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Abstract. Camera-based rainfall observation is a useful tech-
nology that contributes to the densification of rainfall obser-
vation networks because it can measure rainfall with high
spatiotemporal resolution and low cost. To verify the appli-
cability of existing theories, such as computer vision and me-
teorological studies, to static weather effects caused by rain
in outdoor photography systems, this study proposed rela-
tional equations representing the relationship between image
information, rainfall intensity, and scene depth by linking
the theoretically derived rainfall intensity with a technique
proposed in the computer vision field for removing static
weather effects. This study also proposed a method for es-
timating rainfall intensity from images using those relational
equations. Because the method uses only the camera image
taken of the background over a certain distance and back-
ground scene depth information, it is a highly versatile and
accessible method. The proposed equations and the method
for estimating rainfall intensity from images were applied to
outdoor images taken by commercial interval cameras at the
observation site in a mountainous watershed in Japan. It was
confirmed that transmission calculated from the image infor-
mation decreases exponentially according to the increase in
rainfall intensity and scene depth, as assumed in the proposed
equations. Furthermore, rainfall intensity can be estimated
from the image using the proposed relational equations. On
the other hand, the calculated extinction coefficient tended
to be overestimated at small scene depth. Although there are
several problems at present that need to be resolved for the
technology proposed in this study, this technology has the po-
tential to facilitate the development of a camera-based rain-
fall observation technology that is accurate, robust, versatile,
and accessible.

1 Introduction

The water cycle regulates local, regional, and global climate
change, and precipitation is an important component of this
cycle (Eltahir and Bras, 1996). Reliable precipitation data
are therefore critical for local, regional, and global water
resource management and weather, climate, and hydrologic
forecasting (Jiang et al., 2019; Sun et al., 2018). Rainfall is
difficult to observe adequately due to large spatial and tempo-
ral variations (Kidd et al., 2017). In order to properly observe
such variations, a dense observation network is necessary on
a fine temporal and spatial scale. Especially in mountainous
areas where flash floods and debris flow occur, rainfall should
be measured on fine spatial and temporal scales for effective
early warning against these disasters (e.g., Kidd et al., 2016).
Currently, rainfall data are mainly obtained from ground ob-
servation, such as rain gauges, and remote sensing, such
as weather radar and satellites. Rainfall data obtained from
ground observation are used for both direct measurement and
indirect measurement calibrations. However, rainfall data are
often limited in terms of spatiotemporal resolution due to the
sparseness of the ground observation networks (Notarangelo
et al., 2021). In addition, it has been noted that near-real-
time rainfall data have reasonable coverage in Europe and
East Asia, including Japan, but observation sites are sparse
in other regions (Kidd et al., 2016), and due to the high
cost of observation, a high-resolution, ground-level rainfall
monitoring network still has limited use (Jiang et al., 2019).
Therefore, innovative methods to achieve higher density in
the ground-level rainfall observation network have been the
focus of recent hydrological research (Tauro et al., 2018).
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As an initiative to overcome the issues mentioned above,
techniques have been proposed to build sensors using low-
cost equipment not used for its intended use and to com-
bine a variety of not fully utilized technologies to make op-
portunistic observations (Tauro et al., 2018). For these tech-
niques, an approach has been adopted in the form of aggre-
gating data obtained from a high-density network built us-
ing a large number of low-cost sensors that are less accurate
(Notarangelo et al., 2021). While such an approach is not as
accurate as conventional rain gauges in most cases, it could
provide valuable additional information when combined with
conventional techniques (Tauro et al., 2018). Haberlandt and
Sester (2010) and Rabiei et al. (2016) reported that the idea of
considering moving vehicles as rain gauges and windshield
wipers as sensors to detect rainfall may enable better areal
rainfall estimation than using several accurate rain gauges by
making numerous observations, even if they are somewhat
inaccurate. The microwave link in the cellular phone com-
munication network, which focuses on the relationship be-
tween the rain attenuation of electromagnetic signals trans-
mitted from one cellular tower to another and the average
rainfall along the path, has been proposed as a promising
new rainfall measurement technology (Leijnse et al., 2007;
Messer et al., 2006; Overeem et al., 2011; Rahimi et al.,
2006; Tauro et al., 2018; Upton et al., 2005; Zinevich et al.,
2009). It has been indicated that such opportunistic sensors
have the potential to be utilized in geographic regions where
the density of conventional rainfall measurement devices is
low, namely, mountainous areas and developing countries
(Uijlenhoet et al., 2018). Further, because a large number of
video monitoring cameras have been installed outdoors in re-
cent years for security and safety reasons, techniques have
been reported to use these cameras to estimate the environ-
ment and weather of scenes (Jacobs et al., 2009). As tech-
niques that use cameras to monitor surrounding conditions,
techniques to observe river levels and flow rates (Gilmore
et al., 2013; Muste et al., 2008; Tauro et al., 2018) as well
as rainfall (Allamano et al., 2015; Dong et al., 2017; Jiang
et al., 2019; Yin et al., 2023; Zheng et al., 2023) have also
been reported and are attracting great interest in the hydro-
logic field. In addition, such a camera-based technique for
understanding the surrounding situation has the potential to
serve as a sensor that can measure multiple types of physical
quantities with a single camera and is a very reasonable and
meaningful technique for obtaining various types of informa-
tion all at once. Because rainfall measurement using cameras
enables high spatiotemporal resolution and extremely low-
cost measurement, it is possible to say that it has opened
up a novel avenue toward higher-density rainfall observation
(Tauro et al., 2018).

The development of camera-based rain gauges requires
clarification of the effects of rainfall on images. The effects
of adverse weather conditions, such as rainfall, on images
have conventionally been studied mainly in the fields of com-
puter vision and image processing (Narasimhan and Nayar,

2002). In outdoor photography systems used for monitoring,
navigation, and other purposes, various algorithms such as
feature detection, stereo correspondence, tracking, segmen-
tation, and object recognition are used, and these algorithms
require visual clues and feature information (Garg and Na-
yar, 2007). Because adverse weather conditions lead to the
loss of those visual clues and feature information due to the
effects of poor visibility, the objective of studies was to re-
move the effects of adverse weather conditions on the im-
ages and obtain clear images (Jiang et al., 2019; Tripathi and
Mukhopadhyay, 2014). On the other hand, in reference to
such image processing techniques, studies on camera-based
rain gauges quantified the degree of performance degrada-
tion due to adverse weather in outdoor photography sys-
tems as a change in weather conditions (Garg and Nayar,
2007). Such studies broadly categorize adverse weather into
static weather, such as fog and haze, and dynamic weather,
such as rain and snow, based on the physical properties and
types of visual effects (Garg and Nayar, 2007). In the case
of static weather, the constituent water droplets are small,
ranging from 1–10 µm, and cannot be detected individually
by a camera. The intensity produced in the pixel is therefore
due to the cohesive effect of the numerous water droplets
within the pixel’s solid angle (Garg and Nayar, 2007). Ac-
cordingly, studies have been conducted to represent static
weather and remove the effects of static weather from images
by using models of atmospheric scattering such as direct at-
tenuation and airlight (Narasimhan and Nayar, 2002, 2003).
In the studies on removing static weather effects from im-
ages, methods based on priors from natural image statistics
have conventionally been used (Fattal, 2008; He et al., 2011;
Tan, 2008). Recently, deep-machine-learning-based methods
that extract image features from a large amount of learning
data have been adopted (Qin et al., 2020; Shao et al., 2020;
Zhou et al., 2021). On the other hand, in dynamic weather,
water droplets are composed of particles 1000 times larger
than in static weather, ranging from 0.1 to 10 mm, and indi-
vidual particles are visible to cameras. For this reason, the
image processing research to remove dynamic weather ef-
fects has primarily studied techniques to extract rain by dis-
criminating water droplets that appear as rain streaks from
other backgrounds, and previous studies on camera-based
rain gauges also utilized such techniques (Bossu et al., 2011;
Garg and Nayar, 2007; Luo et al., 2015). A lot of deep-
machine-learning-based methods have been proposed in re-
cent years, as with the trend of studies about static weather
effects (e.g., Lin et al., 2020, 2022; Yin et al., 2023; Zheng
et al., 2023).

In the previous studies, static and dynamic weather were
treated as separate themes because of the different charac-
teristics of their effects on images. In particular, rain has
been studied primarily as a dynamic weather topic (Allamano
et al., 2015; Dong et al., 2017; Jiang et al., 2019; Yin et al.,
2023; Zheng et al., 2023). However, the following practical
challenges remain in these studies that treat rainfall as dy-
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namic weather. They are effective only for static backgrounds
of outdoor photography (Allamano et al., 2015), require spe-
cial equipment (Dong et al., 2017), need to use video rather
than still images to estimate rainfall intensity (Jiang et al.,
2019), and need a variety of rainfall images and correspond-
ing rainfall intensity value data in advance to train the deep
learning model (Yin et al., 2023; Zheng et al., 2023). In par-
ticular, it has been pointed out that the limitation of deep-
machine-learning-based methods is the lack of training data
rather than the design of the network structure and learning
manners (Wang et al., 2021; Yan et al., 2023).

On the other hand, even if the absolute size of raindrops
is constant within the camera’s angle of view, the size of
raindrops in the image varies with their distance from the
camera. In particular, raindrops over a certain distance from
the camera induce a visual effect as if they were in static
weather conditions, as their fall distance within the camera’s
exposure time is sufficiently small compared to the pixel size
such that the camera’s sensor cannot detect individual rain-
drops. In fact, it has been pointed out that rain streaks over
a certain distance from the camera accumulate on the image
and appear as fog (Garg and Nayar, 2007; Li et al., 2018,
2019). This implies that rain causes static weather effects.
Such raindrops over a certain distance from the camera are
likely to induce static weather effects when the camera is
mainly capturing a relatively undisturbed background such
as rivers, scenery, and trees. On the other hand, in the case of
a disturbed background with people, animals, or traffic mov-
ing around, the static weather effects of raindrops may be
difficult to discern because the original background may be
disturbed by their movement. Thus, in an outdoor photogra-
phy system that captures a relatively undisturbed background
over a certain distance, not only the dynamic weather effects
caused by rain but also the static weather effects caused by
rain may be apparent in the images. In Japan, many cameras
have been installed by public organizations to monitor water-
shed conditions with an angle of view that allows the viewer
to see into the background at a certain distance for disas-
ter prevention purposes. In other words, it is easy to obtain
images that show static weather effects. Therefore, to utilize
more images effectively, we construct a method to measure
rainfall intensity using static weather effects from such im-
ages that are not intended for rainfall measurement but for
monitoring watershed conditions.

So far, not enough is known about the details of the static
weather effects caused by rain. Therefore, the main objec-
tive of this study is to verify the applicability of existing the-
ories, such as computer vision and meteorological studies,
to static weather effects caused by rain in outdoor photogra-
phy systems. In this study, we analyzed the effects of rain-
fall intensity on the appearance of the background. Using the
extinction coefficient as the information source, we linked
the technique of removing static weather effects reported in
many computer vision studies with the theory of rainfall in-
tensity expressed in atmospheric radiology and meteorology.

We then proposed equations for the relationship between im-
age information, rainfall intensity, and the distance from the
camera to the background, hereinafter referred to as scene
depth. Using the proposed equations, rainfall observations
can be performed with an image of the background at a cer-
tain distance and information on the scene depth relative to
the background, even if the image is not intended for rain-
fall observations. Therefore, by applying the outdoor images
taken by commercial interval cameras at observation sites in
mountainous watersheds in Japan and rainfall observations
to the proposed relational equations, the relationship between
image information, rainfall intensity, and scene depth was an-
alyzed, and the validity of the extinction coefficient obtained
from the images was verified. Furthermore, we attempted to
estimate rainfall intensity using the proposed relational equa-
tions. The estimation of rainfall intensity used over 3000 im-
ages from rain events, and this data size is a unique aspect of
this study.

This paper is structured as follows. Section 2 describes the
proposed relational equations for the relationship between
image information, rainfall intensity, and scene depth. Sec-
tion 3 describes the outdoor observations and the process-
ing of the captured images. Section 4 presents the results
of observations, image processing, and analysis. Section 5
discusses the extinction coefficient and rainfall intensity es-
timated from the image information, and Sect. 6 gives the
conclusion.

2 Relational equations for the relationship between
image information, rainfall intensity, and scene depth

2.1 Image information and extinction coefficient

The effects of static weather are mainly caused by two scat-
tering phenomena: “direct attenuation” and “airlight” (Fat-
tal, 2008; He et al., 2011; Narasimhan and Nayar, 2002,
2003; Tan, 2008). Direct attenuation is the attenuated light
received by the camera from the background along the line
of sight, caused by the scattering of light by particles such
as water droplets in the atmosphere. Direct attenuation re-
duces the contrast of a scene (Tripathi and Mukhopadhyay,
2014). Airlight is the total amount of environmental illumi-
nation reflected into the line of sight by atmospheric parti-
cles, typically direct and diffuse radiation from the sun inter-
acting with the atmosphere in the case of daytime outdoors.
Airlight results in a shift in color (Tripathi and Mukhopad-
hyay, 2014). Static weather effects can be represented as a
function of the scene depth and vary spatially on a single im-
age (He et al., 2011; Tripathi and Mukhopadhyay, 2014). In
the case of static weather, because the size of constituent par-
ticles such as water droplets is large compared to the wave-
length of light, the “scattering coefficient”, which represents
the ability of a unit volume of atmosphere to scatter light in
all directions, is not dependent on wavelength. For this rea-
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son, all wavelengths are equally scattered, giving the appear-
ance of a whitish fog (Narasimhan and Nayar, 2003). There-
fore, the static weather effect that appears on an image by
rainfall can be considered as image whitening, where the lu-
minance increases and contrast decreases, depending on the
rainfall intensity and scene depth.

Many studies on computer vision have reported tech-
niques for removing static weather effects from images (Fat-
tal, 2008; He et al., 2011; Tan, 2008). In these studies, the
effect of a hazy background due to fog or haze is repre-
sented by the following image degradation model, using
Koschmieder’s model, which shows the relationship between
visibility and the atmospheric extinction coefficient (Fattal,
2008; Koschmieder, 1924):

I (x)= J (x)t (x)+A(1− t (x)), (1)

where I is the observed intensity, J is scene radiance, A is
global atmospheric light, and t is transmission, which repre-
sents the ratio of light that reaches the camera without being
scattered. x indicates the pixel position. A is independent of
x and is generally constant in a single image (Tan, 2008).
Equation (1) is defined on the three RGB color channels.
I (x), J (x), and A are three-dimensional RGB vectors and
are represented by the integer pixel intensity. t (x) is scalar
between 0 and 1. These four variables have no units.

In Eq. (1), the right-hand side J (x)t (x) is direct attenua-
tion, andA(1−t (x)) is airlight. Direct attenuation represents
the attenuation of scene radiance by the medium in the air,
while airlight represents light scattered by myriad particles
suspended in the atmosphere.

If the atmosphere is uniform, transmission t is expressed
as follows:

t (x)= exp(−βd(x)), (2)

where d (m) is scene depth. x indicates the pixel position as
in Eq. (1).
β (m−1) is called the atmospheric extinction coefficient

and represents the ability of the atmosphere to dissipate light
in a unit volume of the atmosphere. Extinction refers to the
combined effect of light scattering and absorption. In this pa-
per, the terms “extinction” and “scattering” are used synony-
mously because water absorbs virtually no light in the visible
light wavelength range.

Equation (2) shows that transmission attenuates exponen-
tially according to the increase in scene depth, subject to the
effect of the extinction coefficient. The principle is based
on the Beer–Lambert law, which states that as light passes
through matter – in this case, transparent atmosphere – its
intensity attenuates exponentially.

The following are variants of Eqs. (1) and (2):

β =−
loge(t (x))

d(x)
, (3)

t (x)=
A− I (x)

A− J (x)
, (4)

where A− J (x) 6= 0 and 0≤ t (x)≤ 1.

2.2 Rainfall intensity and extinction coefficient

With the theory of atmospheric radiation, the extinction co-
efficient under rainfall conditions can be expressed as fol-
lows using the raindrop diameter, the particle size distribu-
tion of raindrops, and the extinction efficiency (Grabner and
Kvicera, 2011):

β =

∞∫
0

πD2

4
N(D)QdD, (5)

where D (m) is the raindrop diameter and N(D) (m−3) is
the particle size distribution of raindrops. D2/4 represents
the surface area of raindrops projected in the optical path di-
rection. Q is called the extinction efficiency and is a dimen-
sionless parameter that expresses the ratio of the extinction
cross-sectional area of the raindrop to the geometric cross-
sectional area of the raindrop. The extinction cross-sectional
area is the quantity that expresses the intensity of extinction
of a single particle with the dimension of area. Under the Mie
scattering theory, the extinction efficiency Q is expressed as
2, given the relationship between raindrop size and the wave-
length of visible light (Chylek, 1977; Uijlenhoet et al., 2011).

Because the particle size distribution of raindrops is
known to be related to rainfall intensity (Marshall and
Palmer, 1948; Marshall et al., 1955), the extinction coeffi-
cient can be expressed using rainfall intensity as follows:

β = 5.80× 10−5πQR0.63, (6)

where R (mmh−1) is the rainfall intensity. The detailed
derivation process of Eq. (6) is described in Appendix A.

As shown in Appendix A, the particle size distribution of
raindrops used in this study is that presented by Marshall and
Palmer (1948), hereafter referred to as the M–P distribution.
The M–P distribution is a very good approximation to the
raindrop size distribution, referred to as natural rainfall, and
is widely used for describing the midlatitude particle size dis-
tribution for particles that are characterized by low to moder-
ate intensity (e.g., Serio et al., 2019). However, particle size
distribution is known to vary between rainfall types and cli-
mates. Therefore, the use of the M–P distribution has limita-
tions for other rainfall types and climates. It should be noted
that when Eq. (6) is used under different rainfall types and
climate conditions than those under which the M–P distribu-
tion is applied, the appropriate coefficients for other rainfall
types and climates should be used.
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2.3 Relationship between image information, rainfall
intensity, and scene depth

The extinction coefficient of the image degradation model
shown in Eq. (2) is the extinction coefficient obtained from
the image information as shown in Eqs. (3) and (4). If the
images were taken under rainfall conditions, the extinction
coefficient in Eq. (2) will reflect rainfall intensity. On the
other hand, the extinction coefficient using the rainfall in-
tensity shown in Eq. (6) is a theoretically derived value, al-
though it is approximate, based on the atmospheric radiation
theory. Therefore, by substituting Eq. (6) into Eq. (2), the re-
lationship between image information, rainfall intensity, and
scene depth can be obtained as follows:

t (x)= exp(−5.80× 10−5πQR0.63d(x)), (7)

t (x)=
A− I (x)

A− J (x)
, (8)

where A− J (x) 6= 0 and 0≤ t (x)≤ 1.
Equation (7) shows a relationship where transmission t de-

creases exponentially as rainfall intensity R increases and as
scene depth d increases.

Equations (7) and (8) can be transformed as follows:

R =

[
−

1

5.80× 10−5πQd(x)
loge

(
A− I (x)

A− J (x)

)] 1
0.63
, (9)

where A− J (x) 6= 0 and 0≤ t (x)≤ 1.
Equation (9) is a formula for estimating rainfall intensity

from image information. The applicability of these relational
equations will be examined in subsequent sections.

3 Materials and methods

3.1 Rainfall photography and observation

We captured outdoor conditions including rain events and
observed rainfall intensity by installing three cameras at ob-
servation sites (35°45′53′′ N, 138°18′42′′ E, 758 m above sea
level) along the banks of the Omu River, which flows through
Yamanashi Prefecture in central Japan. A plan view of the ob-
servation site is shown in Fig. 1. The meteorological observa-
tions in 2021 around the observation site are shown in Fig. 2.
The figure shows data from a weather station about 24 km
southeast of those cameras. The Köppen climate classifica-
tion of the area around the observation site is humid subtrop-
ical climate, with hot, humid conditions and heavy precipi-
tation in summer and cool to mild conditions in winter. Pho-
tography was taken using three commercially available inter-
val cameras (TLC200Pro Brinno inc., Taiwan). The camera
has a 1/3 inch HDR sensor with a resolution of 1.3 megapix-
els and a pixel size of 4.2 µm. The F-number, field of view,
and focal length of the lens are F2.0, 112°, and 19 mm in
35 mm format, respectively. The focus distance is from 40 cm

Table 1. The number of images.

Rainfall intensity Camera 1 Camera 2 Camera 3
(mmmin−1)

0.0 151 823 133 970 151 771
0.2 3141 2908 3141
0.4 87 75 87
0.6 21 20 21
0.8 12 12 12

to infinity. The resolution of the image is 1280 pixels wide
by 720 pixels high. Images of the upstream, opposite bank,
and downstream of the river were taken at 1-minute intervals
from the same point. Camera 1 captured the upstream direc-
tion of the river, Camera 2 captured the opposite bank direc-
tion, and Camera 3 captured the downstream direction. The
photography period was 235 d from 19 April–9 December
2021. Images taken at night were excluded from the analysis
because it was difficult to distinguish rainfall.

One-minute rainfall intensity was also observed using a
tipping bucket rain gauge (RG3-M Onset Computer Corpo-
ration, USA) at almost the same locations where the cam-
eras were installed. In estimating rainfall intensity based on
camera images, it is essential to consider the instantaneous
intensity at the time of shooting. In contrast, when observing
rainfall using a traditional tipping bucket, it is not possible to
measure rainfall until it reaches the capacity of one tipping
bucket. In other words, it is difficult to measure instantaneous
values with a tipping bucket rain gauge with sufficient preci-
sion. However, in this study, to validate the accuracy of rain-
fall intensity estimated based on camera images, we decided
to obtain data from a tipping bucket rain gauge with as fine a
resolution as possible (i.e., 1 minute). The resolution and cal-
ibration accuracy of the tipping bucket rain gauge used were
0.2 mm and ±1.0%, respectively. In the tipping bucket rain
gauge, the number of tips in a unit of time is affected by the
amount of water stored in the bucket in the previous unit of
time due to the characteristics of the mechanism. Therefore,
even if one tip occurs in a unit of time, the actual rainfall
in a unit of time is considered to have a range from a value
slightly larger than 0 to a value less than 0.4 mm. However,
because the range is constant, we consider that a broad trend
can be discussed. The total rainfall during the observation pe-
riod was 1257 mm, and the total daytime rainfall for the anal-
ysis was 685 mm. The maximum 1-minute daytime rainfall
intensity during the observation period was 0.8 mmmin−1.
The number of images used for the analysis by rainfall in-
tensity is shown in Table 1. Although the number of images
at 0.8 mmmin−1 is small, there are more than 100 images at
0.4 mmmin−1 and above, so a broad trend can be discussed.
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Figure 1. Observation site plan. Coastline map made with Natural Earth (2022).

Figure 2. The meteorological observations in 2021 around the observation site.

3.2 Image data preprocessing and processing

For the images of landscapes taken, background objects, such
as sky, vegetation, and riverbeds, and their respective scene
depths differ according to the angle of view of the camera
and the area of the image. Thus, to analyze the influence of
background objects and scene depth, patches to be analyzed
were set on the image. The analysis patch was defined as the
center area of 30pixel× 30pixel in each area of the image
divided into 64 areas of 8pixel×8pixel. Serial numbers were
assigned to 64 patches, as shown in Fig. 3. The magnitudes of
image degradation with increasing rainfall should be related
to the scene depth. If a relatively wide area is analyzed, the
scene depth should vary considerably. Therefore, the limited
number of pixels are set as analysis patches for each area.
The representative value of each analysis patch was the mean
value of the analysis patch.

Concerning the parameters obtained from the images to be
used in Eq. (8), observed intensity I was the luminance value
of the image taken. Global atmospheric light A and scene ra-
diance J were calculated from observed intensity I using the
Dark Channel Prior method proposed by He et al. (2011),
hereinafter referred to as DCP. DCP is a method of recov-
ering an image with the effects of static weather removed,
scene radiance J , using a single hazy image, observed inten-
sity I . The procedure for recovering scene radiance J from
observed intensity I by DCP is described in Appendix B.

DCP is not a machine-learning-like method that requires
a large amount of prior learning but is a method that can
simply estimate global atmospheric light A and scene radi-
ance J from a single image with relatively little calculation.
Therefore, this study has adopted a method using DCP. In
addition, because the angle of view may change even with
the same camera in long-term photography, image registra-
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Figure 3. Analysis patches of the three cameras: (a-1, b-1, c-1), respectively, show the images taken by Camera 1, Camera 2, and Camera 3
during no rainfall. Likewise, (a-2, b-2, c-2) show the images taken by Camera 1, Camera 2, and Camera 3 during rainfall, respectively.

tion was performed so that the angle of view was the same
throughout the entire term. Image registration was performed
by combining feature detection using the Accelerated-KAZE
(Alcantarilla et al., 2013) algorithm and image warping by
homography.

Scene depth d was calculated as the oblique distance from
the camera to the intersection of (i) the light path in the
camera’s line-of-sight direction obtained from the camera’s
latitude, longitude, height above sea level, azimuth angle,
and elevation angle information and (ii) the background 5 m
digital elevation models created from the aerial laser survey
data (Geospatial Information Authority of Japan, 2018). The
scene depth of each analysis patch was defined as the scene
depth at the center position of each patch.

The values of the parameters global atmospheric light A,
scene radiance J , observed intensity I , and scene depth d
calculated for each image were applied to the proposed
relational equations (Eqs. 7–9) to analyze the relationship
between transmission t , rainfall intensity R, and scene
depth d in each analysis patch. The flowchart of estimat-
ing rainfall intensity from image information by Eq. (9) is
shown in Fig. 4. The image processing was performed using
OpenCV4.0.1, an open-source library in the Python 3.8.12

programming language. For the DCP calculation, we referred
to the source code in Zhang (2021).

4 Results

4.1 Distribution of observed intensity I , scene
radiance J , global atmospheric light A, and
transmission t

Figures 5, 6, and 8 show the distribution of observed inten-
sity I , scene radiance J , and transmission t for each rain-
fall intensity, respectively. These figures show the top three
patches of scene depth for each camera. This is because the
greater the scene depth, the more likely static weather effects
are to appear, making it easier to understand the characteris-
tics of static weather effects. Figures that include all patches
are shown in Appendices C–E. As shown in Appendices C–
E, patches where the appropriate scene depth could not be
calculated due to the presence of sky background and the ap-
plication of geometric corrections in the image registration
process, such as the upper and rightmost patch of Camera 1,
were excluded from the analysis. Figure 7 shows the distribu-
tion of global atmospheric light A for each rainfall intensity.
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Figure 4. The flowchart of estimating rainfall intensity from image information.

Global atmospheric light A is set to one value per image,
regardless of the patch. Furthermore, the slope of the regres-
sion line by single regression analysis in the relationship be-
tween rainfall intensity and the mean values of the observed
intensity I , scene radiance J , global atmospheric lightA, and
transmission t is shown in Figs. 5–8. Although an exponen-
tial relationship between rainfall intensity and observed in-
tensity I , scene radiance J , global atmospheric light A, and
transmission t is expected as shown in Eqs. (7) and (8), a
simple regression analysis was conducted here to analyze a
simple trend.

As shown in Fig. 5, the mean values of observed inten-
sity I range from approximately 50 to 170, and the value and
distribution range of observed intensity I vary for each patch.
For example, comparing the figures for patches 30 and 29 of
camera 1 in the upper panel of Fig. 5, when the rainfall inten-
sity is 0.0 mmmin−1, the mean value of observed intensity I
in patch 30 is approximately 120, while in patch 29, it is ap-
proximately 90. Similarly for the other cameras, each patch
has a different observed intensity when the rainfall intensity
is 0.0 mmmin−1. This is because the background color and
luminance are inherently different due to the different back-
ground objects in each patch. On the other hand, the tendency
of increasing observed intensity I as the rainfall intensity in-
creases is consistent across all patches, even though the slope
of the regression line is different in each patch somewhat.
This observation means that, as an overall trend, the white-
ness of the image increases as rainfall intensity increases.
Furthermore, in patches with particularly large scene depths,
such as patch 30 of Camera 1, patch 29 of Camera 3, and
patch 30 of Camera 3, observed intensity I tends to increase

significantly when the rainfall intensity is 0.2 mmmin−1 and
then remains almost constant even if the rainfall intensity in-
creases further. This finding suggests that there is an upper
limit to the observed intensity I and that scene depth and
rainfall intensity may interrelate to determine the extent of
increase in observed intensity I .

Next, as shown in Fig. 6, the mean values of scene radi-
ance J range from approximately 20 to 80. The tendency of
scene radiance J is different from the tendency of observed
intensity I , and the effect of rainfall intensity is limited and
varies little for any of the cameras. Moreover, as shown in
Fig. 7, the mean values of global atmospheric light A range
from approximately 220 to 240, and the effect of rainfall
intensity on global atmospheric light A is also limited and
varies little for any of the cameras.

Finally, as shown in Fig. 8, the mean values of transmis-
sion t range from approximately 0.4 to 0.9, and the value
and distribution range of transmission t vary for each patch.
On the other hand, the tendency of decreasing transmission
t as the rainfall intensity increases is consistent across all
patches and is opposite to the tendency of the relationship
between observed intensity I and rainfall intensity. This ten-
dency between transmission t and rainfall intensity quantita-
tively indicates that the background becomes gradually hazy
and less visible as the rainfall intensity increases. Further-
more, in patches with particularly large scene depths, such as
patch 30 of Camera 1, patch 29 of Camera 3, and patch 30
of Camera 3, transmission t tends to decrease significantly
when the rainfall intensity is 0.2 mmmin−1 and then remains
almost constant even if the rainfall intensity increases further.
As with the case of observed intensity I , this finding suggests
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Figure 5. Distribution of observed intensity I by rainfall intensity. Subfigures show the top three patches of scene depth for each camera.
Figures that include all patches are shown in Appendix C. Each figure is marked with the corresponding camera name, patch number, scene
depth, and slope of the linear regression line for the relationship between rainfall intensity and observed intensity I . The upper three subfigures
correspond to Camera 1, the middle three subfigures correspond to Camera 2, and the lower three subfigures correspond to Camera 3. The
plots and error bars show the mean value and standard deviation of all data during the observation period. The straight lines are the linear
regression lines for the relationship between rainfall intensity and observed intensity I . Rainfall intensity is observed by a rain gauge.

that there is a lower limit to the transmission t and that scene
depth and rainfall intensity may interrelate to determine the
extent of decrease in transmission t .

4.2 Relationship between transmission t , rainfall
intensity R, and scene depth d

Figure 9 shows the relationship between transmission t cal-
culated by Eq. (8), observed rainfall intensity R, and scene
depth d for each patch. In all cameras, if observed rainfall
intensity is constant, transmission t gradually decreases as
scene depth increases. Similarly, if scene depth is constant,
transmission t will gradually decrease as rainfall intensity
increases. These data clearly show that transmission t de-
creases exponentially according to the increase in rainfall
intensity R and scene depth d, as shown in Eq. (7). As de-
scribed in Sect. 4.1, the fact that scene depth and rainfall
intensity may interrelate to determine the extent of the de-

crease in transmission t is also in the same sense. There-
fore, the proposed relationship, Eqs. (7) and (8), are consid-
ered applicable to images taken outdoors in practice. Fur-
thermore, in the figures at the time of rainfall for each cam-
era, such as rainfall intensity R from 0.2 to 0.8 mmmin−1,
the plots generally ranged between the theoretical lines of
Q= 0.5−2.0. However, in patches where scene depth d was
less than approx. 100 m, the plots often ranged below the line
of Q= 2.0. In the patches ranging below the Q= 2.0 line,
the ratio of scene radiance J to global atmospheric light A
tends to be higher. In addition, theoretically, if there is no
rainfall, i.e., R = 0.0mmmin−1, transmission t should al-
ways be 1.0 without decreasing. However, even in the case
of no rainfall, transmission t tends to decrease according to
the scene depth.
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Figure 6. Distribution of scene radiance J by rainfall intensity. Subfigures show the top three patches of scene depth for each camera.
Figures that include all patches are shown in Appendix D. Each subfigure is marked with the corresponding camera name, patch number,
scene depth, and slope of the linear regression line for the relationship between rainfall intensity and scene radiance J . The upper three
subfigures correspond to Camera 1, the middle three subfigures correspond to Camera 2, and the lower three subfigures correspond to
Camera 3. The plots and error bars show the mean value and standard deviation of all data during the observation period. The straight lines
are the linear regression lines for the relationship between rainfall intensity and scene radiance J . Rainfall intensity is observed by a rain
gauge.

Figure 7. Distribution of global atmospheric light A by rainfall intensity. Each subfigure is marked with the corresponding camera name
and the slope of the linear regression line for the relationship between rainfall intensity and global atmospheric light A. The left subfigure
corresponds to Camera 1, the center subfigure corresponds to Camera 2, and the right subfigure corresponds to Camera 3. The plots and error
bars show the mean value and standard deviation of all data during the observation period. The straight lines are the linear regression lines
for the relationship between rainfall intensity and global atmospheric light A. Rainfall intensity is observed by a rain gauge.
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Figure 8. Distribution of transmission t by rainfall intensity. Subfigures show the top three patches of scene depth for each camera. Figures
that include all patches are shown in Appendix E. Each subfigure is marked with the corresponding camera name, patch number, scene
depth, and slope of the linear regression line for the relationship between rainfall intensity and transmission t . The upper three subfigures
correspond to Camera 1, the middle three subfigures correspond to Camera 2, and the lower three subfigures correspond to Camera 3. The
plots and error bars show the mean value and standard deviation of all data during the observation period. The straight lines are the linear
regression lines for the relationship between rainfall intensity and transmission t . Rainfall intensity is observed by a rain gauge.

5 Discussion

5.1 Factors of the value and the variation of
transmission t according to the rainfall intensity

As shown in Eq. (4), transmission t is determined by the re-
lationship between the observed intensity I , scene radiance
J , and global atmospheric light A. However, as shown in
Figs. 5–8, the values and trend of variation for the observed
intensity I , scene radiance J , global atmospheric lightA, and
transmission t vary according to the rainfall intensity. There-
fore, it was verified which of the following factors, i.e., ob-
served intensity I , scene radiance J , or global atmospheric
light A, strongly affected the value and the variation of trans-
mission t with respect to the rainfall intensity.

Figure 10 shows the relationship between (i) the mean
value of observed intensity I , scene radiance J , and global
atmospheric light A with respect to rainfall intensity in each

patch for the three cameras shown in Figs. 5–7 and Appen-
dices C and D and (ii) the mean value of transmission t
shown in Fig. 8 and Appendix E. Table 2 shows the slope
of the regression line and the value of the coefficient of de-
termination R2 obtained by simple regression analysis. Fig-
ure 10 and Table 2 clearly show a negative correlation be-
tween observed intensity I and transmission t , where trans-
mission t decreases as observed intensity I increases for all
three cameras. In the results of the single regression analysis,
the coefficient of determination was 0.47–0.69 in the case of
no rainfall and 0.74–0.90 in the case of rainfall, which in-
dicates a strong negative correlation. That is, the value of
transmission t has a strong relationship with the value of
observed intensity I . In addition, the absolute value of the
slope of the regression line gradually increases as rainfall in-
tensity increases. This indicates that as rainfall intensity be-
comes greater, the value of transmission t tends to respond to
the value of observed intensity I more sensitively and vary
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Figure 9. Relationship between transmission t and scene depth d: (a-1–a-5), respectively, show the results of Camera 1 by rainfall intensity
((a-1) R = 0.0mmmin−1, (a-2) R = 0.2mmmin−1, (a-3) R = 0.4mmmin−1, (a-4) R = 0.6mmmin−1, and (a-5) R = 0.8mmmin−1).
Likewise, (b-1–b-5) show the results of Camera 2 by rainfall intensity, and (c-1–c-5) show the results of Camera 3 by rainfall intensity,
respectively. The plots show the mean value of all image data in each patch, and the error bars show the standard deviation. The theoretical
relationship between transmission t and scene depth d is shown as a curve when extinction efficiency Q is given in Eq. (7) for four patterns,
i.e., 0.5, 1.0, 1.5, and 2.0, for each rainfall intensity. The theoretical transmission t is not shown because the transmission t is always 1 when
R = 0.0mmmin−1. Each plot is shown in a different color depending on the ratio of scene radiance J to global atmospheric light A.

more. Furthermore, in each patch, especially patches where
the range of variation of transmission t is large, observed in-
tensity I increases and transmission t decreases as rainfall
intensity increases. From this observation, it can be said that
in patches where the range of variation of transmission t is
large, as rainfall intensity increases, the apparent whiteness
of the image tends to increase.

Next, in the relationship between scene radiance J and
transmission t , the slope of the regression line was negative
for all three cameras. However, the coefficient of determi-
nation was 0.04–0.36 in the case of no rainfall and 0.02–
0.16 in the case of rainfall, which indicates a generally weak
negative correlation or almost no correlation. In each patch,
changes in scene radiance J and transmission t according
to changes in rainfall intensity were also not clear. In the
patch where scene radiance J is relatively high when rain-
fall intensity is 0.0 mmmin−1, scene radiance J tends to de-
crease as rainfall intensity increases. However, because it
is not clearly linked to changes in transmission t , it can be
said that the effect of changes in scene radiance J associated
with changes in rainfall intensity on transmission t is lim-
ited. Then, in the relationship between global atmospheric

light A and transmission t , the relationship between global
atmospheric light A and the transition of transmission t ac-
cording to changes in rainfall intensity was not clearly found
because global atmospheric light A was almost constant at
200 or more for all three cameras. These results suggest that
the value and the variation of transmission t according to the
increase in rainfall intensity are strongly influenced mainly
by the value of observed intensity I .

5.2 Validity of the extinction coefficient β determined
from images

5.2.1 Rationale for rainfall causing static weather
effects

As indicated in Sect. 1, it has been suggested that rain causes
static weather effects because individual raindrops cannot be
identified by the camera’s sensor when they are more than a
certain distance away from the camera. Therefore, this sec-
tion briefly examines the validity of treating rain as static
weather in this study.

The actual height and width of the background in the im-
age vary with the distance from the camera. The height and
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Figure 10. Relationship between observed intensity I , scene radiance J , global atmospheric light A, and transmission t by analysis patch
and rainfall intensity: (a-1–a-3), respectively, show the relationship between observed intensity I , scene radiance J , global atmospheric
light A, and transmission t for Camera 1. Likewise, (b-1–b-3) show the relationship for Camera 2, and (c-1–c-3) show the relationship for
Camera 3. The plots by rainfall intensity for each patch are connected by straight lines to show the transition associated with changes in
rainfall intensity in one patch. Global atmospheric light A is set to one value per image, so the values are all the same in each patch. In
the subfigures of observed intensity I and scene radiance J , the regression lines from the single regression analysis by rainfall intensity are
shown as dotted lines that match the colors of the scatter diagram.

Table 2. Slope and coefficient of determination R2 of the linear regression line for the relationship between observed intensity I , scene
radiance J , and transmission t by rainfall intensity.

Slope (×10−3) Coefficient of determination R2

Rainfall intensity 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
(mmmin−1)

I vs. t Camera 1 −2.04 −3.53 −3.79 −4.03 −4.06 0.47 0.81 0.86 0.88 0.90
Camera 2 −2.04 −3.05 −3.47 −3.92 −4.09 0.69 0.74 0.77 0.81 0.86
Camera 3 −1.42 −2.88 −3.25 −3.48 −3.66 0.56 0.74 0.79 0.82 0.87

J vs. t Camera 1 −0.61 −2.16 −2.38 −2.48 −2.63 0.04 0.12 0.10 0.08 0.08
Camera 2 −1.65 −1.78 −1.42 −0.92 −1.39 0.36 0.14 0.07 0.02 0.03
Camera 3 −1.09 −2.02 −2.33 −2.20 −2.69 0.27 0.16 0.14 0.09 0.11

width are smaller for scenes closer to the camera and larger
for scenes farther away from the camera. Therefore, if the
image resolution is constant, the actual height and width of

the scene occupied by a single pixel also vary with the dis-
tance from the camera. In this section, we examine the actual
width of the scene occupied by a single pixel in images taken
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with our camera. It should be noted that the results are ap-
proximations because lens distortion is not considered here.

The angle of view of the camera used in this study is 112°.
Therefore, at a distance d (m) from the camera, a width
of 2× d × tan(112/2) (m) appears in the image. At a dis-
tance of 1 m from the camera, the width is approximately
3 m. The resolution of images captured by this camera is
1280 pixels wide by 720 pixels high. Thus, at a distance
d (m) from the camera, a single pixel occupies a width of
2× d × (tan(112/2))/1280 (m). The radius of raindrops is
0.1–10 mm (Narasimhan and Nayar, 2002). If the radius of
a raindrop is 1 mm, the distance where the width of a single
pixel and the diameter of a single raindrop are the same is
about 0.86 m. Therefore, raindrops further than about 0.86 m
from the camera are smaller than a single pixel and cannot be
identified by the camera’s sensor. In other words, raindrops
further than about 0.86 m from the camera are considered to
cause static weather effects. The fact that the cameras used
in the field in this study captured scenes from several tens to
several hundreds of meters away suggests that it is reasonable
to treat rainfall as static weather.

5.2.2 Values and trends of the extinction coefficient β
determined from images

In this study, as shown in Sect. 2, we linked the extinction
coefficient obtained from image information with the rain
extinction coefficient approximately obtained from the atmo-
spheric radiation theory. Because there are few examples of
rain extinction coefficient values obtained from images in the
past, the validity of the values is verified below.

Figure 11 shows the relationship between the value of ex-
tinction coefficient β calculated from the image and scene
depth d for each rainfall intensity. The extinction coefficient
obtained from the image was calculated by Eq. (3) after de-
termining transmission t from observed intensity I , global
atmospheric light A, and scene radiance J of the image, as
shown in Eq. (4). The figure at the time of rainfall for each
camera, with rainfall intensity R from 0.2–0.8 mmmin−1,
shows the values of the extinction coefficient for extinction
efficiency Q of 0.5, 1.0, 1.5, and 2.0 and the values of the
extinction coefficient given in the previous study to be dis-
cussed in Sect. 5.2.3. For all three cameras, the value of ex-
tinction coefficient β in the case of no rainfall, i.e., rainfall
intensity R = 0.0mmmin−1, is on the order of 10−4–10−2,
while the value of extinction coefficient β in the case of rain-
fall is on the order of 10−3–10−2. In addition, for all rainfall
intensities, a trend is seen wherein the extinction coefficient
β decreases as scene depth increases in patches where scene
depth d is less than approx. 100 m, while it remains nearly
constant when scene depth d is more than approx. 100 m.
These values and trends of extinction coefficient β will be
discussed in the following sections.

5.2.3 Validity of extinction coefficient β determined
from images in the case of rainfall

Although no research has been conducted to determine the
extinction coefficient of rain from images, there are many ex-
amples in the field of radar meteorological observation and
telecommunications where the extinction coefficient is de-
termined from the attenuation of electromagnetic waves due
to rain using electromagnetic waves with wavelengths in the
visible light and near-infrared regions (Bradley et al., 2000;
Nedvidek et al., 1986; Shipley et al., 1974; Suriza et al.,
2013; Ulbrich and Atlas, 1985; Zaki et al., 2019). Visible
light is an electromagnetic wave with a wavelength of ap-
prox. 360–830 nm, and a camera can be regarded as a sensor
that detects electromagnetic waves in that wavelength range.
Uijlenhoet et al. (2011) indicated that both theoretically and
experimentally the attenuation of visible and near-infrared
signals over paths ranging from a few hundred meters to sev-
eral kilometers can be used to estimate the average rainfall
over a path. The concept of attenuation and extinction coeffi-
cients of electromagnetic waves due to rain in such previous
studies can apply to this study. According to previous stud-
ies, the extinction coefficient of electromagnetic waves due to
raindrops can be expressed by the following equation (e.g.,
Ulbrich and Atlas, 1985).

β = aRb (10)

The two parameters a and b in Eq. (10) represent the differ-
ence in the particle size distribution of raindrops. Comparing
the extinction coefficients of Eq. (6) and Eq. (10), we obtain
a = 5.80× 10−5πQ and b = 0.63. In the previous studies,
for example, Ulbrich and Atlas (1985) proposed the theoreti-
cal values a = 2.12×10−4 and b = 0.68 based on the results
of previous experiments on rainfall intensity and optical at-
tenuation, including the experiment of Shipley et al. (1974).
On the other hand, Nedvidek et al. (1986) proposed the val-
ues a = 2.12× 10−4 and b = 0.63 based on the results of
experiments using near-infrared light sources and reflectors.
All the values of extinction coefficients shown in the unit of
dBkm−1 in the previous studies were converted to m−1. Fig-
ure 11 shows the results of calculating the extinction coeffi-
cient β using the values of a and b shown in these previous
studies. The values of extinction coefficient β shown in these
previous studies are on the order of 10−3. The values of ex-
tinction coefficient β obtained from the images in this study
in the case of rainfall are almost constant, being on the order
of 10−3 in patches where scene depth d is more than approx.
100 m. Therefore, the results show that the extinction coeffi-
cient β in patches where scene depth d is more than approx.
100 m is almost consistent with the value shown in the pre-
vious study. However, the extinction coefficient β in patches
where scene depth d is less than approx. 100 m is a signif-
icant overestimation compared to the previous studies. The
reasons for this overestimation are discussed in Sect. 5.2.5.
As indicated in Sect. 2, extinction efficiency Q is ideally 2
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Figure 11. Relationship between extinction coefficient β and scene depth d: (a-1–a-5), respectively, show the results of Camera 1 by
rainfall intensity ((a-1) R = 0.0mmmin−1, (a-2) R = 0.2mmmin−1, (a-3) R = 0.4mmmin−1, (a-4) R = 0.6mmmin−1, and (a-5) R =
0.8 mmmin−1). Likewise, (b-1–b-5) show the results of Camera 2 by rainfall intensity, and (c-1–c-5) show the results of Camera 3 by
rainfall intensity. The plots show the mean value of all image data in each patch, and the error bars show the standard deviation. The values
of extinction coefficient β are shown as dotted lines when extinction efficiency Q is given in Eq. (6) for four patterns, i.e., 0.5, 1.0, 1.5, and
2.0, for each rainfall intensity. The values of extinction coefficient β shown in previous studies are shown as blue lines (Nedvidek et al.,
1986) and orange lines (Ulbrich and Atlas, 1985). Each plot is shown in a different color depending on the ratio of scene radiance J to global
atmospheric light A.

(Chylek, 1977; Uijlenhoet et al., 2011), but the values of the
extinction coefficient in the previous studies ranged between
1.0 and 1.5. It has been indicated that the reason for this
difference in the value of Q is that the ideal case of Q= 2
tends to overestimate the number of very small raindrops in
the raindrop population (Bradley et al., 2000; Rogers et al.,
1997).

5.2.4 Validity of extinction coefficient β determined
from images in the case of no rainfall

In the case of no rainfall, as seen from Eq. (6), the rain extinc-
tion coefficient approximately obtained from the atmospheric
radiation theory is expected to be normally zero, and the ex-
tinction coefficient obtained from the image is also expected
to be zero (synonymous with the transmission t of 1). How-
ever, as shown in the no-rainfall subfigure in Fig. 11 in the
case of no rainfall, the extinction coefficient indicated almost

the same trend for the three cameras, decreasing between the
order of 10−2 and 10−3 in patches where the scene depth
was less than approx. 100 m and remaining almost constant
between 10−3 and 10−4 when the scene depth was more than
approx. 100 m. It is noted that because the extinction coef-
ficient is expressed as an exponential function of the trans-
mission and scene depth as in Eq. (3), the facts that trans-
mission t exponentially decreases in the range where scene
depth is more than approx. 100 m in the no-rainfall subfig-
ure in Fig. 9 and that the extinction coefficient is constant in
the range where scene depth is more than approx. 100 m in
Fig. 11 have the same meaning.

The reason why the extinction coefficient is not zero when
there is no rainfall may be due to the effect of aerosols in the
atmosphere. In outdoor photography, not only hydrometeors,
such as rain and fog, which are the subject of this study, but
also lithometeors, such as smoke and dust, degrade visibility
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and change the appearance of the background. Therefore, im-
ages taken during no rainfall do not show the effects of rain
but may show the effects of hydrometeors and lithometeors
that are not observed as rainfall intensity. In this paper, hy-
drometeors and lithometeors that are not observed as rainfall
intensity are collectively referred to as aerosols.

Because of the importance of atmospheric aerosols to air
pollution (and the human health impacts caused by it), traf-
fic and airport safety, and climate change, many studies have
been conducted to understand the characteristics of aerosols
(Kim and Noh, 2021). Some of these studies have reported
on the relationship between atmospheric aerosols and atmo-
spheric extinction coefficients (Kim and Noh, 2021; Ozkay-
nak et al., 1985; Shin et al., 2022; Uchiyama et al., 2014;
Uchiyama et al., 2018). Ozkaynak et al. (1985) calculated the
values of the extinction coefficient from the results of visibil-
ity observation at 12 airports in large cities in the U.S. and re-
ported that they were 4.0×10−5

−7.8×10−4 m−1. Uchiyama
et al. (2014) reported that the mode of extinction coefficients
observed at Tsukuba, Japan, using an integrating nephelome-
ter and one- and three-wavelength absorption spectrome-
ters were 2.5× 10−5 m−1, and most values were not more
than 2.0× 10−4 m−1. Uchiyama et al. (2018) also observed
extinction coefficients in two cities – Fukuoka, Japan, and
Beijing, China – using an integrating nephelometer and an
Aethalometer and found that the annual mean for Fukuoka
was 7.46× 10−5 m−1 and for Beijing was 4.12× 10−4 m−1.
Kim and Noh (2021) obtained the extinction coefficients
of atmospheric aerosols from camera images and reported
that the estimated range was 5.0× 10−5

− 1.0× 10−3 m−1

and the optimal aerosol extinction coefficient was approx.
5.0×10−4 m−1. Furthermore, Shin et al. (2022) reported that
the range obtained from the camera images and visibility data
was 2.0× 10−6

− 1.1× 10−3 m−1. In reference to these re-
ports, although there are differences in the air pollution con-
ditions at the observation sites and the observation methods
used, the value of the atmospheric extinction coefficient is
expected to be on the order of 10−6

− 10−3 in units of m−1

due to aerosol effects even if there is no rainfall. In the re-
sults of this study, the extinction coefficient is on the order
of 10−3

− 10−4 in patches where the scene depth is more
than approx. 100 m, as shown in the no-rainfall subfigure in
Fig. 11. This result is a slight overestimation compared to
the results observed in Japan in recent years, i.e., Uchiyama
et al. (2014) and Uchiyama et al. (2018), but is considered to
be generally appropriate. Therefore, the effect of aerosol is
considered to appear in the extinction coefficient of the no-
rainfall case in patches where the scene depth is more than
approx. 100 m. However, in patches where scene depth d is
less than approx. 100 m, the results show a significant over-
estimation compared to the previous studies as well as the
case of rainfall.

5.2.5 Causes of overestimations of extinction
coefficients obtained from images

In patches where the scene depth is less than approx. 100 m,
the extinction coefficients calculated from images resulted
in overestimations, regardless of the presence or absence of
rain. This outcome implies that the static weather effect was
strongly represented in the image, even though the static
weather effect was actually absent or small. One possible
reason for this could be the influence caused by DCP, the
method used in this study to calculate extinction coefficients.
DCP assumes that dark channel images of the outdoor im-
ages without static weather effects will have zero pixel values
in most patches and that transmission will decrease accord-
ing to the increase in scene depth and static weather effects
(rainfall intensity in this study) (He et al., 2011). In other
words, it is assumed that the increase in scene depth and
static weather effects will make the image whiter. Therefore,
although DCP can properly determine transmission t if the
background of the image meets the assumption, it has been
pointed out that there are many actual outdoor images that
violate the assumption, and it is often difficult to estimate the
appropriate transmission t (Qin et al., 2020; Qu et al., 2019;
Ren et al., 2019; Wu et al., 2021). It has been reported that,
especially in backgrounds with white objects that are essen-
tially similar to the color of global atmospheric light, DCP
often fails because it violates the assumed prior distribution
(Qin et al., 2020; Ren et al., 2018; Yang and Sun, 2018).

In Figs. 9 and 11, the closer the ratio of scene radiance J
to global atmospheric light A is to 1, the more the back-
ground has a color that is essentially similar to the color of
global atmospheric light, and the more difficult it is to esti-
mate transmission t by DCP. From Figs. 9 and 11, it can be
seen that in all the cameras and all rainfall intensity figures,
the values of the ratio of scene radiance J to global atmo-
spheric light A in the patches within approx. 100 m of scene
depth are larger than in the patches above approx. 100 m of
scene depth. Therefore, many patches within approx. 100 m
of scene depth were likely to violate the assumption of the
expected prior distribution, which suggests that it was an in-
convenient patch for the estimation of transmission. This in-
dicates that the cause of the overestimates of the value of
the extinction coefficient in these patches was due to the
misidentification of the white-colored background as a static
weather effect, which tends to violate the DCP’s assumption
of prior distribution.

It has been pointed out that the ambiguity between image
color and scene depth is often a problem with image fog re-
moval techniques such as the one referenced in this study
(Meng et al., 2013). In other words, the inability to deter-
mine whether the whiteness of the image is due to the color
of the background object itself or to the increase in scene
depth is an issue for the techniques to remove static weather
effects. Therefore, it is important to consider in advance the
reason for the whiteness of the image, even with the method
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proposed in this study. Because some techniques have been
proposed to express Eq. (1) from images (e.g., Fattal, 2008;
Tan, 2008) in addition to the method using DCP, it is a future
issue to study which method can be used to obtain appropri-
ate extinction coefficients and transmission.

Furthermore, in Figs. 9 and 11, some plots overestimate
extinction coefficients even if the value of the ratio of scene
radiance J to global atmospheric light A is not necessarily
larger, especially in the figures with higher rainfall intensity.
Therefore, it can be inferred that the cause of the overestima-
tions of extinction coefficients is not only the effect caused
by DCP. At present, other causes have not yet been identified,
and a future issue is to determine these causes.

5.3 Estimates of rainfall intensity

Based on the previous discussion, we attempted to estimate
rainfall intensity using Eq. (9), which determines rainfall in-
tensity from image information. In Eq. (9), the parameters
needed to estimate the rainfall intensity R are the extinc-
tion efficiency Q, global atmospheric light A, observed in-
tensity I , scene radiance J , and scene depth d. Concerning
the extinction efficiency Q, as shown in 5.2.3, the value of
parameter a in Eq. (10) was proposed to be 5.80× 10−5πQ

using extinction efficiency Q in this study. On the other
hand, previous studies proposed values of the parameter a of
2.12×10−4 (Nedvidek et al., 1986; Ulbrich and Atlas, 1985).
Therefore, assuming that the values of both parameters a are
identical, the following equations obtain the extinction effi-
ciency Q.

5.80× 10−5πQ= 2.12× 10−4 (11)

Q=
2.12× 10−4

5.80× 10−5π
≈ 1.16 (12)

The same values used in the previous discussion were applied
for global atmospheric light A, observed intensity I , scene
radiance J , and scene depth d . The flowchart for estimating
rainfall intensity is shown in Fig. 4.

Figure 12 shows the relationships between the observed
and estimated rainfall intensity for each camera. Figure 12
shows that there are patches where the observed and esti-
mated rainfall intensities generally coincide, such as patch 42
of Camera 1, patch 29 of Camera 2, and patch 39 of Camera
3, suggesting that it is possible to estimate the rainfall inten-
sity from the image. These example patches are those with
the lowest mean absolute percentage error (MAPE) of rain-
fall intensity estimates in cases using data with an observed
rainfall intensity of 0.2 mmmin−1 or greater throughout the
observation period. Furthermore, in many of the patches with
scene depths of less than 100 m shaded in yellow, the esti-
mated rainfall intensity was overestimated. This may be due
to the overestimation of the extinction coefficients, as we
have mentioned before. Similarly, patches 12, 13, 17, 18, and
19 from Camera 2 also overestimate the estimated rainfall

intensity due to overestimation of the extinction coefficient.
This suggests that to estimate rainfall intensity from an im-
age, it is necessary to select an appropriate background for
which the extinction coefficient is not overestimated or un-
derestimated.

Figure 13 shows the time series variation of rainfall inten-
sity estimates for the three rain events for the patch with the
lowest MAPE for each camera: patch 42 of Camera 1, patch
29 of Camera 2, and patch 39 of Camera 3. The scene depth
of patch 42 from Camera 1, patch 29 from Camera 2, and
patch 39 from Camera 3 was, respectively, 133.0, 148.5, and
198.9 m. The background of all these patches was vegetation.
The rain events shown in Fig. 13 are those with the maxi-
mum 1-minute rainfall intensity of 0.8 mmmin−1 throughout
the observation period. The time series variation of rainfall
intensity estimates for all camera patches during these rain
events was stored at the storage locations indicated in the
Supplement. In Fig. 13, during the period when the 1-minute
rainfall intensity was observed to be 0.4 mmmin−1 or greater
for each rain event, it can be seen that the estimated rain-
fall intensity variation for all cameras followed the observed
rainfall intensity variation, although the absolute values var-
ied slightly. Therefore, it can be said that this method can
capture short-term variations in rainfall intensity.

Table 3 shows the results of the comparison of the accu-
racy between the five previous studies (Allamano et al., 2015;
Dong et al., 2017; Jiang et al., 2019; Yin et al., 2023; Zheng
et al., 2023) and this study. All five of these previous stud-
ies focused on the dynamic weather effects of rainfall, and
no studies have been conducted on the static weather effects
caused by rain. Allamano et al. (2015) and Dong et al. (2017)
identified rain streaks on images based on temporal proper-
ties, excluded unfocused rain streaks, and estimated rainfall
intensity from the identified rain streak information. Jiang
et al. (2019) incorporated visual properties in addition to tem-
poral properties in identifying rain streaks on images. Yin
et al. (2023) estimated rainfall intensity by constructing an
image-based supervised convolutional neural network model
called irCNN. Zheng et al. (2023) estimated rainfall inten-
sity by constructing a two-stage algorithm that extracts rain-
drop information from the image and then performs convo-
lutional neural networks using the extracted raindrop infor-
mation as inputs. Table 3 shows that although only the work
of Jiang et al. (2019) was conducted in monsoon-influenced
humid subtropical climate, this study and all five previous
studies were conducted in a humid subtropical climate, and
there are no significant climatic differences. Furthermore, re-
garding the mean rainfall intensity during the observation pe-
riod, the mean rainfall intensities of Allamano et al. (2015)
and Dong et al. (2017) were slightly lower than those in
this study, while the mean rainfall intensities of Jiang et al.
(2019), Yin et al. (2023), and Zheng et al. (2023) were com-
parable to this study. Overall, there is no significant differ-
ence in mean rainfall intensity between this study and the five
previous studies. Moreover, in all studies, MAPE, a metric
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Figure 12.

of model performance, was calculated from observed values
and model prediction. Given these facts, it seems reasonable
to compare this study with the five previous studies. None of
these five studies separated the patches because those pre-
vious studies focused on the dynamic weather effects and
scene depth was not relevant. As shown in Table 3, the mean
value of MAPE using data with an observed rainfall inten-
sity of 0.2 mmmin−1 or greater for all patches was 1163.4 %,
2131.4 %, and 1087.2 % for Camera 1, Camera 2, and Cam-
era 3, respectively, and the median value of MAPE using

data with an observed rainfall intensity of 0.2 mmmin−1 or
greater for all patches was 170.1 %, 242.2 %, and 546.6 % for
Camera 1, Camera 2, and Camera 3, respectively. The mean
value of MAPE was considerably larger than the median
value of MAPE because it was heavily influenced by larger
values such as the maximum value of MAPE. On the other
hand, the mean value of MAPE using data with an observed
rainfall intensity of 0.2 mmmin−1 or greater for patches with
a scene depth of more than 100 m was 88.9 %, 148.3 %, and
47.1 % for Camera 1, Camera 2, and Camera 3, respectively,
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Figure 12.

and the median value of MAPE using data with an observed
rainfall intensity of 0.2 mmmin−1 or greater for all patches
was 65.0 %, 96.5 %, and 41.3 % for Camera 1, Camera 2, and
Camera 3, respectively. Thus, the results indicate that the ac-
curacy of rainfall intensity estimation can be improved by
restricting the data to patches with a scene depth of more
than 100 m. Therefore, it is important to select patches with
a scene depth of more than 100 m for rainfall intensity esti-
mation. Next, we compare the results of patches with a scene
depth of more than 100 m in this study with the results of the

five previous studies. The median, 25th percentile, and min-
imum value of MAPE using data with an observed rainfall
intensity of 0.2 mmmin−1 or greater for patches with a scene
depth of more than 100 m was higher than the MAPE value
in the five previous studies. In contrast, the median value
of MAPE using data with an observed rainfall intensity of
0.4 mmmin−1 or greater for patches with a scene depth of
more than 100 m was slightly higher than the MAPE value
in the five previous studies, but the 25th percentile and min-
imum value of MAPE using data with an observed rainfall
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Figure 12. Relationship between observed rainfall intensity and estimated rainfall intensity for (a) Camera 1, (b) Camera 2, and (c) Camera 3.
Each figure is marked with the corresponding patch number, scene depth, and two MAPE values of rainfall intensity estimates throughout
the observation period. M>0.2 denotes the MAPE value in cases using data with an observed rainfall intensity of 0.2 mmmin−1 or greater,
and M>0.4 denotes the MAPE value in cases using data with an observed rainfall intensity of 0.4 mmmin−1 or greater. The plots and error
bars show the mean value and standard deviation of all data during the observation period. Patches shaded in yellow are patches with a scene
depth of less than 100 m. Patches shaded in gray are patches where the appropriate scene depth could not be obtained due to the presence of
sky background and the application of geometric corrections in the image registration process.

intensity of 0.4 mm min−1 or greater for patches with a scene
depth of more than 100 m was similar to those of the five
studies. Therefore, the proposed method in this study is con-
sidered to have a certain degree of effectiveness as a rainfall
intensity estimation method, although there may be some er-

ror when the rainfall intensity is small. The proposed method
is also considered to be sufficiently robust because it was val-
idated for all rain events with an observed rainfall intensity
of 0.2 mmmin−1 or greater during the 235 d observation pe-
riod in this study. In addition, the similarity of the estimated
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Figure 13. Time series variation of observed and estimated rainfall intensity. The patch for each camera is the patch with the lowest MAPE
of the rainfall intensity estimate in cases using data with an observed rainfall intensity of 0.2 mmmin−1 or greater throughout the observation
period, with patch 42 of Camera 1, 29 of Camera 2, and 39 of Camera 3, respectively.

rainfall intensity variations for all cameras suggests that the
proposed method is sufficiently versatile.

5.4 Ways forward

5.4.1 Limitation of the proposed method

There are still several technical problems in the method of
this study that need to be solved. The first problem is how to
select an appropriate background for rainfall intensity esti-
mation (i.e., the analysis area to be used for rainfall intensity
estimation). As shown in Table 3, the accuracy of rainfall
intensity estimation varies greatly depending on the back-
ground patch selected. Therefore, background patches with
the highest estimation accuracy possible should be selected.
One solution to this problem is to select patches with a scene
depth of more than 100 m. As shown in Table 3, selecting
analysis regions from patches with a scene depth of more
than 100 m is more accurate overall than selecting analysis
regions from all background patches. On the other hand, it
may also be important that the scene depth is not too large
because even relatively small rainfall intensity may cause the
transmission to reach the lower limit, as shown in Fig. 8. It is
necessary to further study in detail what scene depth is appro-
priate for rainfall intensity estimation. In addition, in terms

of background objects, a relatively undisturbed background
is desirable for the analysis area. Therefore, it is preferable
to choose a static background such as building walls, tree
canopies, and ground surface without people or vehicles, es-
pecially when applying this method in urban areas. However,
at this time, the selection of appropriate backgrounds has not
been analyzed in detail, and further study is needed on the
effects of scene depth, background texture, and dynamic sub-
ject exposure on estimation accuracy.

The second problem is how to remove the effects of dew
formation and raindrops on the camera lens itself from the
image. Dew formation and raindrops on the camera lens it-
self could cause significant blurring of the image and affect
the rainfall estimation results, but this effect has not been an-
alyzed at this time. Therefore, it is necessary to consider how
to physically protect the camera lens (e.g., by covering the
camera with a cover) and how to remove the effect from the
image if dew or raindrops get on the lens.

The third problem is the identification of fog and precipi-
tation types (e.g., rain, snow). Figure 13 shows that the vari-
ation of the estimated rainfall intensity of Camera 2 around
06:30 JST on 13 October was different from that of the ob-
served rainfall intensity. The images from Camera 2 during
this period were validated to be foggy in the selected patches.
Therefore, the variation in the estimated rainfall intensity for
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Camera 2 can be attributed to the whitening of the back-
ground due to fog. Because this method estimates rainfall
intensity from image whiteness, image whiteness caused by
fog is misidentified as the effect of rainfall. At present, how-
ever, there is no method to determine whether it is fog or rain.
Therefore, as a further study, it is necessary to investigate a
method to determine whether the whiteness in the image un-
der bad weather conditions is caused by rain or fog.

Finally, the fourth problem is the development of a night-
time rainfall estimation method. The method of this study
is not applicable to nighttime images because it was difficult
to distinguish rainfall. Therefore, rainfall estimation methods
using nighttime images should be also considered separately.
An idea for a rainfall estimation method using nighttime im-
ages is to use dynamic weather effects, such as counting the
number of rain streaks that appear around the light source
or near the lens, if the image is illuminated at night. Fur-
thermore, recently, methods using infrared and near-infrared
cameras to estimate rainfall intensity at night have been pro-
posed, and such methods can be utilized (Lee et al., 2023;
Wang et al., 2023).

Thus, there are still several technical problems in the
method of this study.

5.4.2 Possibility for practical use

The camera used in this study was a relatively inexpen-
sive commercially available outdoor camera (approximately
US$ 300 per unit at the time of purchase), and cameras with
similar performance have become even less expensive in re-
cent years. Although the durability of the camera needs to
be validated in the future, it is expected that data acquisi-
tion will be possible at the same level or a lower cost than
that of a traditional tipping bucket rain gauge. Furthermore,
cameras have already been installed outdoors for various pur-
poses other than rainfall observation. The proposed method
in this study can utilize images even without a special instal-
lation environment for rainfall observation purposes if there
is a certain distance to the background and the background
is relatively undisturbed. In other words, it is expected that
by effectively utilizing images from existing cameras, it will
be possible to acquire a vast amount of rainfall data on the
ground surface. Therefore, this method potentially becomes
a gap filler for areas lacking surface rainfall observations.
Moreover, if past images have been accumulated, it may be
possible to go back in time and recover surface rainfall data.
On the other hand, data processing time may be an issue in
utilizing the data for real-time observations. However, the
proposed method is extremely simple, requiring less than
1 minute to process one image using a typical commercial
computer. Although we use a computer having specifications
of 80 GB RAM and an Intel core i7-10700 @2.90 GHz CPU
in this study, such RAM capacity is not necessary for this
process. In other words, it is considered that instantaneous
rainfall intensity can be estimated with a time resolution of 1

minute or less using a typical commercial computer. There-
fore, there is potential for various fields where rainfall obser-
vation can be effectively utilized, such as countermeasures
against flash flood and debris flow, flood forecasting, and ir-
rigation system operation, from a cost perspective. However,
there are still several technical problems to be addressed to
take advantage of this method, as indicated in Sect. 5.4.1.
Furthermore, there are concerns about privacy issues in the
actual use of this method. For many outdoor surveillance
cameras, it may be inevitable that persons will be captured.
Therefore, when making data public, it is necessary to pay
careful attention to privacy issues. Thus, it is important to
understand that there are technical problems and privacy is-
sues before practically using this method.

6 Conclusions

In this study, to verify the applicability of existing theories to
static weather effects caused by rain in outdoor photography
systems, we analyzed the effects of rainfall intensity on the
appearance of the background. Using the extinction coeffi-
cient as the information source, we proposed relational equa-
tions representing the relationship between image informa-
tion, rainfall intensity, and scene depth by linking the theoret-
ically derived rainfall intensity with a technique proposed in
the computer vision field for removing static weather effects.
We also proposed a method for estimating rainfall intensity
from images using those relational equations. Then, the pro-
posed relational equations were applied to outdoor images
taken by commercial interval cameras at observation sites in
a mountainous watershed in Japan. As a result, the following
findings were obtained.

1. In the images taken outdoors, generally, as shown in the
proposed relational equations, transmission t decreased
exponentially according to the increase in rainfall inten-
sity R and scene depth d.

2. The value and the variation of transmission t according
to the increase in rainfall intensity were considered to
be strongly influenced mainly by the value of observed
intensity I .

3. Extinction coefficient β calculated from the rainfall im-
ages was reasonable compared to the previous studies in
the patches where scene depth d was more than approx.
100 m.

4. Extinction coefficient β calculated from the no-rainfall
images may have been affected by aerosols in the
patches where scene depth d was more than approx.
100 m. Therefore, extinction coefficient β was not zero
despite the assumption from the proposed equations.

5. Regardless of the presence or absence of rainfall, ex-
tinction coefficients β calculated from the images were
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overestimated in the patches where scene depth d was
less than approx. 100 m. It was suggested that one of the
reasons for this was the influence caused by the method
used to calculate the extinction coefficient.

6. By selecting a background with an appropriate value for
the extinction coefficient, rainfall intensity can be es-
timated from the image using the proposed relational
equations. This method can also be used to capture
short-term variations in rainfall intensity from the im-
age.

7. Based on the validation results of three cameras over
235 d of observations, the proposed method is consid-
ered sufficiently robust and versatile.

These findings are extremely important information re-
garding the rain-induced static weather effects of images and
will lead to further advances in the development of camera-
based rain gauges. Overall, these findings suggest that the re-
lational equations representing the relationship between im-
age information, rainfall intensity, and scene depth are gener-
ally effective for outdoor images. The method of estimating
rainfall intensity from images using the relational equations
is also effective for outdoor images. Because this method es-
timates rainfall intensity from a single static image, it can be
applied to video cameras in principle, and real-time rainfall
information can also be obtained. In addition, because the
method requires little prior preparation or training data and
only uses the camera image taken of the background over a
certain distance and background scene depth information, it
is a highly versatile and accessible method. In this study, the
scene depth was obtained using a digital elevation model, but
it would be possible to obtain the scene depth using a simpler
method, such as measuring distances in a GIS. Therefore,
this method can become a gap filler for areas lacking sur-
face rainfall observations. Furthermore, this method is also
accurate and robust. On the other hand, there are still sev-
eral problems to be studied, such as finding the details of the
reasons for the overestimation of the extinction coefficient,
methods to eliminate the overestimation, methods to remove
the effects of aerosols, methods to select an appropriate back-
ground for rainfall intensity estimation, and methods to iden-
tify fog and rain. Furthermore, this study examined the over-
all trend in the applicability of the method across the entire
dataset, but the specific causes of the errors in each individ-
ual image were not validated. For example, the presence of
dew formation and raindrops on the camera lens itself could
cause significant blurriness on the image and affect the rain-
fall estimation results, but this was not validated in this study.
Therefore, validation of the specific causes of the errors when
the proposed method is applied to each individual image is a
problem to be addressed in the future. Moreover, this method
is not applicable to nighttime images because it was difficult
to distinguish rainfall. Therefore, rainfall estimation methods
using nighttime images should also be considered separately.

Rainfall information is very important for water resource
management, weather, climate, hydrological forecasting, and
countermeasures against disasters caused by rainfall. Espe-
cially, in mountainous areas where flash floods and debris
flow occur, for countermeasures against these disasters, it is
desirable to have information on rainfall with high spatiotem-
poral resolution. In such areas, even if rain gauges are not
installed, monitoring cameras may be in place. This study at-
tempts to observe rainfall by effectively utilizing such cam-
eras already installed for other purposes. We expect that our
research results can be applied on a practical and real-world
scale in such category of disaster prevention. For this pur-
pose, it is important to further accumulate knowledge about
the effects of rainfall on images.

Appendix A: Derivation of Eq. (6)

Rainfall intensity is defined as the amount of rainfall col-
lected per unit time interval (World Meteorological Orga-
nization, 2023). Therefore, rainfall intensity is expressed as
follows using the particle size distribution of raindrops, rain-
drop volume, and falling velocity per unit volume (Uijlen-
hoet, 2001):

R = 3.6× 106

∞∫
0

πD3

6
N(D)U(D)dD, (A1)

where R (mmh−1) is rainfall intensity, D (m) is the raindrop
diameter,N(D) (m−3) is the particle size distribution of rain-
drops, and U(D) (ms−1) is the terminal falling velocity of
raindrops.

Then, as shown in Sect. 2.2, with the theory of atmospheric
radiation, the extinction coefficient under rainfall conditions
can be expressed as follows using the raindrop diameter, the
particle size distribution of raindrops, and the extinction effi-
ciency (Grabner and Kvicera, 2011):

β =

∞∫
0

πD2

4
N(D)QdD, (A2)

where D2/4 represents the surface area of raindrops pro-
jected in the optical path direction and Q is the extinction
efficiency.

From Eqs. (A1) and (A2), both rainfall intensity and the
extinction coefficient can be expressed by the particle size
distribution of raindrops, but analytically, rainfall intensity
cannot be expressed with the extinction coefficient. There-
fore, the relationship between rainfall intensity and the ex-
tinction coefficient is approximately related using the rela-
tional equations between rainfall intensity and particle size
distribution presented by Marshall and Palmer (1948). Using
the M–P distribution, the particle size distribution of rain-
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drops can be expressed by the following equation:

N(D)=N0 exp(−λD), (A3)

N0 = 8× 106, (A4)

λ= 4.1× 103R−0.21, (A5)

where the units of N0 and λ are m−4 and m−1, respectively.
Substituting Eq. (A3) into Eq. (A2), we obtain:

β =

∫
∞

0

πD2

4
N0 exp(−λD)QdD

=
πN0Q

4

∫
∞

0
D2 exp(−λD)dD.

(A6)

Here, we introduce the gamma function, which represents the
generalization of the factorial.

0(z)=

∞∫
0

az−1 exp(−a)da = (z− 1)! (A7)

Applying Eq. (A7) to Eq. (A6), we obtain:

β =
πN0Q

4λ3 0(3)=
πN0Q

4λ3 (3− 1)!

=
πN0Q

2λ3 .

(A8)

Substituting Eqs. (A4) and (A5) into Eq. (A8), extinction
coefficient β can be expressed as follows using rainfall inten-
sity R.

β =
8× 106πQ

2(4.1× 103R−0.21)3

=5.80× 10−5πQR0.63

(A9)

Appendix B: The procedure for the Dark Channel Prior
method

He et al. (2011) defined the concept of a dark channel as
follows:

J dark(x)= min
y∈�(x)

( min
c∈{r,g,b}

J c(y)), (B1)

where J dark(x) is the dark channel at pixel position x, �(x)
is a local patch centered at pixel position x, y is the pixel
position and an element of �(x), c is the index of the color
channel, and J c(y) is the color channel at pixel position y.
The dark channel is the result of two minimum operators.

The Dark Channel Prior method is based on the statisti-
cal prior distribution, in which some pixels have at least one
color channel with very low intensity in almost all non-sky
patches of a certain size in outdoor images without static
weather effects. That is, an image that has been dilation-
processed for each patch with the lowest intensity color chan-
nel values, which is called a dark channel image, is assumed

to have zero pixel values in most patches. This is expressed
by the following equation.

J dark(x)= min
y∈�(x)

( min
c∈{r,b,g}

J c(y))≈ 0 (B2)

Using Eq. (B2), the first term on the right-hand side of
Eq. (B3) below, which is transformed from Eq. (1), can be
regarded as zero.

min
y∈�(x)

(
min

c∈{r,g,b}

I c(y)

Ac

)
=

t (x) min
y∈�(x)

(
min

c∈{r,g,b}

J c(y)

Ac

)
+ 1− t (x)

(B3)

That is, Eq. (B3) is transformed into the following Eq. (B4)
when Eq. (B2) is applied.

min
y∈�(x)

(
min

c∈{r,g,b}

I c(y)

Ac

)
= 1− t (x) (B4)

Equation (B4) can be rearranged for transmission t to yield
the following Eq. (B5).

t (x)= 1− min
y∈�(x)

(
min

c∈{r,g,b}

I c(y)

Ac

)
(B5)

In Eq. (B5), I c(y) is obtained from observed intensity I , so
transmission t can be obtained by setting global atmospheric
light A separately. He et al. (2011) selected pixels with the
top 0.1 percent intensity in the dark channel image and set
the pixel with the highest intensity of observed intensity I
among these pixels as global atmospheric light A.

Scene radiance J can be recovered by substituting the cal-
culated transmission t using Eq. (B5), the observed inten-
sity I , and the global atmospheric light A, which is set sepa-
rately, into Eq. (1).
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Appendix C: Figures including all patches showing the
distribution of observed intensity I by rainfall intensity

Figure C1.
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Figure C1.
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Figure C1. Distribution of observed intensity I by rainfall intensity of (a) Camera 1, (b) Camera 2, and (c) Camera 3. Each figure is marked
with the corresponding patch number, scene depth, and slope of the linear regression line for the relationship between rainfall intensity
and observed intensity I . The plots and error bars show the mean value and standard deviation of all data during the observation period.
The straight lines are the linear regression lines for the relationship between rainfall intensity and observed intensity I . Rainfall intensity is
observed by a rain gauge. Patches shaded in gray are patches where the appropriate scene depth could not be obtained due to the presence of
sky background and the application of geometric corrections in the image registration process.

Hydrol. Earth Syst. Sci., 29, 3165–3202, 2025 https://doi.org/10.5194/hess-29-3165-2025



A. Kanazawa and T. Uchida: Rainfall intensity estimations based on degradation characteristics 3193

Appendix D: Figures including all patches showing the
distribution of scene radiance J by rainfall intensity

Figure D1.
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Figure D1.
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Figure D1. Distribution of scene radiance J by rainfall intensity of (a) Camera 1, (b) Camera 2, and (c) Camera 3. Each figure is marked
with the corresponding patch number, scene depth, and slope of the linear regression line for the relationship between rainfall intensity and
scene radiance J . The plots and error bars show the mean value and standard deviation of all data during the observation period. The straight
lines are the linear regression lines for the relationship between rainfall intensity and scene radiance J . Rainfall intensity is observed by a rain
gauge. Patches shaded in gray are patches where the appropriate scene depth could not be obtained due to the presence of sky background
and the application of geometric corrections in the image registration process.
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Appendix E: Figures including all patches showing the
distribution of transmission t by rainfall intensity

Figure E1.
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Figure E1.
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Figure E1. Distribution of transmission t by rainfall intensity of (a) Camera 1, (b) Camera 2, and (c) Camera 3. Each figure is marked
with the corresponding patch number, scene depth, and slope of the linear regression line for the relationship between rainfall intensity and
transmission t . The plots and error bars show the mean value and standard deviation of all data during the observation period. The straight
lines are the linear regression lines for the relationship between rainfall intensity and transmission t . Rainfall intensity is observed by a rain
gauge. Patches shaded in gray are patches where the appropriate scene depth could not be obtained due to the presence of sky background
and the application of geometric corrections in the image registration process.
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