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Abstract. Human land–water management, especially irri-
gation water withdrawal and use, significantly impacts the
global and regional water cycle, energy budget, and near-
surface climate. While land surface models are widely used
to explore and predict the impacts of irrigation, the ir-
rigation system representation in these models is still in
its early stages. This study enhances the Common Land
Model (CoLM) by introducing a two-way coupled irrigation
module. This module includes an irrigation water demand
scheme based on soil moisture deficit, an irrigation applica-
tion scheme considering four major irrigation methods, and
an irrigation water withdrawal scheme that incorporates mul-
tiple water source constraints by integrating CoLM with a
river routing model and a reservoir operation scheme. Cru-
cially, it explicitly accounts for the feedback between irriga-
tion water demand and supply, which is constrained by avail-
able surface water (i.e., runoff, streamflow, reservoir storage)
and groundwater. Simulations conducted from 2001 to 2016
at a 0.25° spatial resolution across the contiguous United
States reveal that the model effectively reproduces irriga-
tion withdrawals, their spatial distribution, and water source
proportions, aligning well with reported state-level statistics.
Comprehensive validation demonstrates that the new module
significantly improves model accuracy in simulating regional
energy dynamics (sensible heat, latent heat, and surface tem-
perature), hydrology (river flow), and agricultural outputs
(yields for maize, soybean, and wheat). Application analyses
highlight the potential of the enhanced CoLM as a valuable
tool for predicting irrigation-driven climate impacts and as-

sessing water use and scarcity. This research offers a pathway
for a more holistic representation of fluxes in irrigated areas
and human–water interactions within land surface models.
It is valuable for exploring the interconnected evolution of
climate, water resources, agricultural production, and irriga-
tion activities, while supporting sustainable water manage-
ment decisions in a changing climate.

1 Introduction

Freshwater resources are indispensable for human soci-
ety. Since 1900, the global population has increased more
than 4-fold, leading to a nearly 6-fold rise in water with-
drawals, from approximately 500 km3 yr−1 in 1900 to about
3000 km3 yr−1 in 2000, with agriculture being the dominant
water user (Pokhrel et al., 2016). Around 70 % of global
freshwater has been withdrawn for irrigation (Campbell et
al., 2017), accounting for 90 % of consumptive water use
(Siebert and Döll, 2010), with irrigated areas providing ap-
proximately 40 % of global food production on just 2.5 %
of global land (bin Abdullah, 2006). Accompanied by sig-
nificant socioeconomic benefits, these intense human land–
water management practices have profoundly altered Earth’s
surface and impacted terrestrial water and energy cycles
(Ketchum et al., 2023; Nocco et al., 2019; Rappin et al.,
2022; Thiery et al., 2017; de Vrese et al., 2016). The demand
for irrigation water is anticipated to rise with the growing
global population and food demand, while climate-warming-
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induced droughts are likely to exacerbate this need (McDer-
mid et al., 2023; Mehta et al., 2024; Yang et al., 2023). There-
fore, understanding and quantifying the impacts of irrigation
water management in human–Earth system interactions are
crucial for developing strategies to sustainably manage these
resources amidst changing climatic and demographic condi-
tions.

Irrigation practices transfer water from various sources,
such as rivers, lakes, reservoirs, and aquifers, into agricul-
tural systems, directly affecting the magnitude and timing
of runoff and river flow (Ketchum et al., 2023). The ris-
ing irrigation demand has spurred increased construction of
reservoirs and diversions, resulting in both local and down-
stream impacts. In some regions, water extraction for irriga-
tion has reduced the availability of both surface and ground-
water (Döll et al., 2014). Besides modifying water fluxes, ir-
rigation also influences regional climates both locally and
remotely. Locally, it alters surface albedo, evapotranspira-
tion, and surface soil moisture, impacting regional radiation
and energy balances and affecting temperature, humidity, and
precipitation through land–atmosphere feedback (Chen and
Dirmeyer, 2019; Kang and Eltahir, 2018; Li et al., 2022; Mc-
Dermid et al., 2017; Nocco et al., 2019). Remotely, it affects
climate through complex interactions between altered tem-
perature and moisture gradients and larger-scale processes
such as atmospheric circulation and wave activity (Douglas
et al., 2009; Phillips et al., 2022; de Vrese et al., 2016).

Earth system models (ESMs) are powerful tools for ex-
amining the interactions and feedback among the intricately
intertwined processes of the Earth system, both in the past
and future. Land surface models (LSMs) are a crucial com-
ponent of ESMs. Due to the complex dynamics of natu-
ral hydrological processes and anthropogenic activities, de-
scribing human–water interactions has been recognized as a
significant challenge in land surface modeling (Nazemi and
Wheater, 2015). In recent years, targeted efforts have aimed
to address this deficiency, yet water use remains largely un-
derrepresented or in a nascent stage within LSMs (Blyth et
al., 2021; Taranu et al., 2024). Meanwhile, global hydrolog-
ical models (GHMs), originally designed for water resource
assessment, have undergone continuous improvements over
the last 3 decades to explicitly represent human water use
(Hanasaki et al., 2018; Liang et al., 1994; Müller Schmied
et al., 2021; Sood and Smakhtin, 2015; Sutanudjaja et al.,
2018; Tang et al., 2007). These models enable the determi-
nation of the spatial distribution and temporal evolution of
water resources and water stress for both humans and other
biota under the pressures of global change (Döll et al., 2018;
Schewe et al., 2014; Schlosser et al., 2014). These advance-
ments have offered valuable insights for incorporating human
water use into LSMs.

Parameterizing irrigation water use and modeling its im-
pacts in GHMs and LSMs has been approached using dif-
ferent assumptions and simplifications in three key aspects:
irrigation demands, irrigation methods, and irrigation water

supplies/withdrawals. The first aspect is estimating irrigation
water demands. Models estimate these demands using either
a root-zone soil moisture deficit approach or a crop-specific
potential evapotranspiration approach. The root-zone soil
moisture deficit approach estimates irrigation demand as the
water needed to keep root-zone soil moisture (usually within
the top meter of soil) above a certain threshold during the
growing season (normally a certain percentage of field ca-
pacity or soil saturation) (Ozdogan et al., 2010). The crop-
specific potential evapotranspiration approach estimates irri-
gation needs based on the difference between crop-specific
potential evapotranspiration and simulated unirrigated evap-
otranspiration, or between potential and effective precipita-
tion under well-watered conditions where crops transpire at
their maximum rate (Müller Schmied et al., 2021). Notably,
LSMs generally do not use potential evapotranspiration to
estimate irrigation demand.

The second aspect concerns the representation of irriga-
tion methods. Many models simplify irrigation application
by directly modifying soil moisture or treating it as additional
rainfall across all irrigated land, overlooking the diversity of
irrigation techniques employed in various parts of the world
or by different farmers (Li et al., 2024a; Lu et al., 2015; de
Vrese et al., 2018). Recently, some models have started inte-
grating specific irrigation techniques for certain crops or re-
gions. For instance, LPJmL includes sprinkler, drip, and sur-
face irrigation methods, and CLM incorporates drip, sprin-
kler, flood, and paddy irrigation methods (Jägermeyr et al.,
2015; Yao et al., 2022). Different irrigation techniques affect
farmland hydrological processes and irrigation efficiency in
distinct ways. For example, drip and surface irrigation meth-
ods avoid interception losses observed with the sprinkler ir-
rigation method (Nair et al., 2013).

Third is the representation of irrigation water sup-
plies/withdrawals, which is particularly critical as it involves
the interaction between multiple processes or modules, such
as hydrological and agricultural systems. However, explicit
representation of these interactions remains largely absent
in LSMs, despite the extensive modeling experience pro-
vided by GHMs. Such modeling first requires identifying
the sources of irrigation water, typically categorized into sur-
face water and groundwater. Surface water sources are nor-
mally constrained by available runoff, streamflow, and stor-
age such as lakes and reservoirs. Accessing these sources,
such as rivers and reservoirs, necessitates coupling with
river routing and reservoir modules, which are well repre-
sented in many GHMs (Biemans et al., 2011; Hanasaki et
al., 2018). Groundwater is typically divided into renewable
sources (baseflow or dynamic groundwater levels) and non-
renewable sources (fossil groundwater). Some models as-
sume an inexhaustible supply of nonrenewable groundwater
to meet irrigation demands, neglecting irrigation shortages
caused by water scarcity (Zhou et al., 2020). Additionally,
some GHMs incorporate alternative sources, such as inter-
regional water transfers and seawater desalination (Hanasaki
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et al., 2018; Sutanudjaja et al., 2018). A second critical aspect
of irrigation water supply modeling is determining the allo-
cation of irrigation water among different sources, including
the prioritization of water usage. Various models adopt dif-
ferent assumptions for this allocation. For example, H08 pri-
oritizes surface water (Hanasaki et al., 2018), while WBM-
plus prioritizes reservoirs and groundwater (Wisser et al.,
2010). PCR-GLOBWB uses an empirical approach that allo-
cates groundwater use based on comparisons between base-
flow conditions and long-term historical climatology, captur-
ing feedback between water supply and demand (Sutanud-
jaja et al., 2018). Another common approach is to assume a
predefined allocation ratio based on water withdrawal infras-
tructure (e.g., Siebert et al., 2010), using this ratio to divide
total irrigation abstractions between groundwater and surface
water (Arboleda-Obando et al., 2024; Leng et al., 2015). De-
spite these advances, the representation of water extraction
and the coupling of irrigation and hydrological systems in
LSMs is still in its early stages. Most irrigation-enabled mod-
els still assume an unlimited water supply, failing to account
for constraints imposed by water availability (Druel et al.,
2022; Yao et al., 2022; Zhou et al., 2020).

The Common Land Model (CoLM; Dai et al., 2003), de-
rived from the Community Land Model (CLM), is a widely
used land surface model that integrates ecological, hydrolog-
ical, and biophysical processes. In recent years, it has further
incorporated various physical processes such as lakes, wet-
lands, and dynamic vegetation, enhancing the representation
of energy and water exchanges among soil, vegetation, snow,
and atmosphere. CoLM has been successfully implemented
in global atmospheric models, such as GRAPES, CWRF,
and CAS-ESM2.0 (Shen et al., 2017; Yuan and Liang, 2011;
Zhang et al., 2020a). Despite significant advancements in pa-
rameterizing natural land surface processes, the representa-
tion of human activities in CoLM remains at an early stage.
Recently, CoLM has further integrated a crop module, pro-
viding a foundation for considering irrigation and its interac-
tions with natural water systems.

To enhance the representation of human–water interac-
tions in land surface models, we introduce a new irrigation
module for CoLM. This module provides a comprehensive
framework for simulating the entire irrigation water system,
including water demand, withdrawal, and utilization. It in-
corporates an irrigation water demand scheme based on soil
moisture deficits, an irrigation application scheme account-
ing for four major irrigation methods, and an irrigation water
withdrawal scheme that incorporates multiple water source
constraints by integrating CoLM with a river routing model
and a reservoir operation scheme. A key focus of this mod-
ule is the bidirectional coupling between irrigation water de-
mand and supply, alongside a detailed representation of wa-
ter withdrawals from different sources. Section 2 provides a
detailed description of the module and its implementation,
including an overview of CoLM, the datasets used for simu-
lation and validation, and the experimental design. Section 3

validates the module’s performance in simulating irrigation
water withdrawals using reported data and compares its re-
sults to other hydrological models. It also assesses improve-
ments in model accuracy for regional energy dynamics (sen-
sible heat, latent heat, and surface temperature), hydrology
(river flow), and agricultural outputs (maize, soybean, and
wheat yields). Section 4 demonstrates two key applications
of the module: analyzing irrigation impacts on the energy
budget and evaluating irrigation water security. Finally, we
discuss the module’s current limitations and propose poten-
tial future improvements.

2 Materials and methods

2.1 Description of CoLM and its crop module

The Common Land Model (CoLM) is one of the most ad-
vanced land surface models widely used to simulate the
water–energy–carbon nexus. The original version of CoLM
(Dai et al., 2003) combines the three land surface mod-
els: the Land Surface Model (LSM) of Bonan (1996), the
Biosphere-Atmosphere Transfer Scheme (BATS; Dickinson
et al., 1993), and the 1994 version of the Chinese Academy of
Sciences Institute of Atmospheric Physics LSM (IAP94; Dai
and Zeng, 1997). CoLM2014 integrates the Catchment-based
Macro-scale Floodplain model (CaMa-Flood; Yamazaki et
al., 2011), enabling river routing calculations within the
model. Specifically, runoff generated by CoLM is transferred
to CaMa-Flood for routing through the river network. CaMa-
Flood represents the river network as a series of irregular
unit catchments, defined through sub-grid topographic pa-
rameters. River discharge and other flow characteristics are
computed using the local inertial equations along the river
network, allowing for detailed flow dynamics across catch-
ments.

In CoLM2024, the patch serves as the fundamental com-
putational unit to account for land surface heterogeneity
(Fig. S1). Based on land type, patches are divided into
five types: vegetation (including bare soil), urban, wetlands,
glaciers, and water bodies. The vegetation patch is further
classified into natural vegetation and crops, represented using
the plant functional type (PFT) approach. Under this frame-
work, all natural vegetation within a grid cell is treated as
a single patch, sharing common soil thermal and moisture
conditions, while radiative and photosynthesis processes are
simulated independently. When the crop model is activated,
each crop type (distinguishing between rainfed and irrigated
crops) is treated as an independent patch. This means that
the calculations of soil moisture and thermal processes for
each crop patch remain independent, without shared water
and heat dynamics.

At each patch, the primary thermal processes include pre-
cipitation phase change; radiation transfer; temperature cal-
culations for leaves, snow, and soil; and turbulent exchange,
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among others. The key hydrological processes include
canopy interception, evapotranspiration, surface runoff, in-
filtration, soil water vertical movement, subsurface runoff,
groundwater, and river routing, among others. Specifically,
the two-big-leaf scheme is employed to compute radiation
transfer, leaf temperature, photosynthesis, and transpiration
(Dai et al., 2004; Yuan et al., 2017). Surface turbulent ex-
change is simulated using similarity theory (Liu et al., 2022;
Zeng and Dickinson, 1998). Soil and snow temperature are
determined using the heat diffusion equation, considering
only vertical exchange (Dai and Yuan, 2014). Canopy inter-
ception is calculated the same as CoLM2014, considering the
leaf angle and precipitation phase (Dai and Yuan, 2014; Sell-
ers et al., 1996). Soil water vertical movement is simulated by
the Richards equation and Buckingham–Darcy’s law using
the Campbell soil water characteristic curve scheme to close
the Richards equation (Buckingham, 1907; Campbell, 1974;
Richards, 1931). Surface and subsurface runoff are estimated
using the SIMTOP approach (Niu et al., 2005). When the ir-
rigation scheme is activated, irrigation water is applied to the
canopy or top soil according to predefined irrigation methods
and simulated irrigation amounts, thereby influencing the soil
moisture and thermal processes within the irrigated patches.

The CoLM2024 version incorporates substantial updates
over CoLM2014, particularly by introducing representa-
tions of biogeochemical cycles and human activity pro-
cesses (e.g., crop growth and reservoir management). The
new crop module introduces a phenological development
scheme based on accumulated temperature, a biomass allo-
cation scheme among different plant organs, and fertilization
schemes (Drewniak et al., 2013). Crops are categorized into
four organ pools: leaves, stems, fine roots, and grains. The
growth stages are divided into three phases: sowing to emer-
gence, emergence to grain filling, and grain filling to matu-
rity, with carbon allocation ratios to roots, stems, leaves, and
grains varying across these phases. Upon maturation, crops
are harvested, with part of the carbon from the grains con-
tributing to the yield, while a small portion (3 g) is reserved
as seeds for the next growing season. For carbon assimila-
tion, the module employs Farquhar’s photosynthesis scheme
(Collatz et al., 1992; Farquhar et al., 1980) and Ball–Berry’s
stomatal model (Ball et al., 1987; Collatz et al., 1991), treat-
ing maize as a C4 crop and other crops as C3. Addition-
ally, the module accounts for the effects of heat stress, wa-
ter stress, nitrogen stress, and ozone stress on yield (Li et al.,
2024b; Lombardozzi et al., 2020). The module has been cal-
ibrated for various crops, including maize, soybean, spring
and winter wheat, rice, cotton, and sugarcane, enabling ac-
curate simulation of crop yields.

2.2 Two-way coupled irrigation water use module

2.2.1 Irrigation demand

The irrigation demand is calculated using the soil moisture
deficit method (Leng et al., 2017; Ozdogan et al., 2010; Yao
et al., 2022). During the crop growth stage, irrigation is trig-
gered at 06:00 local time (LT) if the soil moisture in the root
zone (zirrig = 1 m) falls below the threshold value (ωthresh).
The total irrigation water demand (Dirrig, mm) is then calcu-
lated using Eq. (1),

Dirrig =

{
ωirrig − ωavail ωavail ≤ ωthresh
0 ωavail > ωthresh

, (1)

where ωavail is the total soil water amount in the root zone
(mm), and ωirrig is the irrigation target threshold (mm), cal-
culated using Eq. (2),

ωirrig = firrig(ωtarget − ωwilt) + ωwilt, (2)

where ωwilt is the wilting point soil water amount in the
root zone (mm), calculated as the sum of soil water at the
wilting point for each soil layer (

∑Nirr
j=1θwilt1zj ), and ωtarget

is the target soil water amount in the root zone (mm), cal-
culated as the sum of target soil water for each soil layer
(
∑Nirr
j=1θtarget1zj ).Nirr is the number of soil layers in the root

zone, and1zj is the thickness of each soil layer (m). The tar-
get (θtarget) and wilting point (θwilt) soil moisture (m3 m−3)
for each layer are calculated based on the corresponding soil
water potential (8target and 8wilt). firrig is a weighting coef-
ficient ranging from 0 to 1, controlling the extent to which
soil water amount approaches the target level ωtarget during
irrigation (default value= 1). In some cases, it can represent
the efficiency of the irrigation system, accounting for water
losses due to evaporation, seepage, or other factors.

The irrigation trigger threshold (ωthresh) in Eq. (1) is cal-
culated as

ωthresh = fthresh(ωtrigger − ωwilt) + ωwilt, (3)

where ωtrigger is the trigger water amount in the root zone
(mm), and fthresh is also a weighting coefficient ranging from
0 to 1 that controls the proximity of soil water amount to the
trigger level ωtrigger (default value= 1). In this study, firrig
and fthresh were set to their default values.

The values of ωtrigger and ωtarget are set according to the
irrigation application method. For drip and sprinkler irriga-
tion, both ωtrigger and ωtarget are set to the soil field capacity
water amount. For flood irrigation, ωtrigger is set to the soil
field capacity water amount and ωtarget to the saturation wa-
ter amount. For paddy irrigation, both ωtrigger and ωtarget are
set to the saturation water amount.

2.2.2 Irrigation application

The model incorporates four different irrigation application
methods: drip irrigation, sprinkler irrigation, flood irrigation,
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and paddy irrigation, each with unique triggering conditions,
water demand requirements, and application processes. Drip
irrigation is triggered when soil moisture in the root zone
falls below field capacity, with the irrigation goal being to
restore soil moisture to field capacity. This method applies
water directly to the surface soil, allowing it to percolate into
deeper soil layers. Sprinkler irrigation shares the same trig-
gering condition and demand requirement as drip irrigation
but applies water above the canopy. In this method, water can
be intercepted and evaporated before reaching the soil sur-
face, resulting in relatively lower irrigation efficiency. This
method is the most commonly used in the United States.
Flood irrigation is triggered when soil moisture falls below
field capacity, to raise soil moisture to the point of satura-
tion. Paddy irrigation is applied whenever soil moisture drops
below saturation, aiming to restore soil moisture to satura-
tion without causing runoff loss (Table S1). Paddy fields are
typically maintained with a specific water level on the sur-
face (10 cm) during the growing season. A global irrigation
method map (Yao et al., 2022; Fig. S4) is used to determine
the irrigation method for each grid. In addition, irrigation is
implemented daily at 06:00 LT, if necessary, with water sup-
ply evenly distributed across each time step throughout the
next 4 h.

2.2.3 Irrigation water supply/withdrawal

The model incorporates two distinct irrigation water sup-
ply/withdrawal schemes. The first scheme, unlimited sup-
ply (irrig-unlim), assumes that irrigation demand is fully met
without accounting for specific water sources, a common
approach in most land surface models (Yao et al., 2022).
The second scheme, limited supply (irrig-lim), divides to-
tal irrigation demand between surface water and groundwater
sources, labeled as surface water demand (Dsurf) and ground-
water demand (Dgrnd), respectively. Both demands are con-
strained by the available water within each respective system.
This distribution is based on the spatial extent of groundwa-
ter irrigation equipment, as provided by Siebert et al. (2010),
and is formulated as follows:

Dsurf =Dirrig× (1− fgrnd), (4)
Dgrnd =Dirrig× fgrnd, (5)

where Dsurf and Dgrnd represent the demand from surface
water and groundwater systems, and fgrnd denotes the area
fraction covered by groundwater equipment. In this scheme,
surface water demand (Dsurf) is sourced sequentially from
local grid cell runoff, local river streamflow, and upstream
reservoirs, while groundwater demand (Dgrnd) is drawn from
groundwater aquifers.

Surface water supply

In our two-way coupled irrigation system (Fig. 1), the daily
surface water supply for irrigation is constrained by surface

water availability, which is simulated by CoLM (runoff) and
CaMa-Flood (local streamflow and upstream reservoirs). We
first examine whether the runoff from the local grid cell (Sro)
can meet the daily surface water demand (Dsurf) for that cell.
If runoff is insufficient, additional water is sourced from local
streamflow and upstream reservoirs. River streamflow avail-
ability (Sriv) is determined by CaMa-Flood. For each irri-
gated grid cell, the river grid with the highest flow within
a 250 km radius is selected as the source. To prevent exces-
sive water extraction, a withdrawal limit is imposed, ensuring
that the remaining flow in each river grid cell does not drop
below 20 % of its average daily volume. Before conducting
irrigation simulations, natural river flow simulations are per-
formed to establish essential parameters for both river and
reservoir water withdrawal schemes.

Reservoir water availability (Sres) is also determined by
CaMa-Flood, which now includes a reservoir module. This
module consists of the following components: (i) a reservoir
dataset that provides reservoir location information matched
with the river network, along with reservoir parameters (e.g.,
characteristic storage capacity); (ii) a reservoir operation
scheme designed for flood control; and (iii) a routing scheme
that integrates reservoir operations into river flow simula-
tions. For more details, refer to Hanazaki et al. (2022). In
this study, we further propose a new scheme for sourcing ir-
rigation water from reservoirs (Fig. 2), which involves the
following steps:

i. Identifying the irrigation area served by each reser-
voir. It is challenging to accurately define the true ir-
rigation extent/area for each reservoir, especially across
large spatial domains. Therefore, a simplified approach
is adopted here: larger reservoirs are assumed to cover
a proportionately larger irrigation area, restricted to
downstream regions only (since upstream water transfer
is economically infeasible). Based on the relationship
between reservoir size and the corresponding irrigation
area provided in Table S2, we calculate the irrigation
area for each reservoir according to its storage capac-
ity by linear interpolation. Downstream irrigation grids
are selected sequentially, from nearest to farthest, until
the cumulative grid area closely matches the calculated
irrigation area. If multiple reservoirs serve the same ir-
rigation grid, a sharing proportion (fshare, ranging from
0 to 1) is assigned to the irrigation grid based on the
degree of shared usage.

ii. Calculating the irrigation demand for each reser-
voir by aggregating the demands of associated ir-
rigation grids. This is expressed as Dres-total =∑N
i=1

(
Diirrig-unmet× f

i
share

)
, where Diirrig-unmet and

f ishare represent the irrigation demand (i.e., the portion
of Dsurf not met by local runoff and river streamflow)
and sharing proportion of grid i, respectively.N denotes
the number of irrigation grids served by the reservoir.
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iii. Executing reservoir withdrawals for irrigation based on
demands. Water is then withdrawn (Sres-total) from the
reservoir’s effective storage (Veff) – the portion between
the current water level and dead water level – according
to the required demand. This is expressed as Sres-total =

min(Dres-total,Veff). After updating the reservoir stor-
age, the reservoir operation and subsequent river rout-
ing are calculated following the approach outlined in
Hanazaki et al. (2022).

iv. Redistributing withdrawn water to the irrigation grids.
Based on each irrigation grid’s contribution to the to-
tal reservoir irrigation demand, the total withdrawal
volume is proportionally allocated across the associ-
ated grids (Sires). This is expressed as Sires = Sres-total×
Diirrig-unmet×f

i
share

Dres-total
. Notably, this water is not applied di-

rectly to irrigation but is stored in a temporary reser-
voir (i.e., a temporary variable) for each irrigation grid
in CoLM. This approach addresses the response delay
in water supply from the river routing model to the land
model’s irrigation demands, as the time step for CoLM
is 60 min, while CaMa-Flood operates with a 6 h time
step and exchanges information with CoLM every 6 h.
Moreover, if the reservoir cannot fully meet the irriga-
tion demand within the initial time step, any unmet de-
mand is carried forward to the next time step. This pro-
cess continues over a 24 h cycle, after which new water
demands for the next day are received.

Thus, the computational sequence proceeds as follows.
Step (i) is completed before model execution, with its results
serving as an essential input for the irrigation module. Dur-
ing model operation, CoLM calculates the irrigation demand
at 06:00 LT. The unmet demand (after subtracting the wa-
ter supplied by local runoff and streamflow) is then sent to
CaMa-Flood, as described in step (ii). CaMa-Flood supplies
water from the reservoir to meet this demand, as described in
step (iii), and returns the supplied water to CoLM according
to step (iv) over the next 24 h. During this process, the water
supplied by the reservoir is stored in the temporary reservoir
(variable) for each irrigation grid within CoLM. The follow-
ing day, when irrigation begins again at 06:00 LT, water is
withdrawn directly from the temporary reservoir if the de-
mand cannot be met by local runoff and streamflow.

Groundwater supply

Groundwater supply is constrained by the availability of wa-
ter within the aquifer. In CoLM, the groundwater table inter-
acts with soil layers through vertical water exchange, allow-
ing recharge or withdrawal of water from the aquifer (Li et
al., 2017a). The evolution of the groundwater table is deter-
mined by the balance of soil water recharge and subsurface
outflow, with the specific yield dynamically linking the water
table position to changes in soil moisture and aquifer storage.

When irrigation is required, water is directly extracted from
the top of the simulated aquifer, and the water table depth
is updated accordingly. This process continues until either
the irrigation demand is fully met or the water table falls be-
low a predefined threshold, set as 1 m below the initial depth
at the beginning of the year (Jasechko et al., 2024; Russo
and Lall, 2017). Groundwater supply is immediately avail-
able upon demand, with no temporal lag between the request
and its availability for irrigation. Changes in the water table
depth can then affect subsurface drainage and recharge from
the bottom soil layer to the aquifer.

2.3 Materials

2.3.1 Input datasets

In this study, CoLM was implemented across the contigu-
ous United States at a 0.25° spatial resolution for the period
2001–2016. Meteorological input data were derived from the
WATCH Forcing Data methodology applied to ERA-Interim
data (WFDEI) (Weedon et al., 2014a), which has also been
utilized in the Inter-Sectoral Impact Model Intercomparison
Project phase 2a (ISIMIP2a; Gosling et al., 2019). Soil prop-
erty data were sourced from the Global Soil Dataset for
Earth System Modeling (GSDE), originally provided at a
spatial resolution of 30 arcsec (Dai et al., 2019; Shangguan et
al., 2014a). Land cover data were derived from the MODIS
dataset (MCD12Q1; Friedl and Sulla-Menashe, 2022), pro-
viding detailed global land classification information at a
spatial resolution of 500 m.

The simulation of irrigation processes also required de-
tailed data on crop areas, planting dates, irrigation areas,
and irrigation methods. Crop planting areas were derived
from the 30 m resolution CropScape and Cropland Data
Layer (CDL) datasets (2008–2020) and aggregated to a spa-
tial resolution of 5 arcmin for analysis (USDA/NASS, 2019).
These datasets, produced by the U.S. Department of Agri-
culture, provide annual, crop-specific land cover information
using satellite imagery and ground reference data. For each
pixel, we calculated the proportion of cropland relative to
the pixel’s area (PCT_CROP) and the proportions of maize,
wheat, and soybean relative to the cropland area (PCT_CFT).
Pixels with a cropland percentage (PCT_CROP) exceeding
zero were classified as crop pixels. The plant functional type
(PFT) approach employed in CoLM allowed different crops
and vegetation types to coexist within the same grid cell ac-
cording to their percentages (PCT_CFT). To define planting
and harvesting dates, we utilized an observation-based crop
calendar dataset from the Global Gridded Crop Model In-
tercomparison (GGCMI), which provided information for 20
major crops under both rainfed and irrigated conditions at
each grid cell for 1980–2010 (Jägermeyr et al., 2021a).

The irrigation map was derived using the 5 arcmin reso-
lution data from the FAO Global Map of Irrigation Areas
version 5 (Siebert et al., 2013). Since the CropScape data
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Figure 1. Diagram of the two-way coupled irrigation water system in the Common Land Model.

Figure 2. Diagram of the reservoir water supply scheme.

do not distinguish between rainfed and irrigated crops, we
combined them with the irrigation map to determine the pro-
portions of rainfed and irrigated crops. Irrigation water with-
drawals were classified into surface water and groundwater
sources following FAO data on regions equipped for ground-
water extraction, which informed the allocation of irriga-
tion demand across sources (Siebert et al., 2010). The ir-
rigation application method data were obtained from Yao’s
global irrigation map, which details irrigation methods (drip,
sprinkler, or flood) for 32 crop types, each assigned a single
method (Yao et al., 2022). Jägermeyr et al. (2015) originally
used a decision tree to refine AQUASTAT’s data, classify-

ing irrigation methods for 14 crop functional types (CFTs)
based on crop area, soil characteristics, and socioeconomic
conditions. Yao et al. (2022) then matched these CFTs to 32
crop types in CLM5 and incorporated an additional irrigation
method, paddy, specifically for rice-growing regions, creat-
ing a more detailed global irrigation dataset.

For river routing simulations in CaMa-Flood, the base-
line topography was derived from the Multi-Error-Removed
Improved-Terrain Hydrography dataset (MERIT Hydro;
Yamazaki et al., 2019). Fundamental information on
dams/reservoirs in the river network, including dam name,
coordinates, total storage capacity, and drainage area, was

https://doi.org/10.5194/hess-29-3119-2025 Hydrol. Earth Syst. Sci., 29, 3119–3143, 2025



3126 S. Zhang et al.: Representation of a two-way coupled irrigation system in the Common Land Model

obtained from the GRanD database (Lehner et al., 2011a).
GRanD version 1.3 contains data on 7320 dams globally,
along with their associated reservoirs. The locations of the
dams in the 0.25° river map were determined following the
method outlined by Hanazaki et al. (2022), which enabled
the identification of 1464 reservoirs across the contiguous
United States (Fig. S3). In addition to GRanD, the Global
Reservoir Surface Area Dataset (GRSAD; Zhao and Gao,
2018) and the Global Reservoir Geometry Database (Re-
Geom; Yigzaw et al., 2018a) were used to estimate reser-
voir parameters, such as storage capacity at emergency, flood
control, and critical levels (Hanazaki et al., 2022). GRSAD
provides a monthly time series of surface areas for 6817
GRanD reservoirs from 1984 to 2015, based on global sur-
face water occurrence data (Pekel et al., 2016). ReGeom con-
tains storage–area–depth information for 6824 reservoirs in
GRanD, with geometry estimates derived from assumed sur-
face and cross-sectional shapes, as well as data on reservoir
extent, total storage, and surface area.

2.3.2 Validation datasets

To evaluate the scheme developed in this study, we fo-
cused on validating irrigation water withdrawal volumes,
land fluxes (including energy fluxes and river flows) and
crop yields in irrigated areas. We used hydrological survey
data from the U.S. Geological Survey (USGS, 2023), which
provided detailed statistics on total irrigation water with-
drawals, categorized by surface and groundwater sources,
every 5 years since 2000. Within the time frame of this
study, data were available for the years 2005, 2010, and
2015. Building on this, Ruess et al. (2024) employed a
global hydrological model (PCR-GLOBWB) to estimate an-
nual, crop-specific irrigation water withdrawals from 2008 to
2020. Additionally, we compared the irrigation water with-
drawal volumes simulated by our model with those generated
by six other hydrological models – VIC, PCR-GLOBWB,
MATSIRO, LPJmL, H08, and DBH – that participated in
ISIMIP2a (Gosling et al., 2019). Although more hydrological
models were included in ISIMIP2a, our comparison was lim-
ited to these six because they provided irrigation water with-
drawal outputs. The simulations were driven by the WFDEI
climate dataset, with a spatial resolution of 0.5° and covering
the period from 1971 to 2010.

For land surface flux validation, we used monthly latent
and sensible heat fluxes provided by FLUXCOM at a res-
olution of 0.5° (Jung et al., 2019). FLUXCOM leveraged
FLUXNET site observations and extended these globally
through machine learning algorithms, resulting in a global
dataset for latent heat, sensible heat, and carbon fluxes. For
temperature validation, we used land surface temperature
data from 2001 to 2016 at a spatial resolution of 0.1° from the
ERA5-Land reanalysis dataset (Muñoz-Sabater et al., 2021).

For streamflow validation, we utilized monthly streamflow
data from the Global Runoff Data Centre (GRDC, 2023) for

the period 2001–2016. To ensure robust validation, we ex-
cluded catchments with fewer than 5 years of data during the
study period and focused on catchments significantly influ-
enced by irrigation while minimizing the impacts of other
anthropogenic activities. These selection criteria ultimately
resulted in 77 catchments being included in the analysis
(Fig. S10).

For terrestrial water storage (TWS) validation, we uti-
lized monthly terrestrial water storage anomaly data from
the Gravity Recovery and Climate Experiment (GRACE)
mission for the period 2002–2016, with a spatial resolution
of 0.5°, provided by the NASA Jet Propulsion Laboratory
(Watkins et al., 2015; Wiese et al., 2016).

For crop yield validation, we relied on annual yield reports
for irrigated and rainfed crops from the USDA NASS at the
county level, which is regarded as a reliable source of yield
statistics (USDA/NASS, 2023). The data for irrigated crops
primarily covered the Central Plains of the United States,
with limited coverage in the eastern and western regions.
We aggregated our grid-based yield simulation results to the
county level and performed validation only for regions and
years with available USDA data.

2.4 Experimental design

This study conducted three simulation experiments to evalu-
ate the effectiveness of the newly developed module by com-
paring their performance:

i. Non-irrigation experiment (abbreviated as noirrig).
This scenario assumes all crops in the region are rain-
fed, with no irrigation applied. It serves as a baseline to
represent natural surface water and energy balance con-
ditions.

ii. Unlimited irrigation experiment (abbreviated as
noirrig-unlim). This scenario distinguishes between
irrigated and rainfed areas based on crop maps. In
irrigated areas, crop water demands are fully satisfied
throughout the growing season, without considering the
limitations of water resources.

iii. Limited irrigation experiment (abbreviated as irrig-
lim). In this scenario, irrigation water is supplied pro-
portionally from surface water and groundwater based
on availability, as illustrated in Fig. 1. Here, irrigation
is constrained by the availability of surface and ground-
water, which may result in unmet crop water demands.

The non-irrigation experiment was first simulated for the
period 2001–2010 to stabilize vegetation carbon and nitro-
gen pools, soil moisture, and the groundwater table. This sta-
bilized state served as the initial condition for all three ex-
periments. The main simulation period spanned 2001–2016,
covering the contiguous United States at a spatial resolution
of 0.25°× 0.25°. In the subsequent analysis, key evaluation
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metrics – bias, root mean square error (RMSE), Pearson cor-
relation coefficient (r), and Kling–Gupta efficiency (KGE) –
were employed to assess the performance of the simulations.

3 Results

3.1 Evaluation of simulated irrigation water
withdrawal

3.1.1 Comparison with observations

Based on annual irrigation withdrawal data from the USGS,
states in the western and central United States withdraw sig-
nificantly more water for irrigation than those in the east-
ern regions (Fig. 3a). This is primarily due to the relatively
low precipitation in the western and central regions, where
the majority of irrigated areas are located, while crops in the
eastern United States are predominantly rainfed. The top five
states with the highest annual irrigation withdrawals – Cal-
ifornia (CA), Idaho (ID), Colorado (CO), Arkansas (AR),
and Montana (MT) – are all situated in the Midwest and
west (Fig. 3b). Nationally, the total annual irrigation with-
drawal averages approximately 166.23 km3 yr−1, based on
data from 2005, 2010, and 2015. In comparison, the irrig-
unlim and irrig-lim schemes simulate national total with-
drawals of 290.94 and 120.81 km3 yr−1, respectively. As il-
lustrated in Fig. 3c–f, the simulations capture the spatial pat-
terns of water withdrawals across different states effectively,
with the irrig-lim scheme yielding better performance. The
root mean square error (RMSE) and correlation coefficient
(r) for the irrig-lim scheme are 3.60 km3 yr−1 and 0.82, re-
spectively, slightly outperforming the corresponding values
for the irrig-unlim scheme (9.78 km3 yr−1 and 0.76).

Irrigation water withdrawals draw from both surface water
and groundwater sources. According to USGS reports, most
irrigation withdrawals in the central United States come from
groundwater (Dieter et al., 2018). In states such as Missouri
(MO), Kansas (KS), Iowa (IA), Illinois (IL), Rhode Island
(RI), and Mississippi (MS), the share of groundwater with-
drawals exceeds 90 % (Fig. 4c). In contrast, states with high
surface water withdrawals are primarily in the eastern and
western United States, with states like Wyoming (WY), Con-
necticut (CT), Kentucky (KY), and Montana (MT) report-
ing surface water withdrawal proportions greater than 90 %.
These spatial variations in water source usage are primarily
attributed to the central United States’s abundant groundwa-
ter resources and widespread groundwater extraction infras-
tructure.

In our simulations, the irrig-lim scheme effectively ac-
counts for irrigation water withdrawals from different
sources, constrained by their availability. Encouragingly, the
scheme generally reproduces observed annual surface wa-
ter and groundwater withdrawals across states (Fig. 4a–
b), achieving correlation coefficients of 0.68 and 0.95, re-

spectively. Furthermore, the simulated proportions of water
sources closely align with observed data (Fig. 4c–d), with a
correlation coefficient of 0.64 (p<0.01). However, the model
tends to underestimate the surface water withdrawal propor-
tions in the northwestern regions of the United States (par-
ticularly in Montana and Colorado; Fig. 4d), while slightly
overestimating them in some central and eastern states. This
discrepancy may stem from limitations in the data used to al-
locate water demand. Specifically, the model relies on prede-
termined groundwater extraction infrastructure proportions,
which may not accurately reflect actual extraction practices,
particularly as the dataset was published in 2005 and may
not account for subsequent changes in groundwater infras-
tructure in certain states. Alternatively, the discrepancy could
arise from model biases in simulating surface and ground-
water availability. For example, in the northwestern region,
surface runoff is heavily influenced by snowmelt and glacial
meltwater (Li et al., 2017b), and biases in simulating these
processes could lead to an underestimation of surface water
availability.

Ruess et al. (2024), using data from the USGS and model
outputs from PCR-GLOBWB 2, generated an irrigation wa-
ter withdrawal dataset that included withdrawal volumes for
major crops in the United States. According to this dataset
(Fig. 5), wheat is the largest consumer of irrigation wa-
ter, with an average annual withdrawal of approximately
27.29 km3 yr−1, followed by maize at about 20.91 km3 yr−1.
In contrast, soybean requires considerably less irrigation
(i.e., 5.89 km3 yr−1), partly due to its greater drought tol-
erance and smaller planted area compared to the other two
crops. Under the irrig-unlim (irrig-lim) simulation scheme,
the annual irrigation withdrawals for maize, wheat, and soy-
bean are 53.98, 47.53, and 29.99 km3 yr−1 (19.19, 17.95,
and 11.05 km3 yr−1), respectively. Once again, the irrig-lim
scheme provides a closer alignment with observation-based
data, as indicated by a lower RMSE (Fig. 5). These results
suggest that our irrigation module generally performs well in
simulating total national annual water withdrawals, the spa-
tial distribution of withdrawals (Fig. 3), the proportion of wa-
ter source types (Fig. 4), and the irrigation volumes for dif-
ferent crops (Fig. 5).

3.1.2 Comparison with other models

We further compare the irrigation water withdrawal simula-
tions from this study with outcomes from six global hydro-
logical models (VIC, PCR-GLOBWB, MATSIRO, LPJmL,
H08, and DBH) that participated in ISIMIP2a. Notably, all
simulations used the same climate forcing (WFDEI), ensur-
ing consistency in the comparison. Our results, particularly
from the irrig-lim scheme, closely align with observed to-
tal national annual irrigation withdrawals. By contrast, five
of the six models, excluding LPJmL, exhibit larger abso-
lute deviations from observed value (Fig. 6a). Regarding spa-
tial distribution, most models perform well (Fig. 6b), with
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Table 1. Experiment configurations. n/a: not applicable.

Experiment Management Water limitation Water sources

noirrig rainfed n/a n/a
irrig-unlim irrigated no n/a
irrig-lim irrigated yes surface water and groundwater

Figure 3. Comparison of reported and simulated irrigation water withdrawal in the United States. (a) Annual irrigation water withdrawal
reported by the USGS for individual states. (b) Annual withdrawal amounts for the top 20 states by irrigation water withdrawal. (c) Annual
irrigation water withdrawal simulated by CoLM using the unrestricted water supply (irrig-unlim) scheme for individual states. (d) Com-
parison of reported and simulated irrigation water withdrawal (using the irrig-unlim scheme) for individual states, with Pearson correlation
coefficient (r) and root mean square error (RMSE) displayed, along with statistical significance (two-tailed Student’s t test). (e) Annual
irrigation water withdrawal simulated by CoLM using the restricted water supply (irrig-lim) scheme for individual states. (f) Comparison of
reported and simulated irrigation water withdrawal (using the irrig-lim scheme) for individual states.

LPJmL (orange dots) achieving the highest correlation co-
efficient (0.89) and the lowest RMSE (2.86 km3 yr−1). The
irrig-lim scheme in this study (purple dots) performs com-
parably to LPJmL, demonstrating competitive accuracy. In
terms of temporal dynamics, comparisons across models
are limited due to the scarcity of observed data. However,
the general seasonal patterns are consistent across models
(Fig. S6), with the highest irrigation withdrawals occurring in
June and July and the lowest in January and December. Most
models exhibit similar seasonal fluctuations, with irrigation
volumes during peak months approximately 10 times greater
than during off-peak months. Overall, these results suggest
that our model performs similarly to, or even better than, ex-
isting models in simulating irrigation water withdrawals in
the United States.

3.2 Evaluation of simulated land energy and water
fluxes

3.2.1 Evaluation of simulated energy fluxes

We evaluate CoLM’s performance in simulating surface en-
ergy fluxes over irrigated areas in the United States using
different schemes, with FLUXCOM monthly sensible heat
(SH) and latent heat (LH) fluxes as observational references.
Figure 7 compares multi-year monthly averages of observed
and simulated SH and LH fluxes across irrigated grid points.
Without irrigation (the noirrig scheme), the model signifi-
cantly overestimates SH (Fig. 7a), with an average bias of
16.89 W m−2 (44.53 %), and underestimates LH (Fig. 7c),
with an average bias of 18.84 W m−2 (37.11 %). In contrast,
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Figure 4. Comparison of reported and simulated irrigation water withdrawal in the United States by water source. (a) Comparison of reported
and simulated surface water withdrawal volumes for individual states. (b) Same as panel (a) but for groundwater withdrawal volumes.
(c) Proportion of surface water in irrigation withdrawal, based on USGS reports for individual states. (d) Proportion of surface water in
irrigation withdrawal, simulated by CoLM using the irrig-lim scheme for individual states.

Figure 5. Comparison of reported and simulated irrigation water withdrawal in the United States by crop type. (a) Comparison of reported
and simulated irrigation water withdrawal for maize, using both the unrestricted (irrig-unlim, blue dots) and restricted (irrig-lim, purple dots)
supply schemes for individual states. (b–c) Same as panel (a) but for soybean and wheat.

biases over non-irrigated grids are considerably lower, at
3.04 % and 17.38 % for SH and LH, respectively (Fig. S7).
This indicates that CoLM performs satisfactorily in simulat-
ing energy processes over natural vegetation and rainfed ar-
eas but less so over irrigated regions.

With the inclusion of the irrigation module, simulation er-
rors in surface energy fluxes over irrigated areas are signif-
icantly reduced, particularly in the US High Plains and the

California Central Valley (Figs. S8 and S9). Under the irrig-
unlim and irrig-lim schemes, average SH biases decrease to
27.10 % and 30.79 %, respectively, while LH biases decrease
to 18.41 % and 22.18 %. These improvements are evident
across most irrigated grid points, as illustrated by the ker-
nel density estimate (KDE) curves of KGE, which indicate
an increase in grid points with higher KGE values (Fig. 7).
A KS test confirms that the differences between the irriga-
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Figure 6. Comparison of irrigation water withdrawal simulated by CoLM and six global hydrological models participating in ISIMIP2a.
(a) Annual total irrigation water withdrawal amounts in the United States as reported by the USGS, compared with simulations from CoLM
(using both the irrig-unlim and irrig-lim schemes) and the six global hydrological models. (b) Comparison of reported and simulated irrigation
water withdrawal for individual states, with Pearson correlation coefficient (r) and root mean square error (RMSE) for each simulation
displayed.

tion (i.e., the irrig-unlim and irrig-lim schemes) and noirrig
simulations are statistically significant. Although the irrig-
unlim scheme performs slightly better than irrig-lim for SH
and LH, this difference is not significant.

Additionally, the FLUXCOM data (dashed red line) show
that the highest monthly SH and LH occur in May and July,
respectively. However, the noirrig simulation (solid green
line) fails to capture this seasonal peak, showing instead
that SH peaks in July and LH in June. This discrepancy is
not present in non-irrigated areas (Fig. S7), suggesting that
irrigation in agricultural regions (and the subsequent crop
growth it supports) substantially affects the seasonal pattern
of regional energy balance. When the irrigation module is in-
corporated into the model, these seasonal patterns are more
accurately reproduced, with the timing of the simulated peak
months aligning more closely with FLUXCOM data (solid
blue and purple lines).

The incorporation of the irrigation module improves the
simulation of energy partitioning in irrigated areas, enabling
the model to better capture surface temperature dynamics
(Fig. 7e). Under the noirrig scheme, the average bias of
monthly surface temperature is 0.6° (3.88 %). This bias de-
creases to 0.20° (1.32 %) with the irrig-unlim scheme and
0.29° (1.91 %) with the irrig-lim scheme. However, even with
irrigation included, the simulated total evapotranspiration re-
mains systematically underestimated (Fig. 7c). This underes-
timation is also evident in non-crop areas (Fig. S7c), suggest-
ing that it may not be due to limitations in the irrigation mod-
ule itself but rather to certain deficiencies in CoLM’s evapo-
transpiration simulation approach.

3.2.2 Evaluation of simulated river flow

Irrigation processes can significantly alter natural hydrologi-
cal dynamics and river flow patterns both temporally and spa-
tially. To evaluate the effectiveness of the irrigation module
in capturing these impacts, we compare model outputs with
observed catchment streamflow data. We select catchments
that are substantially influenced by irrigation while minimiz-
ing the effects of other anthropogenic activities. Figure S10
illustrates the locations of the selected 77 catchments. Fig-
ure 8 shows that CoLM’s performance in simulating runoff
– and consequently streamflow – remains limited, with rel-
atively low average KGE values across all three schemes.
This limitation is likely due to the use of a simplified runoff
parameterization scheme in CoLM (Li et al., 2011). How-
ever, it is encouraging to note that the irrig-lim scheme no-
tably improves monthly streamflow simulations compared to
the noirrig scheme, increasing the average KGE from −0.57
to −0.49 and reducing the average percentage bias (PBIAS)
from 117.28 % to 106.54 %. The enhancement can be largely
attributed to the incorporation of irrigation effects, which ac-
count for reduced streamflow due to increased water use for
evapotranspiration. This adjustment effectively mitigates the
overestimation of streamflow observed in the noirrig scheme.

Our analysis reveals that the irrig-unlim scheme signifi-
cantly reduces the accuracy of streamflow simulations com-
pared to the noirrig scheme, leading to a pronounced over-
estimation of river discharge. This issue arises because the
irrig-unlim scheme meets any irrigation demand by introduc-
ing additional water directly into the system without consid-
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Figure 7. Evaluation of simulated energy fluxes and land surface temperature in the irrigation region. (a) Monthly sensible heat flux averaged
from 2001 to 2016, based on FLUXCOM dataset and simulated by CoLM using the noirrig, irrig-unlim, and irrig-lim schemes in irrigation
regions of the United States, with the bias between simulations and observations (i.e., FLUXCOM) indicated in the panel. (b) Kernel density
estimate (KDE) curves for the Kling–Gupta efficiency (KGE) between observed and simulated monthly sensible heat flux for each irrigation
grid, with mean KGE value indicated in the panel. (c–d) Same as panels (a)–(b) but for latent heat flux. (e–f) Same as panels (a)–(b) but for
land surface temperature, using data from the ERA5-Land reanalysis dataset.

ering its source. Such an approach is common among crop
and land surface models that incorporate irrigation (Malek et
al., 2017; Yao et al., 2022; Zhang et al., 2020b). However, our
findings indicate that introducing extra water for irrigation
without accounting for its specific sources and limitations
may lead to an imbalance in the water budget from a com-
prehensive perspective of the entire water system, undermin-
ing the model’s ability to accurately represent the dynamics
of the hydrological system. Furthermore, we compared ob-
served and simulated monthly streamflow in 10 larger catch-
ments (Fig. S12), providing a more intuitive assessment. The
results clearly indicate that the irrig-lim scheme produces
streamflow estimates that align more closely with observa-
tions, whereas the irrig-unlim scheme tends to overestimate
streamflow, particularly during months with high irrigation
demand.

3.2.3 Evaluation of simulated terrestrial water storage
anomalies

To assess the model’s ability to simulate the impact of irriga-
tion on terrestrial water storage (TWS) dynamics, we com-
pared the simulated monthly TWS anomalies with those de-
rived from GRACE satellite products provided by the NASA
Jet Propulsion Laboratory. The results showed that incorpo-

rating the irrigation module, particularly under the irrig-lim
scheme, improved the model’s ability to capture both the in-
terannual variability (Fig. 9a) and seasonal patterns (Fig. 9b)
of TWS anomalies. Under the noirrig scheme, the simulated
monthly TWS anomalies from 2002 to 2016 had a Pearson
correlation of 0.25 with GRACE data and an RMSE of 6.75.
In contrast, the irrig-lim scheme increased the correlation to
0.75 and reduced the RMSE to 5.13 (Fig. 9a). The spatial dis-
tribution of Pearson correlation coefficients between the sim-
ulations and GRACE data (Fig. S13) further demonstrated a
widespread improvement across the United States, particu-
larly in the Corn Belt.

The enhancement was even more pronounced in the sim-
ulation of seasonal TWS anomaly patterns. Without irriga-
tion, the model underestimated seasonal variations, resulting
in a pattern that deviated substantially from GRACE obser-
vations. This bias was effectively corrected in the irrig-lim
scheme, where the Pearson correlation coefficient increased
to 0.92 and the RMSE decreased to 3.44 (Fig. 9b). However,
none of the simulations captured the decline in GRACE-
derived TWS anomalies during 2012 to 2016, likely due to
groundwater depletion from irrigation (Rodell and Reager,
2023). This suggests that the model may require further val-
idation and improvements in simulating irrigation-induced
groundwater storage changes.
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Figure 8. Evaluation of simulated streamflow in 77 irrigation-affected catchments. (a) Multi-year average monthly streamflow bias simulated
using the noirrig, irrig-unlim, and irrig-lim schemes in the evaluation catchments. The boxes represent the interquartile range, black lines
indicate median values, black dots show mean values, and dashed black whiskers extend to 1.5 times the interquartile range; points outside the
boxes represent outliers. (b) Percentage bias (PBIAS) between observed monthly streamflow and simulations from CoLM under the noirrig,
irrig-unlim, and irrig-lim schemes, with the average PBIAS value indicated in the panel. (c) Same as panel (b) but for the Kling–Gupta
efficiency (KGE) between simulated and observed streamflow.

3.3 Evaluation of simulated crop yield

Irrigation reflects a direct human influence on crop yields by
providing supplemental water. Crop models primarily focus
on this aspect, but they often neglect how irrigation affects
other processes. Conversely, most hydrological models con-
centrate on the impact of irrigation withdrawals on the water
cycle, with some also addressing energy fluxes, yet pay less
attention to crop yield. From this perspective, land surface
models offer distinct advantages; they provide a more de-
tailed representation of hydrological and surface energy pro-
cesses compared to crop models, while also presenting more
physics-based representations of crop growth than traditional
hydrological models. Therefore, this study further evaluates

whether incorporating the developed irrigation module can
enhance crop yield in the simulations.

Using county-scale crop yield data for irrigated and rain-
fed regions provided by the USDA, we assess simulated
yields under both irrigated and non-irrigated scenarios. The
dataset may not comprehensively cover all irrigated areas in
the United States or all years during the study period, so com-
parisons are limited to regions and years with reported data.
In rainfed regions, the model broadly reproduces average an-
nual yields for the maize, soybean, and wheat (Fig. S14).
However, in irrigated regions, the model without irrigation
significantly underestimates crop yields, with average un-
derestimations of 31.95 %, 44.45 %, and 35.95 % for maize,
soybean, and wheat, respectively (Fig. 10). Under both the
irrig-umlim and irrig-lim schemes, despite slight differences
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Figure 9. Evaluation of simulated terrestrial water storage anomalies in irrigated regions. (a) Time series of monthly terrestrial water storage
anomalies from 2001 to 2016, simulated by CoLM (under the noirrig, irrig-unlim, and irrig-lim schemes) and derived from GRACE (JPL
dataset). The Pearson correlation coefficient (r) and root mean square error (RMSE) between the simulations and GRACE data are indicated
in the panel. (b) Climatological monthly terrestrial water storage anomalies averaged over 2001–2016, simulated by CoLM and derived from
GRACE.

in performance across crops, the model effectively simulates
yield increases under irrigation, aligning well with observa-
tions. As shown in Fig. S15, the yield underestimation ob-
served in most counties without irrigation is substantially
corrected under the irrig-unlim (and irrig-lim) schemes, with
90.5 % (70.8 %), 99.5 % (94.2 %), and 68.4 % (74.8 %) of
counties showing absolute yield differences for maize, soy-
bean, and wheat within 1 t ha−1 compared to observations.
Differences between the two irrigation schemes are minimal:
the irrig-unlim scheme performs slightly better for maize
and soybean in terms of average biases, while the irrig-lim
scheme shows better performance for wheat.

Furthermore, based on limited annual yield data, we
observe that considering irrigation generally improves the
model’s ability to capture inter-annual yield fluctuations
(Fig. S16). The KGE values of annual yields under the noir-
rig scheme are −1.342, −1.451, and −1.308 for maize, soy-
bean, and wheat, respectively, while with the irrig-umlim and
irrig-lim schemes the KGE values increase to 0.101,−1.132,
and 0.197 and to −0.158, −1.449, and −0.144, respectively.

4 Discussions

4.1 Applications of the developed module

4.1.1 Impacts of irrigation on energy budget

Numerous studies have highlighted the impacts of irrigation
on global and regional energy budgets and near-surface cli-
mates. In this study, we similarly examine the effects of irri-
gation on the energy budget over irrigated areas in the United
States by comparing results from the irrig-lim and noirrig
scheme. Consistent with prior research, we find that irri-
gation increases latent heat (LH) by 7.53 W m−2 (23.25 %)

and decreases sensible heat (SH) by 5.18 W m−2 (9.48 %)
averaged from 2001 to 2016, resulting in an approximately
0.30 °C reduction in land surface temperature (Fig. 11).
Since land–atmosphere coupling is not included, the primary
mechanisms driving these impacts are increased soil evapo-
ration due to enhanced soil moisture and greater vegetation
transpiration driven by improved crop growth following irri-
gation (Fig. S17a–b). Annually, these mechanisms contribute
roughly equally to the increase in total evapotranspiration in
irrigated regions, with pronounced seasonal differences: dur-
ing the peak growing seasons (summer and autumn), the con-
tribution was dominated by vegetation transpiration, while in
other seasons, particularly winter, the increase in soil evapo-
ration plays a larger role in affecting regional energy distri-
bution and temperature (Fig. S17c).

This study further explores the spatial characteristics of
these impacts, analyzing the correlations between irrigated
area; irrigation water withdrawal; and changes in LH, SH,
and land surface temperature (1LH, 1SH, 1Ts) across dif-
ferent climate zones. Notably, irrigation has the most sub-
stantial impact in arid regions, especially on LH, where1LH
is more than double that of semi-arid and humid regions, with
a larger reduction in temperature by 0.36 °C. Interestingly,
while previous studies have emphasized irrigated area as
the primary determinant of irrigation-induced climate effects
(Al-Yaari et al., 2022; Chen and Dirmeyer, 2019), our results
indicate that irrigation water withdrawal has a stronger influ-
ence on the regional energy budget and temperature. Across
all climate zones,1SH,1LH, and1Ts are significantly cor-
related (p<0.01) with irrigation water withdrawal, with cor-
relation coefficients of −0.81, 0.79, and −0.82, respectively
(Fig. 11b, e and h), which are higher than the correlations
with irrigated area (−0.59, 0.61, and −0.52; Fig. 11c, f and
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Figure 10. Evaluation of crop yield simulated using different schemes in the United States. (a) Maize yield in irrigated maize-growing
regions of the United States, as reported by the USDA (orange boxes), compared with simulations by CoLM using the noirrig (green boxes),
irrig-unlim (blue boxes), and irrig-lim (purple boxes) schemes. Since reported yields are at the county scale, grid-based simulation results
were aggregated to corresponding counties. (b–c) Same as panel (a) but for soybean and wheat yields.

i). This emphasizes the critical role of water availability in
modulating the climate effects of irrigation.

It is important to note that this study employs offline land
simulations, which do not capture land–atmosphere inter-
actions, potentially introducing biases in the estimated cli-
mate impacts. Previous studies have demonstrated that irri-
gation can induce both cooling and warming effects. While
increased evapotranspiration contributes to cooling, irriga-
tion can also enhance atmospheric water vapor content, lead-
ing to greater absorption of longwave radiation and poten-
tial cloud formation, resulting in warming (Dessler and Sher-
wood, 2009; Hu et al., 2019). These processes cannot be ad-
equately represented in offline simulations, likely leading to
an overestimation of irrigation-induced cooling and a sub-
sequent underestimation of temperature (Fig. 11g). Future
studies should incorporate coupled land–atmosphere simu-
lations to provide a more comprehensive assessment (Cook
et al., 2015; Puma and Cook, 2010; Sacks et al., 2009). An-
other aspect worth considering is that some farmers irrigate
not only to address water deficits but also to mitigate heat
stress during high-temperature periods (Verma et al., 2020).
This practice can notably affect local temperatures. For in-
stance, surface water temperatures generally track air tem-
peratures, whereas groundwater temperatures remain rela-
tively stable throughout the year – typically warmer than air
in winter and cooler in summer. This temperature difference,
especially in regions relying on groundwater irrigation, may
have non-negligible effects on local climate that should be
incorporated into future modeling efforts.

4.1.2 Assessments of irrigation water security

This study compares the irrigation schemes with and with-
out water availability constraints, highlighting the necessity
and importance of incorporating water limitations into sim-
ulations. Our results demonstrate that including these con-
straints improves simulation accuracy, particularly in the
modeling of water systems. Specifically, irrigation water
withdrawal simulated under the irrig-lim scheme aligns more
closely with observational data (Figs. 3 and 6). Valida-
tion against river flow observations further supports the im-
proved performance of the irrig-lim scheme. Importantly, this
scheme avoids the risk of potential water imbalances in the
modeled hydrological system – an issue commonly associ-
ated with non-constrained schemes (Fig. 8).

Additionally, incorporating water availability constraints
more accurately reflects the reality of water resource utiliza-
tion. By accounting for the interconnections between subsys-
tems within the irrigation water demand–supply system, this
approach enables simulation and prediction of irrigation wa-
ter security issues. Here, we visualize the average number of
days when water supply was insufficient to fully meet irri-
gation demand simulated by the irrig-lim scheme (Fig. 12).
Spatially, in humid regions, where irrigation demand is low
and water resources are abundant, fewer days of unmet irri-
gation needs occur. Conversely, in arid regions, where irri-
gation demand is high and water resources are often limited,
the number of unmet irrigation days increases significantly.
Figure 12a illustrates that states with a higher number of un-
met irrigation days are also those with relatively scarce water
resources (e.g., Montana and Nevada). From a temporal per-
spective, drought years lead to increased irrigation require-
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Figure 11. Impact of irrigation on local energy flux and surface temperature in the United States. (a) Impact of irrigation on sensible heat
flux, quantified by the difference (1SH) between the noirrig and irrig-lim simulation results. (b) Relationship between irrigation amount
and 1SH, with grid colors indicating the climate zones (i.e., arid, semi-arid/semi-humid, humid). For each climate zone, the mean 1SH, the
regression line of irrigation amount versus 1SH, and the regression equation are displayed. (c) Same as panel (b) but for the relationship
between irrigation area and1SH. (d–f) Same as panels (a)–(c) but for the impact on latent heat flux (1LH). (g–i) Same as panels (a)–(c) but
for the impact on land surface temperature (1Ts).

ments due to reduced precipitation or higher evaporative de-
mand. Although additional water withdrawals can partially
address this increased demand, drought conditions often si-
multaneously result in deficits in both surface and ground-
water resources within the water system. As a result, most
states experience a substantial increase in unmet irrigation
days during drought years (an average of 43 d). In contrast,
during wetter years, the number of unmet days decreases sig-
nificantly (an average of 31 d).

Reported disaster data show that even with irrigation, sig-
nificant crop losses can occur during drought years, aligning
with broader water security challenges (Mieno et al., 2024).
Our approach effectively captures this phenomenon by de-
scribing the connectivity between subsystems in the water
demand–supply system and highlighting the impact of wa-
ter limitations on irrigation. In contrast, ignoring these con-
straints risks underestimating potential food security issues
in a future characterized by more frequent and/or severe
droughts. This represents a critical limitation of crop and land

surface models that adopt irrigation schemes without consid-
ering water availability constraints.

4.2 Limitations and a way forward

While the developed module represents a significant ad-
vancement in modeling the irrigation water system within
land surface models by providing a comprehensive represen-
tation of the irrigation processes, including water demand,
water withdrawal, and water utilization, several limitations
and assumptions should be acknowledged.

Irrigation water demand in this study is estimated using a
soil moisture deficit method. However, the parameterization
of certain key variables (e.g., target and threshold soil mois-
ture levels) is overly simplified and does not account for vari-
ations among crop types. These parameters are adjustable,
and their calibration could further enhance the model’s ac-
curacy in reproducing irrigation water use. Similarly, the
fixed root depth of 1 m for all crops introduces additional
uncertainty, potentially leading to overestimation or under-
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Figure 12. Days per year with unmet irrigation demand (i.e., irrigation deficit days) in the United States simulated by the irrig-lim scheme.
(a) Multi-year average irrigation deficit days from 2001 to 2015 for individual states. (b) Irrigation deficit days in drought year for individual
states. (c) Irrigation deficit days in wet year for individual states. Drought year (wet year) is defined as the year with the lowest (highest)
annual precipitation during 2001–2016.

estimation of irrigation demand. Incorporating dynamic root
growth could better represent actual root-zone depth based
on crop-specific characteristics. Additionally, in some cases,
farmers irrigate not only to address soil moisture deficits
but also to reduce crop heat stress during high-temperature
periods – a factor that should be incorporated into future
modeling efforts. Furthermore, this study did not account
for water losses during conveyance and application. Irriga-
tion losses, as noted by Jägermeyr et al. (2015), include con-
veyance losses and on-field application losses. By ignoring
conveyance losses, the model assumes that water withdrawn
equals water applied, likely leading to an underestimation of
total irrigation water use. Field application losses depend on
irrigation methods (Leng et al., 2017), and while this study
considered four irrigation systems with differentiated effi-
ciencies, the reliance on simplified rules and a coarse irri-
gation map fails to reflect the diversity of irrigation meth-
ods and distributions. For example, actual sprinkler systems
distribute water in specific spray patterns rather than uni-
formly. However, the model assumes uniform water distri-
bution across each crop functional type (CFT). Future mod-
els could benefit from parameterizations that capture spa-
tial heterogeneity in irrigation distribution (Jägermeyr et al.,
2015; Merriam et al., 1999). Moreover, irrigation water de-
mand also depends on agricultural practices, such as crop
types, cropping calendars, and planting intensities. While the
model determines crop phenology based on meteorological
data, real cropping calendars are influenced by farmers’ de-
cisions (Sacks et al., 2010). Incorporating satellite-derived
phenology data could better represent these human factors.
Addressing these agricultural practices is crucial for improv-
ing the accuracy and applicability of irrigation models.

In simulations of irrigation water withdrawal, this study
provides a detailed representation of reservoir water with-
drawal but acknowledges several sources of uncertainty: first,
the dataset includes fewer dams than exist, as it focuses pri-
marily on large dams and may lack data due to protection
policies. This omission likely contributes to the underesti-

mation of surface water extraction in some states. Second, all
dams are assumed to supply irrigation water, although some
reservoirs may not serve this purpose. The irrigation areas
served by each dam are unknown, and a generalized estima-
tion method is employed in this study, introducing large un-
certainties that remain difficult to validate. Third, dam oper-
ations are simplified, while in reality they often involve com-
plex considerations, such as multi-objective operations and
coordinated management of multiple reservoirs. Advanced
reservoir optimization strategies, which require predictive
simulations and prior knowledge of future inflows and de-
mands, are not incorporated into the model, presenting a sig-
nificant challenge for considering the impacts of complex hu-
man decision-making in land surface models.

Determining the division of irrigation water withdrawals
between surface and groundwater sources, as well as the
withdrawal sequence, is also critical. This study allocates ir-
rigation demand based on predefined proportions and simul-
taneously withdraws water from both sources. Surface wa-
ter demand is met sequentially through local runoff, river
discharge, and upstream reservoir storages. This method,
employed in models such as ORCHIDEE v2.2 (Arboleda-
Obando et al., 2024) and E3SM (Zhou et al., 2020), pro-
vides satisfactory simulations of water source allocation for
irrigation (Fig. 4 vs. Fig. S19). However, its reliability de-
pends on the accuracy of input data and may underesti-
mate withdrawals if any water source is inadequately rep-
resented. Alternatively, some models (e.g., MATSIRO and
CLM5; Pokhrel et al., 2012; Yao et al., 2022) do not pre-
allocate demand but set a fixed order of water withdrawals –
typically prioritizing surface water before groundwater. This
method tends to satisfy more irrigation demand and pro-
vides better estimates in regions with unreported groundwa-
ter extraction. We propose that a hybrid approach, defining
surface and groundwater proportions dynamically, warrants
consideration in future study. For instance, during wet sea-
sons, surface water extraction proportions could increase to
reduce groundwater reliance and associated pumping costs.
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Conversely, during dry seasons, surface water may be more
constrained, necessitating greater reliance on groundwater
for irrigation. However, such an approach still needs to ad-
dress challenges, including unreported groundwater use; data
scarcity; and the physical, technical, and socioeconomic con-
straints on groundwater use across regions.

Additionally, this study does not account for restrictions
beyond water availability, such as local regulations governing
water allocation, including water rights and inter-basin water
transfers. Alternative water sources, such as desalinated sea-
water and treated wastewater, also warrant consideration (van
Vliet et al., 2021). Recent assessments indicate that these
unconventional water sources are experiencing exponential
growth (Jones et al., 2019). Although their contributions re-
main low globally, they play a significant role in water-scarce
regions. Incorporating these factors into models could further
improve simulations of irrigation water security.

The developed module’s results and applicability are also
strongly influenced by the CoLM framework itself. A critical
aspect requiring careful consideration is the evaluation and
calibration of hydrological variables, such as soil moisture,
runoff, river discharge, and groundwater levels, which are
essential for water resource modeling. Currently, the CoLM
employs the simplified TOPMODEL (SIMTOP) developed
by Niu et al. (2005) for runoff simulations. The excessive
simplification of this approach, coupled with the lack of cal-
ibration, limits the model’s accuracy in runoff simulations.
Inadequate representation of snow and glacial melt processes
introduces regional biases, particularly in northern and mid-
western US states where these factors are pivotal. For in-
stance, surface water extraction is underestimated in some
states within these regions, likely because the model fails
to accurately capture snowmelt and glacial melt contribu-
tions to streamflow, leading to erroneous estimates of surface
water availability. Similarly, simulated evapotranspiration is
systematically underestimated, even in areas without crops
or irrigation, likely due to more complex underlying causes.
These biases, when aggregated at the watershed level, result
in significant discrepancies in river discharge, thereby con-
straining the model’s applicability for water resource man-
agement and its ability to predict irrigation water security.
Addressing these issues requires urgent improvements in the
representation of related processes, along with further cali-
bration and parameter tuning.

Although the validation in this study is limited to the
United States, the framework can be applied to other re-
gions with appropriate datasets. For example, the module re-
quires defining the allocation and sequence of withdrawals
from surface water and groundwater sources. When apply-
ing the model to other regions, the groundwater and surface
water withdrawal ratios should be predefined based on lo-
cal infrastructure, such as groundwater extraction facilities,
and the withdrawal sequence can also be adjusted accord-
ingly. For surface water withdrawals, it is essential to pre-
pare river network data and reservoir information for CaMa-

Flood simulations. Additionally, improving simulation accu-
racy may require incorporating region-specific crop distribu-
tion (distinguishing rainfed and irrigated areas), crop char-
acteristics (e.g., phenology, photosynthetic capacity, carbon
allocation), and management practices (e.g., planting dates,
irrigation strategies). Furthermore, CoLM offers multiple pa-
rameterization schemes for thermal, hydrological, and bio-
geochemical processes, which should be evaluated for their
suitability in the target region.

5 Conclusions

The growing challenges posed by increasing global food de-
mand and water scarcity underscore the need for advanced
modeling tools capable of accurately capturing human–water
interactions. This study contributes to addressing this need
by implementing a two-way coupled irrigation water sys-
tem within the Common Land Model. The developed mod-
ule provides a comprehensive representation of the entire ir-
rigation water use process, including water demand, with-
drawal, and utilization. It introduces a refined multi-source
water withdrawal framework and achieves bidirectional cou-
pling between water demand and withdrawal during simula-
tion.

The robustness of the new irrigation module is validated
through simulations across the contiguous United States, fo-
cusing on regional-scale water, energy, and crop yield dy-
namics. The module effectively simulates total national an-
nual irrigation withdrawals, their spatial distribution, the pro-
portions of different water sources, and irrigation volumes
for various crops. Compared to other hydrological models in
ISIMIP2a, our model performs similarly or better in simu-
lating US irrigation withdrawals. Incorporating the new ir-
rigation module also significantly improves the accuracy of
simulated surface energy fluxes, both in magnitude and sea-
sonal patterns, resulting in more accurate surface temperature
predictions. For streamflow, the irrigation scheme accounting
for water availability constraints enhances the model’s repre-
sentation of hydrological system dynamics, whereas the un-
restricted irrigation scheme introduces potential water bud-
get imbalances. Additionally, the new module markedly im-
proves the model’s ability to simulate annual yields and inter-
annual fluctuations of major crops, including maize, soybean,
and wheat.

We further apply the developed module in two novel anal-
yses. First, the scheme effectively characterizes the climatic
impacts of irrigation, revealing a stronger positive correlation
between irrigation water volume, rather than irrigated area,
and the intensity of irrigation-induced climatic effects. This
highlights the critical role of water availability in modulating
irrigation-driven climate impacts. Although more accurate
simulation of these effects requires land–atmosphere cou-
pled modeling, the enhanced CoLM is clearly ready for such
tasks. Second, the module captures irrigation-related water
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security issues, particularly during drought years, where wa-
ter shortages across the resource system lead to irrigation
water deficits and associated food security challenges. These
results demonstrate the promise of CoLM as a valuable tool
for future water use and scarcity assessments, paralleling the
functionality of global hydrological models and contributing
to initiatives such as the Inter-Sectoral Impact Model Inter-
comparison Project.

Data availability. The meteorological variables from
the WFDEI can be freely accessed from ftp://rfdata:
forceDATA@ftp.iiasa.ac.at (Weedon et al., 2014b). The land
cover type datasets (MCD12Q1) can be freely accessed from
https://doi.org/10.5067/MODIS/MCD12Q1.061 (Friedl and Sulla-
Menashe, 2022). The soil characteristics datasets (GSDE) can be
freely accessed from http://globalchange.bnu.edu.cn/research/data/
(Shangguan et al., 2014b). The CropScape and Cropland
Data Layer (CDL) datasets can be freely accessed from
https://nassgeodata.gmu.edu/CropScape/ (USDA/NASS,
2019). The crop calendar datasets can be freely accessed
from https://doi.org/10.5281/zenodo.5062513 (Jägermeyr et al.,
2021b). The irrigation map and irrigation equipment percentage
can be freely accessed from https://www.fao.org/aquastat/en/
geospatial-information/global-maps-irrigated-areas/latest-version
(Siebert et al., 2013). The GRanD database can be freely ac-
cessed from https://www.globaldamwatch.org/grand/ (Lehner
et al., 2011b). The GRSAD database can be freely accessed
from https://doi.org/10.18738/T8/DF80WG (Gao and Zhao,
2019). The ReGeom database can be freely accessed from
https://doi.org/10.5281/zenodo.1322884 (Yigzaw et al., 2018b).
The USGS’s hydrological survey data can be freely accessed
from https://water.usgs.gov/watuse/data/ (USGS, 2023). The
USDA NASS’s agricultural survey data can be freely accessed
from https://quickstats.nass.usda.gov/ (USDA/NASS, 2023).
The crop-specific irrigation water withdrawal data can be freely
accessed from https://doi.org/10.13012/B2IDB-2656127_V1
(Konar et al., 2024). The ISIMIP2a datasets can be freely ac-
cessed from https://doi.org/10.5880/PIK.2019.003 (Gosling et
al., 2019). The FLUXCOM datasets can be freely accessed via
https://doi.org/10.17871/FLUXCOM_EnergyFluxes_v1 (Jung et
al., 2018). The ERA5-Land skin temperature data can be freely
accessed from https://doi.org/10.24381/cds.68d2bb30 (Muñoz
Sabater, 2019). The streamflow data (GRDC) can be freely
accessed from https://www.bafg.de/GRDC/EN/Home/ (GRDC,
2023). CoLM codes are available for download from Zenodo
(https://doi.org/10.5281/zenodo.15826886, Zhang et al., 2024).
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