



# Supplement of

## Understanding meteorological and physio-geographical controls of variability of flood event classes in headstream catchments of China

Yongyong Zhang et al.

Correspondence to: Yongyong Zhang (zhangyy003@igsnrr.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

#### Text S1

In the Class 2, the significant control factors are in the catchments of Yangtze (18.4%, 7/38), Yellow (25%, 1/4) and Pearl (50%, 2/4) River Basins, particularly the total and mean precipitations, and drought index during the event with the correlation coefficients of 0.61–0.99, 0.58–0.99 and 0.50–0.98, respectively (Table 4 and Figure S2). The contributions only in the Shimenkan, Tangdukou and Xiaogulu catchments are statistically significant with the total values of 90.7-96.8%. The contributions of meteorological category are the greatest with the values of 71.9–95.9%. In the Class 4, the significant control factors are in the catchments of Yellow (75%, 3/4), Songliao (50%, 2/4) and Pearl (50%, 2/4) River Basins, particularly the total precipitation during the event, and the drought index in the corresponding year with the correlation coefficients of 0.53-1.00 and 0.45–0.93, respectively (Figure S4). The contributions only in the Liangshuikou and Hezikou catchments are statistically significant with the total values of 87.0-98.1%. The factors in the meteorological category also contribute the most considerably with the values of 76.8–82.1%. In the Classes 3 and 5, the contributions are not statistically significant in all the catchments because of the smaller numbers of flood events (Figures S3 and S5). However, several important control factors are also statistically significant in the catchments of Yangtze (26.3%, 10/38) and Southeast (40%, 2/5) River Basin for Class 3 (e.g., total and mean precipitations during the event with the correlation coefficients of 0.77–0.99 and 0.70–1.00, respectively), and Huaihe (61.5%, 8/13) and Yangtze (26.3%, 7/38) River Basin for Class 5 (e.g., the drought index in the corresponding year and during the event, and the annual mean precipitation amount with the correlation coefficients of 0.62– 0.86, 0.68–1.00 and 0.65–0.92, respectively).



Figure S1. Spatial distributions of load coefficients of all the principal components.



Figure S2. Significant control factors and their correlation coefficients for the temporal variabilities of flood event Class 2 in the individual catchments. The gray color means the control factor without statistical significance.

Note: Anren, Dutou, Jiahe, Loudi, Shimenkan, Shuangfeng and Tangdukou catchments are in the Yangtze River Basin; Luanchuan catchment is in the Yellow River Basin; Hezikou and Xiaogulu catchments are in the Pearl River Basin



Figure S3. Significant control factors and their correlation coefficients for the temporal variabilities of flood event Class 3 in the individual catchments. The gray color means the control factor without statistical significance.

Note: Chengcun, Jinping, Liangshuikou, Loudi, Miping, Shuangfeng, Shuangjiangkou, Tongtang, Yucun and Yuexi catchments are in the Yangtze River Basin; Longshan and Zhaoan catchments are in the Pearl River Basin



Figure S4. Significant control factors and their correlation coefficients for the temporal variabilities of flood event Class 4 in the individual catchments. The gray color means the control factor without statistical significance.

Note: Jingyu and Yitong catchments are in the Songliao River Basin; Luanchuan, Qiaotou and Tantou catchments are in the Yellow River Basin; Luzhuang and Ziluoshan catchments are in the Huaihe River Basin; Dutou, Liqingdian, Liangshuikou, Pingshi, Shuangfeng, Xupu, Yanling and Yuexi catchment are in the Yangtze River Basin; Zhaoan catchment is in the Southeast River Basin; Hezikou and Libo catchments are in the Pearl River Basin





Note: Beimiaoji, Huangnizhuang, Peihe, Qilin, Xiagushan, Xinxian, Zhongtang and Zhuganpu catchments are in the Huaihe River Basin; Anhe, Anren, Liqingdian, Miping, Tanghe, Tonggu and Xixia catchments are in the Yangtze River Basin.



Figure S6. Variations of the other 30 critical control factors among Classes 1-5. The solid darkred dot and gray dot define the mean and 50th percentile values, respectively. Each black box means the 25th and 75th percentile values, and the vertical line defines the minimum and maximum values without outliers. The violin shape means the frequency distribution of control factor, and the unfilled shape means the control factor without statistical significance.

Table S1. Total numbers and densities of hydrological stations and flood events in different river basins

| Dagin                 | Area                 | N       | umber       | Dens                                     | sity                                            |
|-----------------------|----------------------|---------|-------------|------------------------------------------|-------------------------------------------------|
| Basin                 | $(10^4 \text{km}^2)$ | Station | Flood event | Station $(10^{-4} \text{ station/km}^2)$ | Event (10 <sup>-4</sup> event/km <sup>2</sup> ) |
| Songliao River Basin  | 124.92               | 4       | 53          | 0.03                                     | 0.42                                            |
| Yellow River Basin    | 75.24                | 4       | 104         | 0.05                                     | 1.38                                            |
| Huaihe River Basin    | 27.00                | 13      | 215         | 0.48                                     | 7.96                                            |
| Yangtze River Basin   | 180.85               | 38      | 844         | 0.21                                     | 4.67                                            |
| Southeast River Basin | 24.02                | 5       | 90          | 0.21                                     | 3.75                                            |
| Pearl River Basin     | 45.36                | 4       | 140         | 0.09                                     | 3.09                                            |

### Table S2. Criteria of classification performance assessment

| ID | Criteria name              | Abbreviation | Equation                                                                                               | Reference                                                             |
|----|----------------------------|--------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1  | Krzanowski-Lai             | KL           | $\mathrm{KL}(q) = \frac{\mathrm{DIEF}_{q}}{\mathrm{DIEF}_{q+1}}$                                       | Krzanowski and Lai 1988                                               |
| 2  | Calinski-Harabasz          | СН           | $CH(q) = \frac{\operatorname{trace}(B_q)/(q-1)}{\operatorname{trace}(W_q)/(n-q)}$                      | Calinski and Harabasz 1974                                            |
| 3  | Hartigan                   | Hartigan     | Hartigan = $\left(\frac{\operatorname{trace}(W_q)}{\operatorname{trace}(W_{q+1})} - 1\right) n$        | -Habigan 1975                                                         |
| 4  | Cubic Clustering Criterion | CCC          | CCC = $\ln \left[ \frac{1 - E(R^2)}{1 - R^2} \right] \frac{1}{(0.001)^2}$                              | $\frac{\sqrt{\frac{np^*}{3}}}{\text{Sarle 1983}}$<br>+ $E(R^2)^{1/2}$ |
| 5  | Scott                      | Scott        | Scott = $n \log \frac{\det(T)}{\det(W_q)}$                                                             | Scott and Symons 1971                                                 |
| 6  | Marriot                    | Marriot      | $Marriot = q^2 \det(W_q)$                                                                              | Marriot 1971                                                          |
| 7  | Trcovw                     | TrCovW       | Trcovw = trace(COV( $W_q$ ))                                                                           | Milligan and Cooper 1985                                              |
| 8  | Tracew                     | TraceW       | Tracew = trace( $W_q$ )                                                                                | Milligan and Cooper 1985                                              |
| 9  | Friedman                   | Friedman     | Friedman = trace( $W_{q}^{-1}B_{q}$ )                                                                  | Friedman and Rubin 1967                                               |
| 10 | Silhouette                 | Silhouette   | Silhouette = $\frac{\sum_{i=1}^{n} S(i)}{n}$ , Silhouette                                              | Rousseeuw 1987<br>te∈[-1,1]                                           |
| 11 | Ratkowsky-Lance            | Ratkowsky    | Ratkowsky = $\frac{\overline{S}}{q^{1/2}}$                                                             | Ratkowsky and Lance 1978                                              |
| 12 | Ball                       | Ball         | Ball = $\frac{W_q}{q}$                                                                                 | Ball and Hall 1965                                                    |
| 13 | Ptbiserial                 | Ptbiserial   | Ptbiserial = $\frac{[\overline{S}_b - \overline{S}_w][N_w N_b / N_t^2]}{S_d}$                          | / <sup>2</sup><br>Milligan 1980, 1981                                 |
| 14 | Dunn                       | Dunn         | $\text{Dunn} = \frac{\min_{1 \le i, j \le q} (C_i, C_j)}{\max_{1 \le k \le q} \text{diam}(C_k)}$       | Dunn 1974                                                             |
| 15 | Rubin                      | Rubin        | $\text{Rubin} = \frac{\det(T)}{\det(W_q)}$                                                             | Friedman and Rubin 1967                                               |
| 16 | C-Index                    | Cindex       | Cindex = $\frac{S_w - S_{\min}}{S_{\max} - S_{\min}}$ , $S_{\min} \neq S_r$                            | nav ElGinde and Octon 1976                                            |
| 17 | Davies-Bouldin             | DB           | $DB(q) = \frac{1}{q} \sum_{k=1}^{q} \max_{k \neq i} \left( \frac{\delta_k + \delta_i}{d_{ki}} \right)$ | Davies and Bouldin 1979                                               |
| 18 | Duda                       | Duda         | Duda $\geq 1 - \frac{2}{\pi p} - \sqrt{\frac{2(1 - \frac{8}{\pi^2 p})}{n_m p}} = c$                    | erDudaandDhatt 1973                                                   |
| 19 | Pseudo t <sup>2</sup>      | Pseudot2     | $Pseudot2 = \frac{V_{kl}}{\frac{W_k + W_l}{n_k + n_k - 2}}$                                            | Duda and Hart 1973                                                    |
| 20 | McClain-Rao                | McClain      | M cClain = $\frac{\overline{S}_w}{\overline{S}_b} = \frac{S_w / N_w}{S_b / N_b}$                       | McClain and Rao 1975                                                  |
| 21 | SD validity                | SDindex      | $SDindex(q) = \alpha Scat(q) + Dis($                                                                   | <i>q</i> )Halkidi et al. 2000                                         |
| 22 | SDbw validity              | SDbw         | SDbw(q) = Scat(q) + Density                                                                            | b <b>W</b> akidi and Vazirgiannis 2001                                |

Note: q is the number of clusters; n is the number of observations; p is the number of variables;  $B_q$  is the between-group dispersion matrix for data clustered into q clusters;  $W_q$  is the within-group dispersion matrix for data clustered into q clusters;  $R^2$  is the coefficient of determination; T is the total sum of squares;  $S_b$  is the sum of the between-cluster distances;  $S_w$  is the sum of the within-cluster distances;  $\overline{S}_b$  is the ratio of the  $S_b$  and  $N_b$ ;  $\overline{S}_w$  is the ratio of the  $S_w$  and  $N_w$ ;  $N_w$  is the total number of pairs of observations belonging to the same cluster;  $N_b$  is the total number of pairs of observations belonging to different clusters;  $N_t$  is the total number of pairs of observations in the data set;  $S_{max}$  is the sum of the  $N_w$  largest distances between all the pairs of points in the entire data set;  $S_{min}$  is the sum of the  $N_w$  smallest distances between all the pairs of points in the entire data set (there are  $N_t$  such pairs);  $S_d$  is the standard deviation of all distances;  $\overline{S}$  is the number ranges from 1 to p; k, 1 and m is the cluster number ranges from 1 to q; C<sub>1</sub>; C<sub>1</sub> and C<sub>k</sub> are the different clusters;  $V_{kl}$  equals  $W_m$ minus  $W_k$  and then minus  $W_l$ ;  $d_{kl}$  is the distance between centroids of clusters  $C_k$  and  $C_l$ ;  $\delta_k$  and  $\delta_1$  are the standard deviation of the distance of objects in cluster  $C_k$  and  $C_l$ , respectively.

Table S3. Results of independence and linear correlation tests among different flood response metrics

| Mathada     |                  |      |      |      | Correlati | on coeffic | ient  |       |       |       |
|-------------|------------------|------|------|------|-----------|------------|-------|-------|-------|-------|
| Methods     |                  | R    | Qpk  | CV   | Tbgn      | Tpk        | Tdrn  | RQr   | RQd   | Npk   |
|             | R                |      | 0.68 | 0.14 | 0.00      | 0.06       | 0.14  | 0.26  | 0.34  | 0.34  |
|             | Q <sub>pk</sub>  | 0.00 |      | 0.41 | 0.02      | -0.03      | -0.18 | 0.75  | 0.77  | 0.08  |
|             | CV               | 0.00 | 0.00 |      | 0.06      | -0.24      | 0.18  | 0.38  | 0.19  | -0.21 |
| n value for | T <sub>bgn</sub> | 0.93 | 0.45 | 0.02 |           | -0.12      | 0.07  | 0.04  | 0.04  | -0.04 |
| p-value for | T <sub>pk</sub>  | 0.02 | 0.19 | 0.00 | 0.00      |            | -0.14 | -0.19 | 0.11  | 0.14  |
| ANOVA test  | Tdrn             | 0.00 | 0.00 | 0.00 | 0.01      | 0.00       |       | -0.19 | -0.28 | 0.23  |
|             | RQr              | 0.00 | 0.00 | 0.00 | 0.12      | 0.00       | 0.00  |       | 0.68  | -0.03 |
|             | RQd              | 0.00 | 0.00 | 0.00 | 0.15      | 0.00       | 0.00  | 0.00  |       | 0.02  |
|             | Npk              | 0.00 | 0.00 | 0.00 | 0.17      | 0.00       | 0.00  | 0.31  | 0.38  |       |

Note: the bold value indicates that the test passes the 95% significance test, and the italic value indicates that the test does not pass the 95%

significance test."

| Characteristic value | Class | R(mm·day <sup>-1</sup> ) | $Q_{pk}(mm \cdot day^{-1})$ | CV              | T <sub>bgn</sub> | T <sub>pk</sub> (%) | T <sub>drn</sub> (h) | $RQ_r(h^{-1})$ | $RQ_d(h^{-1})$  | $N_{pk}$        |
|----------------------|-------|--------------------------|-----------------------------|-----------------|------------------|---------------------|----------------------|----------------|-----------------|-----------------|
|                      | 1     | 43.97±29.94              | 2.04±2.51                   | 0.90±0.26       | $2.28 \pm 0.49$  | 27.14±9.60          | 103.92±43.39         | 0.13±0.32      | $0.04 \pm 0.07$ | 1.31±0.51       |
| Average±             | 2     | 45.81±34.01              | 2.21±2.52                   | $0.87 \pm 0.25$ | $3.06 \pm 0.69$  | 50.64±10.28         | 83.82±41.20          | $0.08\pm0.14$  | $0.08 \pm 0.12$ | $1.32 \pm 0.50$ |
| Standard             | 3     | 143.97±108.33            | 5.23±6.04                   | 0.84±0.22       | 3.24±0.61        | 33.90±15.02         | 145.26±68.99         | 0.25±0.62      | 0.12±0.28       | 2.67±0.76       |
| Deviation            | 4     | 33.31±26.64              | $1.69 \pm 2.11$             | $0.86 \pm 0.26$ | $3.85 \pm 0.51$  | 26.11±9.09          | 85.73±39.97          | 0.14±0.30      | $0.04 \pm 0.08$ | $1.24{\pm}0.43$ |
|                      | 5     | 65.79±43.80              | $2.98 \pm 3.68$             | $1.40\pm0.43$   | 3.43±0.61        | 23.74±13.60         | 202.88±85.42         | 0.18±0.62      | $0.03 \pm 0.04$ | $1.24{\pm}0.46$ |
|                      | 1     | 35.63                    | 1.17                        | 0.89            | 2.30             | 27.27               | 97.01                | 0.05           | 0.02            | 1.00            |
| Median               | 2     | 37.84                    | 1.36                        | 0.84            | 3.03             | 49.04               | 76.99                | 0.04           | 0.04            | 1.00            |
|                      | 3     | 115.53                   | 3.09                        | 0.82            | 3.21             | 32.09               | 139.01               | 0.07           | 0.03            | 3.00            |
|                      | 4     | 25.09                    | 1.00                        | 0.83            | 3.79             | 26.39               | 79.01                | 0.05           | 0.02            | 1.00            |
|                      | 5     | 57.11                    | 1.92                        | 1.32            | 3.42             | 21.26               | 190.99               | 0.04           | 0.01            | 1.00            |
|                      | 1     | 171.48                   | 22.92                       | 1.97            | 3.24             | 57.14               | 357.00               | 4.58           | 0.74            | 3.00            |
|                      | 2     | 194.87                   | 19.84                       | 1.81            | 4.65             | 86.96               | 256.99               | 1.24           | 1.06            | 3.00            |
| Maximum              | 3     | 610.70                   | 34.79                       | 1.45            | 4.72             | 79.91               | 493.99               | 6.89           | 2.45            | 4.00            |
|                      | 4     | 174.43                   | 21.02                       | 2.12            | 5.25             | 55.67               | 241.01               | 3.50           | 0.91            | 3.00            |
|                      | 5     | 201.00                   | 27.18                       | 3.15            | 5.24             | 81.56               | 465.00               | 6.76           | 0.31            | 3.00            |
|                      | 1     | 3.22                     | 0.13                        | 0.33            | 1.05             | 4.17                | 25.01                | 0.00           | 0.00            | 1.00            |
|                      | 2     | 1.11                     | 0.07                        | 0.32            | 1.09             | 32.65               | 13.99                | 0.00           | 0.00            | 1.00            |
| Minimum              | 3     | 7.79                     | 0.14                        | 0.32            | 1.07             | 4.47                | 19.99                | 0.00           | 0.00            | 1.00            |
|                      | 4     | 1.17                     | 0.04                        | 0.29            | 2.88             | 5.56                | 16.99                | 0.00           | 0.00            | 1.00            |
|                      | 5     | 1.54                     | 0.07                        | 0.65            | 1.57             | 1.61                | 25.01                | 0.00           | 0.00            | 1.00            |

Table S4. Average, standard deviation, median, maximum and minimum of flood response metrics in different classes

| Table | S5.   | Flood | event | number | and th | neir 1 | percentage  | s of i | individual | classes | in all | the selected | d catchments |
|-------|-------|-------|-------|--------|--------|--------|-------------|--------|------------|---------|--------|--------------|--------------|
|       | ~ • • |       |       |        |        |        | per comunge |        |            |         |        |              |              |

|          |                |                 | Flood event number of class Percentage(%) |    |    |    |     |       |      |      |      |      |       |
|----------|----------------|-----------------|-------------------------------------------|----|----|----|-----|-------|------|------|------|------|-------|
| Basins   | Stations       | Abbreviations - | 1                                         | 2  | 3  | 4  | 5   | Total | 1    | 2    | 3    | 4    | 5     |
|          | Dongfeng       | DF              | 0                                         | 3  | 1  | 9  | 1   | 14    | 0.0  | 21.4 | 7.1  | 64.3 | 7.1   |
|          | Jingvu         | JY              | Ő                                         | 3  | 1  | 9  | 0   | 13    | 0.0  | 23.1 | 7.7  | 69.2 | 0.0   |
| Songliao | Muling         | ML              | Ő                                         | 0  | 2  | 7  | 3   | 12    | 0.0  | 0.0  | 16.7 | 58.3 | 25.0  |
|          | Yitong         | YT              | 0                                         | 6  | 0  | 7  | 1   | 14    | 0.0  | 42.9 | 0.0  | 50.0 | 7.1   |
|          | Tot            | tal             | 0                                         | 12 | 4  | 32 | 5   | 53    | 0.0  | 22.6 | 7.5  | 60.4 | 9.4   |
|          | Huating        | НТ              | 0                                         | 2  | 0  | 7  | 2   | 11    | 0.0  | 18.2 | 0.0  | 63.6 | 18.2  |
|          | Luanchuan      | LC              | 4                                         | 6  | 2  | 27 | 0   | 39    | 10.3 | 15.4 | 5.1  | 69.2 | 0.0   |
| Yellow   | Oiaotou        | OT              | 0                                         | 4  | 1  | 17 | 0   | 22    | 0.0  | 18.2 | 4.5  | 77.3 | 0.0   |
|          | Tantou         | ŤŤ              | 7                                         | 2  | 2  | 16 | 5   | 32    | 21.9 | 6.3  | 6.3  | 50.0 | 15.6  |
|          | Tot            | tal             | 11                                        | 14 | 5  | 67 | 7   | 104   | 10.6 | 13.5 | 4.8  | 64.4 | 6.7   |
|          | Beimiaoji      | BM              | 0                                         | 0  | 0  | 0  | 12  | 12    | 0.0  | 0.0  | 0.0  | 0.0  | 100.0 |
|          | Dapoling       | DP              | 0                                         | 6  | 1  | 5  | 9   | 21    | 0.0  | 28.6 | 4.8  | 23.8 | 42.9  |
|          | Huangnizhuang  | HN              | 1                                         | 0  | 1  | 4  | 4   | 10    | 10.0 | 0.0  | 10.0 | 40.0 | 40.0  |
|          | Lixin          | LX              | 0                                         | 5  | 5  | 4  | 4   | 18    | 0.0  | 27.8 | 27.8 | 22.2 | 22.2  |
|          | Luzhuang       | LZ              | 1                                         | 0  | 0  | 4  | 6   | 11    | 9.1  | 0.0  | 0.0  | 36.4 | 54.5  |
|          | Peihe          | PH              | 5                                         | 0  | 1  | 5  | 7   | 18    | 27.8 | 0.0  | 5.6  | 27.8 | 38.9  |
| 11 11    | Qilin          | QL              | 2                                         | 0  | 0  | 1  | 7   | 10    | 20.0 | 0.0  | 0.0  | 10.0 | 70.0  |
| Huaine   | Xiagushan      | XG              | 3                                         | 3  | 1  | 3  | 9   | 19    | 15.8 | 15.8 | 5.3  | 15.8 | 47.4  |
|          | Xinxian        | XX              | 3                                         | 3  | 2  | 2  | 14  | 24    | 12.5 | 12.5 | 8.3  | 8.3  | 58.3  |
|          | Yangzhuang     | YZ              | 0                                         | 5  | 1  | 2  | 2   | 10    | 0.0  | 50.0 | 10.0 | 20.0 | 20.0  |
|          | Zhongtang      | ZT              | 2                                         | 3  | 1  | 4  | 5   | 15    | 13.3 | 20.0 | 6.7  | 26.7 | 33.3  |
|          | Zhuganpu       | ZG              | 4                                         | 2  | 1  | 2  | 17  | 26    | 15.4 | 7.7  | 3.8  | 7.7  | 65.4  |
|          | Ziluoshan      | ZL              | 3                                         | 2  | 2  | 8  | 6   | 21    | 14.3 | 9.5  | 9.5  | 38.1 | 28.6  |
|          | Tot            | tal             | 24                                        | 29 | 16 | 44 | 102 | 215   | 11.2 | 13.5 | 7.4  | 20.5 | 47.4  |
|          | Anhe           | AH              | 5                                         | 3  | 2  | 3  | 1   | 14    | 35.7 | 21.4 | 14.3 | 21.4 | 7.1   |
|          | Anren          | AR              | 8                                         | 14 | 3  | 3  | 5   | 33    | 24.2 | 42.4 | 9.1  | 9.1  | 15.2  |
|          | Baitugang      | BT              | 1                                         | 3  | 1  | 6  | 0   | 11    | 9.1  | 27.3 | 9.1  | 54.5 | 0.0   |
|          | Biyang         | BY              | 1                                         | 1  | 0  | 10 | 0   | 12    | 8.3  | 8.3  | 0.0  | 83.3 | 0.0   |
|          | Chengcun       | CC              | 11                                        | 3  | 9  | 0  | 0   | 23    | 47.8 | 13.0 | 39.1 | 0.0  | 0.0   |
|          | Dutou          | DT              | 6                                         | 8  | 1  | 8  | 0   | 23    | 26.1 | 34.8 | 4.3  | 34.8 | 0.0   |
|          | Gaotan         | GT              | 4                                         | 5  | 4  | 6  | 4   | 23    | 17.4 | 21.7 | 17.4 | 26.1 | 17.4  |
|          | Jiahe          | JH              | 6                                         | 6  | 1  | 0  | 0   | 13    | 46.2 | 46.2 | 7.7  | 0.0  | 0.0   |
|          | Jiajiafang     | JJ              | 2                                         | 4  | 0  | 4  | 1   | 11    | 18.2 | 36.4 | 0.0  | 36.4 | 9.1   |
|          | Jinping        | JP              | 3                                         | 2  | 6  | 2  | 4   | 17    | 17.6 | 11.8 | 35.3 | 11.8 | 23.5  |
|          | Jitan          | JT              | 0                                         | 2  | 2  | 3  | 4   | 11    | 0.0  | 18.2 | 18.2 | 27.3 | 36.4  |
|          | Juwan          | JW              | 4                                         | 3  | 0  | 8  | 1   | 16    | 25.0 | 18.8 | 0.0  | 50.0 | 6.3   |
|          | Liangshuikou   | LK              | 24                                        | 6  | 6  | 26 | 3   | 65    | 36.9 | 9.2  | 9.2  | 40.0 | 4.6   |
|          | Liqingdian     | LQ              | 0                                         | 6  | 2  | 14 | 7   | 29    | 0.0  | 20.7 | 6.9  | 48.3 | 24.1  |
| Yangtze  | Loudi          | LD              | 7                                         | 5  | 6  | 2  | 5   | 25    | 28.0 | 20.0 | 24.0 | 8.0  | 20.0  |
|          | Miping         | MP              | 3                                         | 3  | 5  | 3  | 5   | 19    | 15.8 | 15.8 | 26.3 | 15.8 | 26.3  |
|          | Pingshi        | PS              | 5                                         | 3  | 1  | 8  | 5   | 22    | 22.7 | 13.6 | 4.5  | 36.4 | 22.7  |
|          | Shahebu        | SH              | 3                                         | 3  | 2  | 2  | 0   | 10    | 30.0 | 30.0 | 20.0 | 20.0 | 0.0   |
|          | Shanggao       | SG              | 10                                        | 2  | 2  | 3  | 2   | 19    | 52.6 | 10.5 | 10.5 | 15.8 | 10.5  |
|          | Shijie         | SJ              | 3                                         | 4  | 0  | 4  | 2   | 13    | 23.1 | 30.8 | 0.0  | 30.8 | 15.4  |
|          | Shimenkan      | SM              | 16                                        | 25 | 2  | 5  | 2   | 50    | 32.0 | 50.0 | 4.0  | 10.0 | 4.0   |
|          | Shuangfeng     | SF              | 9                                         | 8  | 10 | 8  | 1   | 33    | 27.3 | 24.2 | 21.2 | 24.2 | 3.0   |
|          | Shuangjiangkou | SK              | 8                                         | 3  | 12 | 1  | 0   | 24    | 33.3 | 12.5 | 50.0 | 4.2  | 0.0   |
|          | Siten          | SI              | 4                                         | 2  | 2  | 0  | 2   | 10    | 40.0 | 20.0 | 20.0 | 0.0  | 20.0  |
|          | Tangdukou      | 1D<br>TU        | 10                                        | 19 | 1  | 2  | 1   | 33    | 30.3 | 5/.6 | 3.0  | 6.1  | 3.0   |
|          | Tanghe         | 1H<br>TC        | 0                                         | 3  | 1  | 5  | 9   | 18    | 0.0  | 16.7 | 5.6  | 27.8 | 50.0  |
|          | Tonggu         |                 | 5                                         | 2  | 0  | 0  | 10  | 1/    | 29.4 | 11.8 | 0.0  | 0.0  | 58.8  |
|          | Tongtang       | 10              | 14                                        | 6  | 5  | 2  | 1   | 28    | 50.0 | 21.4 | 17.9 | /.1  | 5.6   |
|          | wux1gou        | WA              | 4                                         | 5  | 0  | /  | 1   | 1/    | 23.5 | 29.4 | 0.0  | 41.2 | 5.9   |

|           | Xiawan   | XW    | 6   | 0   | 0   | 2   | 3    | 11   | 54.5 | 0.0  | 0.0  | 18.2 | 27.3 |
|-----------|----------|-------|-----|-----|-----|-----|------|------|------|------|------|------|------|
|           | Xixia    | XI    | 1   | 1   | 3   | 5   | 6    | 16   | 6.3  | 6.3  | 18.8 | 31.3 | 37.5 |
|           | Xupu     | XP    | 12  | 14  | 4   | 5   | 1    | 36   | 33.3 | 38.9 | 11.1 | 13.9 | 2.8  |
|           | Yanling  | YL    | 18  | 4   | 4   | 7   | 0    | 33   | 54.5 | 12.1 | 12.1 | 21.2 | 0.0  |
|           | Yanta    | YA    | 6   | 2   | 1   | 4   | 0    | 13   | 46.2 | 15.4 | 7.7  | 30.8 | 0.0  |
|           | Yuanken  | YK    | 2   | 3   | 1   | 0   | 7    | 13   | 15.4 | 23.1 | 7.7  | 0.0  | 53.8 |
|           | Yucun    | YC    | 12  | 0   | 18  | 3   | 1    | 34   | 35.3 | 0.0  | 52.9 | 8.8  | 2.9  |
|           | Yuexi    | YX    | 14  | 4   | 11  | 5   | 3    | 37   | 37.8 | 10.8 | 29.7 | 13.5 | 8.1  |
|           | Zhangdou | ZD    | 4   | 3   | 0   | 5   | 0    | 12   | 33.3 | 25.0 | 0.0  | 41.7 | 0.0  |
|           | -        | Total | 251 | 190 | 125 | 181 | 97   | 844  | 29.7 | 22.5 | 14.8 | 21.4 | 11.5 |
|           | Anxi     | AX    | 1   | 3   | 4   | 6   | 0    | 14   | 7.1  | 21.4 | 28.6 | 42.9 | 0.0  |
|           | Longshan | LS    | 1   | 3   | 16  | 3   | 0    | 23   | 4.3  | 13.0 | 69.6 | 13.0 | 0.0  |
| Southoast | Tunxi    | TX    | 5   | 3   | 1   | 1   | 3    | 13   | 38.5 | 23.1 | 7.7  | 7.7  | 23.1 |
| Soumeast  | Xufan    | XF    | 1   | 3   | 5   | 1   | 0    | 10   | 10.0 | 30.0 | 50.0 | 10.0 | 0.0  |
|           | Zhaoan   | ZA    | 1   | 5   | 12  | 8   | 4    | 30   | 3.3  | 16.7 | 40.0 | 26.7 | 13.3 |
|           |          | Total | 9   | 17  | 38  | 19  | 7    | 90   | 10.0 | 18.9 | 42.2 | 21.1 | 7.8  |
|           | Hezikou  | HZ    | 42  | 17  | 7   | 22  | 1    | 89   | 47.2 | 19.1 | 7.9  | 24.7 | 1.1  |
|           | Huishui  | HS    | 3   | 3   | 0   | 4   | 0    | 10   | 30.0 | 30.0 | 0.0  | 40.0 | 0.0  |
| Pearl     | Libo     | LB    | 5   | 0   | 0   | 6   | 0    | 11   | 45.5 | 0.0  | 0.0  | 54.5 | 0.0  |
|           | Xiaogulu | XL    | 2   | 24  | 0   | 0   | 4    | 30   | 6.7  | 80.0 | 0.0  | 0.0  | 13.3 |
|           |          | Total | 52  | 44  | 7   | 32  | 5    | 140  | 37.1 | 31.4 | 5.0  | 22.9 | 3.6  |
| Total     |          | 347   | 306 | 195 | 375 | 223 | 1446 | 24.0 | 21.2 | 13.5 | 25.9 | 15.4 |      |

#### Reference

- Ball, G. H., and Hall, J.: ISODATA: A Novel Method of Data Analysis and Pattern Classification, Stanford Research Institute, Menlo Park, NTIS No. AD 699616, 1965.
- Calinski, T., and Harabasz, J.: A dendrite method for cluster analysis, Communications in Statistics-Theory and Methods, 3, 1-27, https://doi.org/10.1080/03610927408827101, 1974.
- Davies, D. L., and Bouldin, D. W.: A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224-227, https://doi.org/10.1109/TPAMI.1979.4766909, 1979.
- Duda, R. O., and Hart, P. E.: Pattern Classification and Scene Analysis, John Wiley & Sons, New York, ISBN 0471223611, 1973.
- Dunn, J. C.: Well-separated clusters and optimal fuzzy partitions, Journal of Cybernetics, 4, 95-104, https://doi.org/10.1080/01969727408546059, 1974.
- Friedman, H. P., and Rubin, J.: On some invariant criteria for grouping data, Journal of the American Statistical Association, 62, 1159-1178, https://doi.org/10.1080/01621459.1967.10500923, 1967.
- Friedman, H. X., and Rubin, J.: On some invariant criteria for grouping data, Journal of the American Statistical Association, 62, 1159-1178, https://doi.org/10.2307/2283767, 1967.

- Halkidi, M., and Vazirgiannis, M.: Clustering validity assessment: Finding the optimal partitioning of a data set, in: Proceedings 2001 IEEE International Conference on Data Mining, San Jose CA, USA, 29 November-02 December 2001, 187-194, https://doi.org/10.1109/ICDM.2001.989517, 2001.
- Halkidi, M., Vazirgiannis, M., and Batistakis, I.: Quality scheme assessment in the clustering process, in: Principles of Data Mining and Knowledge Discovery: 4th European Conference, PKDD 2000 Lyon, France, 13-16 September 2000, 265-276, 2000.
- Hartigan, J. A.: Clustering Algorithms, John Wiley & Sons, New York, ISBN 047135645X1975, 1975.
- Hubert, L. J., and Levin, J. R.: A general statistical framework for assessing categorical clustering in free recall, Psychological Bulletin, 83, 1072-1080, https://doi.org/10.1037/0033-2909.83.6.1072, 1976.
- Krzanowski, W., and Lai, Y.: A criterion for determining the number of groups in a data set using sum-of-squares clustering, Biometrics, 44, 23-34, https://doi.org/10.2307/2531893, 1988.
- Marriott, F. H. C.: Practical problems in a method of cluster analysis, Biometrics, 27, 501-514, https://doi.org/10.2307/2528592, 1971.
- McClain, J. O., and Rao, V. R.: Clustisz: A program to test for the quality of clustering of a set of objects, Journal of Marketing Research, 12, 456-460, https://doi.org/10.2307/3151097, 1975.
- Milligan, G. W., and Cooper, M. C.: An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159-179, https://doi.org/10.1007/BF02294245, 1985.
- Milligan, G. W.: A Monte Carlo study of thirty internal criterion measures for cluster analysis, Psychometrika, 46, 187-199, https://doi.org/10.1007/BF02293899, 1981.
- Milligan, G. W.: An examination of the effect of six types of error perturbation on fifteen clustering algorithms, Psychometrika, 45, 325-342, https://doi.org/10.1007/BF02293907, 1980.
- Ratkowsky, D. A., and Lance, G. N.: Criterion for determining the number of groups in a classification, Australian Computer Journal, 10, 115-117, 1978.
- Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53-65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.
- Sarle, W. S.: SAS Technical Report A-108, Cubic Clustering Criterion, SAS Institute Inc, Cary, NC, 1983.
- Scott, A. J., and Symons, M. J.: Clustering methods based on likelihood ratio criteria, Biometrics, 27, 387-397, https://doi.org/10.2307/2529003, 1971.