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Abstract. This study examines future drought propagation
(the temporal transition from meteorological to agricultural
droughts), persistence (inter-seasonal agricultural droughts),
and spatial concurrence (simultaneous occurrence of mon-
soonal agricultural droughts across regions) under climate
change using a multivariate copula approach in monsoon-
dominant Asia. The standardised precipitation index (SPI)
and standardised soil moisture index (SSI) are used to anal-
yse meteorological and agricultural droughts, respectively.
Under the worst-case emission scenario (Shared Socioeco-
nomic Pathway, SSP5-8.5), South Asia (excluding western
and peninsular India) and eastern China are projected to
experience intensified drought propagation compared to in
the historical period (1975–2014). In addition to increased
propagation in these regions, the propagated agricultural
droughts are expected to persist across seasons in the future.
On the hydrologically significant Tibetan Plateau, all-season
droughts that were historically rare, with return periods ex-
ceeding 50 years, could occur as frequently as once every
5 years in the far-future period (2061–2100). Random for-
est models indicate that the temperature is a key driver of
future agricultural droughts in nearly half of the study area.
The increasing non-rainfall-related agricultural droughts in
the far future could be attributed to the rise in temperature.
Based on bivariate return periods of spatial concurrence, fre-
quent future spatial drought concurrence is anticipated be-
tween populous South Asia and East Asia compared to the
historical time frame, posing risks to water and food se-
curity. Conversely, Southeast Asia is projected to experi-
ence reduced spatial drought concurrence with other regions,
which could encourage greater regional cooperation. Over-
all, this comprehensive approach, which integrates three as-

pects of drought dynamics, offers valuable insights for cli-
mate change mitigation, planning, and adaptation.

1 Introduction

Droughts, although not instantaneous, rank among the costli-
est disasters due to their prolonged and widespread im-
pacts (Hao et al., 2016; Smith and Katz, 2013; Smith and
Matthews, 2015). They are known to manifest in differ-
ent forms, beginning with meteorological drought caused by
a precipitation deficit. If sustained, this can reduce runoff
and soil moisture, leading to hydrological and agricultural
droughts that impact entire ecosystems (Das et al., 2022).
The propagation process is driven by multiple factors such
as regional climate, teleconnections, topography, and anthro-
pogenic activities (Han et al., 2019). Despite its complex-
ity, understanding the evolution of meteorological droughts
into other forms is crucial for enhancing disaster prepared-
ness and mitigation, particularly in the context of climate
change. When a meteorological drought evolves into an agri-
cultural or hydrological drought, the risks are further height-
ened if the agricultural drought persists across multiple sea-
sons (Ford and Labosier, 2014). Given the spatiotemporal na-
ture of droughts, such events can also occur simultaneously
across multiple regions (Gaupp et al., 2017). Therefore, a
comprehensive assessment requires examining the character-
istics of drought propagation, persistence, and spatial con-
currence.

The different drought forms are related to the components
and processes of the hydrological cycle. The propagation
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of different forms includes a certain time lag, which most
studies focus on (Barker et al., 2016; Bevacqua et al., 2021;
Wang et al., 2024). Such studies use the cross-correlation be-
tween time series of monthly soil moisture (or streamflow)
and accumulated precipitation to deduce propagation time.
Climate characteristics are known to influence drought prop-
agation. For instance, Zhang et al. (2021) found that arid
basins tend to have shorter propagation durations than humid
and sub-humid basins do. Seasonality also influences prop-
agation, and Dai et al. (2022) determined faster propagation
in summer and autumn compared to in spring and winter.
Apart from the climatic factors, region-specific characteris-
tics of soil texture, vegetation, and topography affect evap-
otranspiration and eventually the propagation duration (Wu
and Hu, 2024). Hence, propagation duration estimated us-
ing the correlation-based approach captures the interplay be-
tween the key factors. Further, propagation probability mea-
suring the likelihood of meteorological drought evolving into
other forms is computed using copula functions (Xu et al.,
2021). Analysing the propagation process helps in forecast-
ing impending agricultural droughts, which is pertinent since
soil moisture deficits (i.e. agricultural droughts) directly im-
pact crop and vegetation growth (Modanesi et al., 2020). Af-
ter establishing the relationship between precursor meteoro-
logical and antecedent agricultural droughts, the persistence
and cross-regional concurrence of agricultural droughts need
to be analysed.

Ford and Labosier (2014) defined persistence as the ten-
dency of droughts to extend temporally from one season to
another. Inter-seasonal drought dynamics can also be anal-
ysed using a copula-based multivariate approach, treating
drought index values from each season as random variables
(Chen et al., 2016; Fang et al., 2019; Shi et al., 2020; Swain
et al., 2024; Xiao et al., 2017). These previous studies anal-
ysed the transition from dryness to wetness (and vice versa)
or prolonged wetness and prolonged dryness between two
successive seasons using bivariate copulas. Of the four pos-
sible inter-seasonal scenarios, prolonged dryness, referring
to inter-seasonal drought persistence, can affect vegetation
and crop growth. Nonetheless, limiting the analysis to two
consecutive seasons may overlook long-term drought persis-
tence across seasons that overlap with crop growth cycles.
Crops are cultivated across multiple seasons throughout the
study area, with different stages of crop growth aligning with
the pre-monsoon, monsoon, and post-monsoon seasons. For
example, in China, spring crops are typically sown in May
and harvested around October, while winter crops like wheat
are planted in September and harvested by the following June
(Li and Lei, 2021). Similarly, in South Asia, different crops
are grown in three different phases including Zaid, Kharif,
and Rabi, which correspond to the pre-monsoon, monsoon,
and post-monsoon seasons, respectively (Joseph and Ghosh,
2023). Adequate soil moisture during all these periods is crit-
ical for crop development, and agricultural droughts affecting
the three phases could be highly detrimental. Beyond tem-

poral aspects, the spatial concurrence (or compounding) of
droughts poses a significant threat to food or energy secu-
rity when events occur simultaneously across multiple bread
baskets or hydropower basins (Lv et al., 2025, 2024). In this
context, studies have utilised copulas to estimate the multi-
variate joint probability of key crop and pasture regions ex-
periencing concurrent droughts (Gaupp et al., 2020; Sarhadi
et al., 2018).

Despite extensive research on drought-related topics, sev-
eral gaps remain to be addressed. First, various aspects of
droughts, such as propagation, persistence, and spatial con-
currence, have largely been studied in isolation. Several sem-
inal works (Dai et al., 2022; Ding et al., 2021; Fawen et al.,
2023; Xu et al., 2023b) focus on the propagation process
but tend to overlook its repercussions, namely the persis-
tence and spatial concurrence of agricultural droughts. While
propagation analysis deals with the transition from a precur-
sor meteorological drought to an agricultural drought, per-
sistence and spatial concurrence capture their temporal and
spatial extents. Given the spatiotemporal nature of droughts,
it is crucial to examine these three aspects together for a more
comprehensive assessment. Secondly, previous studies have
considered drought persistence as a phenomenon spanning
two consecutive seasons. However, given the importance for
crop growth of sufficient soil moisture across three sequen-
tial seasons (pre-monsoon, monsoon, and post-monsoon), a
trivariate extension of the existing bivariate copula frame-
work could more accurately capture drought persistence. Fi-
nally, most studies on drought persistence and spatial concur-
rence rely on observational data. Incorporating climate pro-
jection data can offer insights into how droughts may persist
and concur spatially in the future under climate change.

To address the aforementioned gaps, this study pro-
poses a comprehensive copula-based multivariate probabilis-
tic framework, which will be applied to climate model
projection data. The approach is applied to the monsoon-
dominant Asian region under climate change, comparing
drought characteristics between future and historical time
frames. The monsoon-dominant Asian region is home to sev-
eral global rice bowls and wheat baskets that support local
food security and play a key role in the international food
trade (Gaupp et al., 2020). Given the region’s significance, it
is appropriate to study a comprehensive drought framework
within this study area. Initially, the propagation probability
from meteorological to agricultural droughts is estimated for
different seasons, and the influencing factors are identified.
Next, the persistence of agricultural droughts across seasons
is evaluated. Finally, the spatial concurrence of monsoonal
agricultural droughts across various regions is assessed. This
study offers a novel attempt to integrate these three aspects of
droughts and analyse their interrelationships using multivari-
ate copula functions. The resulting framework will identify
key regions and patterns of future droughts, providing valu-
able insights for mitigation strategies.
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2 Methodology

2.1 Drought propagation

2.1.1 Drought propagation duration

Indices such as the standardised precipitation index (SPI) and
the standardised soil moisture index (SSI) are standard nor-
mal variates commonly used to quantify meteorological and
agricultural droughts, respectively (Hao and AghaKouchak,
2013). SPI is based on monthly precipitation, while SSI re-
lies on monthly soil moisture. These standardised indices
are widely applied to drought studies due to their flexibility
at capturing seasonal variations through different timescales
(TSs). Timescales represent accumulation periods, defined
by aggregating precipitation or soil moisture over a specified
number of months. For each month, the accumulated values
(for a given timescale) are transformed into a standardised
index. The standardisation process involves computing the
cumulative probability of the accumulated values for a given
month, which is then transformed into a standardised normal
variate (z score) with a mean of zero and a standard devia-
tion of 1. This process is repeated for all the months (Mc-
Kee et al., 1993). Standardisation enables fair comparison of
drought conditions across the diverse study area. Standard-
ised values below (above) zero indicate dry (wet) conditions.
The Pearson correlation between monthly SSI (on a 1-month
timescale) and SPI across various timescales (TSs = 1 to 12)
is calculated for each month. The SPI timescale that shows
the highest correlation with SSI indicates the drought propa-
gation duration for that month (Barker et al., 2016). Details
of the precipitation and soil moisture data used to compute
these indices are provided in Sect. 3.

2.1.2 Drought propagation probability

The propagation of meteorological to agricultural drought,
as shown in Fig. 1a, is assessed by the probability of agricul-
tural drought occurrence (SSI≤−0.5) given the presence of
pre-existing accumulated meteorological droughts over the
propagation duration (SPITS ≤−0.5) (Long et al., 2024; Xu
et al., 2021):

P(SSI≤−0.5 |SPITS ≤−0.5)

=
C(G(−0.5),F (−0.5))

F (−0.5)
, (1)

where G and F represent the marginal distributions of the
random variables SSI and SPI (for the chosen timescale),
respectively, while C denotes the bivariate copula function
fitted to model the dependence between the two variables.
The optimal copula function is selected from the Clayton,
Frank, Gaussian, Gumbel, Joe, Student t , BB1, BB6, BB7,
and BB8 families based on maximum log-likelihood crite-
rion (Xu et al., 2023a). The drought propagation duration and
conditional probability (Eq. 1) used to define propagation are

computed for each grid and for every month across the study
area.

2.1.3 Factors influencing soil moisture and propagation
using random forest (RF) models

Random forest (RF) models have recently been employed to
identify the primary drivers of drought propagation (Dai et
al., 2022; Li et al., 2023). These studies make use of inter-
pretable outputs, such as the variable importance feature, to
rank the influential factors. Since meteorological droughts
contribute to antecedent soil moisture (SM) deficits, pre-
cipitation (Pr) is one of the key factors included in the RF
model. Another important climatic factor is evapotranspira-
tion, which, in turn, is influenced by temperature (T ), hu-
midity (H ), vegetation cover (VC), solar radiation (SR), and
wind (W ) (Guo et al., 2017). These climatic variables serve
as predictors, with soil moisture as the predictand in the RF
models (f1) (Breiman, 2001):

SM= f1(T ,Pr,H,VC,SR,W,TS). (2)

To account for the memory effect of soil moisture, the pre-
dictors are standardised using timescales (TSs) ranging from
1 to 12 months as one of the predictor variables (Muthuvel
et al., 2023). The RF models are trained and tested using an
80 : 20 random data split for each grid point in the study area.
Their performance is evaluated based on the coefficient of
determination (R2) and root-mean-square error (RMSE) val-
ues, calculated from the predicted and observed values in the
testing dataset. Due to the computational intensity involved
in training 5364 models (1788 grids times 3 timescales), a
fixed set of hyperparameters is used. The three fixed hyper-
parameters are the number of trees (ntree= 500) following
Dai et al. (2022), the number of variables tried at each split
(mtry= 5), and the minimum size of terminal nodes (node-
size= 5). These temporal RF models predicting soil moisture
do not explicitly relate to the soil moisture deficit. To address
this and to complement the grid-specific temporal RF mod-
els, spatial RF models that directly predict drought propa-
gation probabilities (CPs=P (SSI <−0.5| SPI < − 0.5) in
Eq. 1) for each time frame (three RF models in total) are also
modelled.

Hu et al. (2024) developed spatial RF models to assess the
relative importance of variables influencing drought prop-
agation. In the present study, these models are considered
spatial because each grid cell is associated with a single
propagation probability value (the predictand), forming one
row in the training dataset. The predictors include elevation,
climate zones, season (represented by the month), and the
monthly means of various climate variables (i.e. tempera-
ture: TMean, precipitation: PrMean, humidity: HMean, vegeta-
tion cover: VCMean, solar radiation at 100 m: SRMean, and
wind speed: WMean). The spatial RF model (f2) predicting
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Figure 1. (a) Domain of the conditional probability defining the
propagation from meteorological to agricultural drought, (b) Venn
diagram of all possible inter-seasonal drought scenarios, and (c) do-
main of conditional and joint exceedance probability for studying
drought spatial concurrence.

the propagation probability (CP) is expressed as follows:

CP= f2(Tmean,Prmean,Hmean,VCmean,SRmean,Wmean

elevation,climatezone,month). (3)

Since propagation probability is computed over an entire
time frame, the climate variables are aggregated as monthly
means for each time frame. The spatial RF models capture
the influence of stationary predictors (e.g. elevation and cli-
mate zone), which temporal models cannot do. Climate zones
are defined based on the Köppen–Geiger climate classifica-
tion (Kottek et al., 2006). In contrast, the temporal RF models
(5364 in total: 1788 grids times 3 time frames) capture tem-
poral climatic variations, with each month’s data forming a
row in the training dataset for a given grid-specific model.
These temporal variations are aggregated in the spatial RF
models. To predict drought propagation probabilities across
time frames using spatial RF models (three models, one
per time frame), extensive grid-based hyperparameter tun-
ing with cross-validation is conducted. The dataset consists
of 1788 spatial samples, randomly divided into training and
testing sets. Five-fold cross-validation is performed by parti-
tioning the training set into five equal subsets. The model is
trained on four folds and validated on the fifth, repeating the
process five times so that each fold serves once as the vali-
dation set. The average R2 value across the folds is used to
guide the hyperparameter tuning. Hyperparameters are cho-
sen from all combinations of ntree={100,500,1000,1500},
mtry={2,5,7,9}, and nodesize={1,5,10,15,20} based on
cross-validation R2 values. Final predictions are made from
the testing set using the optimal hyperparameters, and model
performance is evaluated using the R2 (coefficient of deter-
mination), BIAS (mean bias error), MAE (mean absolute
error), MSE (mean squared error), and RMSE (root-mean-
squared error) values. The most influential variables in pre-
diction accuracy are ranked for both RF models based on the
%IncMSE values (percentage increase in mean squared er-
ror). Variables with higher %IncMSE are those that are most
influential in determining soil moisture (Eq. 2) and drought
propagation (Eq. 3).

2.1.4 Relationship between rainfall deficit and
agricultural droughts

To check if an agricultural drought is associated with a prior
rainfall deficit (below-normal rainfall denoted by SPI < 0),
the reverse of the propagation probability (Eq. 1) is derived
as follows:

P(SPITS ≤ 0|SSI≤−0.5)=
C(F(0),G(−0.5))

G(−0.5)
, (4)

where G and F represent the marginal distributions of the
random variables SSI and SPI (for the chosen timescale TS),
respectively, while C denotes the bivariate copula function
fitted to model the dependence of the two variables. This

Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025 https://doi.org/10.5194/hess-29-3203-2025



D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation 3207

reverse-propagation probability reflects the extent to which
an agricultural drought is linked to a prior meteorological
drought.

2.2 Drought persistence

While monsoonal droughts are a key focus, given that these
months account for the majority of annual rainfall, droughts
during the pre- and post-monsoon periods can also severely
impact crop growth. Yang et al. (2021) show that soil mois-
ture deficits prior to planting can impair seedling root devel-
opment, significantly affecting crop yields. Thus, droughts in
the pre-monsoon that coincide with the land preparation and
early sowing stages must also be analysed. Moreover, resid-
ual soil moisture from the monsoon is crucial for winter (or
post-monsoon) crop growth. Using joint probabilities, eight
different scenarios of inter-seasonal droughts can be mea-
sured from the three seasons, as shown in Fig. 1b. The worst-
case scenario is the persistent all-season drought. To this end,
agricultural drought indices during the end months of the pre-
monsoon, monsoon, and post-monsoon seasons are used as
random variables. For regions above the Equator, SSI values
during May, September, and December are considered to be
representative of the three respective seasons (Muetzelfeldt
et al., 2021; Zhou et al., 2011). For regions at the Equa-
tor and below the Equator in SEA, the months of Septem-
ber, January, and May are used to study the inter-seasonal
relationship since some of the grids receive rainfall during
both summer and winter monsoons (van Noordwijk et al.,
2017; Singh and Qin, 2020). Fang et al. (2019) used bivari-
ate joint distributions considering indices during wet and dry
seasons. Extending it to three seasonal drought variables, the
probabilities of persistent agricultural droughts (defined by
SSI) during the pre-monsoon, monsoon, and post-monsoon
months in a given water year are estimated as

P(SSIpre−monsoon ≤ i,SSImonsoon ≤ i,SSIpost-monsoon ≤ i)

= C(F(i),G(i),H(i)) , (5)

where F , G, and H are the marginal distributions of the three
seasonal SSI values, while i refers to the drought severity
thresholds. Shah and Mishra (2020) suggested using a Gaus-
sian copula for multivariate analysis involving more than two
drought index values. Hence, the present study uses a Gaus-
sian copula (C) to represent the dependence among the three
random variables of seasonal droughts. In terms of return
periods (Tpersistent droughts), drought persistence for a given
severity threshold (i) is derived as (Fang et al., 2019)

Tpersistent droughts = 1/P (SSIpre-monsoon ≤ i,SSImonsoon ≤ i,
SSIpost-monsoon ≤ i) . (6)

Apart from the worst-case scenario of persistent all-season
drought, there are other scenarios, such as two-season-
drought (only two of the three seasons are drought-affected
in a water year), isolated single-season-drought (only one of

the three seasons is drought-affected in a water year), and
no-drought (all three seasons in a water year have above nor-
mal SSI) scenarios. All eight scenarios will be computed us-
ing Gaussian copulas (C) based on the trivariate probabilities
(similar to Eq. 5) described in Table S1 in the Supplement.

2.3 Spatial concurrence

One of the most commonly used drought attributes is the spa-
tial coverage of drought, measured as the percentage of grids
experiencing drought (SSI < i) within a given region during
a specific month. Following the approach of Yu et al. (2023),
which uses copula-based conditional probability to analyse
spatial concurrence (Fig. 1c), if Reg2 and Reg1represent the
spatial agricultural drought coverage (SSI < i) of two re-
gions, the drought concurrence between them is defined as

P(Reg2 ≥ k |Reg1 ≥ k)

=
1−F(k)−G(k)+C(F(k),G(k))

1−F(k)
, (7)

where k is the threshold of spatial drought coverage, and F
and G are the marginal distributions of Reg1 and Reg2, re-
spectively. The bivariate return period to estimate monsoonal
concurrent droughts (TCD) is derived as (Muthuvel and Ma-
hesha, 2021)

TCD = 1/P (Reg2 ≥ k ,Reg1 ≥ k)= 1/(1−F(k)−G(k)

+C(F(k)G(k))) . (8)

After fitting appropriate bivariate copula C (similar to
Eq. 1), conditional probability curves (Eq. 7) and return pe-
riod contours (Eq. 8) for various drought coverage thresh-
olds (k) will be plotted. Figure 1c shows the joint (upper-
right shaded domain) and conditional (upper-right and right
shaded domains) probability domains of the two regions
exceeding the drought coverage threshold (k) used to de-
rive Eqs. (7) and (8). While empirical marginal distribu-
tions are used in Eqs. (1), (4), and (5), appropriate theo-
retical marginal distributions, selected from generalised ex-
treme value, gamma, Gumbel, lognormal, and Pearson type-
III distributions based on the lowest Akaike information cri-
terion (AIC) values, are fitted in Eqs. (7) and (8) to produce
smooth drought frequency curves (Datta and Reddy, 2023).
The entire analysis is conducted in the R programming lan-
guage (v4.3.3; R Core Team, 2024), utilising packages such
as lmomco (Asquith, 2024) for marginal distribution fitting,
rvinecopulib (Nagler and Vatter, 2023) for copula functions,
rnaturalearth (Massicotte and South, 2023) for mapping, and
ggplot2 (Wickham, 2016) for figure plotting.

3 Study area and data

The study area of monsoon-dominant Asia (Fig. 2a and b)
comprises countries in the domains of Tibet (TIB), South
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Asia (SAS), East Asia (EAS), and Southeast Asia (SEA).
Grid points at a 1°×1° spatial resolution within the adminis-
trative boundaries of 21 countries are used in the study. The
observed monthly precipitation and soil moisture data be-
tween 1975 and 2014 from GLDAS (Global Land Data As-
similation System, version 2.0) are used for reference (Rodell
et al., 2004). The study uses the worst-case emission sce-
nario of SSP5-8.5 (Shared Socioeconomic Pathway) from the
Coupled Model Intercomparison Project phase 6 (CMIP6)
for future projections. Multi-model ensembles (MMEs) of
monthly precipitation (pr) and soil moisture (mrso) are cal-
culated using Bayesian model averaging (BMA) based on
simulated historical climate and observed data using the R
library BMA (Raftery et al., 2024). While MMEs using sim-
ple averages with equal weights for all models have proven
effective in studying droughts (Feng et al., 2023), the po-
tential over- or underestimation of variables by individual
models can be mitigated by assigning appropriate weights
through BMA (Zhai et al., 2020; Muthuvel et al., 2023). A
detailed explanation of the MMEs based on the Bayesian av-
eraging method is provided in Tian et al. (2025). A compar-
ison of the spatial monthly distributions between the MMEs
and observed data reveals substantial similarity for both
rainfall (Fig. 2c) and soil moisture (Fig. S1 in the Supple-
ment). Additionally, the MME outperforms the eight individ-
ual models (BCC-CSM2-MR, CanESM5, CNRM-CM6-1,
CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, MIROC-
ES2L, and MRI-ESM2-0) (Figs. S2 and S3) and will there-
fore be used to compute the drought indices. Furthermore,
monthly plots of the mean differences between the global cli-
mate model (GCM) data (multi-model mean using Bayesian
model averaging) and GLDAS (observed data) show that the
median monthly precipitation difference is within ±10 mm
for most months across all regions (Fig. S4a). Similarly,
the median soil moisture differences remain within ±20 mm
across all regions and months, substantially smaller than the
observed median monthly soil moisture values, which are
around 500 mm (Fig. S4b). Notably, the differences in cu-
mulative drought severities between the observed data and
the historical MME indicate that most regions exhibit differ-
ences within ±10 % for both meteorological (except for cer-
tain grids in the western SAS and TIB regions, with ±20 %
difference) and agricultural droughts (Fig. S5). The indi-
vidual GCMs are interpolated and regridded to a uniform
spatial resolution of 1°× 1°. These selected climate mod-
els also provide access to additional monthly variables, de-
fined according to the CMIP6 definitions, including temper-
ature (tas), humidity (huss), vegetation cover (lai), radiation
(rsds), and wind (sfcWind), which will be used in the RF
models (Eqs. 2 and 3). The climate models are freely avail-
able and are managed by the World Climate Research Pro-
gram (WCRP, 2024).

GLDAS datasets are widely employed in drought research
and have been shown to effectively capture major historical
drought events. For instance, we plotted the percentage of

areas affected by meteorological and agricultural droughts
using GLDAS data (Fig. S6), which clearly reflects signif-
icant events such as the 2009 drought (Barriopedro et al.,
2012). Additionally, Gupta and Karthikeyan (2024) reported
good agreement in meteorological drought characteristics
across MSWEP (Multi-Source Weighted-Ensemble Precip-
itation), CHIRPS (Climate Hazards group InfraRed Precipi-
tation with Stations data), and GLDAS, supporting the relia-
bility of GLDAS. While MSWEP and GLEAM (Global Land
Evaporation Amsterdam Model) are excellent datasets for
drought propagation studies, the existing literature suggests
that GLDAS performs comparably well. Furthermore, the
three time frames used in the study, historical (1975–2014),
near future (2021–2060, and far future (2061–2100), were
selected to ensure equal-length epochs of 40 years for con-
sistent comparison of drought propagation, persistence, and
spatial concurrence. However, MSWEP and GLEAM only
begin in 1979 and 1980, respectively, making them unsuit-
able for this time range. Given these considerations, GLDAS
is an appropriate choice for the present study.

4 Results and discussion

4.1 Drought propagation duration

Initially, propagation durations based on the timescales of
SPI (TS between 1 and 12) corresponding to the maximum
correlation with monthly SSI (TS= 1) are estimated for each
month across the entire study area, with their distributions
presented in Fig. 3a. Unlike earlier studies (Guo et al., 2020)
that considered all months together to estimate drought prop-
agation duration, calculating propagation duration for each
month is crucial in monsoon-dominant regions with pro-
nounced seasonal rainfall disparities. During the historical
period, approximately 32 % of the study area exhibited prop-
agation durations of 3 months or less in June. The percentage
of the area experiencing such short-term rapid propagation
durations (TS= 1 to 3) steadily increases to 55 % by October
before progressively declining to 23 % by April. Conversely,
the percentage of the area with prolonged propagation du-
ration (TS > 6 months) increases steadily from 25 % in Oc-
tober to 55 % in May, followed by sharp decline during the
monsoon months (June to October). This patten aligns with
the seasonal variability associated with the onset and with-
drawal of the monsoon in the region. Soil moisture replen-
ishes with the onset of the monsoon, as indicated by shorter
timescales from June to October. Most areas in the study re-
gion receive substantial precipitation during this period, and
soil moisture is heavily dependent on it.

Owing to the sensitivity of soil moisture to monsoon pre-
cipitation, prolonged propagation durations are observed in
the post-monsoon months. Notably, parts of arid SAS and
TIB exhibit propagation durations up to 12 months during
May in the historical time frame, as shown in Fig. 3b. From
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Figure 2. (a) Study area of monsoon-dominant Asia with its boundaries (geographic information system, GIS, base map layers were down-
loaded from Esri et al. (2025) and administrative boundary shapefiles from Natural Earth (2025)); (b) percentage difference in precipitation
between summer (June–October) and winter (November–March) monsoons, regional divisions are based on thematic maps from works such
as Giorgi and Bi (2009) and Sillmann et al. (2013); and (c) a monthly comparison of observed and historical GCM precipitation data across
the four regions.

the maps of propagation durations (Fig. S7), regions in SEA,
such as Indonesia and the Malay Peninsula, show compar-
atively shorter propagation durations despite differences in
seasonality. Unlike the temporal skewness of the rainfall dis-
tribution during the monsoon in the study area, rainfall in
these regions is more evenly distributed across most months
of the water year. The percentage distribution of propaga-
tion durations in the near (2021–2060) and far future (2061–
2100) remains largely similar to that of the historical time
frame (1975–2014), aligning with the monsoon progression.
Similar findings of minimal shifts in propagation durations
under climate change have been reported in studies from

South China (Zhou et al., 2023, 2021), albeit for propagation
from meteorological to hydrological droughts.

4.2 Drought propagation probability

Conditional probabilities (CPs), which define the propaga-
tion of agricultural drought from meteorological droughts for
each month, are calculated based on the previously computed
propagation durations (SPI timescales, Fig. 4). Comparing
the median CP values, half of the grids in EAS exhibit prop-
agation probabilities below 0.25 in the historical time frame
across all seasons (Fig. 4a). In the near- and far-future time
frames, the median CP values increase to approximately 0.41
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Figure 3. Propagation durations (in timescale, TS) shown as (a) percentages across the study area for each month in different time frames
and (b) spatial maps for different seasons in the historical time frame.

and 0.52 across seasons, respectively. In SAS, the histori-
cal median CP reaches its highest value in September (0.33)
at the end of the monsoon season, followed by December
(0.27), January (0.23), and May (0.2) towards the end of the
region’s water year. Similar to EAS, SAS shows higher me-
dian CP values in the near- and far-future time frames com-
pared to the historical period. However, unlike the historical
time frame, future propagation probabilities in SAS during
non-monsoon months (median CPs of 0.58, 0.61, and 0.64
for December, January, and May, respectively, in the near fu-
ture) exceed those of monsoon months (median CP of 0.44
for September in the near future). In SEA, the distribution
of CP values remains largely consistent between the histori-
cal and near-future time frames across all seasons, indicating

that drought propagation probabilities remain stable. How-
ever, in the far-future time frame, median CP values drop sig-
nificantly compared to in the other two periods. For instance,
the historical median CP of about 0.42 across all months de-
clines sharply to 0.25, 0.34, 0.32, and 0.24 during January,
May, September, and December, respectively, in the far fu-
ture. The reduction in CP values is even more pronounced
in TIB, where the historical median CP of approximately
0.50 decreases to 0.15 and 0.12 in the near- and far-future
time frames, respectively. This decline suggests that meteo-
rological droughts are less likely to evolve into agricultural
droughts in the future compared to in the historical period,
which is a positive indication for grids in TIB and SEA. De-
spite minimal shifts in the propagation durations estimated
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earlier, significant changes in propagation probabilities are
expected across the study area in the future.

The differences in CP values during the near and far future
compared to in historical time frames are spatially depicted
in Fig. 4b. Regions with increased propagation probability
in the far future across seasons relative to the historical pe-
riod include most of SAS (excluding peninsular and western
India) and eastern China, making these areas more vulnera-
ble to meteorological droughts transitioning into agricultural
droughts. These regions have also been identified as prone to
compound dry–hot events (the coexistence of meteorologi-
cal droughts and above-normal-heat events) under future cli-
mate change scenarios (Feng et al., 2025; Prabhakar et al.,
2023). Rising temperatures associated with climate change
are likely to exacerbate this risk by depleting soil moisture
and accelerating the drought propagation process. In con-
trast, regions such as the arid Xinjiang province in northwest-
ern China (TIB domain) and mainland Southeast Asia (ex-
cept during May) are expected to experience reduced drought
propagation in the far future compared to in the historical
time frame. Previous studies (Try and Qin, 2024; Wang et
al., 2022) project more frequent extreme precipitation events
in these areas under the SSP5-8.5 scenario, which could mit-
igate drought propagation.

4.3 Factors affecting soil moisture and propagation

Several climatic factors contribute to soil moisture depletion
and exacerbate the drought propagation process. Key drivers
identified by previous studies (Wang et al., 2023) include pre-
cipitation, air temperature, specific humidity, solar radiation,
near-surface wind speed, and leaf area index (vegetation), all
of which are used as predictors in RF models to estimate soil
moisture. To account for their lag effects on monthly SSI,
standardised indices of these variables at timescales ranging
from 1 to 12 months are incorporated into the model. An
RF model is developed for each grid, and its performance is
evaluated using the coefficient of determination (R2). Over-
all, RF models perform better in the future time frames, with
most achieving R2 values above 0.75 in the far future and
above 0.45 in the near future, compared to lower R2 val-
ues in the historical period (Fig. 5a). RMSE (standardised
soil moisture) values are much lower (less than 0.1) in the
TIB region across time frames (Fig. S8). RMSE values are
higher (around 0.7) in SAS and southern EAS in the histori-
cal and far-future time frames, respectively. The distribution
of variable importance in the historical time frame reveals
similar quantile values for temperature, humidity, and radi-
ation (Fig. 5b), although temperature tends to have higher
quantiles. The predictor with the highest variable importance
is identified as the key driver. As shown in Fig. 5c, in the his-
torical time frame, humidity (32 % of the study area) and veg-
etation cover (25 % of the study area) are the primary drivers
of agricultural droughts. However, in future time frames,
temperature emerges as the dominant driver in nearly half

of the study area (see Fig. S9). This finding, highlighting the
increasing influence of temperature on soil moisture, aligns
with the projected rise in compound drought and heatwave
events reported by Tripathy et al. (2023). Despite low R2

values in some cases, the variable with the highest feature
importance still demonstrates a relatively stronger influence
compared to the other climate predictors. Apart from the cli-
matic variables, other grid-specific predictors such as eleva-
tion (Zhang et al., 2024) and climate characteristics (Zhang et
al., 2021), which play a crucial role, are not included in these
RF models. Since these variables are temporally constant for
a given grid, they do not affect the time series prediction.
Consequently, at certain grid points with low R2 values, fac-
tors beyond the selected climate variables may influence soil
moisture.

To complement these temporal RF models, spatial RF
models incorporating grid-specific predictors, such as ele-
vation and climate classification along with aggregated cli-
mate variables, are used to predict propagation probability.
The cross-validated R2 values are computed for all combi-
nations of hyperparameters. The hyperparameter mtry (the
number of variables tried at each split) proves to be the most
sensitive, with higher values (9 out of 10 variables) perform-
ing well (yielding higher R2 values across validation folds)
compared to ntree (number of trees) and nodesize (minimum
size of terminal nodes) (Fig. 6a). A combination of higher
mtry and lower nodesize improves the predictive skills of the
RF models regardless of the ntree values. The hyperparame-
ter combination of ntree= 1000, mtry= 9, and nodesize= 1
yields the best RF models, with R2 values of 0.78 and 0.64 in
the cross-validation sets of the historical and far-future time
frames, respectively. The RF model corresponding to the
near-future time frame performs the best, with hyperparame-
ter values of ntree= 1500, mtry= 9, and nodesize= 1 yield-
ing R2 values of 0.78 in the validation phase. The three RF
models with these chosen sets of hyperparameters are then
used to predict propagation probabilities from the remain-
ing 20 % testing sample (Fig. 6b). Evaluating the predictions
against the observed samples in the testing phase shows that
the historical (RMSE= 0.12, BIAS=−0.002, R2

= 0.79)
and near-future (RMSE= 0.11, BIAS=−0.003, R2

= 0.79)
RF models perform better than the far-future (RMSE= 0.18,
BIAS=−0.001, R2

= 0.67) RF model. Monthly mean soil
moisture is the most influential variable, followed by eleva-
tion and climate characteristics in the historical time frame
(Fig. 6c). In both future time frames, climate characteris-
tics (Fig. S10) will become influential factors in determin-
ing the propagation probability. Elevation and monthly mean
soil moisture are the second- and third-most influential fac-
tors in the near-future time frame, with their influence re-
versed in the far future. Vegetation cover and monthly mean
wind speed are consistently ranked fourth and fifth across
time frames. These results confirm that the climate character-
istics and elevation, which are key spatial drivers of drought
propagation, are consistent with findings from previous stud-
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Figure 4. (a) Comparison of propagation probabilities across four regions, seasons, and time frames and (b) spatial maps showing the
differences in propagation probabilities between future and historical time frames.

ies (Sadhwani and Eldho, 2024; Shi et al., 2022; Zhang et al.,
2022). Shi et al. (2022) found that the propagation duration
from meteorological to hydrological droughts varies glob-
ally according to climatic zones. Similarly, the probability
of meteorological to agricultural droughts depends primarily
on a combination of climate characteristics, elevation, and
mean soil moisture. Besides mean soil moisture directly af-
fecting propagation probability, climate characteristics sum-
marise multiple climate features (Peel et al., 2007), while el-
evation slope controls runoff and infiltration (Zhang et al.,
2022). In the temporal RF models predicting monthly soil
moisture, temporally dynamic temperature plays a key role.
Meanwhile, in the spatial RF model predicting propagation
probability, the mean temperature is aggregated over 40-year
windows, which reduces its temporal variability and predic-

tive utility. Instead, spatially varying factors such as climate
characteristics and elevation dominate the prediction of prop-
agation probability.

4.4 Relationship between rainfall deficit and
agricultural droughts

This reverse-propagation probability
(P (SPI < 0|SSI <−0.5)) reflects the extent to which
an agricultural drought is linked to a prior meteorological
drought (Fig. 7). The density plots show a decline in
reverse-propagation-probability values in both the near- and
far-future scenarios relative to the historical period across all
regions, with the most significant decrease observed in EAS
in the far-future time frame. This suggests that the number
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Figure 5. (a) Performance evaluation (R2 values) of random forest (RF) models for each grid across time frames, (b) variable importance
values of predictors used in the RF models, and (c) the most important variable (highest importance value in an RF model) in each time
frame across the study area.

of agricultural drought events not directly attributable to me-
teorological droughts is expected to rise. Simultaneously, the
forward-propagation probability (P (SSI < 0|SPI <−0.5))
indicates that meteorological droughts are increasingly
driving agricultural droughts in SAS and EAS in the future.
Thus, while meteorological-driven agricultural droughts
are projected to increase, so too are those unrelated to
rainfall deficits. Random forest models used to predict
soil moisture further reveal that temperature becomes the
dominant driver of soil moisture across more than 50 % of
the study area in future scenarios, compared to about 25 %
in the historical period (Fig. 5c). This supports the observed

increase in non-rainfall-related agricultural droughts. Under
the SSP5-8.5 scenario, significant temperature increases are
expected towards the end of the century (Qiao et al., 2023).
This warming could intensify soil moisture deficits, leading
to a shift from meteorological-driven to temperature-driven
agricultural droughts. Additionally, above-average rainfall
(SPI > 0) may occur in the form of short-term, intense
storms, which may not adequately replenish soil moisture
under higher temperatures, a situation exacerbated by
climate change. In EAS, and SAS, although meteorological-
driven agricultural droughts are projected to rise in the
far future, they are likely to be more severe due to the

https://doi.org/10.5194/hess-29-3203-2025 Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025



3214 D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation

Figure 6. (a) Grid-based hyperparameter tuning for the spatial RF models using cross-validation (the chosen sets of hyperparameters are
connected by dotted lines), (b) performance evaluation of the RF models designed using the chosen sets of hyperparameters in the testing
dataset, and (c) the most important variable (highest importance value in an RF model) in each time frame.

increasing influence of temperature, potentially resulting in
more frequent compound drought–heatwave events. These
findings support the methodological decision to use SSI
directly to assess drought persistence and concurrence rather
than relying solely on SPI. This ensures that agricultural
droughts driven by rainfall deficits and non-rainfall-related
droughts are considered when analysing persistence and
cross-regional concurrence.

4.5 All-season persistent droughts

Having identified regions sensitive to the evolution of me-
teorological droughts into agricultural droughts, it is impor-
tant to also focus on the persistence of agricultural droughts
across seasons. The joint probability (JP) of agricultural
droughts (monthly SSI < 0) during the pre-monsoon, mon-
soon, and post-monsoon months in a given water year is
used to define persistence (Fig. 8a). Among the eight pos-
sible combinations of seasonal droughts, the probability of

all-season droughts and the complementary scenario of all
wet seasons is higher than the probability of isolated sea-
sonal droughts. In the historical time frame, half of the study
area has JP values of more than 0.17 for all-season droughts,
which increases to about 0.25 in both the near- and far-
future time frames. In contrast to the increase in all-season
droughts, the median JP for all-season wetness decreases
from 0.25 in the historical time frame to 0.2 and 0.18 in the
near and far future, respectively. When plotting the difference
in JP values between the future time frames and the historical
time frame, regions identified as being at higher risk of all-
season droughts in the near future include central India (in
SAS), areas in EAS, and the Philippines (Fig. 8b). The dif-
ferences in JP values are more pronounced in the far future,
indicating an amplified risk of persistent all-season droughts.
Liang et al. (2023) reported that CMIP6 models predict an
increase in both extreme and mean precipitation values in
northwestern China (in the TIB domain) in the future com-
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Figure 7. The reverse-propagation probability (P (SPI < 0|SSI <−0.5)) indicates if an agricultural drought is linked to a prior meteorological
drought.

pared to the historical values, while a decrease in precipi-
tation is projected for the southwestern region (in the EAS
domain). The current results also reflect this pattern, with an
increase (and decrease) in future JP values in these regions,
albeit from a drought perspective.

Regarding return periods of all-season persistent droughts
(Fig. 9), northwestern China (in the TIB domain) exhibits a
return period of less than 2 years for SSI < 0 in the histori-
cal time frame, which increases drastically to over 50 years
in the far future (Fig. 9a). When comparing across time
frames, severe, persistent all-season droughts (SSI <−0.8
across seasons) are historically rare, occurring only once in
more than 50 years in approximately 80 % of the study area
(Fig. 9b). However, such events are projected to become
more frequent in the future. Specifically, only about 12 %
of the study area experiences frequent severe, persistent all-
season droughts (return periods of less than 20 years) in the
historical time frame, but this increases to 23 % and 39 %
in the near- and far-future time frames, respectively. These
frequent severe events in the future are predominantly con-
centrated in the EAS grids. While severe, persistent drought

events (return periods greater than 50 years) remain rare in
SAS (except for in central India), for SSI <−0.8, events with
SSI <−0.5 could still occur frequently (return periods of less
than 20 years) across the region. Consistent with the reduced
propagation probability (as defined by CP) observed in main-
land SEA in the far future, persistent droughts in this region
are rare, regardless of the SSI threshold.

4.6 Drought spatial concurrence

Considering the spatial disparities in the propagation and per-
sistence of future droughts, the synchrony (or lack thereof)
of monsoonal droughts across regions is examined to un-
derstand interconnected risks. The annual concurrence of
drought between region pairs is assessed by examining the
agricultural drought during monsoon months in each region.
Figure 10 illustrates the probabilities of droughts exceeding a
given spatial coverage threshold (k) in one region (Reg2) un-
der the condition that the same spatial coverage threshold is
exceeded in another region (Reg1). For instance, when 25 %
of EAS (Reg1) is under drought, there is a 62 % probability
that 25 % of SAS (Reg2) will also experience droughts in the

https://doi.org/10.5194/hess-29-3203-2025 Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025



3216 D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation

Figure 8. (a) Joint probabilities of all inter-seasonal drought scenarios across the study area for three time frames and (b) maps showing
differences in all-season drought probabilities between future and historical time frames.

historical time frame. This probability increases to approxi-
mately 75 % and 90 % in the near- and far-future time frames,
respectively. Considering the dense populations and signif-
icant agricultural activity in these regions, the high spatial
concurrence of future monsoonal droughts is concerning. In
contrast, the conditional probability of drought concurrence
between EAS (Reg1) and SEA (Reg2) decreases from 0.57
in the historical time frame to 0.48 in the near future and
further decreases to 0.27 in the far future. A similar reduc-
tion is observed between SAS (Reg1) and SEA (Reg2). For
TIB (Reg2), the conditional probability of droughts exceed-
ing 25 % spatial coverage in other regions (Reg1) remains
similar between the historical and far-future time frames but
is significant lower in the near future.

Overall, SAS and EAS are projected to experience an
increase in simultaneous monsoonal droughts, while SEA
shows reduced concurrence with the two regions. The spa-
tially concurrent joint return periods are estimated and com-

pared across time frames using a historical reference event
for these regions (Fig. 11). For example, a drought event af-
fecting 36 % of EAS and 38 % of SAS in a given year cur-
rently has a return period of approximately 30 years. How-
ever, such an event is expected to occur once every 10 years
in the near future and once in less than 5 years in the far fu-
ture, indicating more frequent spatially concurrent droughts
between EAS and SAS. Large-scale widespread droughts af-
fecting 50 % of both EAS and SAS have return periods be-
tween 20 and 50 years in the future, which might not oc-
cur in the other time frames. In contrast, the same histori-
cal reference event, which currently has a return period of
10 to 20 years for EAS and SEA, is projected to occur
only once every 50 years or more in the future time frames,
highlighting the reduced likelihood of spatially concurrent
droughts involving the SEA region. Similar patterns of re-
duced likelihood of spatially concurrent droughts in the far
future could happen between SAS and SEA. Specifically,
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Figure 9. Return periods of persistent all-season droughts for various agricultural drought severity levels across time frames, shown as
(a) maps and (b) percentages of the study area.

widespread droughts become rare in SEA during far-future
time frames, such that droughts covering 40 % of SEA could
occur once in more than 50 years compared to more frequent
events in other time frames. Although most grids in TIB are
not agriculturally productive, several rivers in the other three
regions originate in this region, and hence, analysing spatial
drought concurrence involving TIB has hydrological signif-
icance (Fig. S11). The historical reference event of simulta-
neous droughts covering 31 % and 42 % of TIB and EAS has
a return period of about 10 years in the historical time frame,
which becomes rare in the near future (about a 50-year return
period). However, such events could once again become fre-
quent, with 2- to 5-year return periods in the far future. This
pattern of spatially concurrent widespread drought events be-
coming rare in the near future but frequent in the far future is
also evident in the return period profile between the TIB and
SAS regions. TIB–SEA has reduced future spatial concur-

rence similar to the return period profiles in the SEA–EAS
and SEA–SAS region pairs.

Although SPI-driven propagation values were not directly
used to calculate the spatial concurrence of agricultural
droughts (only SSI values were considered), several key find-
ings align with those from the propagation analysis. For in-
stance, concurrent cross-regional droughts between South
Asia (SAS) and East Asia (EAS) are projected to increase
in the far-future time frame (Fig. 11). In contrast, Southeast
Asia (SEA) is expected to experience more non-synchronous
(i.e. decreased concurrence) droughts in the future compared
to in the historical period. These findings are consistent with
the trends in propagation probabilities: both SAS and EAS
show increased propagation from meteorological to agricul-
tural droughts in the future (Fig. 4a), while SEA shows a
decline in propagation probability in the far future relative to
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Figure 10. Probability of a region exceeding different values of drought spatial coverage (k), which is conditioned on similar spatial coverage
in another region, compared across time frames.

in the historical time frame. Thus, the results from the prop-
agation and concurrence analyses are in agreement.

4.7 Further discussion

While previous studies on drought propagation often focus
on the transition from precursor meteorological droughts to
agricultural or hydrological droughts, the persistence and
spatial concurrence of the antecedent drought forms are often
overlooked. The current study, however, highlights a strong
correlation between the propagation process (CP) and the
persistence of agricultural droughts across seasons (JP) in
the future (Fig. 12a). Differences between future time frames
and historical CP values were compared with corresponding
JP values for all grids using scatterplots. The strong corre-
lation (approximately 0.85, p<0.001) indicates that grids
experiencing accelerated propagation are also prone to per-
sistent all-season droughts and vice versa in the future. In
the far-future time frame, a cluster of grids along the south-

eastern margin of the Tibetan Plateau (28 to 35° N, 90 to
104° E) exhibits significantly higher propagation and persis-
tence compared to the historical time frame (Fig. 12b). This
cluster, often referred to as the “Asian water tower” (Leng
et al., 2023), is of hydrological significance, as it serves as
the origin for major rivers such as the Brahmaputra (Yarlung
Tsangpo), Irrawaddy, and Salween. It also overlaps with the
upper reaches of the Mekong, Yellow, and Yangtze rivers,
which are critical for agriculture, industry, and livelihoods in
the EAS and SAS regions. The strong negative correlation
between soil moisture and temperature (Fig. S12) under fu-
ture climate change scenarios contributes to the accelerated
propagation and persistence of droughts in this region. These
findings align with reports by Li et al. (2022) and Zhang et
al. (2023), which document climate-change-induced terres-
trial water deficits in Asia’s water tower under the SSP5-8.5
scenario, further supporting the current results.
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Figure 11. Spatial concurrent return periods between region pairs across time frames, with random variables (the percentage of area under
drought annually) shown as black dots.

The projected increase in future spatial drought concur-
rence between EAS and SAS could have significant im-
plications, including synchronised crop failures (Mehrabi
and Ramankutty, 2019; Muthuvel and Sivakumar, 2024a),
challenges in transboundary water management (Williams,
2018), and energy-sharing difficulties (Lv et al., 2024). These
risks are further exacerbated by the projected rise in the
exposed population within these regions, which host some
of the world’s megacities and major crop belts (Das et al.,
2022; Zhao et al., 2022). In contrast, mainland Southeast
Asia is expected to exhibit low propagation and persistence
of droughts in future time frames (Fig. 12b), supported by in-
creases in precipitation extremes that have been reported in
previous climate change studies (Ge et al., 2021; Supharatid
et al., 2022). This may contribute to its annual spatial asyn-
chrony relative to EAS and SAS. While the increasing pre-
cipitation in SEA highlights the need for improved infras-
tructure to mitigate disasters and enhance water storage, it
also presents opportunities for increased agricultural produc-

tivity. Such productivity could facilitate strategic virtual wa-
ter trade (the hidden flow of water in traded commodities)
among neighbouring countries by revising existing regional
trade agreements (Chen et al., 2024), offering mutual ben-
efits to the nations involved. Thus, the finding of drought
synchrony between regions has some severe consequences,
while asynchrony provides an opportunity for mutual bene-
fits.

While the present study provides a comprehensive assess-
ment of future droughts by analysing key characteristics such
as propagation, persistence, and spatial concurrence, there
are a few limitations and opportunities for further improve-
ment. The propagation duration in this study is determined
using the correlation between meteorological and agricul-
tural drought indices with a time lag. This linear approach
may oversimplify the complex nature of drought propaga-
tion. Advanced techniques, such as the phase-space recon-
struction method employed by Zhao et al. (2023), could be
explored in future studies, despite their higher computational
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Figure 12. (a) Relationship between drought propagation and persistence using changes in their probability values in the future and historical
time frames and (b) spatial maps showing bivariate classification based on future persistence and propagation values to identify vulnerable
grids.

demands. Additionally, the study focuses on temporal prop-
agation but could be expanded to include spatial propagation
assessments. Recent works (Mondal et al., 2023; Muthuvel
and Sivakumar, 2024b) that apply network theory to iden-
tify spatial drought sources have shown promise in improv-
ing the key drivers of propagation. Future research could in-
corporate large-scale teleconnections, as Long et al. (2024)
demonstrated that these can significantly influence and accel-
erate the propagation process. Finally, as a data-driven study,
the uncertainties associated with climate model projections
may impact the results, even though a multi-model ensemble
was used. Addressing these uncertainties through advanced
bias correction techniques or alternative ensemble methods
could further enhance the robustness of the findings. How-
ever, since this work focuses on drought propagation, it is
essential to preserve the interrelationship between precipita-
tion and soil moisture. Traditional univariate bias correction
techniques correcting individual variables (precipitation and
soil moisture) could distort the time lags involved in propaga-
tion and weaken their correlation. That said, multivariate bias
correction techniques, as explored in recent studies, could be
helpful for analysing future drought propagation (Dieng et
al., 2022). These methods preserve the inherent relationships

between corrected variables, which is crucial for studying ex-
treme events driven by multiple factors (Zscheischler et al.,
2019). For example, Meng et al. (2022) applied multivari-
ate bias correction between precipitation and temperature to
analyse compound dry and hot events. Similarly, applying
such techniques to precipitation and soil moisture could en-
hance the study of drought propagation dynamics.

5 Conclusions

This study investigates the impact of climate change
on drought propagation from meteorological to agricul-
tural droughts, the persistence of inter-seasonal agricultural
droughts, and their spatial concurrence across monsoon-
dominant Asian regions, using a copula-based probabilistic
approach. While future month-wise propagation durations
are expected to follow the historical monsoon pattern, an ac-
celerated propagation rate, indicated by conditional probabil-
ity, is projected in South Asia (except western and peninsula
India) and eastern China, increasing vulnerability to frequent
agricultural droughts. Random forest models identify tem-
perature rise as the primary driver of agricultural droughts,

Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025 https://doi.org/10.5194/hess-29-3203-2025



D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation 3221

with the Tibetan Plateau experiencing increased propagation
and persistent all-season agricultural droughts in the far fu-
ture. In addition to the increase in meteorological-drought-
driven agricultural droughts, there will also be an increase
in non-rainfall-related agricultural droughts in the far future,
which could be attributed to increasing temperatures. Addi-
tionally, populous regions in South and East Asia may face
frequent simultaneous monsoonal agricultural droughts, ex-
acerbating water stress and crop losses, while Southeast Asia
could experience reduced spatial concurrence of droughts,
potentially fostering more collaborative virtual water trans-
fer. This study enhances drought research by examining
the interrelated aspects of temporal propagation, persistence,
and spatial concurrence, revealing a strong connection be-
tween drought propagation and persistence in future scenar-
ios. While acknowledging limitations such as climate model
uncertainty and linear assumptions in propagation duration
calculations, the findings offer valuable insights for drought
planning and adaptation in the context of climate change.

Code and data availability. Freely available open-access data have
been used in the study and analysed using the R coding language
(https://www.R-project.org, R Core Team, 2024). They are cited ap-
propriately in the article.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/hess-29-3203-2025-supplement.

Author contributions. DM and XQ conceptualised and developed
the methodological framework. DM wrote the code and drafted the
paper. XQ revised and edited the paper.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors
and do not reflect the views of the Ministry of Education, Singapore.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We sincerely thank the editor and reviewers
for their constructive feedback, which has significantly improved
the quality of our paper.

Financial support. This research is supported by the Ministry of
Education, Singapore, under its MOE Academic Research Fund
Tier 3 (award number MOE-MOET32022-0006). This work is also
supported in part by the Ministry of Education, Singapore, un-
der its Academic Research Fund Tier 1 (grant nos. RG147/24 and
RG72/22).

Review statement. This paper was edited by Xing Yuan and re-
viewed by Zoe Li and one anonymous referee.

References

Asquith, W. H.: lmomco–L-moments, censored L-moments,
trimmed L-moments, L-comoments, and many distributions,
R package version 2.5.1, Texas Tech University, Lubbock,
Texas, https://CRAN.R-project.org/package=lmomco (last ac-
cess: 19 July 2025), 2024.

Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.:
From meteorological to hydrological drought using standard-
ised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505,
https://doi.org/10.5194/hess-20-2483-2016, 2016.

Barriopedro, D., Gouveia, C. M., Trigo, R. M., and Wang,
L.: The 2009/10 drought in China: Possible causes and
impacts on vegetation, J. Hydrometeorol., 13, 1251–1267,
https://doi.org/10.1175/JHM-D-11-074.1, 2012.

Bevacqua, A. G., Chaffe, P. L. B., Chagas, V. B. P.,
and AghaKouchak, A.: Spatial and temporal patterns
of propagation from meteorological to hydrological
droughts in Brazil, J. Hydrol.-Amst., 603, 126902,
https://doi.org/10.1016/j.jhydrol.2021.126902, 2021.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Chen, R., Adu, D. T., Li, W., and Wilson, N. L. W.: Virtual wa-
ter trade: Does bilateral tariff matter?, Ecol. Econ., 222, 108216,
https://doi.org/10.1016/j.ecolecon.2024.108216, 2024.

Chen, Y. D., Zhang, Q., Xiao, M., Singh, V. P., and Zhang,
S.: Probabilistic forecasting of seasonal droughts in the Pearl
River basin, China, Stoch. Env. Res. Risk A., 30, 2031–2040,
https://doi.org/10.1007/s00477-015-1174-6, 2016.

Dai, M., Huang, S., Huang, Q., Zheng, X., Su, X., Leng, G.,
Li, Z., Guo, Y., Fang, W., and Liu, Y.: Propagation charac-
teristics and mechanism from meteorological to agricultural
drought in various seasons, J. Hydrol.-Amst., 610, 127897,
https://doi.org/10.1016/j.jhydrol.2022.127897, 2022.

Das, J., Manikanta, V., and Umamahesh, N. V.: Population expo-
sure to compound extreme events in India under different emis-
sion and population scenarios, Sci. Total Environ., 806, 150424,
https://doi.org/10.1016/j.scitotenv.2021.150424, 2022.

Datta, R. and Reddy, M. J.: Trivariate frequency analysis of
droughts using copulas under future climate change over Vi-
darbha region in India, Stoch. Env. Res. Risk A., 37, 3855–3877,
https://doi.org/10.1007/s00477-023-02484-3, 2023.

Dieng, D., Cannon, A. J., Laux, P., Hald, C., Adeyeri, O., Rahimi,
J., Srivastava, A. K., Mbaye, M. L., and Kunstmann, H.:
Multivariate Bias-Correction of High-Resolution Regional Cli-
mate Change Simulations for West Africa: Performance and

https://doi.org/10.5194/hess-29-3203-2025 Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025

https://www.R-project.org
https://doi.org/10.5194/hess-29-3203-2025-supplement
https://CRAN.R-project.org/package=lmomco
https://doi.org/10.5194/hess-20-2483-2016
https://doi.org/10.1175/JHM-D-11-074.1
https://doi.org/10.1016/j.jhydrol.2021.126902
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ecolecon.2024.108216
https://doi.org/10.1007/s00477-015-1174-6
https://doi.org/10.1016/j.jhydrol.2022.127897
https://doi.org/10.1016/j.scitotenv.2021.150424
https://doi.org/10.1007/s00477-023-02484-3


3222 D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation

Climate Change Implications, J. Geophys. Res.-Atmos., 127,
e2021JD034836, https://doi.org/10.1029/2021JD034836, 2022.

Ding, Y., Gong, X., Xing, Z., Cai, H., Zhou, Z., Zhang, D.,
Sun, P., and Shi, H.: Attribution of meteorological, hydro-
logical and agricultural drought propagation in different cli-
matic regions of China, Agr. Water Manage., 255, 106996,
https://doi.org/10.1016/j.agwat.2021.106996, 2021.

Esri, Maxar, Earthstar Geographics, and the GIS User Commu-
nity: World Imagery, https://www.arcgis.com/home/item.html?
id=10df2279f9684e4a9f6a7f08febac2a9, last access: 14 July
2025.

Fang, W., Huang, S., Huang, G., Huang, Q., Wang, H., Wang,
L., Zhang, Y., Li, P., and Ma, L.: Copulas-based risk analy-
sis for inter-seasonal combinations of wet and dry conditions
under a changing climate, Int. J. Climatol., 39, 2005–2021,
https://doi.org/10.1002/joc.5929, 2019.

Fawen, L., Manjing, Z., Yong, Z., and Rengui, J.: Influence of ir-
rigation and groundwater on the propagation of meteorologi-
cal drought to agricultural drought, Agr. Water Manage., 277,
108099, https://doi.org/10.1016/j.agwat.2022.108099, 2023.

Feng, S., Hao, Z., Zhang, Y., Zhang, X., and Hao, F.: Am-
plified future risk of compound droughts and hot events
from a hydrological perspective, J. Hydrol., 617, 129143,
https://doi.org/10.1016/j.jhydrol.2023.129143, 2023.

Feng, S., Gu, X., Guan, Y., Wang, Q. J., Wang, L., Du, L., He,
J., Zhang, X., and Kong, D.: Anthropogenic exacerbations of
summer-autumn compound dry-hot severity in the middle and
lower reaches of the Yangtze River, J. Hydrol.-Amst., 646,
132346, https://doi.org/10.1016/j.jhydrol.2024.132346, 2025.

Ford, T. and Labosier, C. F.: Spatial patterns of drought persistence
in the Southeastern United States, Int. J. Climatol., 34, 2229–
2240, https://doi.org/10.1002/joc.3833, 2014.

Gaupp, F., Pflug, G., Hochrainer-Stigler, S., Hall, J., and Dad-
son, S.: Dependency of Crop Production between Global
Breadbaskets: A Copula Approach for the Assessment of
Global and Regional Risk Pools, Risk Anal., 37, 2212–2228,
https://doi.org/10.1111/risa.12761, 2017.

Gaupp, F., Hall, J., Hochrainer-Stigler, S., and Dadson, S.: Chang-
ing risks of simultaneous global breadbasket failure, Nat. Clim.
Change, 10, 54–57, https://doi.org/10.1038/s41558-019-0600-z,
2020.

Ge, F., Zhu, S., Luo, H., Zhi, X., and Wang, H.: Future changes
in precipitation extremes over Southeast Asia: Insights from
CMIP6 multi-model ensemble, Environ. Res. Lett., 16, 024013,
https://doi.org/10.1088/1748-9326/abd7ad, 2021.

Giorgi, F. and Bi, X.: Time of emergence (TOE) of GHG-forced
precipitation change hot-spots, Geophys. Res. Lett., 36, L06709,
https://doi.org/10.1029/2009GL037593, 2009.

Guo, D., Westra, S., and Maier, H. R.: Sensitivity of potential evap-
otranspiration to changes in climate variables for different Aus-
tralian climatic zones, Hydrol. Earth Syst. Sci., 21, 2107–2126,
https://doi.org/10.5194/hess-21-2107-2017, 2017.

Guo, Y., Huang, S., Huang, Q., Leng, G., Fang, W., Wang,
L., and Wang, H.: Propagation thresholds of meteo-
rological drought for triggering hydrological drought
at various levels, Sci. Total Environ., 712, 136502,
https://doi.org/10.1016/j.scitotenv.2020.136502, 2020.

Gupta, A. and Karthikeyan, L.: Role of Initial Conditions and Me-
teorological Drought in Soil Moisture Drought Propagation: An

Event-Based Causal Analysis Over South Asia, Earths Future,
12, e2024EF004674, https://doi.org/10.1029/2024EF004674,
2024.

Han, Z., Huang, S., Huang, Q., Leng, G., Wang, H., Bai, Q.,
Zhao, J., Ma, L., Wang, L., and Du, M.: Propagation dy-
namics from meteorological to groundwater drought and their
possible influence factors, J. Hydrol.-Amst., 578, 124102,
https://doi.org/10.1016/j.jhydrol.2019.124102, 2019.

Hao, Z. and AghaKouchak, A.: Multivariate Standardized Drought
Index: A parametric multi-index model, Adv. Water Resour., 57,
12–18, https://doi.org/10.1016/j.advwatres.2013.03.009, 2013.

Hao, Z., Hao, F., Singh, V. P., Sun, A. Y., and Xia, Y.: Probabilistic
prediction of hydrologic drought using a conditional probability
approach based on the meta-Gaussian model, J. Hydrol.-Amst.,
542, 772–780, https://doi.org/10.1016/j.jhydrol.2016.09.048,
2016.

Hu, C., Xia, J., She, D., Wang, G., Zhang, L., Jing, Z., Hong, S.,
and Song, Z.: Precipitation exacerbates spatial heterogeneity in
the propagation time of meteorological drought to soil drought
with increasing soil depth, Environ. Res. Lett., 19, 064021,
https://doi.org/10.1088/1748-9326/ad4975, 2024.

Joseph, J. and Ghosh, S.: Representing Indian Agricultural
Practices and Paddy Cultivation in the Variable Infiltration
Capacity Model, Water Resour. Res., 59, e2022WR033612,
https://doi.org/10.1029/2022wr033612, 2023.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.:
World map of the Köppen-Geiger climate classification up-
dated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-
2948/2006/0130, 2006.

Leng, X., Feng, X., Fu, B., Shi, Q., Ye, H., and Zhang, Y.:
“Asian water towers” are not a sustainable solution to the
downstream water crisis, Sci. Total Environ., 856, 159237,
https://doi.org/10.1016/j.scitotenv.2022.159237, 2023.

Li, J. and Lei, H.: Tracking the spatio-temporal change of planting
area of winter wheat-summer maize cropping system in the North
China Plain during 2001–2018, Comput. Electron. Agr., 187,
106222, https://doi.org/10.1016/j.compag.2021.106222, 2021.

Li, X., Long, D., Scanlon, B. R., Mann, M. E., Li, X., Tian, F.,
Sun, Z., and Wang, G.: Climate change threatens terrestrial water
storage over the Tibetan Plateau, Nat. Clim. Change, 12, 801–
807, https://doi.org/10.1038/s41558-022-01443-0, 2022.

Li, Y., Huang, S., Wang, H., Huang, Q., Li, P., Zheng, X., Wang,
Z., Jiang, S., Leng, G., Li, J., and Peng, J.: Warming and
greening exacerbate the propagation risk from meteorologi-
cal to soil moisture drought, J. Hydrol.-Amst., 622, 129716,
https://doi.org/10.1016/j.jhydrol.2023.129716, 2023.

Liang, J., Meng, C., Wang, J., Pan, X., and Pan, Z.: Projections of
mean and extreme precipitation over China and their resolution
dependence in the HighResMIP experiments, Atmos. Res., 293,
106932, https://doi.org/10.1016/j.atmosres.2023.106932, 2023.

Long, J., Xu, C., Wang, Y., and Zhang, J.: From me-
teorological to agricultural drought: Propagation time
and influencing factors over diverse underlying surfaces
based on CNN-LSTM model, Ecol. Inform., 82, 102681,
https://doi.org/10.1016/j.ecoinf.2024.102681, 2024.

Lv, B., Hao, Z., Ma, Q., Chen, Y., Zhang, X., Fu, Y.,
and Hao, F.: Spatial compounding of droughts and
hot extremes across southwest and east China result-

Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025 https://doi.org/10.5194/hess-29-3203-2025

https://doi.org/10.1029/2021JD034836
https://doi.org/10.1016/j.agwat.2021.106996
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
https://doi.org/10.1002/joc.5929
https://doi.org/10.1016/j.agwat.2022.108099
https://doi.org/10.1016/j.jhydrol.2023.129143
https://doi.org/10.1016/j.jhydrol.2024.132346
https://doi.org/10.1002/joc.3833
https://doi.org/10.1111/risa.12761
https://doi.org/10.1038/s41558-019-0600-z
https://doi.org/10.1088/1748-9326/abd7ad
https://doi.org/10.1029/2009GL037593
https://doi.org/10.5194/hess-21-2107-2017
https://doi.org/10.1016/j.scitotenv.2020.136502
https://doi.org/10.1029/2024EF004674
https://doi.org/10.1016/j.jhydrol.2019.124102
https://doi.org/10.1016/j.advwatres.2013.03.009
https://doi.org/10.1016/j.jhydrol.2016.09.048
https://doi.org/10.1088/1748-9326/ad4975
https://doi.org/10.1029/2022wr033612
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1016/j.scitotenv.2022.159237
https://doi.org/10.1016/j.compag.2021.106222
https://doi.org/10.1038/s41558-022-01443-0
https://doi.org/10.1016/j.jhydrol.2023.129716
https://doi.org/10.1016/j.atmosres.2023.106932
https://doi.org/10.1016/j.ecoinf.2024.102681


D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation 3223

ing from energy linkages, J. Hydrol.-Amst., 631, 130827,
https://doi.org/10.1016/j.jhydrol.2024.130827, 2024.

Lv, B., Hao, Z., Jiang, Y., Ma, Q., and Zhang, Y.: Large
ensemble simulations indicate increases in spatial com-
pounding of droughts and hot extremes across multiple
croplands in China, Global Planet. Change, 245, 104670,
https://doi.org/10.1016/j.gloplacha.2024.104670, 2025.

Massicotte, P. and South, A.: rnaturalearth: World Map Data from
Natural Earth, R package version 1.0.1, https://CRAN.R-project.
org/package=rnaturalearth (last access: 19 July 2025), 2023.

McKee, T. B., Doesken, N. J., and Kleist, J.: The relation-
ship of drought frequency and duration to timescales,
Proc. 8th Conf. App. Clim., Anaheim, California, USA,
17–22 January 1993, https://climate.colostate.edu/pdfs/
relationshipofdroughtfrequency.pdf (last access: 19 July 2025),
1993.

Mehrabi, Z. and Ramankutty, N.: Synchronized failure of
global crop production, Nat. Ecol. Evol., 3, 780–786,
https://doi.org/10.1038/s41559-019-0862-x, 2019.

Meng, Y., Hao, Z., Feng, S., Guo, Q., and Zhang, Y.: Multivariate
bias corrections of CMIP6 model simulations of compound dry
and hot events across China, Environ. Res. Lett., 17, 104005,
https://doi.org/10.1088/1748-9326/ac8e86, 2022.

Modanesi, S., Massari, C., Camici, S., Brocca, L., and Amar-
nath, G.: Do Satellite Surface Soil Moisture Observations
Better Retain Information About Crop-Yield Variability in
Drought Conditions?, Water Resour. Res., 56, e2019WR025855,
https://doi.org/10.1029/2019WR025855, 2020.

Mondal, S., K. Mishra, A., Leung, R., and Cook, B.: Global
droughts connected by linkages between drought hubs, Nat.
Commun., 14, 144, https://doi.org/10.1038/s41467-022-35531-
8, 2023.

Muetzelfeldt, M. R., Schiemann, R., Turner, A. G., Klingaman,
N. P., Vidale, P. L., and Roberts, M. J.: Evaluation of Asian
summer precipitation in different configurations of a high-
resolution general circulation model in a range of decision-
relevant spatial scales, Hydrol. Earth Syst. Sci., 25, 6381–6405,
https://doi.org/10.5194/hess-25-6381-2021, 2021.

Muthuvel, D. and Mahesha, A.: Copula-Based Fre-
quency and Coincidence Risk Analysis of Floods in
Tropical-Seasonal Rivers, J. Hydrol. Eng., 26, 05021007,
https://doi.org/10.1061/(asce)he.1943-5584.0002061, 2021.

Muthuvel, D. and Sivakumar, B.: Cascading spatial
drought network: A complex networks approach to
track propagation of meteorological droughts to agri-
cultural droughts, J. Environ. Manage., 370, 122511,
https://doi.org/10.1016/j.jenvman.2024.122511, 2024a.

Muthuvel, D. and Sivakumar, B.: Spatial propagation of differ-
ent drought types and their concurrent societal risks: A com-
plex networks-based analysis, J. Hydrol.-Amst., 636, 131247,
https://doi.org/10.1016/j.jhydrol.2024.131247, 2024b.

Muthuvel, D., Sivakumar, B., and Mahesha, A.: Fu-
ture global concurrent droughts and their effects
on maize yield, Sci. Total Environ., 855, 158860,
https://doi.org/10.1016/j.scitotenv.2022.158860, 2023.

Nagler, T. and Vatter, T.: rvinecopulib: High Performance Algo-
rithms for Vine Copula Modeling, R package version 0.6.3.1.1,
https://CRAN.R-project.org/package=rvinecopulib (last access:
19 July 2025), 2023.

Natural Earth: Free vector and raster map data, https://www.
naturalearthdata.com, last access: 14 July 2025.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world
map of the Köppen-Geiger climate classification, Hydrol. Earth
Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-
2007, 2007.

Prabhakar, A., Mitra, S., and Varghese, F. C.: Multi-index charac-
terization of compound dry hot events in India, Int. J. Climatol.,
43, 6243–6267, https://doi.org/10.1002/joc.8203, 2023.

Qiao, L., Zuo, Z., Zhang, R., Piao, S., Xiao, D., and Zhang, K.: Soil
moisture–atmosphere coupling accelerates global warming, Nat.
Commun., 14, 4908, https://doi.org/10.1038/s41467-023-40641-
y, 2023.

Raftery, A., Hoeting, J., Volinsky, C., Painter, I., and Yeung,
K.: BMA: Bayesian Model Averaging, R package version
3.18.19, https://CRAN.R-project.org/package=BMA (last ac-
cess: 19 July 2025), 2024.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org (last access: 19 July 2025), 2024.

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell,
K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J.,
Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll,
D.: The Global Land Data Assimilation System, B. Am. Meteo-
rol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381,
2004.

Sadhwani, K. and Eldho, T. I.: Assessing the Effect of Future
Climate Change on Drought Characteristics and Propagation
from Meteorological to Hydrological Droughts – A Compar-
ison of Three Indices, Water Resour. Manage., 38, 441–462,
https://doi.org/10.1007/s11269-023-03679-7, 2024.

Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., and Diffen-
baugh, N. S.: Multidimensional risk in a nonstationary climate:
Joint probability of increasingly severe warm and dry conditions,
Sci. Adv., 3487–3515, 2018.

Shah, D. and Mishra, V.: Integrated Drought Index
(IDI) for Drought Monitoring and Assessment in
India, Water Resour. Res., 56, e2019WR026284,
https://doi.org/10.1029/2019WR026284, 2020.

Shi, H., Zhou, Z., Liu, L., and Liu, S.: A global perspec-
tive on propagation from meteorological drought to hydrolog-
ical drought during 1902–2014, Atmos. Res., 280, 106441,
https://doi.org/10.1016/j.atmosres.2022.106441, 2022.

Shi, W., Huang, S., Liu, D., Huang, Q., Leng, G., Wang,
H., Fang, W., and Han, Z.: Dry and wet combina-
tion dynamics and their possible driving forces in a
changing environment, J. Hydrol.-Amst., 589, 125211,
https://doi.org/10.1016/j.jhydrol.2020.125211, 2020.

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and
Bronaugh, D.: Climate extremes indices in the CMIP5
multimodel ensemble: Part 1. Model evaluation in the
present climate, J. Geophys. Res.-Atmos., 118, 1716–1733,
https://doi.org/10.1002/jgrd.50203, 2013.

Singh, V. and Qin, X.: Study of rainfall variabilities in South-
east Asia using long-term gridded rainfall and its substantiation
through global climate indices, J. Hydrol.-Amst., 585, 124320,
https://doi.org/10.1016/j.jhydrol.2019.124320, 2020.

Smith, A. B. and Katz, R. W.: US billion-dollar weather and climate
disasters: Data sources, trends, accuracy and biases, Nat. Haz-

https://doi.org/10.5194/hess-29-3203-2025 Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025

https://doi.org/10.1016/j.jhydrol.2024.130827
https://doi.org/10.1016/j.gloplacha.2024.104670
https://CRAN.R-project.org/package=rnaturalearth
https://CRAN.R-project.org/package=rnaturalearth
https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf
https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf
https://doi.org/10.1038/s41559-019-0862-x
https://doi.org/10.1088/1748-9326/ac8e86
https://doi.org/10.1029/2019WR025855
https://doi.org/10.1038/s41467-022-35531-8
https://doi.org/10.1038/s41467-022-35531-8
https://doi.org/10.5194/hess-25-6381-2021
https://doi.org/10.1061/(asce)he.1943-5584.0002061
https://doi.org/10.1016/j.jenvman.2024.122511
https://doi.org/10.1016/j.jhydrol.2024.131247
https://doi.org/10.1016/j.scitotenv.2022.158860
https://CRAN.R-project.org/package=rvinecopulib
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1002/joc.8203
https://doi.org/10.1038/s41467-023-40641-y
https://doi.org/10.1038/s41467-023-40641-y
https://CRAN.R-project.org/package=BMA
https://www.R-project.org
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1007/s11269-023-03679-7
https://doi.org/10.1029/2019WR026284
https://doi.org/10.1016/j.atmosres.2022.106441
https://doi.org/10.1016/j.jhydrol.2020.125211
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1016/j.jhydrol.2019.124320


3224 D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation

ards, 67, 387–410, https://doi.org/10.1007/s11069-013-0566-5,
2013.

Smith, A. B. and Matthews, J. L.: Quantifying uncertainty and
variable sensitivity within the US billion-dollar weather and
climate disaster cost estimates, Nat. Hazards, 77, 1829–1851,
https://doi.org/10.1007/s11069-015-1678-x, 2015.

Supharatid, S., Aribarg, T., and Nafung, J.: Bias-corrected CMIP6
climate model projection over Southeast Asia, Theor. Appl.
Climatol., 147, 669–690, https://doi.org/10.1007/s00704-021-
03844-1, 2022.

Swain, S. S., Mishra, A., and Chatterjee, C.: Assessment of Basin-
Scale Concurrent Dry and Wet Extreme Dynamics Under Multi-
model CORDEX Climate Scenarios, Int. J. Climatol., 44, 5950–
5968, https://doi.org/10.1002/joc.8677, 2024.

Tian, X., Di, Z., Yao, Y., Liu, Z., Meng, H., Sun, H., Wang, X.,
and Zhang, W.: Evaluation and simulation of terrestrial latent
heat flux globally: A collaborative effort utilizing CMIP6 climate
models and eddy covariance observations, Agr. Forest Meteorol.,
362, 110371, https://doi.org/10.1016/j.agrformet.2024.110371,
2025.

Tripathy, K. P., Mukherjee, S., Mishra, A. K., Mann, M.
E., and Park Williams, A.: Climate change will accel-
erate the high-end risk of compound drought and heat-
wave events, P. Natl. Acad. Sci. USA, 120, e2219825120,
https://doi.org/10.1073/pnas.2219825120, 2023.

Try, S. and Qin, X.: Evaluation of Future Changes in Cli-
mate Extremes over Southeast Asia Using Downscaled
CMIP6 GCM Projections, Water-Switzerland, 16, 2207,
https://doi.org/10.3390/w16152207, 2024.

van Noordwijk, M., Tanika, L., and Lusiana, B.: Flood risk reduc-
tion and flow buffering as ecosystem services – Part 2: Land
use and rainfall intensity effects in Southeast Asia, Hydrol. Earth
Syst. Sci., 21, 2341–2360, https://doi.org/10.5194/hess-21-2341-
2017, 2017.

Wang, L., Li, Y., Li, M., Li, L., Liu, F., Liu, D. L.,
and Pulatov, B.: Projection of precipitation extremes in
China’s mainland based on the statistical downscaled data
from 27 GCMs in CMIP6, Atmos. Res., 280, 106462,
https://doi.org/10.1016/j.atmosres.2022.106462, 2022.

Wang, T., Tu, X., Singh, V. P., Chen, X., Lin, K., Zhou,
Z., and Tan, Y.: Assessment of future socioeconomic
drought based on CMIP6: evolution, driving fac-
tors and propagation, J. Hydrol.-Amst., 617, 129009,
https://doi.org/10.1016/j.jhydrol.2022.129009, 2023.

Wang, Z., Chang, J., Wang, Y., Yang, Y., Guo, Y., Yang,
G., and He, B.: Temporal and spatial propagation char-
acteristics of meteorological drought to hydrological
drought and influencing factors, Atmos. Res., 299, 107212,
https://doi.org/10.1016/j.atmosres.2023.107212, 2024.

WCRP: World Climate Research Program, https://esgf-node.ipsl.
upmc.fr/search/cmip6-ipsl (last access: 3 April 2024), 2024.

Williams, J. M.: Stagnant Rivers: Transboundary water security
in South and Southeast Asia, Water-Switzerland, 10, 1819,
https://doi.org/10.3390/w10121819, 2018.

Wickham, H.: ggplot2: Create Elegant Data Visualisations Us-
ing the Grammar of Graphics, https://cran.r-project.org/web/
packages/ggplot2/index.html (last access: 19 July 2025), 2016.

Wu, D. and Hu, Z.: Characterization of drought propagation
over the Tibetan Plateau, J. Hydrol. Reg. Stud., 56, 102035,
https://doi.org/10.1016/j.ejrh.2024.102035, 2024.

Xiao, M., Zhang, Q., Singh, V. P., and Chen, X.: Probabilis-
tic forecasting of seasonal drought behaviors in the Huai
River basin, China, Theor. Appl. Climatol., 128, 667–677,
https://doi.org/10.1007/s00704-016-1733-x, 2017.

Xu, P., Zhang, Z., Wang, D., Singh, V. P., Zhang, C., Fu, X., and
Wang, L.: A time-varying Copula-based approach to quantify the
effects of antecedent drought on hot extremes, J. Hydrol.-Amst.,
627, 130418, https://doi.org/10.1016/j.jhydrol.2023.130418,
2023a.

Xu, Y., Zhang, X., Hao, Z., Singh, V. P., and Hao, F.: Charac-
terization of agricultural drought propagation over China based
on bivariate probabilistic quantification, J. Hydrol.-Amst., 598,
126194, https://doi.org/10.1016/j.jhydrol.2021.126194, 2021.

Xu, Z., Wu, Z., Shao, Q., He, H., and Guo, X.: From me-
teorological to agricultural drought: Propagation time and
probabilistic linkages, J. Hydrol. Reg. Stud., 46, 101329,
https://doi.org/10.1016/j.ejrh.2023.101329, 2023b.

Yang, M., Wang, G., Lazin, R., Shen, X., and Anagnostou, E.:
Impact of planting time soil moisture on cereal crop yield in
the Upper Blue Nile Basin: A novel insight towards agricul-
tural water management, Agr. Water Manage., 243, 106430,
https://doi.org/10.1016/j.agwat.2020.106430, 2021.

Yu, J., Zou, L., Xia, J., Dou, M., Liu, H., and Zuo, L.:
Future changes in hydrological drought across the Yangtze
River Basin: identification, spatial–temporal characteristics,
and concurrent probability, J. Hydrol.-Amst., 625, 130057,
https://doi.org/10.1016/j.jhydrol.2023.130057, 2023.

Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang,
J., Tao, H., Wang, G., Ullah, W., and Uddin, M. J.: Fu-
ture drought characteristics through a multi-model ensemble
from CMIP6 over South Asia, Atmos. Res., 246, 105111,
https://doi.org/10.1016/j.atmosres.2020.105111, 2020.

Zhang, C., Han, Z., Wang, S., Wang, J., Cui, C., and Liu, J.: Accel-
erated Atmospheric to Hydrological Spread of Drought in the
Yangtze River Basin under Climate, Remote Sens.-Basel, 16,
3033, https://doi.org/10.3390/rs16163033, 2024.

Zhang, H., Ding, J., Wang, Y., Zhou, D., and Zhu, Q.: Investi-
gation about the correlation and propagation among meteoro-
logical, agricultural and groundwater droughts over humid and
arid/semi-arid basins in China, J. Hydrol.-Amst., 603, 127007,
https://doi.org/10.1016/j.jhydrol.2021.127007, 2021.

Zhang, Q., Shen, Z., Pokhrel, Y., Farinotti, D., Singh, V. P., Xu,
C. Y., Wu, W., and Wang, G.: Oceanic climate changes threaten
the sustainability of Asia’s water tower, Nature, 615, 87–93,
https://doi.org/10.1038/s41586-022-05643-8, 2023.

Zhang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S.,
Xu, Y., and Hao, F.: Drought propagation under global
warming: Characteristics, approaches, processes, and
controlling factors, Sci. Total Environ., 838, 156021,
https://doi.org/10.1016/j.scitotenv.2022.156021, 2022.

Zhao, F., Wu, Y., Yin, X., Sun, K., Ma, S., Zhang, S.,
Liu, S., Wang, W., and Chen, J.: Projected changes
in population exposure to drought in China under
CMIP6 forcing scenarios, Atmos. Environ., 282, 119162,
https://doi.org/10.1016/j.atmosenv.2022.119162, 2022.

Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025 https://doi.org/10.5194/hess-29-3203-2025

https://doi.org/10.1007/s11069-013-0566-5
https://doi.org/10.1007/s11069-015-1678-x
https://doi.org/10.1007/s00704-021-03844-1
https://doi.org/10.1007/s00704-021-03844-1
https://doi.org/10.1002/joc.8677
https://doi.org/10.1016/j.agrformet.2024.110371
https://doi.org/10.1073/pnas.2219825120
https://doi.org/10.3390/w16152207
https://doi.org/10.5194/hess-21-2341-2017
https://doi.org/10.5194/hess-21-2341-2017
https://doi.org/10.1016/j.atmosres.2022.106462
https://doi.org/10.1016/j.jhydrol.2022.129009
https://doi.org/10.1016/j.atmosres.2023.107212
https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl
https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl
https://doi.org/10.3390/w10121819
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://doi.org/10.1016/j.ejrh.2024.102035
https://doi.org/10.1007/s00704-016-1733-x
https://doi.org/10.1016/j.jhydrol.2023.130418
https://doi.org/10.1016/j.jhydrol.2021.126194
https://doi.org/10.1016/j.ejrh.2023.101329
https://doi.org/10.1016/j.agwat.2020.106430
https://doi.org/10.1016/j.jhydrol.2023.130057
https://doi.org/10.1016/j.atmosres.2020.105111
https://doi.org/10.3390/rs16163033
https://doi.org/10.1016/j.jhydrol.2021.127007
https://doi.org/10.1038/s41586-022-05643-8
https://doi.org/10.1016/j.scitotenv.2022.156021
https://doi.org/10.1016/j.atmosenv.2022.119162


D. Muthuvel and X. Qin: Probabilistic analysis of future drought propagation 3225

Zhao, Y., Zhu, T., Zhou, Z., Cai, H., and Cao, Z.: Detecting non-
linear information about drought propagation time and rate with
nonlinear dynamic system and chaos theory, J. Hydrol.-Amst.,
623, 129810, https://doi.org/10.1016/j.jhydrol.2023.129810,
2023.

Zhou, M., Tian, F., Lall, U., and Hu, H.: Insights from a joint anal-
ysis of Indian and Chinese monsoon rainfall data, Hydrol. Earth
Syst. Sci., 15, 2709–2715, https://doi.org/10.5194/hess-15-2709-
2011, 2011.

Zhou, Z., Shi, H., Fu, Q., Ding, Y., Li, T., Wang, Y.,
and Liu, S.: Characteristics of Propagation From Meteo-
rological Drought to Hydrological Drought in the Pearl
River Basin, J. Geophys. Res.-Atmos., 126, e2020JD033959,
https://doi.org/10.1029/2020JD033959, 2021.

Zhou, Z., Ding, Y., Fu, Q., Wang, C., Wang, Y., Cai, H.,
Liu, S., Huang, S., and Shi, H.: Insights from CMIP6
SSP scenarios for future characteristics of propagation
from meteorological drought to hydrological drought in
the Pearl River Basin, Sci. Total Environ., 899, 165618,
https://doi.org/10.1016/j.scitotenv.2023.165618, 2023.

Zscheischler, J., Fischer, E. M., and Lange, S.: The effect of
univariate bias adjustment on multivariate hazard estimates,
Earth Syst. Dynam., 10, 31–43, https://doi.org/10.5194/esd-10-
31-2019, 2019.

https://doi.org/10.5194/hess-29-3203-2025 Hydrol. Earth Syst. Sci., 29, 3203–3225, 2025

https://doi.org/10.1016/j.jhydrol.2023.129810
https://doi.org/10.5194/hess-15-2709-2011
https://doi.org/10.5194/hess-15-2709-2011
https://doi.org/10.1029/2020JD033959
https://doi.org/10.1016/j.scitotenv.2023.165618
https://doi.org/10.5194/esd-10-31-2019
https://doi.org/10.5194/esd-10-31-2019

	Abstract
	Introduction
	Methodology
	Drought propagation
	Drought propagation duration
	Drought propagation probability
	Factors influencing soil moisture and propagation using random forest (RF) models
	Relationship between rainfall deficit and agricultural droughts

	Drought persistence
	Spatial concurrence

	Study area and data
	Results and discussion
	Drought propagation duration
	Drought propagation probability
	Factors affecting soil moisture and propagation
	Relationship between rainfall deficit and agricultural droughts
	All-season persistent droughts
	Drought spatial concurrence
	Further discussion

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

