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Abstract. Classification is beneficial for understanding flood
variabilities and their formation mechanisms from massive
flood event samples for both flood scientific research and
management purposes. Our study investigates comprehen-
sive manageable flood event classes from 1446 unregulated
flood events in 68 headstream catchments of China using hi-
erarchical and partitional clustering methods. Control mech-
anisms of meteorological and physio-geographical factors
(e.g., meteorology or land cover and catchment attributes)
on spatial and temporal variabilities of individual flood event
classes are explored using constrained rank analysis and a
Monte Carlo permutation test. We identify five robust flood
event classes, i.e., moderately, highly, and slightly fast floods
as well as moderately and highly slow floods, which account
for 24.0 %, 21.2 %, 25.9 %, 13.5 %, and 15.4 %, respectively,
of the total number of events. All of the classes are evenly
distributed in the entire period, but the spatial distributions
are quite distinct. The fast flood classes are mainly in south-
ern China, and the slow flood classes are mainly in north-
ern China and the transition region between southern and
northern China. The meteorological category plays a dom-
inant role in flood event variabilities, followed by catchment
attributes and land covers. Precipitation factors, such as vol-
ume and intensity, and the aridity index during the events are
the significant control factors. Our study provides insights
into flood event variabilities and aids in flood prediction and
control.

1 Introduction

Flood events usually show tremendous spatial and tempo-
ral variabilities in behavior due to heterogeneities in me-
teorological and underlying surface conditions over large
basins or entire regions (e.g., county, continent, and world)
(Berger and Entekhabi, 2001). Existing studies provide in-
sights into the impacts of changes in meteorological or un-
derlying surface conditions in specific flood metrics (e.g.,
magnitude, peak, timing, or seasonality) and their changes
using the trend separation method, correlation testing, and
mathematical modeling (Berghuijs et al., 2016; Tarasova et
al., 2018; Liu et al., 2020; Wang et al., 2024). However, all of
these studies are implemented at the event scale or in catch-
ments with certain landscapes and climates, which are in-
sufficient for comprehensive flood change investigation and
generalized results (Tarasova et al., 2019; Zhang et al., 2020).
Flood event similarity analysis is beneficial for investigat-
ing comprehensive dynamic characteristics of flood events
in space and time by grouping massive heterogenous events
into some manageable classes with significant statistical dif-
ferences in flood responses (e.g., great or small floods, fast
or slow floods, or rain or snowmelt floods) (Brunner et al.,
2018). Flood event class determines hydrological response
characteristics, longitudinal and lateral transfers of energy
and material, and structures and functions of riverine ecosys-
tems (Arthington et al., 2006; Poff and Zimmerman, 2010).
The class also directly determines flood disaster losses for
human society and affects the strategy formulations of flood
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control and management (Hirabayashi et al., 2013; Jongman
et al., 2015). Hence, for both flood scientific research and
management purposes, it is fundamentally important to iden-
tify the flood event classes and their formation mechanisms
(Sikorska et al., 2015).

Inductive and deductive approaches are reported for the
flood event similarity classification according to the clus-
tering objectives (Olden et al., 2012). The inductive ap-
proach focuses directly on the shape similarity of flood
events by clustering the response characteristics extracted
from the flood event hydrographs. The response characteris-
tics include magnitude, frequency, duration, timing, season-
ality and variability metrics, which are considered the criti-
cal components for characterizing the entire range of flood
events (Poff et al., 1997; Kuentz et al., 2017; Zhang et al.,
2020). The reported flood event classes are the fast events
with steep rising and falling limbs, the slow events with both
elongated rising and falling limbs, the sharp or fast flood
event, and the flash flood (Kuentz et al., 2017; Brunner et al.,
2018; Zhai et al., 2021; Zhang et al., 2020). The deductive
approach mainly focuses on the similarity of environmen-
tal factors which control flood events, such as meteorologi-
cal variables (e.g., storm intensity, duration, and snowmelt)
and physio-geographical conditions (e.g., soil moisture, land
cover, and topography) (Merz and Blöschl, 2003; Ali et al.,
2012; Brunner et al., 2018; Zhang et al., 2022). The reported
flood event classes are the long-rain floods, short-rain floods,
flash floods, rain-on-snow floods, and snowmelt floods (Merz
and Blöschl, 2003; Sikorska et al., 2015; Brunner et al., 2018;
Zhang et al., 2022). However, the control relationships of en-
vironmental factors with flood event shapes are not defined
well, so that the identified classes are not exactly helpful
for investigating the flood change patterns at the event scale.
Therefore, it is a challenge to better understand the formation
mechanisms of individual flood event classes.

The main procedure of existing flood event classification
is to cluster the similarity of flood event attributes (e.g., flood
response characteristics or control factors) across the spa-
tial and temporal scales. According to the classification pro-
cedure, there are two widely adopted approaches, i.e., tree
clustering methods (e.g., decision tree, regression tree, fuzzy
tree, and random forest) (Sikorska et al., 2015; Brunner et al.,
2017) and non-tree clustering methods (e.g., single linkage,
complete linkage, average linkage, centroid linkage, ward
linkage, k-means, and k-medoids) (Zhang et al., 2020; Zhai
et al., 2021). The tree clustering methods are implemented
successively for binary splitting of all of the flood events
into smaller classes of similar flood events according to the
thresholds of flood response metrics until the final classes are
obtained (Sikorska et al., 2015; Brunner et al., 2017). The
classification results could be applicable to other basins, and
the flood response characteristics of different studies would
be directly comparable if the same thresholds were to be
adopted. However, these methods assume that the bound-
aries of flood response metrics in different classes are clear

and that the thresholds of flood response metrics should be
predefined and not overlap between different classes (Olden
et al., 2012; Sikorska et al., 2015; Zhai et al., 2021). Ad-
ditionally, the classification is very sensitive to the thresh-
olds, whose small changes would create different flood event
classes (Olden et al., 2012; Sikorska et al., 2015). There-
fore, it will be difficult to define the thresholds clearly to
get a robust classification performance. The non-tree clus-
tering methods are implemented to directly split all of the
flood events according to the different division rules of the
comprehensive similarity measures of flood event shapes or
metrics (Olden et al., 2012; Zhang et al., 2020). The class
boundaries of the flood response metrics are vague, and the
flood event classes are mainly based on the class membership
degree deduced from sufficient heterogeneous flood events
(Sikorska et al., 2015). The flood response characteristics of
the individual classes were usually described qualitatively in
order to distinguish between the differences in the classes
(Olden et al., 2012; Tarasova et al., 2019; Zhang et al., 2020).
Therefore, the classification results obtained from the differ-
ent flood event samples are still difficult to compare quan-
titatively, even though the flood response characteristics or
hydrographs in a certain class are similar (e.g., high or low
floods or fast or slow floods) (Zhang et al., 2024). The de-
terminations of the clustering method and the final cluster
number are subjective in most existing studies, and the as-
sessment of the clustering performance is usually unavail-
able (Olden et al., 2012; Sikorska et al., 2015; Brunner et al.,
2017). Therefore, the robustness of flood event classification
should be explored further.

The main aim of this study is to investigate the flood
event similarity and control mechanisms of meteorological
and physio-geographical factors in space and time at the class
scale across China. Over 1000 unregulated flood events in
68 heterogeneous catchments with wider meteorological and
physio-geographical conditions were selected for our study.
The specific objectives are as follows:

1. Determine the optimal flood event classes by comparing
multiple classification performance criteria of both the
hierarchical and partitional clustering methods.

2. Identify the main flood response characteristics of indi-
vidual classes and their spatial and temporal variabili-
ties.

3. Quantify the effects of meteorological and physio-
geographical factors on the variabilities of individual
flood event classes.

This study provides more comprehensive insights into mete-
orological and physio-geographical controls of variabilities
of flood event classes and provides the mechanism supports
for predicting flood event classes.
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2 Study area and data sources

According to the Köppen–Geiger climate classification (Peel
et al., 2007), China has diverse climate types, including
alpine tundra (Köppen–Geiger code ET); tropical (A); arid,
steppe, and cold (BSk); arid, desert, and cold (BWk); cold
without a dry season (Df); cold with a dry winter (Dw); tem-
perate without a dry season (Cf); and temperate with a dry
winter (Cw). Most Köppen–Geiger climate types in China
(i.e., A, Dw, Cf, and Cw) are controlled by the southeast-
ern and southwestern monsoons in the summer, with tem-
perate and humid climates and the northwestern and north-
eastern monsoons in the winter with cold and dry climates.
In these monsoon-controlled climate types, the mean annual
precipitation was 365–2654 mm with a mean of 1184 mm, of
which over 65 % fell between May and September according
to the gauged daily precipitation observations from 2001 to
2020 in these regions. This led to frequent flooding, and thus
the region in the monsoon-controlled climate types is usu-
ally considered the flood-prone area of China (China Institute
of Water Resources and Hydropower Research and Research
Center on Flood and Drought Disaster Prevention and Re-
duction, the Ministry of Water Resources, 2021). In the last
decade, flooding occurred in 455 rivers annually, which af-
fected 822 million people and averaged over USD 10 billion
in losses (Ministry of Water Resources of the People’s Re-
public of China, 2020a).

Sixty-eight headstream stations spread across flood-prone
areas of major upper-river basins in China were selected
with catchment areas ranging from 21 to 4830 km2, cover-
ing all of the monsoon-controlled climate types of China, ex-
cept for the tropical climate of the islands (i.e., A) (Fig. 1).
Most of the catchments had large forest coverage, with a
mean area percentage of 67.0 %, particularly in the Yangtze
(69.9 %) and Pearl (68.7 %) river basins. A total of 1446 un-
regulated flood events with hourly time steps were collected
from the hydrological yearbooks of the Songliao, Yellow,
Huaihe, Yangtze, Southeast, and Pearl river basins over the
period 1993–2015. The event was extracted following the
standard of the Ministry of Water Resources of the People’s
Republic of China, i.e., the code for hydrological data pro-
cessing (SL/T 247–2020) (Ministry of Water Resources of
the People’s Republic of China, 2020b). The extracted flood
events at the individual stations usually had a maximum flood
peak or flood volume, an isolated flood peak, continuous
flood peaks, or a flood peak after prolonged drought during
high- and normal-flow years (Ministry of Water Resources
of the People’s Republic of China, 2020b). In summary, per
basin, there were 53 events at 4 stations, 104 events at 4 sta-
tions, 215 events at 13 stations, 844 events at 38 stations, 90
events at 5 stations, and 140 events at 4 stations in the up-
per tributaries of the Songliao River Basin (i.e., the Songhua
and Wusuli rivers), Yellow River Basin (i.e., the Huangshui,
Jinghe, and Yiluo rivers), Huaihe River Basin (i.e., the north-
ern and southern tributaries), Yangtze River Basin (i.e., the

Hanjiang, Wujiang, Lake Dongting, Lake Poyang, and lower
Yangtze rivers), Southeast River Basin (i.e., the Qiantang and
Jinjiang rivers), and Pearl River Basin (i.e., the Beijiang, Xi-
jiang, and Dongjiang rivers), respectively. No fewer than 10
flood events were collected for every station to ensure rep-
resentativeness. The densities of flood events and gauges in
southern China (i.e., the Huaihe, Yangtze, Southeast, and
Pearl river basins) were 1.25–11.01 times and 2.94–9.15
times greater than those in northern China (i.e., the Songliao
and Yellow river basins) because of the higher occurrences
of flood events (Table S1 in the Supplement).

Meteorological, catchment, and land cover data sources
were collected together to calculate the potential meteoro-
logical and physio-geographical control factors and quantify
their contributions to the spatial and temporal variabilities
of flood event classes. The meteorological data sources were
the synchronous hourly precipitation events extracted from
the hydrological yearbooks and the daily precipitation, max-
imum temperature, and minimum temperature observations
from 1993 to 2015 at the meteorological stations within or
around the catchments downloaded from the China Meteo-
rological Data Sharing Service System. All of the meteoro-
logical stations in the buffer zone with a radius of 100 km
from every catchment center were selected. The station num-
ber was 466 in total, with no less than 8 stations for each
catchment. The daily meteorological variables were interpo-
lated to the catchment using the inverse-distance-weighting
method, which is one commonly used meteorological inter-
polation method (Ahrens, 2006; Tan et al., 2021). The geo-
graphic information system (GIS) data contained the digital
elevation model and the land cover data series in six periods
(i.e., 1990, 1995, 2000, 2005, 2010, and 2015) whose spatial
resolution is 30 m× 30 m. The GIS data were downloaded
from the Data Center of Resources and Environmental Sci-
ence, Chinese Academy of Sciences, and were adapted to
extract catchment attributes and area percentages of individ-
ual land cover types. All of these data sources for control
factor calculations had been widely used to represent the me-
teorological and underlying surface conditions in China for
hydrometeorological change detection, causal analysis, and
hydrological modeling (Zhang et al., 2020; Du et al., 2022;
Zhang et al., 2024).

3 Methods

3.1 Flood response metrics

The flood classification in our study mainly focuses on the
detailed response characteristics of flood hydrographs using
the inductive approach. The magnitude, variability, timing,
duration, and rate of change are widely accepted as the five
main components for characterizing all of the flood events
(Arthington et al., 2006; Kennard et al., 2010; Poff et al.,
2007; Zhang et al., 2012) and thus are also adopted to char-
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Figure 1. Spatial distributions of all the selected hydrological stations and their corresponding climate types.

acterize the detailed flood responses in our study. Addition-
ally, flood peak number is one of the most important met-
rics for flood control (Aristeidis et al., 2010; Rustomji et al.,
2009). Therefore, nine metrics are used to fully characterize
the responses of flood events (Table 1). In particular, Tbgn is
characterized using the circular statistical approach, which
translates the calendar date into the polar coordinates on the
circumference of a circle and is beneficial for distinguishing
the seasonal pattern (Dhakal et al., 2015).

3.2 Flood event classification

High dimensionality and multicollinearity exist among flood
response metrics and affect the flood event classification
when a large number of metrics are considered (Olden et al.,
2012; Zhang et al., 2012). Here, principal component analy-
sis (PCA) is used to transform the high-dimensional metrics
into a few principal components (PCs) based on the orthogo-
nal transform. If the cumulative variance is over 85 % of the
total explained variances of all of the flood response metrics,
the firstm PCs are selected for classification. The main flood
response metrics in the individual PCs were determined ac-
cording to the load coefficient matrix. If the load coefficient
is over 0.45, the corresponding flood response metrics are
considered to be highly correlated with the PCs.

Subsequently, both the hierarchical (Ward) and partitional
(k-medoids) clustering methods are used to cluster flood
events based on the similarity of the selected PCs. Eu-
clidean distance is the distance measure. Twenty-two crite-
ria are used to assess the classification performance and de-
termine the best number of clusters, i.e., KL, CH, Hartigan,
CCC, Scott, Marriot, TrCovW, TraceW, Friedman, Silhou-
ette, Ratkowsky, Ball, Ptbiserial, Dunn, Rubin, Cindex, DB,
Duda, Pseudot2, McClain, SDindex, and SDbw (Table S2 in
the Supplement) (Charrad et al., 2014). The greater values of
the first 14 indexes (i.e., KL to Dunn) or the smaller values
of the 8 remaining indexes (i.e., Rubin to SDbw) indicate the
better classification. If the best criterion number is the largest
of a certain cluster number, the cluster number is optimal and
the corresponding clustering method is also selected. The im-
plementations of all of the multivariable statistical analyses
are given in Appendix A.

3.3 Control mechanisms of meteorological and
physio-geographical factors of the variabilities of
flood event classes

3.3.1 Meteorological and physio-geographical factors

The meteorological (e.g., precipitation intensity, timing
and duration, or evapotranspiration volume) and physio-
geographical factors (e.g., land covers and catchment at-
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Table 1. Metrics used to characterize the flood responses in our study.

Component Metric Abbreviation Unit Equation References

Magnitude Total flood volume R mm d−1 R = 86.4 ·
TFend∑
t=TFbgn

Qt/A Black and Werritty
(1997), Poff et
al. (2007), Villarini
(2016), Hall and
Blöschl (2018), and
Zhang et al. (2020)

Maximum flood peak Qpk mm d−1 Qpk =max(86.4 ·Qt )/A

Variability Coefficient of variation CV – CV= σ/Qav

Timing Ratio of the beginning
date of a flood event in
the calendar year using
circular statistics

Tbgn Radians Tbgn = 2π ·TFbgn/TD

Ratio of the occurrence
time of the maximum
flood peak to the flood
duration

Tpk % Tpk = TFpkTdrn · 100

Duration Duration of a flood
event

Tdrn h Tdrn = 24 · (TFend−TFbgn+ 1)

Rate of changes Mean rate of positive
changes

RQr h−1 RQr =
(Qpk−Qbgn)/Qav
(TFpk−TFbgn+1)·24

Mean rate of negative
changes

RQd h−1 RQd =
(Qpk−Qend)/Qav
(TFend−TFpk+1)·24

Number Number of peaks
during an event

Npk – Aristeidis et al. (2010)
and Zhai et al. (2021)

Note: Qt is the flood magnitude on day t (m3 s−1), Qav is the mean flood magnitude (m3 s−1), Qbgn and Qend are the flood magnitudes at the beginning and end of an event
(m3 s−1), σ is the standard deviation of the flood magnitude (m3 s−1), TD is the total number of days of a calendar year (d, i.e., 365 for a common year or 366 for a leap year),
TFbgn and TFend are the beginning and end dates of flood events, TFpk is the occurrence date of the maximum flood peak, A is the catchment area (km2), and 86.4 is the unit
conversion factor (m3 s−1 km−2 to mm).

tributes) directly affect the flood generation and routing pro-
cesses, which thus cause the diversity of flood event shapes
(Ali et al., 2012; Brunner et al., 2018; Merz and Blöschl,
2003; Zhang et al., 2022). As many potential control fac-
tors as possible are selected to investigate the control mech-
anisms on the variability of flood event classes according to
existing studies. There are 34 meteorological, catchment, and
land cover factors selected in all of the catchments (Table 2).
In the meteorological factor category, 17 factors related to
precipitation, potential evapotranspiration, and aridity index
are selected, including the amounts, intensities, and timing
factors during flood events, in the antecedent period and at
the annual scale. All of the precipitation factors during the
flood events are extracted using the hourly precipitation ob-
servations. The precipitation factors at the daily or annual
scale are extracted using the daily precipitation observations.
The potential evapotranspiration at a daily or annual scale
is estimated using the Hargreaves method (Hargreaves and
Samani, 1982), and the aridity index is the ratio of poten-
tial evapotranspiration to precipitation. All of these factors
mainly affect the flood yield processes (Merz and Blöschl,
2003; Aristeidis et al., 2010; Zhang et al., 2022).

In the physio-geographical factor category, 10 catchment
attributes are selected, including catchment location, area, el-
evation and slope, and river density and slope. Seven land
cover factors for the six land cover periods are selected, in-
cluding the area fractions of paddy, dry land, forest, grass-
land, water, and urban and rural areas in the entire catch-
ment. All of these physio-geographical factors mainly affect
the flood yield and routing processes (Ali et al., 2012; Kuentz
et al., 2017; Zhai et al., 2021).

3.3.2 Effect quantifications of meteorological and
physio-geographical factors

The constrained rank analysis is adopted to quantify the di-
rect and interactive effects of multiple control factor cat-
egories on spatial and temporal variabilities of individual
flood event classes for both distributed and lumped analy-
ses. The widely adopted methods of constrained rank analy-
sis are redundancy analysis (RDA) and canonical correlation
analysis (CCA). RDA is a linear model and CCA is a uni-
modal model, both of which are extended methods of princi-
pal component analysis interacting with regression analysis.
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Table 2. Meteorological and physio-geographical factors in our study.

Factor categories Factors Data sources Flood event
effects

Meteorology Precipitation – pcp_ant: cumulative amount in the antecedent 7 d
(mm)

– pcp_dur: total amount during the flood event
(mm)

– pcp_av: mean intensity during the flood event
(mm h−1)

– pcp_max: maximum intensity during the flood
event (mm h−1)

– pcp_Tbeg: precipitation timing

– pcp_Tdur: precipitation duration (d)

– pcp_ann: annual mean amount (mm)

– pcp_year: amount in the year when the flood
event happens (mm)

Hourly precipitation in
hydrological yearbooks
and daily precipitation
at 466 meteorological
stations

Flood yield
process

Potential eva-
potranspiration

– pet_ant: cumulative amount in the antecedent 7 d
(mm)

– pet_dur: total amount during the flood event
(mm)

– pet_max: maximum intensity during the flood
event (mm h−1)

– pet_ann: annual mean amount (mm)

– pet_year: amount in the year when the flood
event happens (mm)

Daily maximum and
minimum temperatures
at 466 meteorological
stations

Flood yield
process

Aridity index – ADI_ant: mean value in the antecedent 7 d

– ADI_dur: mean value during the flood event

– ADI_ann: annual mean value

– ADI_year: mean value in the year when the flood
event happens

Daily maximum and
minimum temperatures
at 466 meteorological
stations

Flood yield
process

Physio-geography Catchment
attributes

– Longitude: longitude of the catchment center

– Latitude: latitude of the catchment center

Global positioning
system

Meteorological
conditions

– Slope: catchment slope (%)

– Area: catchment area (km2)

– Length: catchment slope length (km)

– Elevation: average elevation of a catchment (m)

– MaxiElev: maximum elevation of a catchment
(m)

Digital elevation model
(size: 30 m× 30 m)

Flood yield and
overland
routing
processes

– Rivden: river density (km km−2)

– RivSlope: river slope (%)

– Rwd: ratio of river width to depth (m m−1)

Digital elevation model
(size: 30 m× 30 m)

Flood routing
processes in the
river system

Land covers – Rpaddy: area ratio of paddy to catchment (%)

– Rdryland: area ratio of dry land to catchment (%)

– Rforest: area ratio of forest to catchment (%)

– Rgrass: area ratio of grass to catchment (%)

– Rwater: area ratio of water to catchment (%)

– Rurban: area ratio of urban to catchment (%)

– Rrural: area ratio of unused land to catchment
(%)

Land covers in 1990,
1995, 2000, 2005,
2010, and 2015 (size:
30 m× 30 m)

Flood yield and
overland
routing
processes
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These methods have great advantages for solving multiple
linear regressions and interactions between dependent and
independent variable matrixes that are transformed into a few
independent composite factors (ter Braak, 1986; Legendre
and Anderson, 1999), and they are beneficial for quantify-
ing the effects of an independent variable matrix on a depen-
dent variable matrix and finding the most important factors.
Both methods have commonly been used to test the multi-
species response to environmental variables in the biological
and ecological sciences (Legendre and Anderson, 1999) or
the effects of physio-geographical factors and human activi-
ties on diffuse nutrient losses or water quality (Zhang et al.,
2016; Shi et al., 2017).

The selection of the CCA and RDA is based on the first
axis length of the detrended correspondence analysis. The
CCA is proposed when the first axis length is greater than
4.0, while the RDA is proposed when the first axis length is
less than 3.0. Otherwise, both CCA and RDA are proposed
(ter Braak, 1986; Zhang et al., 2020). Additionally, because
of the multiple control factor categories considered, two con-
strained rank analyses are implemented, i.e., entire and par-
tial analyses. The entire analysis is implemented by involv-
ing all of the control factors as the independent variable ma-
trix, and the variance percentage explained by the indepen-
dent variable matrix of the total variance of the dependent
variable matrix is considered to be the entire contribution of
all of the control factors or categories to the total variabil-
ities of the flood event classes. The partial analyses of the
individual control factor categories are also implemented by
involving a certain control factor category as the independent
matrix, and the effects of the other control factor categories
are held constant. The percentage of the constrained variance
is considered to be the individual contribution of the involved
control factor category. The meteorological, land cover, and
catchment categories are adopted individually for the analy-
sis, and their individual contributions are determined. If the
sum of all of the individual contributions is less than the en-
tire contribution of all of the factors, the interactive effects
exist among the control factors and the difference between
the summed and entire contributions is the interactive contri-
bution (Legendre and Anderson, 1999; Zhang et al., 2016).

Furthermore, the Monte Carlo permutation test is adopted
to test the statistical significance of the control factors and
obtain the correlation coefficients (r) between the flood re-
sponse matrix and the control factor matrix in the individual
catchments (i.e., a distributed analysis) and the entire region
(i.e., a lumped analysis), respectively. All of the meteoro-
logical and physio-geographical factors are included for the
lumped analysis, while the catchment attributes are excluded
for the distributed analysis because they are not dynamic in
the individual catchments. The significant statistical interval
is set to 95 %, i.e., p = 0.05.

4 Results

4.1 Flood event classification

Using the tests of independence and the linear correlation
for all of the flood response metrics, Tbgn is independent of
R, RQr, RQd, and Npk. Qpk is independent of Tpk. Npk is
independent of RQr and RQd. Except for these indepen-
dent metrics, all of the others have linear correlations with
each other (Table S3 in the Supplement). Using the principal
component analysis, five independent PCs are found with a
total cumulative variance of 85.7 %, all of which are selected
in our study (Table 3). The first PC is related to magnitude,
variability, and rates of change with an explained variance of
33.3 %. The second PC is related to magnitude, variability,
and peak number with an explained variance of 17.0 %. The
third to fifth PCs are mainly related to the flood event dura-
tion, the start time of the flood event, and the flood peak tim-
ing with explained variances of 16.0 %, 10.8 %, and 8.6 %,
respectively. Furthermore, optimal classification of all 1446
flood events is determined by comparing the classification
performance between the hierarchical and k-medoids cluster-
ing methods. The five clusters using the k-medoids clustering
method are optimal for further analysis in our study (Fig. B1
in Appendix B).

4.2 Flood response characteristics in different classes

The value ranges of flood response characteristics in differ-
ent classes are presented in Fig. 2 and Table S4 in the Sup-
plement. For the magnitude metrics, the distributions of both
total flood volume (R) and maximum flood peak (Qpk) are
the same in different classes. That is to say, the metric val-
ues are largest in Class 3, followed by Classes 5, 2, 1, and 4.
For the variability metric (coefficient of variation – CV), the
events are most variable in Class 5 and slightly variable in the
other classes, with the mean CV being less than 1.0. For the
timing and duration metrics (i.e., Tbgn, Tdrn, and Tpk), 73.2 %
of the flood events in Class 1 occur before the wet season
(i.e., January–May), 58.5 %, 67.7 %, and 57.0 % of the flood
events in Classes 2, 3, and 5 occur in the earlier wet sea-
son (i.e., June–July), and 52.8 % of the flood events in Class
4 occur in the later wet season (i.e., August–September).
The mean duration (Tdrn) is longest in Class 5, followed by
Classes 3 and 1. The mean Tdrn values in Classes 4 and 2
are the shortest ones. The timings of the maximum flood
peaks (Tpk) are usually largest in Class 2 with a mean of
50.6±10.3 %, which means that the flood peaks mainly occur
in the middle or late stages of flood events. The flood peaks
usually occur in the early stages of flood events in the other
classes (i.e., Classes 1, 2, 4, and 5). In particular, in Class 3,
the mean Tpk value is only 23.7± 13.6 %.

For the rates of change, RQr in most classes is much
greater than RQd because the flood peaks usually occur in
the early stages of flood events, except for Class 2. The
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Table 3. Load coefficients of the flood response metrics in the selected PCs and their explained variances.

Component Variance (%) Main hydrological metrics and their coefficients Hydrological meanings

PC1 33.3 Qpk (0.97), R (0.61), RQr (0.84), and RQd (0.84) Flood magnitude and rates of change
PC2 17.0 R (0.51), CV (−0.47), Tpk (0.56), and Npk (0.77) Flood magnitude, variability, and peak number
PC3 16.0 Tdrn (0.84) Flood event duration
PC4 10.8 Tbgn (0.92) Start time of a flood event
PC5 8.6 Tpk (0.64) Flood peak timing

largest values of bothRQr andRQd are in Class 3 because of
the greatest flood peak. The smallest RQr values are mainly
in Class 2 because of the late occurrences of the flood peaks,
while the smallest RQd values are mainly in Class 5 because
of the long durations of flood recession. For the flood peak
number (Npk), 71.2 %, 69.9 %, 76.5 %, and 77.1 % of the
flood events have one flood peak in Classes 1, 2, 4, and 5,
respectively, and multiple flood peaks (i.e., two to four) exist
in 94.4 % of the total flood events in Class 3, accounting for
33.8 % (two peaks), 48.7 % (three peaks), and 11.8 % (four
peaks), respectively.

According to the metric distributions (Fig. 2) and the hy-
drographs and duration frequencies (Fig. 3) of the individual
flood event classes, we can conclude that Class 1 is for mod-
erately fast flood events occurring before the wet season and
is characterized by a single peak and moderate duration. It is
referred to as the “moderately fast flood event class”. Class 2
represents highly fast flood events with a single peak in the
late stage and short duration and is designated the “highly
fast flood event class”. Class 3 represents highly slow flood
events during the latter part of the wet season, featuring mul-
tiple peaks and long duration and known as the “highly slow
and multi-peak flood event class”. Class 4 represents slightly
fast flood events occurring in the latter part of the wet season
and having a single peak and short duration; it is named the
“slightly fast flood event class”. Lastly, Class 5 represents
moderately slow flood events with a single peak and long
duration and is designated the “moderately slow flood event
class”.

4.3 Spatial and temporal distributions of flood event
classes

The spatial distributions of the individual classes are shown
in Figs. 4 and S1 and Table S5 in the Supplement. The mod-
erately fast flood event class (i.e., Class 1) is mainly in the
upper Dongjiang River of the Pearl River Basin and the Lake
Poyang and Lake Dongting tributaries of the Yangtze River
Basin, accounting for 37.1 % (52/140) and 29.7 % (251/844)
of the total number of events in the main river basins. Specif-
ically, Class 1 is dominant at the Yanling (54.5 %, 18/33)
and Tongtang (50.0 %, 14/28) stations in the Lake Dongt-
ing tributaries, the Shanggao (52.6 %, 10/19) station in the
Lake Poyang tributaries, and the Hezikou (47.2 %, 42/89)
station in the Dongjiang River. The very fast flood event

Figure 2. Variations of the flood response metrics among Classes 1–
5. The solid dark-red dot and the gray dot represent the mean and
50th percentile values, respectively. Each black box means the 25th
and 75th percentile values, and the vertical line defines the mini-
mum and maximum values without outliers. The violin shape means
the frequency distribution of the flood response metric.

class (i.e., Class 2) is mainly in the upper Beijiang River
of the Pearl River Basin and the Lake Dongting tributaries
of the Yangtze River Basin, accounting for 31.4 % (44/140)
and 22.5 % (190/844) of the total number of events in the
main river basins. Class 2 is particularly dominant at the
Xiaogulu (80.0 %, 24/30) station in the Beijiang River and
the Tangdukou (57.6 %, 19/33) station in the Lake Dongting
tributaries. The very slow and multi-peak flood event class
(i.e., Class 3) is mainly in the upper Jinjiang, Qiantang, and
Minjiang rivers in the Southeast River Basin, accounting for
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Figure 3. Flood event distributions in the 95 % confidence inter-
val and their median, together with their duration frequencies of
Classes 1–5 (a–e).

42.2 % (38/90) of the total number of events, particularly at
the Longshan (69.6 %, 16/23) station in the Jinjiang River.
The slightly fast flood event class (i.e., Class 4) is mainly in
the upper Huangshui, Jinghe, and Yiluo rivers of the Yellow
River Basin and the upper Songhua and Wusuli rivers of the
Songliao River Basin, accounting for 64.4 % (67/104) and
60.4 % (32/53) of the total number of events in the main river
basins. This class is dominant at the Qiaotou (77.3 %, 17/22)
station in the Huangshui River, the Huating (63.6 %, 7/11)
station in the Jinghe River, the Luanchuan (69.2 %, 27/39)
station in the Yiluo River, the Jingyu (69.2 %, 9/13) and
Dongfeng (64.3 %, 9/14) stations in the Songhua River, and
the Muling (58.3 %, 7/12) station in the Wusuli River. The
moderately slow flood event class (i.e., Class 5) is mainly in
the southern tributaries of the Huaihe River Basin, account-
ing for 47.4 % (102/215) of the total number of events, par-
ticularly at the Beimiaoji (100 %, 12/12) and Qilin (70.0 %,
7/10) stations. Therefore, Classes 1 to 3 are mainly in the
temperate without dry season climate region in southern
China (Fig. 1), Class 4 is mainly in the cold with dry win-

ter climate region in northern China, and Class 5 is mainly
in the transition region between the temperate without dry
season climate and the cold with dry winter climate.

According to the interannual distributions of the indi-
vidual classes (Fig. 5a), all of the classes are evenly dis-
tributed. Their annual mean percentages are 24.0± 5.9 %,
21.2±6.4 %, 13.5±7.7 %, 25.9±6.2 %, and 15.4±12.5 %,
respectively. However, the interannual distributions of the in-
dividual classes are quite distinct at different stations, partic-
ularly in the upper Songhua and Wusuli rivers of the Songliao
River Basin. At the headstream stations of the Songliao River
Basin (Fig. 5b), Class 4 is dominant with an annual mean
percentage of 26.1± 38.3 % (n= 32), though flood events
are missed in several years due to the dry period. The dom-
inance of Class 4 is most considerable in 1996, 1998, 2002,
and 2009 at the Muling station in the upper Wusuli River. At
the headstream stations of the Yellow River Basin (Fig. 5c),
Class 4 is also dominant across the whole period with an
annual mean percentage of 58.1± 33.9 % (n= 67), partic-
ularly in 1994–1996, 1999, and 2007. The dominance of
Class 4 is most considerable in 1993–1995 and 2001–2004
at the Huating station in the upper Jinghe River. At the
headstream stations of the Huaihe River Basin (Fig. 5d),
Class 5 gradually prevails with an annual mean percentage
of 41.5± 23.7 % (n= 102), particularly after 2007, when
the percentage reaches 63.2± 15.8 % (n= 79). The domi-
nance of Class 5 is most considerable in 2007–2014 at the
Beimiaoji station in the southern tributaries. The event num-
bers of Classes 1 and 2 decrease gradually, accounting for
33.1±24.4 % (n= 11) and 8.7±7.1 % (n= 5) of the annual
flood events in the periods 1993–1999 and 2011–2015 for
Class 1 and 20.3± 20.9 % (n= 9) and 2.7± 1.3 % (n= 1)
in the periods 1993–1999 and 2011–2015 for Class 2. The
decreases in Classes 1 and 2 are remarkable at the Peihe
station in the southern tributaries and the Ziluoshan station
in the northern tributaries. The explanations are that the to-
tal precipitation amount and duration probably increase due
to climate change (Dong et al., 2011; Jin et al., 2024). At
the headstream stations of the Yangtze River Basin (Fig. 5e),
Classes 1, 2, and 4 are dominant, accounting for 29.3±9.6 %
(n= 251), 23.0± 11.5 % (n= 197), and 21.1± 7.0 % (n=
181) of the annual mean flood events. Although the interan-
nual changes in the event numbers of Classes 1 (n= 1–21),
2 (n= 1–14), and 4 (n= 1–16) are considerable, those of
the class percentages are relatively uniform, except for 2015.
The class dominance is most considerable in 1993, 1995–
1997, and 1998 at the Yanling station in the Lake Dongt-
ing tributaries for Class 1, in 1993, 1994, and 1997 at the
Dutou station in the Lake Poyang tributaries for Class 2, and
in 1998, 2000, 2001, 2004, 2005, 2007, and 2010–2013 at
the Biyang station in the tributaries of the Hanjiang River for
Class 4. At the headstream stations of the Southeast River
Basin (Fig. 5f), Class 3 gradually prevails after 2000 with
an annual mean percentage of 46.2±32.5 % (n= 39), which
is remarkable at the Longshan station in the upper Jinjiang
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Figure 4. Spatial variabilities of the individual flood event classes at the headstream stations of the major river basins.

River. At the headstream stations of the Pearl River Basin
(Fig. 5g), Class 1 is dominant with an annual mean percent-
age of 36.0±24.0 % (n= 52) but gradually shifts to Class 2,
which accounts for 30.0± 25.2 % of the annual mean flood
events (n= 40), particularly after 2008. The class dominance
is most considerable from 1993 to 2007 at the Hezikou sta-
tion in the upper Dongjiang River for Class 1 and in 1993,
1994, 1996, 2005, 2006, and 2009–2011 at the Xiaogulu sta-
tion in the upper Beijaing River for Class 2.

4.4 Control mechanisms of the meteorological and
physio-geographical factors

4.4.1 Control factors and their contributions to the
distributed analysis

According to the Monte Carlo permutation test between the
flood response matrix and the control factor matrix in the
individual catchments of Class 1, the total and mean precipi-
tation and the aridity index during the event (rpcp_dur = 0.65–
0.99, n= 14; rpcp_av = 0.70–0.97, n= 7; rADI_dur = 0.52–
0.97, n= 7) are the major control factors in 44.7 % (17/38),
20 % (1/5), and 25 % (1/4) of the total number of catchments
of the Yangtze, Southeast, and Pearl river basins, respectively
(Fig. 6 and Table 4). The contributions of the control factors
are statistically significant only in the Liangshuikou catch-
ment of the Yangtze River Basin and the Hezikou catch-

ment of the Pearl River Basin. In the Liangshuikou catch-
ment, 96.3 % of the temporal differences are explained, of
which the meteorological and land cover categories explain
92.5 % and 3.8 %, respectively. In the Hezikou catchment,
66.7 % of the temporal differences are explained, of which
the meteorological category and the interactive impact ex-
plain 49.4 % and 17.3 %, respectively. The major control fac-
tors and their contributions for Classes 2–5 are also pre-
sented in Sect. S1 and Figs. S2–5 of the Supplement. For
all of the classes, only the factors in the meteorological cate-
gory are statistically significant, particularly the precipitation
amount and intensity and the aridity index during the events.
Most of the control factors with statistical significance are
in Class 1, followed by Classes 4, 5, 3, and 2. These con-
trol factors for the individual classes are mainly detected in
the catchments of the Yangtze (Class 1), Yellow and Pearl
(Class 4), Huaihe (Class 5), Southeast (Class 3), and Pearl
(Class 2) river basins, respectively. The explanations for this
are that the precipitation amount and potential evapotranspi-
ration during the event usually show remarkable differences
between the different events that directly determine the spa-
tial and temporal heterogeneities of the flood generation pro-
cess and consequently the flood event hydrograph, but the
land covers usually show slow changes in the headstream
catchments due to slight disturbances by human activities
and climate change.
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Figure 5. Interannual variabilities of the individual flood event classes (total number of events and their percentages) at the headstream
stations of the major river basins.

Table 4. Effect contributions of the control factor categories to the temporal variabilities of the flood event classes in the individual catch-
ments.

Class Catchment River basin Meteorology Land cover Interaction Total

Class 1 Hezikou Pearl 49.4 % 0.0 % 17.3 % 66.7 %
Liangshuikou Yangtze 92.4 % 3.8 % 0.1 % 96.3 %

Class 2 Shimenkan Yangtze 87.1 % 0.0 % 3.6 % 90.7 %
Tangdukou Yangtze 95.9 % 0.0 % 0.0 % 95.9 %
Xiaogulu Pearl 71.9 % 0.0 % 24.9 % 96.8 %

Class 3 – – – – – –

Class 4 Hezikou Pearl 82.1 % 0.0 % 16.0 % 98.1 %
Liangshuikou Yangtze 76.8 % 0.0 % 10.2 % 87.0 %

Class 5 – – – – – –
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Figure 6. Significant control factors and their correlation coef-
ficients for the temporal variabilities of flood event Class 1 in
the individual catchments. The gray color means the control fac-
tor without statistical significance. Note: the Anhe, Anren, Cheng-
cun, Jiahe, Liangshuikou, Loudi, Pingshi, Shanggao, Shimenkan,
Shuangjiangkou, Tangdukou, Tongtang, Xiawan, Yanling, Yanta,
Yucun, and Yuexi catchments are from the Yangtze River Basin. The
Tunxi catchment is from the Southeast River Basin. The Hezikou
catchment is from the Pearl River Basin.

4.4.2 Control factors and their contributions to the
lumped analysis

The Monte Carlo permutation tests across the entire study
area suggest that the meteorological category is also the most
important one (Fig. 7), particularly the precipitation amount
and intensity (i.e., pcp_ant, pcp_dur, pcp_max, pcp_av,
pcp_Tbeg, and pcp_Tdur) and the aridity index during the
events (ADI_dur) with correlation coefficients of 0.33–0.74,
0.20–0.38, and 0.29–0.41, respectively. The significant fac-
tor number in the catchment attribute category is low de-
spite the fact that the most relevant ones are the mean catch-
ment length (Length), river density (Rivden), and ratio of
river width to depth (RivSlope) with correlation coefficients
of 0.18–0.32, 0.15–0.24, and 0.21–0.30, respectively. In the
land cover category, only the grassland area ratio (Rgrass) is
significant in Class 1, with a correlation coefficient of 0.21.

In Class 1, the significant control factors are the precipi-
tation, potential evapotranspiration, and aridity index in the
antecedent 7 d (i.e., pcp_ant, pet_ant, and ADI_ant) and dur-
ing the events (i.e., pcp_dur, pcp_av, pcp_max, pcp_Tbeg,
pet_dur, pet_max, and ADI_dur); the potential evapotranspi-
ration at the annual scale (i.e., pet_ann and pet_year) in the
meteorological category; the area (Area), Length, maximum
elevation (MaxiElev), Rivden, RivSlope, and ratio of river
width to depth (Rwd) in the catchment attribute category; and
Rgrass in the land cover category. Additionally, 72.7 % of the
total spatial and temporal variabilities of the flood events are
explained by all of the control factor categories, of which
43.9 % of the total variabilities are explained by the meteoro-
logical category (particularly the factors during the events),

Figure 7. Significant control factors and their correlation coeffi-
cients for the variabilities of the individual flood event classes (i.e.,
Classes 1–5). The gray color means the control factor without sta-
tistical significance.

followed by the interactive impact (22.7 %), catchment at-
tribute category (4.2 %), and land cover category (1.5 %), re-
spectively (Fig. 8a).

The significant control factors of Class 2 are mainly in
the meteorological factor category, including precipitation
and potential evapotranspiration in the antecedent 7 d (i.e.,
pcp_ant and pet_ant) and the precipitation and aridity in-
dex during the flood events (i.e., pcp_dur, pcp_av, pcp_max,
pcp_Tbeg, pcp_Tdur, and ADI_dur). In Class 3, the signif-
icant control factors are mainly the precipitation and arid-
ity index during the flood events (i.e., pcp_dur, pcp_av,
pcp_max, and ADI_dur) and the catchment elevation (i.e.,
Elevation and MaxiElev). In Classes 4 and 5, most of the
meteorological and catchment factors are significant. The
specific factors are the precipitation and potential evapo-
transpiration in the antecedent 7 d and during the events (i.e.,
pcp_ant, pcp_dur, pcp_av, pcp_max, pcp_Tbeg, pcp_Tdur,
pet_ant, pet_dur, and pet_max), the aridity index during the
events (i.e., ADI_dur), the precipitation at the annual scale
(i.e., pcp_year) for the meteorological factor category, Area,
Length, Rivden, and Rwd in the catchment attribute category
for Class 4, together with precipitation factors (i.e., pcp_ant,
pcp_dur, pcp_av, pcp_max, pcp_Tbeg, and pcp_year), the
aridity index during the events and at the annual scale (i.e.,
ADI_dur and ADI_year) for the meteorological factor cate-
gory, Length, Rivden, and Rwd in the catchment attribute cat-
egory for Class 5. For all of the contributions of all of the con-
trol factors or categories, 73.3 %, 85.4 %, 65.9 %, and 65.7 %
of the total spatial and temporal variabilities of the flood
events are significantly explained in Classes 2–5 (Fig. 8b–
e). For the individual contributions, the meteorological fac-
tor category explains the largest variabilities (i.e., 36.5 %–
50.5 %), followed by the catchment attribute category (i.e.,
5.1 %–6.1 %), and the land cover category explains the low-
est variabilities, i.e., 0.0 %–2.4 %. The interactive impacts
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of all of the control factor categories also explain 17.5 %–
33.0 % of the total variabilities, particularly in Class 3.

Therefore, the total variabilities of flood events in Class 1
are mainly controlled by the total precipitation amount and
its intensity during the events, determining the magnitudes
of the total flood yield and the flood peak, the catchment
slope length, and the river slope, which affect the flood rout-
ing processes, e.g., the total duration of a flood event and
the occurrence time of a flood peak. The total variabilities in
Class 2 are also mainly controlled by the total precipitation
amount and its intensity during the events. The total variabili-
ties in Class 3 are mainly controlled by the total precipitation
amount, its intensity, and the aridity index during the events,
which determine the total magnitudes, the occurrence time of
the flood yield, the catchment elevation, and the flood routing
time. The total variabilities in Class 4 are mainly controlled
by the total precipitation amount, the potential evapotranspi-
ration, and the aridity index during the events, which deter-
mine the total magnitude and occurrence time of the flood
yield and evapotranspiration, the catchment area, the slope,
the river morphology, the flood routing time, and the river
storage capacity. The total variabilities in Class 5 are mainly
controlled by the total precipitation amount and the aridity
index during the events, which determine the total magni-
tude and occurrence time of the flood yield, the river density,
and the flood routing time in the river system.

4.4.3 Control mechanisms in the individual flood event
classes

In both the individual catchments and the entire region, the
dominant control factors of all of the flood event classes are
the total and mean precipitation volumes, the maximum pre-
cipitation intensity, the aridity index and precipitation timing
during the events, and the precipitation in the antecedent days
in the meteorological category (Figs. 9 and S6 in the Sup-
plement). Therefore, the flood events in Class 1 are mainly
caused by the rainfall with low volume and intensity before
the wet season in the wet, steep, and low-latitude catchments.
The events in Class 2 are mainly caused by the short rainfall
with high mean intensity in the wet low-latitude catchments.
The events in Class 3 are mainly caused by the long rainfall
with high volume and intensity in the small high-altitude and
low-latitude catchments. The events in Class 4 are mainly
caused by the short rainfall with low volume and intensity in
the latter part of the wet season in the small, dry, steep, high-
altitude, and high-latitude catchments. The events in Class 5
are mainly caused by the long rainfall with high volume and
low mean intensity in the dry, gentle, and large mid-latitude
catchments.

5 Discussion

Flood classification has great advantages in systematically
identifying manageable classes from a large number of his-
torical flood events based on the similarity of flood response
characteristics (Arthington et al., 2006; Kuentz et al., 2017;
Poff et al., 2007; Sikorska et al., 2015; Sivakumar et al.,
2015). Flood events in the same class are widely accepted
as having similar hydrological responses caused by similar
meteorological or underlying surface conditions (Sikorska et
al., 2015). Therefore, it is more efficient to investigate flood
event changes and their causal mechanisms in a comprehen-
sive manner than through individual event analyses (Zhang
et al., 2012). This is expected to provide more useful flood
response characteristics for flood disaster management pur-
poses (e.g., early warning and quick design of flood control
plans) and deep insights for investigating riverine ecological
and environmental response mechanisms.

In our study, the flood event classes are identified based
on all of the flood response characteristics, which cover not
only the flood magnitude metrics (e.g., large, moderate, and
small floods), but also the event shape metrics (e.g., fast or
slow floods). Therefore, our study captures more detailed re-
sponse dynamics of flood events than the predefined classes
reported by several existing studies, such as flash floods,
short-rain floods, rain-on-snow floods, or snowmelt floods
(Brunner et al., 2018; Merz and Blöschl, 2003; Sikorska et
al., 2015). The specific values and boundaries of the flood
response metrics of the individual classes were difficult to
compare quantitatively with most existing studies because
the adopted classification methods were usually different.
However, flood event classes with similar hydrographs or re-
sponse mechanisms were also found in the existing studies.
Classes 1 and 2 are mainly in southern China, particularly
in the Pearl and Yangtze river basins, which are controlled
by the temperate climate without a dry season. Storms with
high intensities and short durations before the wet season in
southern China are likely to cause flood events with great
magnitudes and variabilities (Class 1) or fast flood events
with a high single peak and short durations (Class 2) (Gao
et al., 2018). The flood response characteristics in these two
classes are similar to flash floods and short-rain floods in
Austria (Merz and Blöschl 2003) and fast events in Switzer-
land (Brunner et al., 2018) and China (Zhai et al., 2021).
Class 3 is mainly in the Southeast River Basin controlled by
the tropical cyclone climate. Severe storms with high inten-
sities and durations are likely to cause high slow flood events
with multiple peaks (Class 3) (Yin et al., 2010; Zhang et al.,
2020). The flood response characteristics are similar to the
high unit peak flood on the western coast of the USA (Sa-
haria et al., 2017) because both of the response characteris-
tics were mainly controlled by subtropical or tropical storms
near the ocean in the Cf climate type. They are also similar
to the slow events in China (Zhai et al., 2021) because the
rates of positive changes are 0.01–0.94 h−1 in our study and
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Figure 8. Entire, individual, and interactive contributions of the control factor categories to the spatial and temporal variabilities of flood
event Classes 1–5 (a–e).

0.04–1.78 h−1 in China (Zhai et al., 2021) and the rates of
negative changes are 0.01–0.33 h−1 in our study and 0.02–
0.25 h−1 in China (Zhai et al., 2021). Class 4 is mainly in
northern China, controlled by the cold climate with dry win-
ters. The heavy storms ahead of the westerly trough mainly
occur in the latter wet season in this region and usually have
low intensities and short durations (Gao et al., 2018). Thus,
they are likely to cause the small fast flood events (Class 4),
whose mean flood peak magnitude and coefficient of vari-
ation are 0.47 m3 s−1 km−2 and 0.86, respectively. Similar
flood events are also reported, e.g., the low-flashiness floods
with mean flood peak magnitudes of 0.20–0.25 m3 s−1 km−2

and a mean coefficient of variation of approximately 0.90
in the northern part of central–eastern Europe (Kuentz et
al., 2017), which is also controlled by the similar climate
type (i.e., Df). Class 5 is mainly in the south–north climate
zone of China (i.e., the Huaihe River Basin), which has the
dual climate characteristics of both the southern and north-
ern monsoons. Storms characterized by a long period of con-
tinuous rainy meteorology with high frequency and low in-
tensities (e.g., Meiyu rainfalls) in the earlier wet season are
likely to cause moderate slow flood events with long dura-
tions (Gao et al., 2018; Sampe and Xie, 2010). The flood
response characteristics are similar to the intermediate flood
events in China (Zhai et al., 2021). For example, the coeffi-
cients of variation are 0.65–3.15 in our study and 0.78–3.07
in China (Zhai et al., 2021). The rates of positive and negative
changes are 0.02–8.00 h−1 and 0.01–0.64 h−1 in our study,

while those reported in Zhai et al. (2021) are 0.36–4.90 and
0.09–0.46 h−1 in China. Therefore, the classification is help-
ful for deep investigation of the control mechanisms of flood
events, which is easy to transfer to prediction of flood events
with similar control factors (Sikorska et al., 2015).

The meteorological, land cover, and catchment attribute
categories are mainly reported to affect the flood genera-
tion and routing processes and could be widely accepted
as the critical control factors of spatial and temporal dif-
ferences of flood event classes (Ali et al., 2012; Brunner
et al., 2018; Merz and Blöschl, 2003; Zhang et al., 2022).
We also find that the meteorological factor category is domi-
nant, which explains 49.4 %–95.9 % and 36.5 %–50.5 % of
the flood event differences in the individual classes at the
catchment scale and in the entire region, respectively. Sim-
ilar results were reported in Kuentz et al. (2017), i.e., that
the climatic variables (e.g., precipitation, temperature, and
aridity index) play the most important role in 75 % of the
total flow signatures and catchment attributes (e.g., area, el-
evation, slope, and river density) and are more important for
flood flashiness. The main significant meteorological factors
are the precipitation volume, intensity, and aridity index dur-
ing the events. The main explanation is that the precipitation
and aridity index during the flood events directly affect the
hydrograph through flood generation, e.g., total volume and
peak, variability, duration, rates of change, and peak num-
ber (Merz and Blöschl, 2003; Aristeidis et al., 2010). Addi-
tionally, these control factors in the antecedent days directly
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Figure 9. Variations of the four critical control factors in Classes 1–
5. The solid dark-red dot and the gray dot define the mean and 50th
percentile values, respectively. Each black box means the 25th and
75th percentile values, and the vertical line defines the minimum
and maximum values without outliers. The violin shape means the
frequency distribution of the control factor, and the unfilled shape
means the control factor without statistical significance.

affect the antecedent soil moisture, which determines the ini-
tial losses of precipitation and the runoff generation timing
during the flood events (Hall and Blöschl, 2018; Xu et al.,
2023). The contribution of the meteorological factor category
is highest in Class 2, particularly in the Tangdukou catchment
of the Yangtze River Basin, because the flood events in this
class usually show quick responses to the precipitation, while
the contribution is lowest in Class 5, because the river den-
sity and river morphology play important roles in the flood
storage capacity and routing time in the river system.

Secondly, the catchment attributes (e.g., geographical lo-
cation and topography) mainly affect the hydrograph patterns
through flood routing (Berger and Entekhabi, 2001; Ali et al.,
2012), and the factors identified in our study are the catch-
ment area and length, the river density, and the ratio of river
width to depth. For example, a catchment with a longer rout-
ing length, a larger routing area, a higher river density, and
a larger ratio of river width to depth usually has more flood
regulation and storage capacity and thus generates slow flood
events, while a catchment with a shorter routing length, a
smaller routing area, a lower river density, and a smaller ra-
tio of river width to depth usually has a weaker flood regula-
tion and storage capacity and thus generates fast flood events
(Zhang et al., 2020). However, the comprehensive contribu-
tions of catchment attributes are not considerable, i.e., only
0.0 %–6.1 % in the entire region, because the catchment at-

tributes do not always match the flood event responses well
(Kuentz et al., 2017; Ali et al., 2012). The contributions
of the catchment attribute category to the slow flood event
classes (e.g., Classes 3 and 5) are usually larger than those
in the fast flood event classes (e.g., Classes 1, 2, and 4) be-
cause the catchment attribute factors are significantly corre-
lated with the flood response metrics in Classes 3 and 5, par-
ticularly the catchment maximum elevation and river den-
sity. Furthermore, the location, annual precipitation, poten-
tial evapotranspiration, and aridity index mainly affect the
overall catchment hydrological conditions (Berger and En-
tekhabi, 2001; Kennard et al., 2010). Finally, the land cov-
ers mainly determine the precipitation intercept and reten-
tion processes, which directly affect the flood variability and
rates of change (Kuentz et al., 2017; Merz et al., 2020). For
example, catchments with more vegetation cover (e.g., for-
est and grassland) usually generate slow flood events, while
catchments with less vegetation cover (e.g., rural and urban
lands) usually generate fast flood events (Kuentz et al., 2017;
Zhai et al., 2021). However, all of the catchments selected in
our study are mainly in the river source regions with good
vegetation cover and mean area percentages of 67.0 % for
forest and 6.6 % for grassland. The spatial and temporal dif-
ferences in the land covers are not remarkable because they
only explain 3.8 % and 1.5 % of the flood event differences in
Class 1 at the Liangshuikou catchment of the Yangtze River
Basin and in the entire region.

Our study provides an approach to investigate some man-
ageable flood event classes from massive large-scale events
and quantify the meteorological and physio-geographical
controls on the spatial and temporal variabilities of flood
event classes. The approach can easily be applied to other
regions or countries if a great number of flood events are col-
lected. All of the selected flood events were sufficient to rep-
resent the flood response characteristics of headstream catch-
ments in the main river basins of China. Thus, our classi-
fication results and the control mechanisms of the variabil-
ity of the flood event classes could be applied in other re-
gions with similar climate types. However, several aspects
should be taken into account for further improvements to our
study. Firstly, the total flood event number is the main re-
strictive factor in the classification performance, the flood
event class representativeness, and the control mechanisms
at the catchment scale (Merz and Blöschl, 2003; Olden et
al., 2012; Sikorska et al., 2015; Tarasova et al., 2020). This
could be overcome effectively by adopting large flood event
numbers of individual classes (i.e., approximately 10 % of
the total number of events, at least in our study) for the clas-
sification (Zhang et al., 2020). However, not all of the control
mechanisms of the flood event classes were explained well
because of the insufficient flood events, which were mainly
in the Songliao and Yellow river basins or most of the catch-
ments, except for the Shimenkan, Liangshuikou, and Tang-
dukou catchments of the Yangtze River Basin and the Xi-
aogulu and Hezikou catchments of the Pearl River Basin.
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The representatives of the individual classes should be in-
vestigated further, particularly in basins with low densities
of flood events. Secondly, the class boundaries of most of
the flood response metrics were not clear when using induc-
tive classification approaches (Parajka et al., 2005; Sikorska
et al., 2015), e.g., the flood magnitude and the rates of pos-
itive and negative changes in our study. Although the pre-
defined sharp thresholds of all of the flood response metrics
are beneficial for clearly separating the flood events using the
classification tree methods (e.g., decision tree and crisp tree),
the predefinition is still challenging (Sikorska et al., 2015;
Brunner et al., 2017; Tarasova et al., 2020). Finally, the con-
trol mechanism deduction was mainly based on the statistical
detection of the control factors and their contributions. The
interactive impacts of the different control factor categories
were still difficult to explain clearly using the adopted sta-
tistical analysis method (i.e., the constrained rank analysis in
our study).

6 Conclusions

In our study, the main flood event classes characterized by
multiple flood response metrics are identified in 68 head-
stream catchments using the hierarchical and partitional clus-
tering methods. The control mechanisms of the different
flood event classes are investigated using the constrained
rank analysis and Monte Carlo permutation test. The re-
sults are summarized as follows: the partitional clustering
method (i.e., k-medoids) performs better than the hierar-
chical method, and the five optimal flood event classes are
identified, which are the moderately fast flood event class
(Class 1), the highly fast flood event class (Class 2), the
highly slow and multi-peak flood event class (Class 3), the
slightly fast flood event class (Class 4), and the moderately
slow flood event class (Class 5). Most of the flood event dif-
ferences between the individual classes are explained by the
meteorological, land cover, and catchment attribute factors.
The flood event differences in Class 3 (85.4 %) are explained
well, followed by Classes 2 (73.3 %), 1 (72.7 %), 4 (65.9 %),
and 5 (65.7 %). The meteorological category is the most sig-
nificant of all the control factors, particularly the precipita-
tion factors (e.g., volume and intensity) and the aridity index
during the flood events.

This study preliminarily investigates the flood event
classes in space and time at some headstream stations of
China, which is beneficial for exploring the comprehensive
formation mechanisms of flood events and critical control
factors. It provides the scientific foundation for flood event
prediction and control. In future, more unimpaired flood
events could be collected to strengthen the representative-
ness of flood event classes and to further support the con-
trol mechanism analysis of flood classes at individual catch-
ments. The interactive impacts of control factor categories
could also be decomposed further into the impacts of individ-

ual factors using the hydrological model with strong physical
mechanisms.

Appendix A

All of the multivariable statistical analyses are implemented
using the R software (version 3.1.1) (R Development Core
Team, 2010), involving the aov, cor, and princomp functions
in the stats package (version 4.1.3) for the independence
test, linear correlation test, and principal component analy-
sis (Mardia et al., 1979), the hcluster function in the amap
package (version 0.8-18) for the hierarchical cluster analysis
(Antoine and Sylvain, 2006), the clara function in the clus-
ter package (version 2.1.3) for the k-medoids cluster analysis
(Kaufman and Rousseeuw, 1990), and the NbClust function
in the NbClust package (version 3.0.1) for the optimal class
number determination and classification performance assess-
ment (Charrad et al., 2014). The Monte Carlo permutation
test is implemented using the envfit, decorana, rda, cca, and
permutest functions in the vegan package (version 2.5-7) of
the R software (version 3.1.1) (ter Braak, 1986; R Develop-
ment Core Team, 2010).

Appendix B

The optimal classification method and cluster number are de-
termined by comparing the classification performance be-
tween the hierarchical and k-medoids clustering methods
among the individual cluster numbers. Figure B1 shows that
the optimal criterion number is largest when the cluster num-
ber is five (i.e., 22.7 % of the total) for the k-medoids clus-
tering method. The optimal criteria are CCC, TrCovW, Sil-
houette, Ratkowsky, and PtBiserial with values of −2.98,
1.39× 1015, 4.12× 106, 0.20, 0.29, and 0.39, respectively.
Therefore, the five clusters using the k-medoids clustering
method are optimal for further analysis in our study. The
flood event numbers in the individual classes are 347, 306,
195, 375, and 223, accounting for 24.0 %, 21.2 %, 13.5 %,
25.9 %, and 15.4 % of the total number of events.

Figure B1. Classification performance comparisons between the hi-
erarchical and k-medoids methods among the individual optimal
cluster numbers.
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Code and data availability. The DEM data is sourced from
SRTM (Shuttle Radar Topography Mission) (Farr et al.,
2007). The land use data are sourced from CNLUCC
(https://doi.org/10.12078/2018070201, Xu et al., 2018), avail-
able from the Data Center of Resources and Environmental
Science, Chinese Academy of Sciences. The historical flood events
and synchronous precipitation were collected from the hydrological
yearbooks of the Songliao, Yellow, Huaihe, Yangtze, Southeast,
and Pearl river basins which were available in the Annual Hydro-
logical Reports of the main river basins (http://www.mwr.gov.cn/,
Ministry of Water Resources of China, 1993–2015), and the
readers may contact them to request access. The daily precipitation
and temperature observations were collected from the basic
surface meteorological observation data of China, which were
available in the China Meteorological Data Sharing Service System
(http://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html,
China Meteorological Data Service Centre, 1993–2015).
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