyzed dataset, ending in 2022. The most extensive and
still ongoing drought, which began in June 2013 in east-
ern Eurasia, reached a maximum area of 9.5 x 10° km? in
2021. The second most extreme GLDE in Africa, which be-
gan in April 2013 and continued after December 2022, with
a maximum area of 7.3 x 10® km? in 2022, was exceeded by
7.6 x 10° km? in 2020 by the ongoing GLDE in South Amer-
ica that began in December 2018. According to the scores,
the third most extreme event occurred between April 2007
and July 2014 in Eurasia and reached a maximum extent of
4.8 x 10°km? in 2011.

4.1.2 Dynamic classification

Figure 4 shows the interrelationships among the three char-
acteristics of the dynamic drought classification of 775/630
GLDEs calculated from the SoilClim/mHM models for
1980-2022, as described in Sect. 3.3. Compared to the four
characteristics of severity classification (Fig. 1), they show
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more consistent patterns with more concentrated fields of re-
lated points, particularly for categories that include GLDEs
with average movements (category 4d) to extremely static
droughts (1d). The very strong relationship between the max-
imum and total centroid distance proves that GLDEs with
long trajectories are usually not just oscillating around the
same area but actually move through continents. The box-
plots of these categories are shown in Fig. 5, which reveals
that the employed characteristics decrease in a stepwise man-
ner from the category of extremely dynamic droughts (7d) to
that of extremely static droughts (1d), with only small over-
laps in values among the interquartile ranges of the seven
individual categories.

For the overall distribution of GLDEs among individual
continents (Fig. 6a), the total numbers correspond to those
shown in Fig. 3a but with different numbers of categories ac-
cording to the dynamic classification. For SoilClim (Fig. 61),
extremely dynamic GLDEs (category 7d) occurred on all
continents, with a maximum of 11 events occurring in North
Anmerica, followed by 9 events occurring in Africa. Very dy-
namic GLDEs (category 6d) were the most frequently oc-
curring in Eurasia, with 47 events. Concerning the relative
proportions of seven dynamic categories on a given con-
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Figure 2. Boxplots (median, 75th and 25th percentiles, maximum and minimum) of four basic severity characteristics of global land drought
events (a: maximum extent; b: total extent; c: duration; d: intensity) according to (i) SoilClim and (ii) mHM models divided into seven

drought categories for the 1980-2022 period.

tinent (Fig. 6b), extremely dynamic droughts (7d) had the
highest proportions in South America (8.6 %), very dynamic
droughts (6d) had the highest proportion in North America
(15.8 %), and dynamic droughts (5d) had the highest relative
proportion in Africa (16.7 %). Concerning static droughts,
7.7 % were extremely static (1d) in Eurasia, 18.7 % were very
static (2d) in North America, and 16.6 % were static (3d) in
Eurasia and North America. For mHM (Fig. 6ii), extremely
dynamic GLDEs (category 7d) occurred on all continents,
with a maximum of 8 events occurring in South America
and Eurasia. Very dynamic GLDEs (category 6d) were the
most frequently occurring in Eurasia, with 36 events. Con-
cerning the relative proportions of seven dynamic categories

Hydrol. Earth Syst. Sci., 29, 3341-3358, 2025

on a given continent (Fig. 6ii), extremely dynamic droughts
(7d) and very dynamic droughts (6d) had the highest relative
proportions in South America (13.8 % and 27.6 %, respec-
tively), while dynamic droughts (5d) had the highest propor-
tion in Australia (20.0 %). Static droughts were most com-
mon in North America (7.9 % for category 1d and 18.4 % for
category 2d) and South America (22.4 % for category 3d).
Although all 10 selected extreme GLDEs according to
severity classification (Table 1) belonged concurrently with
the category of extremely dynamic drought (7d), only
6 events appeared among the 10 most dynamic droughts for
both SoilClim (Table 2a) and mHM results (Table 2b). In
the case of SoilClim, the long-term drought event in Eurasia
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Figure 3. Continental distribution of seven drought categories from the severity classification of global land drought events (GLDEs) accord-
ing to (i) SoilClim and (ii) mHM models for 1980-2022: (a) total numbers of GLDE:s; (b) relative proportions of seven categories of GLDEs

for a given continent. Continents: AF, Africa; AU, Australia; EU_AS,

that spanned November 2004 to December 2022 exhibited
a mean centroid movement of 360 km, followed by 347 km
for a drought event from December 2013 to April 2016 in
South America and 309 km for drought from October 2014 to
November 2019 in Africa. The three most dynamic droughts
occurred in Africa and South America, and two occurred in
Eurasia and North America. Based on mHM, five of the most
dynamic GLDEs were in Eurasia, three were in South Amer-
ica, and only one belonged to North America and Africa. The
drought event in Eurasia from April 2007 to July 2014, with a
mean centroid movement of 326 km, was classified as being
the most dynamic. The second most dynamic event was clas-
sified between June 2014 and March 2015 in North America
and the third from June 2013 to December 2022 in Eurasia.

4.1.3 Comparison of severity and dynamic
classifications

To compare the distribution of GLDEs according to seven

severity and dynamic classification categories, Fig. 7a shows
the number of dynamic droughts that were attributed to the

https://doi.org/10.5194/hess-29-3341-2025

Eurasia; SA, South America; NA, North America.

severity classification categories. Based on SoilClim, the
strongest relationship existed in category 7s, because 56.4 %
of events from this severity category belonged to dynamic
category 7d and 35.9 % were in category 6d (Fig. 7i(b)),
while no dynamic category lower than 5d appeared among
7s GLDEs. Category 6s coincided best with category 6d in
45.7 % of events and with category 5d in 29.3 % of events.
High agreement between the categories was also found for 4s
and 4d, with 44.6 %, which was much lower than for 2s with
2d (25.9 %). In the case of other drought severity categories,
the agreement was the highest with any neighboring category
(1s with 2d at 33.3 % and 1s with 3d at 30.8 %; 3s with 4d at
29.3 % and 3s with 2d at 26.7 %; 5s with 4d at 35.3 % and 5s
with 5d at 28.4 %). The results for mHM (Fig. 7ii) are very
similar, with the highest agreement among the correspond-
ing categories for extremely severe droughts 7s (56.3 % with
7d and 40.6 % with 6d) and very severe droughts 6s (40.4 %
with 6d and 25.5 % with 5d). In the results from both mod-
els, categories 7d and 6d of GLDEs rarely appear within the
lower-severity categories; however, their presence indicates
an asymmetric relationship, where most GLDEs are never

Hydrol. Earth Syst. Sci., 29, 3341-3358, 2025
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Figure 4. Relationships between three basic dynamic characteristics of global land drought events (a: total centroid distance; b: maximum
centroid distance; c: mean centroid distance) according to (i) SoilClim and (ii) mHM models divided into seven drought categories for
1980-2022.
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Table 1. The 10 most extreme global land drought events (based on severity scores) from (a) SoilClim and (b) mHM models according
to the severity classification. The severity score calculation is described in Sect. 3.2 from severity characteristics which are specified in

points (a)—(d) in Sect. 3.2 (* indicates ongoing droughts).

(a) SoilClim

Max area (kmz) Duration

No. of 10d intervals

Continent Severity scores

a b c d Total

6701638 Nov 2004-Dec 2022* 662  Eurasia 775 775 775 775 3100
8522546 May 2019-Dec 2022* 132 S America 774 774 769 774 3091
4781107 Oct 2014-Nov 2019 188  Africa 768 773 773 768 3082
5923178 Feb 2020-Dec 2022* 107  Africa 772 771 764 773 3080
2532446 Jul 1999-Jun 2004 180 N America 759 772 771 771 3073
3492783 Jun 2002-Nov 2004 88  Eurasia 773 767 759 767 3066
3579831 Aug 2010-Jun 2013 104 N America 766 766 763 765 3060
1820395 Jun 1991-Aug 1994 116  Eurasia 761 765 767 766 3059
2722325 Jul 1982—-Aug 1988 223  Eurasia 755 769 774 760 3058
2850866 Aug 2020-Dec 2022* 88 N America 764 763 759 772 3058
(b) mHM
Max area (kmz) Duration No. of 10d intervals  Continent Severity scores

a b c d Total
9539417 Jun 2013-Dec 2022* 347 Eurasia 630 630 629 630 2519
7292765 Apr 2013-Dec 2022* 355  Africa 627 629 630 629 2515
4761254 Apr 2007-Jul 2014 264  Eurasia 629 628 628 627 2512
7629586 Dec 2018-Dec 2022* 147 S America 628 627 626 628 2509
3013866 Oct 2019-Dec 2022 118 N America 622 626 622 626 2496
3307609 Oct 1987-Jun 1991 135 N America 623 624 625 622 2494
2294400 Dec 2017-Jan 2022 150  Australia 613 625 627 625 2490
2087318 Jan 1980-May 1982 87 N America 619 622 615 624 2480
5855938 Jan 2014-Apr 2016 85 S America 626 619 614 621 2480
3297702 Jul 2014-Feb 2016 59  Eurasia 624 623 599 617 2463

totally static, while those with small extents are rarely ex-
tremely dynamic.

4.2 Comparison of SoilClim and mHM droughts

With respect to the different numbers of detected GLDEs
from SoilClim and mHM, the comparison relies on the rela-
tive proportions of seven severity (1s—7s) and dynamic (1d—
7d) categories across individual continents (Fig. 8a, b). Ad-
ditionally, the comparison extends to the proportions of dy-
namic categories 1d—7d in severity categories 1s—7s (Fig. 8c).
In some cases, differences in relative proportions are very
small; in others, they appear to be larger visually. For this rea-
son, we used the two-proportion Z test (Sprinthall, 2011) to
test their statistical significance. Notably, statistically signifi-
cant differences were observed only for category 4s in Africa
and 1d in North America (both p < 0.10) and for proportions
of dynamic droughts in severity categories for categories 1s
and 6d (p < 0.05) and 4s and 4d (p < 0.10). These results
indicate that outputs from different models generally agree
regarding the continental distribution of delimited categories

https://doi.org/10.5194/hess-29-3341-2025

and connections between both classifications within a certain
variability range partially connected to smaller sample sizes
of GLDEs within individual continents/categories.

5 Discussion

5.1 Drought classification and uncertainties in the
results

The primary sources of uncertainties within the drought
classifications presented here originate from the AWR/SM
datasets, which are connected to either the models’ algo-
rithms or the input data. Because both models used meteo-
rological inputs from reanalyses (ERA5-Land and ERAS),
inherent biases must be considered, particularly in terms
of their precipitation and temperature data. As Cucchi et
al. (2020) discovered, ERAS (including the ERAS-Land
dataset) generally indicates an underestimation of temper-
ature and an overestimation of precipitation at high eleva-
tions above sea level. This underestimation could impact the
delimitation of drought occurrence in these regions. Never-

Hydrol. Earth Syst. Sci., 29, 3341-3358, 2025
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Figure 6. Continental distribution of seven drought categories from the dynamic classification of global land drought events (GLDEs)
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theless, we argue that when using percentile transformation,
drought characteristics are more robust against systematic bi-
ases in the absolute values of variables, such as temperature
and precipitation, and the methodology enables us to capture
the relative severity of drought characteristics.

Despite a possible lack of precision within the input data,
some uncertainties are also intrinsic to the employed mod-
els. In the SoilClim model, there are uncertainties related
to the schematization of individual processes, the soil pro-
file vertical discretization, and other scale-related assump-
tions (e.g., each grid cell is represented by dominant land
cover), described in detail in Hlavinka et al. (2011), Trnka
et al. (2020), and Rehof et al. (2021). These simplifications
are inherent in any large-scale modeling scheme, and the un-
certainty they create must be acknowledged. However, as we
employed the AWR data in the form of percentile-based soil
moisture anomalies, we were able to eliminate the effect of
uncertainties that affect the long-term mean AWR within in-
dividual grids.

Furthermore, in both models, uncertainty originates from
the underlying data, such as soil properties and land cov-

Hydrol. Earth Syst. Sci., 29, 3341-3358, 2025

er/type characteristics, which must be approximated due to
limited observational data. We also acknowledge that the
fixed/prescribed model functions representing hydrological
processes might not be equally plausible across different
parts of the world, and our approach also does not aim to
study the impacts of sustained drought in one location. Long-
term changes in land cover and irrigation can also cause
larger uncertainties on a regional scale.

Some uncertainties are associated with the clustering tech-
nique used, i.e., density-based clustering OPTICS. As de-
scribed by Ankerst et al. (1999), objects are connected to
form clusters if there are a sufficient number of other objects
nearby within a defined multidimensional space (in our case,
three-dimensional). To illustrate the spatiotemporal behavior
of the clusters, we included animation of their development
during 2019 in Animation S1 in the Supplement. However,
specific settings of the algorithm parameters must be partially
derived empirically to fit the characteristics of a given dataset
(particularly concerning its density) and prevent either the
connection of all objects (in our case, grids in individual 10d
intervals) into one large cluster, including the whole dataset,

https://doi.org/10.5194/hess-29-3341-2025
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Table 2. The 10 most extreme global land drought events (based on the dynamic scores) from (a) SoilClim and (b) mHM models according
to dynamic classification. Dynamic characteristics are specified according to points (a)—(c) in Sect. 3.3 (* indicates ongoing droughts).

(a) SoilClim

Max area (km?)  Duration No. of 10d intervals  Continent Dynamic scores

a b ¢ Total
6701638 Nov 2004-Dec 2022* 662  Eurasia 775 775 766 2316
5867390 Dec 2013-Apr 2016 86 S America 772 773 764 2309
4781107 Oct 2014-Nov 2019 188  Africa 774 772 759 2305
197279 Jul 2002-Oct 2002 11  Eurasia 757 764 773 2294
5923178 Feb 2020-Dec 2022* 107  Africa 770 769 751 2290
4320892 Apr 2008-Apr 2011 111 S America 767 771 738 2276
8522546 May 2019-Dec 2022* 132 S America 771 763 741 2275
2532446 Jul 1999-Jun 2004 180 N America 773 766 731 2270
3579831 Aug 2010-Jun 2013 104 N America 768 755 746 2269
2635026 Feb 2009-Mar 2010 40  Africa 755 753 750 2258
(b) mHM
Max area (kmz) Duration No. of 10d intervals ~ Continent Dynamic scores

a b ¢ Total
4761254 Apr 2007-Jul 2014 264  Eurasia 630 630 629 1889
334297 Jun 2014-Mar 2015 27 N America 627 628 630 1885
9539417 Jun 2013-Dec 2022* 347 Eurasia 629 629 623 1881
2715481 Mar 2016-Feb 2018 72 S America 623 623 624 1870
7629586 Dec 2018-Dec 2022* 147 S America 626 625 617 1868
5855938 Jan 2014-Apr 2016 85 S America 622 627 619 1868
7292765 Apr 2013-Dec 2022* 355  Africa 628 626 613 1867
3300973 May 2018-Aug 2019 47  Eurasia 615 624 620 1859
2306091 Mar 1975-Jul 1988 122 Eurasia 624 618 608 1850
3297702 Jul 2014-Feb 2016 59 Eurasia 616 614 612 1842

or the failure of the algorithm to create clusters at all if the
clustering parameters are too strict. Aside from these ex-
treme cases, when the clustering failed, smaller changes in
the parameters led only to minor changes in the event de-
limitation. Still, there is no objective method for defining
“perfect” parameters; hence, clustering uncertainty is inher-
ent and affects the length of the existence of individual clus-
ters in our dataset. A good example of this is the massive
drought that occurred in Eurasia, classified as an extremely
long GLDE from 2004 to 2022 (and still ongoing) from Soil-
Clim, whereas using mHM data, it was separated into two
GLDEs that were disconnected in 2013/2014 (cf. Table 1).
Potential alternatives for drought clustering have been pro-
posed for example by Andreadis and Lettenmaier (2006), Vi-
dal et al. (2010), or Samaniego et al. (2013), including step-
wise selection of continuous drought areas, k-means cluster
analysis, or density-based spatial clustering of applications
with noise (DBSCAN), which is an alternative to OPTICS
and uses similar approach.

Moreover, in cases of quickly varying densities of drought-
affected grids and rapid spatial changes, some smaller,
volatile clusters occasionally formed. These clusters may

https://doi.org/10.5194/hess-29-3341-2025

show questionably large values of their centroid’s movement,
which may be viewed as an artifact of the methods employed.
Such an example could be the drought event from June 2014—
March 2015 in North America (Table 2b), which appeared
around the center of the continent between other, more con-
solidated, clusters. All centroid positions of this GLDE are
shown in Fig. S2. A few problematic cases such as this rep-
resent some uncertainty in the classification integrity. How-
ever, the selection of multiple characteristics for both severity
and dynamic classifications can partially mitigate the impact
of such anomalous GLDEs. Another issue might be the ar-
bitrary selection of percentile thresholds that were used to
delimit seven categories in both classifications, with the par-
ticular aim to divide the extremes into smaller categories.
However, slight changes in the thresholds would not alter the
overall picture presented in this paper because the transition
between categories is gradual, as shown in Figs. 1 and 4.

Hydrol. Earth Syst. Sci., 29, 3341-3358, 2025
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Figure 7. Comparison of global land drought events (GLDEs) from severity and dynamic classifications from 1980-2022 according to
(i) SoilClim and (ii) mHM models: (a) total numbers of dynamic categories in severity categories; (b) relative proportions of dynamic

categories in severity categories.

5.2 A broader context for the classification results of
cataloging droughts

Numerous studies have explored different means of classi-
fying global land droughts, employing a range of data, pa-
rameters, and methodologies. These studies typically present
their findings through related global-scale maps. For exam-
ple, Carrdo et al. (2016) mapped global drought risk based
on drought hazard, exposure, and vulnerability during 2000-
2014. Spinoni et al. (2019) used the SPI and SPEI (at a
scale ranging from 3 to 72 months) from 1951-2016 for
23 macroregions of the world to obtain approximately 4800
(SPEI-3) and 4500 (SPI-3) drought events. These events
were divided into moderate, severe, and exceptional events
based on the drought severity, intensity, area, top event,
peak intensity, and area scores. He et al. (2020) developed
a drought and flood catalog (GDFC) that spanned 1950 to
2016. To define drought, they used both the SPI and soil
moisture percentiles based on the VIC land surface model
output. In this dataset, they employed simple clustering that
connected neighboring grids to define individual drought

Hydrol. Earth Syst. Sci., 29, 3341-3358, 2025

episodes. They subsequently studied the relationship be-
tween drought area and the intensity and return periods of
severe droughts. Monjo et al. (2020) climatologically classi-
fied the duration of drought worldwide based on the dry—wet
spell n index derived from the global gridded daily Multi-
Source Weighted-Ensemble Precipitation (MSWEP) dataset
for 1979-2016. By comparing the different relationships be-
tween the occurrence of dry and wet spells, they identi-
fied seven types and presented their worldwide distributions.
Fuentes et al. (2022) mapped spatiotemporal drought propa-
gation through different subsystems at the global scale over
recent decades using different standardized drought indices.
Drought propagation was established as the lag in the peak
correlations between drought time series in different subsys-
tems (for drought propagation, see, e.g., Li et al., 2023, for
the Yellow River basin).

The classification approach for GLDEs presented in our
study (Sect. 3.2 and 3.3) is not focused only on mapping
any static drought state at the global scale, as in some of
the above-reported studies, but rather, we present new views

https://doi.org/10.5194/hess-29-3341-2025
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on the spatiotemporal variability and dynamics of drought
events, combining several characteristics that describe their
extent, duration, severity, and propagation. This research
suggests a complex approach for monitoring droughts as in-
dividual dynamic events and offers many opportunities for
future analyses concerning drought drivers and the propaga-
tion of droughts, including their possible self-propagation, as
suggested by Schumacher et al. (2022). This approach could
also help to link drought events to their impacts more di-
rectly (Meadow et al., 2013; Lackstrom et al., 2017), as it
spatiotemporally delimits drought-affected areas in great de-
tail. Compared with similar preceding studies, this study is
based not on the use of standard drought indices but rather
on selected soil moisture variables from two different phys-
ically based models (SoilClim and mHM), which express
the compound effects of temperature, precipitation, evapo-
transpiration, and soil characteristics using land surface and
hydrological modeling, respectively. The presented method
is robust enough for the delimitation of GLDEs and is very
flexible in the selection of basic drought parameters and their
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thresholds and the use of various drought datasets; i.e., the
method is applicable to different datasets and is repeatable.
The analysis results presented in Tables 1-2 show that
the most important GLDEs during 1980-2022 occurred on
all continents and appeared mainly after 2000. Although
Sheffield et al. (2012) reported only a slight change in global
drought (particularly based on the PDSI) during 1950-2008
and He et al. (2020) did not discover a worldwide increase in
drought during the last two decades, many important drought
events were reported worldwide after 2000 (e.g., Shmakin
et al., 2013; Van Dijk et al., 2013; Griffin and Anchukaitis,
2014; Erfanian et al., 2017; Ionita et al., 2017; Marengo et
al., 2017; Spinoni et al., 2017, 2019; Deng et al., 2020; Chi-
ang et al., 2021; Moravec et al., 2021; Rakovec et al., 2022;
Liu et al., 2023; Arias et al., 2024; Garrido-Perez et al., 2024)
and were well reflected in the selected GLDEs in our paper
(Tables 1-2 and S1-S2). Moreover, Fuentes et al. (2022) re-
ported the intensification of drought characteristics in recent
decades in several regions of the world (particularly in south-
ern South America, central Australia, southwestern Africa,

Hydrol. Earth Syst. Sci., 29, 3341-3358, 2025
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Table 3. Comparison of absolute (a) and relative (b; %) frequencies of global land drought events during 1980-2000 (A) and 2001-2022 (B)
according to categories of severity (1s—7s) and dynamic (1d-7d) classifications from SoilClim and mHM. Statistical significance of relative

frequencies: bold p < 0.05, italics p < 0.10.

Severity classification

Period Is ‘ 2s ‘ 3s ‘ 4s ‘ 5s ‘ 6s ‘ Ts
a b ‘ a b ‘ a b ‘ a b ‘ a b ‘ a b ‘ a b
SoilClim model
A 16 20 ‘ 42 55 ‘ 56 1.3 ‘ 99 128 ‘ 53 6.8 ‘ 52 6.7 ‘ 12 15
B 23 30|74 95|60 77| 134 172 |63 82|64 83|27 35
mHM
A 12 19 ‘ 35 55 ‘ 37 59 ‘ 68 10.8 ‘ 34 54 ‘ 35 55 ‘ 9 14
B 20 32|61 97|56 89120 190 | 61 97|59 94|23 37
Dynamic classification
Period g 20 | 3d | 44 | 54 | 6 | 7
a b ‘ a b ‘ a b ‘ a b ‘ a b ‘ a b ‘ a b
SoilClim model
A 17 20 ‘ 46 5.5 ‘ 54 72 ‘ 107 12.8 ‘ 37 68 ‘ 57 67 ‘ 12 15
B 22 30|70 95|63 7.8 |125 173|179 82|59 83|27 35
mHM
A 16 25 ‘ 35 56 ‘ 39 62 ‘ 68 10.8 ‘ 36 5.7 ‘ 28 44 ‘ 8§ 13
B 16 25[59 94|57 90| 119 189 |59 94 | 66 105 |24 3.8

and central and eastern Asia). To demonstrate this situation,
Table 3 shows a comparison of the absolute and relative num-
bers of GLDEs during 1980-2000 and 2001-2022. As these
periods are from a climatological point of view relatively
short, the comparison should be taken with caution. Except
for category 1d from mHM in the dynamic classification, in
all categories for both classifications, the frequency of oc-
currence of the detected GLDEs was greater after 2000 than
during the preceding period. According to the two-proportion
Z test (Sprinthall, 2011), differences in the relative frequen-
cies of given severity drought categories between the two pe-
riods were statistically significant only for category 2s from
SoilClim (p < 0.05), whereas for mHM they were signifi-
cant for 4s (p < 0.05) and 2s and 5s (p < 0.10). For the dy-
namic drought categories, the related differences were statis-
tically significant for category 5d from SoilClim (p < 0.05)
and for categories 7d (p < 0.10) and 4d and 6d (p < 0.05)
from mHM.

Concerning the continental distribution of severe GLDEs,
the lower relative proportions of categories 7s and 7d in
Eurasia in both SoilClim and mHM are remarkable. This re-
sult could be influenced by the existence of one (SoilClim)
or two (mHM) extremely large GLDEs during the last two
decades in Eurasia (Tables 1-2), propagating particularly
around Siberia and the Central Asian Plains, where the po-
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tential for large dynamic events is the highest due to the ab-
sence of prominent topographic features. On the other hand,
most of the other droughts that occurred during this period
and were identified in other parts of Eurasia (southeast Asia
or Europe), which has a greater amount of fractured topog-
raphy, were smaller and shorter. Both the smallest absolute
frequency and relative proportion of 7s droughts occurred in
Australia. This finding is due to the fact that it is by far the
smallest of the analyzed continents; however, in terms of the
7d category, the relative proportion was much greater. With
respect to the frequencies of 7s and 7d GLDEs, Eurasia and
North America had the greatest absolute numbers of GLDEs
but South America had their highest proportion.

In the context of recent global climate change, increases
in the frequency and intensity of drought events are among
the most impactful changes worldwide. Our effort to cata-
log individual GLDEs during the last four decades at a high
spatiotemporal resolution could be effective and useful for
benchmarking newly evolving droughts and contextualizing
their potential impacts, while the developed methods can also
be applied to new, emerging datasets with even greater accu-
racy. Moreover, as we consider droughts to be fully 3D (area
and time) events, our approach is designed to provide tools
for analyses with the aim of connecting drought occurrence
with large-scale atmospheric circulation patterns and global
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climate variability modes; on the other hand, our approach
can be employed to study processes leading to drought prop-
agation (and possible self-propagation) at regional to conti-
nental scales, as our spatial delimitations are not restrained
by predefined regional borders.

6 Conclusion

From the severity and dynamic classifications of GLDEs ap-
plied to relatively available water in the soil from the Soil-
Clim model and to soil moisture from the mesoscale Hydro-
logic Model (mHM) from 1980-2022, our conclusions can
be described as follows:

1. The proposed GLDE classification method combines
the spatiotemporal variability and dynamics of drought
events with several characteristics that describe their ex-
tent, duration, severity, and propagation. The method is
robust for the delimitation of GLDEs and is very flexible
for selecting basic drought characteristics and thresh-
olds, as well as using basic drought datasets.

2. Using 10th-percentile thresholds and clustering the
gridded data in 10d intervals for relative available wa-
ter from the SoilClim model and soil moisture from
mHM, 775 GLDEs from SoilClim and 630 GLDEs
from mHM were identified for 1980-2022. Based on the
four severity characteristics and three dynamic charac-
teristics, the identified drought events were divided into
seven severity (from extremely weak to extremely se-
vere) and seven dynamic (from extremely static to ex-
tremely dynamic) categories.

3. The distribution of the detected GLDEs to individ-
ual continents corresponds to their sizes. However,
concerning the relative proportions, South America is
prominent in terms of the extremely severe and ex-
tremely dynamic GLDEs, followed by North America
for the extremely severe category, while Eurasia expe-
rienced the most extensive GLDEs according to both
models.

4. The severity and dynamic categories of GLDEs show
substantial overlap among the most severe categories,
while the overlap mostly disappears in below-average
categories. The most severe droughts seem to also be
more dynamic; however, very small droughts can be not
only static but also dynamic.

5. The frequency of GLDEs generally increased during
2001-2022 compared to 1980-2000 across all drought
categories. However, due to the high variability in the
drought events, only some of our drought categories ex-
hibited statistically significant increases.
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Data availability. Global simulations of AWR/SM from Soil-
Clim/mHM in 10d intervals and at 0.5° resolution, which were
used to create the presented drought catalog, are available from
https://doi.org/10.5281/zenodo.11395946 (Rehof et al., 2024a).
Lists of all GLDEs based on SoilClim and mHM data are in Word
files in the Supplement.
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