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Abstract. This study introduces a novel approach to post-
processing (i.e. downscaling and bias-correcting) reanalysis-
driven regional climate model daily precipitation outputs
that can be generalised to ungauged mountain locations by
leveraging sparse in situ observations and a probabilistic re-
gression framework. We call this post-processing approach
generalised probabilistic regression (GPR) and implement
it using both generalised linear models and artificial neural
networks (i.e. multi-layer perceptrons). By testing the GPR
post-processing approach across three Hindu Kush Himalaya
(HKH) basins with varying hydro-meteorological character-
istics and four experiments, which are representative of real-
world scenarios, we find it performs consistently much bet-
ter than both raw regional climate model output and deter-
ministic bias correction methods for generalising daily pre-
cipitation post-processing to ungauged locations. We also
find that GPR models are flexible and can be trained using
data from a single region or multiple regions combined to-
gether, without major impacts on model performance. Ad-
ditionally, we show that the GPR approach results in supe-
rior skill for post-processing entirely ungauged regions, by
leveraging data from other regions as well as ungauged high-
elevation ranges. This suggests that GPR models have po-

tential for extending post-processing of daily precipitation
to ungauged areas of HKH. Whilst multi-layer perceptrons
yield marginally improved results overall, generalised linear
models are a robust choice, particularly for data-scarce sce-
narios, i.e. post-processing extreme precipitation events and
generalising to completely ungauged regions.

1 Introduction

The mountain ranges of High Mountain Asia, often referred
to as the Water Towers of Asia (Immerzeel et al., 2010),
are the source of many major rivers in South Asia, such
as the Indus or the Ganges, supplying water resources to a
rich diversity of terrestrial and marine ecosystems (Xu et al.,
2019) and to approximately 2 billion people living in or di-
rectly downstream of them (Bolch et al., 2012; Mukherji
et al., 2019; Wester et al., 2019; Widmann et al., 2019).
These resources are heavily reliant on precipitation caused
primarily by large-scale atmospheric circulations, such as the
Indian summer monsoon and winter westerly disturbances,
interacting with the steep orography that characterises the
southern rim of High Mountain Asia, comprising the Hindu
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Kush Himalaya (HKH) mountain ranges (Bookhagen and
Burbank, 2010; Palazzi et al., 2013; Baudouin et al., 2020;
Dimri et al., 2015). Yet, despite the large human populations
depending on these resources for power, industry, tourism,
farming and domestic consumption, the contributions of rain
and snow (and its ensuing melt) to these river systems are
still poorly studied and little understood. This precipitation
knowledge gap in HKH severely affects our ability to quan-
tify its present-day water resources and associated stream
flows (Immerzeel et al., 2015; Arfan et al., 2019; Li et al.,
2018; Salzmann et al., 2014). Consequently, it constitutes
the largest source of uncertainty when it comes to making
effective and robust water management decisions (e.g. water
infrastructure construction, water demand management) and
their critical role in regulating regional water supply, as well
as planning for the hydrological impacts of climate change
(Chinnasamy et al., 2015; Momblanch et al., 2019; Wester
et al., 2019; Nie et al., 2021; Orr et al., 2022).

Improving our understanding of precipitation in the HKH
region is highly challenging (e.g. Wester et al., 2019; Sabin
et al., 2020; Orr et al., 2022). In particular, the extreme orog-
raphy that characterises this region results in large precip-
itation variations over small spatio-temporal scales, which
are poorly understood due to the sparse and uneven rain and
snow gauge network across the region (Archer and Fowler,
2004; Bannister et al., 2019; Immerzeel et al., 2015; Bookha-
gen and Burbank, 2010; Baudouin et al., 2020; Pritchard,
2021). For example, an area of around 566 000 km2 above
4000 m elevation in HKH is currently represented by a single
long-running gauge station in the Global Historical Clima-
tology Network database (Pritchard, 2021). This poor under-
standing of precipitation extends to localised extremes that
result from the triggering of convective events by small-scale
topographic features (Orr et al., 2017; Bhardwaj et al., 2021;
Ren et al., 2017; Dimri et al., 2017; Thayyen et al., 2013;
Potter et al., 2018), which are often associated with rapid hy-
drological responses as well as hydro-meteorological hazards
such as floods and landslides (Qazi et al., 2019; Lutz et al.,
2016; Ji et al., 2020; Dimri et al., 2017; Thayyen et al., 2013;
Das et al., 2006).

One of the approaches to overcome the issues related to
the limited gauge networks in HKH has been to develop
daily gridded datasets with wide spatial and temporal cov-
erage. These include gauge-based products such as the Asian
Precipitation Highly Resolved Observational Data Towards
Evaluation of Water Resources (APHRODITE; Yatagai et al.,
2012), satellite-based products such as the Tropical Rainfall
Measuring Mission (TRMM; Huffman et al., 2007), climate
reanalysis products such as ECMWF Reanalysis v5 (ERA5;
Hersbach et al., 2020) and multi-source products such as the
Multi-Source Weighted-Ensemble Precipitation (MSWEP;
Beck et al., 2019), which merges gauge, satellite and reanaly-
sis data. However, in HKH these datasets are characterised by
large differences in both climatological and extreme precipi-
tation values, with the lack of consensus confirming that our

understanding of precipitation characteristics in this region is
extremely poor (Bannister et al., 2019; Palazzi et al., 2013;
Li et al., 2018). The large differences between these datasets
are explained by the different types of observations used in
them, as well as the methods used to compile them. For ex-
ample, APHRODITE relies on distance-weighted interpola-
tion of gauge values to derive precipitation patterns, which
are difficult to robustly calculate in HKH due to the lack of
in situ observations, as well as the large spatio-temporal pre-
cipitation gradients (Bannister et al., 2019; Ji et al., 2020;
Luo et al., 2020; Andermann et al., 2011). A recent alter-
native, MSWEP (Beck et al., 2019), which is arguably one
of the best global precipitation datasets, also relies on gauge
data and is therefore much less well constrained to observa-
tions in HKH compared with elsewhere. Consequently, al-
ternative tools are needed to better understand the detailed
spatio-temporal characteristics of precipitation in HKH.

Dynamic downscaling of coarse spatial resolution reanal-
ysis datasets (e.g. approximately 30 km for ERA5) using a
regional climate model (RCM) is increasingly being used to
produce high-resolution gridded precipitation products over
HKH (Norris et al., 2020; Bannister et al., 2019; Maussion
et al., 2011; Wang et al., 2021). These RCMs are charac-
terised by spatial resolutions from 1–10 km that are gener-
ally able to resolve the complex terrain and thus better repre-
sent precipitation variability, and especially extremes. How-
ever, RCM outputs are still subject to errors and uncertainty
(Giorgi, 2019), which can be exacerbated in mountain ar-
eas due to the complexity of the terrain (Sanjay et al., 2017;
ul Hasson et al., 2019). For example, while reanalysis-driven
RCM simulations are able to capture the large-scale circu-
lation accurately (e.g. summer monsoon and westerly dis-
turbances) by using either nudging or frequent initialisation
techniques (Norris et al., 2020; Bannister et al., 2019; Maus-
sion et al., 2011; Wang et al., 2021), they can still be sub-
ject to deficiencies in the representation of key physical pro-
cesses such as the local valley wind regime, boundary layer
and cloud microphysics (Orr et al., 2017; Potter et al., 2018),
as well as discrepancies between real and simulated orog-
raphy (Eden et al., 2012). Statistical post-processing tech-
niques, such as bias correction, are therefore often applied to
improve the accuracy of RCM outputs, including precipita-
tion (e.g. Shrestha et al., 2017; Bannister et al., 2019; Dimri,
2021; Tazi et al., 2024).

The model output statistics (MOS) approach to bias-
correcting RCM simulations involves developing statistical
relationships between RCM outputs, used as predictors, and
observations, used as predictands (e.g. Klein and Glahn,
1974; Maraun and Widmann, 2018). MOS post-processing
methods are usually deployed in either single-site or multi-
site fashion to correct RCM simulations for locations where
observations are available. However, in settings where gauge
measurements are spatially sparse, MOS post-processing can
also be used to adjust RCM precipitation outputs at ungauged
locations (e.g. Samuel et al., 2012). In regions such as HKH
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where standard spatial interpolation techniques fail to cap-
ture the local-scale spatio-temporal precipitation variability,
such an approach is fundamental; yet it has not received
much attention in the past. Bannister et al. (2019) applied
bias correction to ungauged locations by using a determin-
istic distribution-wise MOS method to adjust RCM precip-
itation outputs across two Himalayan basins. Additionally,
MOS post-processing for bias correction can sometimes also
involve downscaling RCM outputs to higher spatial resolu-
tions (i.e. they correct for biases as well as downscale from
a coarser to a finer scale). Hereafter, we use the term post-
processing to refer to the combination of downscaling and
bias-correcting.

Traditional MOS methods post-process the marginal dis-
tribution of the RCM output deterministically. In this set-
ting, a specific set of predictors always yields the same cor-
rected value and the spatio-temporal structure of the simu-
lated output is not explicitly altered. This implicitly assumes
that local-scale spatio-temporal variability is completely cap-
tured by the RCM-simulated grid box variability. Whilst this
assumption might hold in the case of pure bias correction, if
the post-processing also involves downscaling to point obser-
vations (or higher-resolution gridded data) then deterministic
approaches are not appropriate and a probabilistic method
should be used instead (Maraun, 2013).

Furthermore, using regression-based MOS methods, the
synchrony (or pairwise correspondence) between reanalysis-
driven RCMs and observations can be leveraged to correct
for biases in the temporal representation of RCM precipita-
tion outputs, which can often be large (Lafon et al., 2013). In
settings where the pairwise correspondence between RCM
hindcasts and observations is low, such as in HKH, prob-
abilistic regression-based MOS methods can also provide
value by characterising predictive uncertainty.

Previous studies have developed regression-based MOS
methods based on artificial neural networks to statistically
post-process precipitation data (e.g. Cannon, 2008; Sachin-
dra et al., 2018; Baño-Medina et al., 2020; Vaughan et al.,
2022). For example, the multi-site precipitation downscal-
ing framework proposed by Cannon (2008) employs artificial
neural networks for probabilistic regression. More advanced
regression-based MOS model architectures have also been
leveraged recently to undertake this task, including convolu-
tional neural networks (Baño-Medina et al., 2020), autoen-
coders (Vandal et al., 2019) and neural processes (Vaughan
et al., 2022). However, all these methods generally rely on
the availability of abundant training data and thus focus on
data-rich regions. The potential of regression-based MOS
post-processing for ungauged mountain locations (such as in
HKH) remains untapped.

In this pilot study, we introduce a generalised probabilis-
tic regression (GPR) MOS approach for post-processing (i.e.
downscaling and bias-correcting) RCM daily precipitation
outputs using sparse gauge data in HKH. This approach ex-
tends the pairwise stochastic MOS framework proposed by

Wong et al. (2014) and leverages probabilistic regression
models (i.e. generalised linear models and multi-layer per-
ceptrons). The key advantage of the GPR approach is that it
is capable of generalising to ungauged locations, whilst also
capturing the uncertainty that arises both from this spatio-
temporal generalisation and from the asynchronous timing of
precipitation between RCM output and observations. Thus,
using the GPR approach, we can leverage a discrete and rela-
tively sparse network of in situ observations to improve pre-
cipitation maps (i.e. gridded products) for HKH whilst quan-
tifying the uncertainty of our estimates. The GPR approach
can also be viewed as a probabilistic spatio-temporal inter-
polation technique for daily precipitation observations in-
formed by (or conditioned on) RCM simulations and other
contextual factors. Furthermore, the framework we employ
is, in essence, a conditional MOS precipitation generator
that is consistent with the RCM-simulated weather (Cannon,
2008; Wong et al., 2014).

We test the GPR framework by post-processing daily pre-
cipitation output from an RCM simulation of HKH pro-
duced using the Weather Research and Forecasting (WRF)
model for three target regions, namely, the eastern and west-
ern reaches of the Upper Indus Basin and the central part of
the Upper Ganges Basin, which hereafter are referred to as
East UIB, West UIB and Central UGB, respectively (Fig. 1).
Together, these three regions span a wide portion of HKH
and have very different characteristics in terms of geogra-
phy, orography, climatology and observational network/data
availability, i.e. providing a diverse range of conditions/chal-
lenges for the GPR framework in order to robustly test it. Fi-
nally, although the focus of this study is HKH, the results of
this exercise should be applicable to other data-sparse moun-
tain ranges in the world.

2 Data and methods

2.1 Target regions and datasets

The West UIB region includes the Gilgit-Baltistan area,
which is located in Karakoram and the western Himalaya
(Fig. 1). The Gilgit-Baltistan area is 72 971 km2 in size and
includes the Hunza and Gilgit rivers, as well as the main
branch of the Indus (Iqbal et al., 2019). For this study, the
daily precipitation records available for this area were col-
lected from 12 stations over the period 1995–2015 (compris-
ing a total of 76 860 data points), which range from 1460 to
4707 m above sea level (m a.s.l.) (Table 1). The average dis-
tance between neighbouring stations is around 60 km.

The East UIB region includes the Sutlej River basin and
the Beas River basin, which are situated in the western Hi-
malaya. The Sutlej River basin has an area of 60 803 km2

(above the Bhakra Dam) and its river is the largest and east-
ernmost of the tributaries of the Indus (Fig. 1). The Beas
River basin has an area of 12 286 km2 (above the Pong
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Figure 1. Map showing the three target regions across HKH: west Upper Indus Basin (West UIB), east Upper Indus Basin (East UIB) and
central Upper Ganges Basin (Central UGB), including the location of the gauge measurements (black triangles). Inset maps show more detail
for each of the target regions, including the elevation of the topography (shading) and the location of gauge measurements (yellow triangles).
The topography dataset shown in the inset maps is from the Shuttle Radar Topography Mission (SRTM) digital elevation model.

Dam) and its river is itself a tributary of the Sutlej River.
The available daily precipitation records in these basins (and
neighbouring areas) come from 58 stations over the period
1980–2013 (364 713 data points), which range from 256 to
3645 m a.s.l. (Table 1). The majority of the stations are lo-
cated in the lower reaches of these catchments (Fig. 1), i.e. a
significant part of the catchment area sits at elevations above
the highest monitoring station. The average distance between
neighbouring stations is around 15 km; this constitutes a rel-
atively dense network of precipitation measurements com-
pared with West UIB, as well as many other areas in HKH
(Nepal et al., 2023).

The Central UGB region includes the Langtang River
catchment, which is situated in the central Himalaya (Fig. 1).
It consists of a relatively small area and its river is a trib-
utary to the Ganges (Fig. 1). The available daily precipi-
tation records for this region come from 21 stations from
2012–2014 (15 152 data points), which range from 1406 to
5090 m a.s.l. (Table 1). The average distance between neigh-
bouring stations is less than 2 km; this makes this one of the
most dense networks of precipitation measurements in HKH
(Steiner et al., 2021; Shea et al., 2015).

The WRF simulation is by Norris et al. (2019). It dynami-
cally downscales 36 years of Climate Forecast System Re-
analysis data (Saha et al., 2010) from 1979 to 2015 over

HKH at a spatial resolution of 6.7 km. We use multiple out-
puts (including daily precipitation) from this simulation from
1980 to 2014 that cover the three target regions (see Ta-
ble 2). Norris et al. (2019) found that daily precipitation out-
puts from this simulation were better correlated with HKH
gauge data in winter (correlation coefficient of 0.70) than in
summer (correlation coefficient of 0.56). Additionally, over
the Karakoram (West UIB), the simulated precipitation had a
relatively substantial negative bias (Norris et al., 2017). Note
that the station data described here and the WRF precipita-
tion outputs are independent, i.e. the data were not assimi-
lated into the Climate Forecast System Reanalysis. Finally,
the terrain elevation of the three target regions (and stations)
is taken from the Shuttle Radar Topography Mission (SRTM)
digital elevation model, which has a spatial resolution of
30 m.

2.2 Generalised probabilistic regression (GPR)
approach to MOS

The GPR approach to MOS post-processing involves pre-
dicting the probability distribution p of daily precipitation
y, conditional on a set of predictors x, using regression mod-
els with parameters φ whose output variables characterise a
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Table 1. Elevation range and summary of the stations used to provide daily precipitation observations for each of the three target regions.
Note that each station contains gaps in the instrumental record.

Region Elevation range No. stations Period covered No. data points
(m a.s.l.)

West UIB 1460–4707 12 1995–2014 76 860
East UIB 265–3645 58 1980–2013 364 713
Central UGB 1406–5090 20 2012–2014 15 152

stochastic process:

pφ(y|x)= pφ(y1,y2, . . .,ym|x1,x2, . . .,xm)

=

M∏
m=1

pφ(ym|xm). (1)

Importantly, we assume that the probability distribution of
daily precipitation at one spatio-temporal location is condi-
tionally independent of that at all other spatio-temporal lo-
cations and thus the joint conditional probability p(y|x) fac-
torises into the product of p(ym|xm), where m ranges from
1 to M and denotes a spatio-temporal location (i.e. there is
a unique m(s, t) for every combination of spatial location s
and time t).

More concretely, the GPR approach uses regression mod-
els fφ that map from inputs xm to outputs θm:

θm = fφ(xm). (2)

The input vector xm is D-dimensional, whereas the output
vector θm is N -dimensional and explicitly parametrises the
conditional probability distribution over daily precipitation
ym. We use three regression model architectures, namely,
vector generalised linear models (VGLMs; Song, 2007) and
two fully connected artificial neural networks, also referred
to as multi-layer perceptrons (MLPs; Rumelhart et al., 1986).

In VGLMs, the mapping from inputs xm to outputs θm
in Eq. (2) involves two key transformations. Firstly, a lin-
ear transformation, parametrised by a matrix of weights W1,
is applied to xm. Secondly, a non-linear transformation g is
subsequently applied to obtain the output vector θm. Note
that each element θnm is generated by applying a specific link
function gn, where n ranges from 1 to N and indexes each
element of θm and g. This element-wise non-linear trans-
formation ensures that the resulting output values are valid
parameters of the predicted probability distribution:

θm = g(W>1 xm). (3)

Thus, for VGLMs, parameters φ =W1.
In contrast, in MLPs the mapping from inputs xm to out-

puts θm in Eq. (2) involves passing xm through multiple hid-
den layers, in sequence. The mapping from each layer to
the next layer involves several linear transformations (deter-
mined by the number of units in that layer and parametrised

by matrices W1,W2, . . .,WH+1, where H is the number of
layers), each followed by a non-linear activation function a:

θm = g(W>2 a(W
>

1 xm)). (4)

This structure allows MLPs to model more complex (non-
linear) relationships than a linear model. We use a very small
MLP with one hidden layer of 10 units, where φ = {W1,W2}

(Eq. 4; hereafter referred to as MLPS) and a larger ver-
sion with two hidden layers of 50 units each, where φ =
{W1,W2,W3} (hereafter referred to as MLPL):

θm = g(W>3 a(W
>

2 a(W
>

1 xm))). (5)

Rectified linear unit (ReLU) non-linearities are used as hid-
den layer activations a in both MLP architectures, except for
the last layer, which also employs a vector of link functions
g to map each output variable.

In order to post-process WRF daily precipitation outputs,
the three GPR model architectures use an input vector xm
that consists of the D = 26 variables listed in Table 2, i.e.
resulting in a 26-dimensional vector. This includes outputs
from the WRF simulation at some spatio-temporal location
m, as well as other context variables relating to the geograph-
ical location, orography and date. The outputs from the WRF
simulation include daily precipitation (i.e. the variable that
is being post-processed), as well as other variables that are
closely related to precipitation, cloud properties and convec-
tive processes, such as convective available potential energy,
cloud water vapour path, relative humidity, horizontal and
vertical winds, and temperature.

To characterise the conditional probability over daily pre-
cipitation, we employ a Bernoulli–gamma mixture model,
which is capable of jointly accounting for precipitation oc-
currence and magnitude and has been used in previous
studies (Williams, 1998; Cannon, 2008). Precipitation oc-
currence is modelled by introducing a Bernoulli random
variable rm, which takes the value 1 with probability πm
and the value 0 with probability 1−πm. When rm = 1,
precipitation magnitude ym is modelled by a gamma dis-
tribution with parameters α ∈ (0,∞) and β ∈ (0,∞). The
Bernoulli–gamma mixture is implemented by specifying re-
gression model architectures that generate an N = 3 dimen-
sional output vector θm = [πm,αm,βm], using link functions
g = [sigmoid(·),exp(·),exp(·)]. Further implementation de-
tails can be found in Appendix A.
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Table 2. Summary of variables used as inputs to the GPR post-processing models, grouped by variable type.

Description Symbol or abbreviation Unit

WRF liquid and total precipitation RAIN, PRECIP mm d−1

WRF water vapour path WVP kg m−2 (daily average)
WRF convective available potential energy CAPE J kg−1 (daily average)
WRF temperature daily avg, max, min and range at 2 m T2 m, T2 m,MAX, T2 m,MIN, T2 m,R K
WRF zonal and meridional wind at 10 m and 500 and 250 hPa U10 m, V10 m, U500, V500, U250, V250 m s−1 (daily average)
WRF vertical wind at 500 and 250 hPa W500, W250 m s−1 (daily average)
WRF relative humidity at 2 m and 500 hPa RH2 m, RH500 % (daily average)
WRF orography (based on surface geopotential height) GPH m
WRF land use index LU –
Latitude, longitude (of target station) Y , X m
Terrain elevation (of target station) Z m a.s.l.
Day of year encoded via sine and cosine functions DoYSIN, DoYCOS –
Year Year –

2.3 Training, validation and testing

The GPR post-processing models are trained, validated and
tested using the daily precipitation observations yobs (Ta-
ble 1) as predictands, i.e. target values. We employ a k-fold
cross-validation approach, which involves splitting the data
by location (i.e. station) into k folds, with k− 2 folds being
used for training, 1 fold for validating and 1 fold for test-
ing. This process is repeated k times, ensuring each fold is
used once for testing. During training, we optimise the model
parameters φ to maximise the average log-likelihood of the
training dataset. For this, we use stochastic gradient descent
with a batch size of 128 and the Adam optimiser (Kingma
and Ba, 2015), with an initial learning rate equal to 10−3.
Here, we consider the validation step as part of the train-
ing process as it involves selecting, from the different model
training iterations, the configuration of model parameters φ
that maximises the average log-likelihood of the validation
dataset, to avoid overfitting to the training data. We thus re-
fer to the combined training and validation steps as train-
ing. Lastly, testing involves evaluating the performance of the
trained models on the held-out locations in the test dataset.

2.4 Scaling factor approach

We compare the post-processed WRF precipitation results
from the three GPR models against results obtained using
a widely used deterministic MOS scaling factor approach
(Maraun and Widmann, 2018), which we refer to as WRFSF.
Here, the raw WRF daily precipitation output for station s
(hereinafter referred to as yWRF

s ) is scaled by the ratio be-
tween total observed daily precipitation (

∑M
m=1y

obs
m ) and to-

tal WRF-simulated daily precipitation (
∑M
m=1y

WRF
m ), where

data points indexed m ∈ {1, . . .,M} correspond to locations

other than s, to obtain yWRFSF
s :

yWRFSF
s = yWRF

s

( ∑M
m=1y

obs
m∑M

m=1y
WRF
m

)
. (6)

The scaling factor method is also applied using a 10-
fold spatial cross-validation approach, where the scaling fac-
tor is derived using k = 9 folds (i.e. data points indexed
m ∈ {1, . . .,M}) and then applied to the data points in the re-
maining fold.

2.5 Experiments

We undertake four experiments that assess the performance
of the three GPR post-processing models, as well as the scal-
ing factor approach WRFSF. The four experiments represent
increasingly complex (but realistic) ways of partitioning the
available station data into subsets for training, validation and
testing, and are shown schematically in Fig. 2. In Experiment
1 (hereafter referred to as E1), we train separate GPR models
for each region (i.e. separate-region models) and test them
by post-processing the WRF precipitation output at held-out
locations within that region. This experiment represents a
baseline scenario, where models are trained and tested for
the same region. In Experiment 2 (E2), we train GPR models
using data from all three regions combined (i.e. a combined-
region model) and test them by post-processing WRF precip-
itation output at held-out locations within each of the regions.
This experiment therefore explores whether training a model
over a diverse range of regions/settings and then applying
it to each of these regions outperforms the separate-region
(E1) models. Both E1 and E2 use 10-fold cross-validation.
Experiment 3 (E3) is similar to E2 but trains and validates
the models on combined data from two regions (consisting
of 80 % and 20 % of the combined data, respectively) and
tests on 100 % of the data from a third, completely held-out,
region. This experiment therefore explores whether a model
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Figure 2. Schematic representation of the four experiments in-
cluded in this study applied to three target regions. In Experiment 1,
separate-region models for each of the three regions are trained and
tested in held-out locations within each region. In Experiment 2,
combined-region models are trained on data from all three regions
and tested in held-out locations within those same regions. In Ex-
periment 3, models are trained on two regions combined and tested
in a third, completely held-out, region. Experiment 4 is analogous
to Experiment 1 but held-out test locations are at higher elevations
than those used for training and validation.

that is trained over a set of regions/settings can generalise to
an entirely different new region. In E3 we use 3-fold cross-
validation to ensure that each region is held-out for testing
once to produce predictions for that region. Lastly, Experi-
ment 4 (E4) is analogous to the separate-region (E1) experi-
ment but splits the data up for training, validation and testing
based on the elevation of the stations. Here, for each region,
the top 10 % elevation stations are withheld for testing, the
next 10 % are used for validation and the remaining 80 % (i.e.
lowest elevation) stations are used for training. This experi-
ment therefore explores whether models trained on data from
the lower reaches of catchments, where the majority of sta-
tions are located, are capable of generalising to much higher
elevations that are typically ungauged. Note that E4 does not
therefore involve k-fold cross-validation.

2.6 Evaluation metrics

To evaluate the post-processed precipitation distributions
from each of the three GPR post-processing models in each
of the three target regions, we employ three strictly proper
scoring rules (Gneiting and Raftery, 2007), which are the
negative log-likelihood (NLL), the continuous rank proba-
bility score (CRPS) and the Brier score (BS) – defined next.
For the CRPS and the BS, we calculate their associated skill

scores, CRPSS and BSS, respectively (e.g. Angus et al.,
2024). These measure the improvement relative to the CRPS
and BS for the raw WRF precipitation output, which is con-
sidered as our baseline. The BSS metric is used to assess the
ability of different post-processing methods to capture vari-
ous precipitation thresholds (0, 1, 10, 30 and 50 mm d−1) that
span the spectrum of precipitation events, ranging from no
precipitation to very extreme events. The frequency and total
number of events exceeding these thresholds are included in
Table B1 (Appendix B), showing that 10, 30 and 50 mm d−1

represent extreme precipitation events for which neverthe-
less some amount of observations are available (e.g. 0.33 %,
2.95 % and 0.68 % of the total number of events exceed the
30 mm d−1 threshold at West UIB, East UIB and Central
UGB, respectively), as opposed to higher thresholds such as
100 mm d−1, which have less than 0.2 % of observations, i.e.
too low to justify use of this threshold. In addition, we use
the threshold-weighted CRPS (twCRPS; with precipitation
thresholds of 10 and 30 mm d−1) to further assess the tails
of the predictive distributions, by calculating the associated
skill score twCRPSS (see Appendix B). The CRPSS, BSS
and twCRPS metrics are also used to evaluate the skill of
WRFSF. To complement this, we also use the mean squared
error (MSE) and mean absolute error (MAE) to compare the
performance of the post-processed precipitation distributions
reduced to their mean values against WRFSF outputs, by
again calculating their associated skill scores, MSESS and
MAESS (see Appendix B).

Moreover, to assess the trade-off between goodness of fit
and model complexity, we consider several information cri-
teria. In particular, we compute the Akaike information crite-
rion (AIC; Akaike, 1973), its small-sample corrected version
(AICc; Sugiura, 1978) and the Kullback information crite-
rion (KIC; Cavanaugh, 1999). These criteria, which consider
both the log-likelihood of the model and the number of pa-
rameters in the model, are defined in Appendix C. While
our model evaluation primarily relies on cross-validation and
proper scoring rules, these criteria offer a complementary
perspective on overall model quality.

The NLL assesses the compatibility of probabilistic hind-
casts with observed data, especially focusing on the probabil-
ity of observed events under the predicted probability distri-
butions. It is defined as the sum of the natural logarithms of
the probability density function values at the observed data
points:

NLL=−
1
M

M∑
m=1

log
(
p(yobs

m |xm)
)
, (7)

whereM represents the number of observations, yobs
m denotes

the mth observed data point and p(yobs
m |xm) is the value of

the predicted probability density function evaluated at that
observed data point. NLL is the optimisation criterion used
during training and therefore lower values indicate better per-
formance.
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The CRPS also measures how well probabilistic predic-
tion matches the observed data yobs

m by measuring the dis-
tance between the predicted and observed cumulative distri-
bution functions (CDFs). The CRPS is defined as the integral
of the squared difference between the predicted CDF F(ym)

and the observed empirical CDF, which is the Heaviside step
function H(ym− y

obs
m ), over the entire range of possible val-

ues of y:

CRPS=
1
M

M∑
m=1

∞∫
−∞

(
F(ym)−H(ym− y

obs
m )

)2
dym. (8)

Using this, the CRPSS is then calculated as

CRPSS= 1−
CRPS

CRPSWRF
, (9)

where CRPSWRF is the CRPS of the raw WRF precipitation
output. Positive values of CRPSS indicate improved skill rel-
ative to the raw WRF output, with higher values indicating
better performance. Note that for deterministic predictions
(i.e. WRF and WRFSF) the CRPS reduces to the mean abso-
lute error between the predicted and observed values.

The BS (Wilks, 2006) measures the mean squared error
betweenM pairs of precipitation occurrence probabilities πm
and binary observations robs

m ,

BS=
1
M

M∑
m=1

(πm− r
obs
m )2, (10)

and allows for a detailed assessment of the predictive ca-
pacity across different levels of precipitation intensity. Using
this, the BSS is calculated as

BSS= 1−
BS

BSWRF
, (11)

where BSWRF is the BS of the raw WRF precipitation out-
put. Positive BSS values indicate an improved skill relative
to the raw WRF output, with higher values indicating better
performance.

Finally, we extend the performance assessment for the
combined-region models (E2) as these showcase the benefits
and challenges associated with leveraging data from different
regions. For this, we pool together the E2 held-out predic-
tions for all (three) regions and use reliability diagrams and
receiver operating characteristic (ROC) curves (e.g. Angus
et al., 2024). Reliability diagrams serve as a visual represen-
tation of the calibration accuracy of predicted probabilities
for different precipitation levels (0, 1, 10 and 30 mm d−1), ex-
tending the evaluation beyond pairwise-correspondence met-
rics such as NLL, CRPSS and BSS. Reliability diagrams dis-
play the relationship between predicted probabilities of pre-
cipitation exceeding a certain threshold and the actual ob-
served frequencies, with a perfect agreement indicated by
such a relationship falling along the diagonal line on the

graph. ROC curves offer an alternative perspective of proba-
bilistic model performance across different precipitation lev-
els (0.1, 1, 10 and 30 mm d−1). In particular, ROC curves
assess the ability of probabilistic predictions to discriminate
an event from a non-event by plotting the hit rate (i.e. ra-
tio between the number of correctly predicted events and the
total number of events) against the false alarm rate (i.e. ra-
tio between the number of wrongly predicted events and the
total number of events) using different predicted probabil-
ity thresholds to transform the probabilistic prediction into a
binary prediction of occurrence (Wilks, 2006; Angus et al.,
2024). To allow for a better graphical differentiation of the
ROC curves for different precipitation events, data points
with no observed precipitation are excluded from this analy-
sis.

2.7 Feature ablation

To determine the most influential input variables for the three
GPR post-processing models, we perform a feature ablation
analysis for E2 (Zeiler and Fergus, 2014; Kokhlikyan et al.,
2020). Feature ablation is a technique that replaces each input
variable (or feature) in xm with a baseline value (in this case,
zero) and measures the impact this has on the output vector
θm. This is done for each of the D = 26 input variables from
Table 2 by running the trained GPR models 26 times, each
time with a different input variable in xm replaced by zero,
thereby obtaining predictions θm for each ablated-feature in-
put configuration. For each feature, the average of the ab-
solute value of the differences between the ablated-feature
model predictions and the original model predictions is com-
puted for each output variable, i.e. π , α and β.

3 Results

Figure 3 shows how differences between observed and WRF-
simulated mean daily precipitation vary by region and with
terrain elevation. In West UIB and Central UGB, WRF sys-
tematically overestimates precipitation for all stations, i.e.
for the full elevation range of the stations. This overesti-
mate is especially apparent in Central UGB, with station
measurements showing values of around 2 mm d−1, whereas
WRF generally simulates 8–10 mm d−1. In East UIB, WRF
underestimates precipitation at low-elevation stations (be-
low around 1000 m a.s.l.) and broadly overestimates it at
higher elevations (especially above 2000 m a.s.l.). These re-
sults generally show that the WRF output is characterised by
highly variable precipitation biases across the three target re-
gions that are consistent with complex elevation and hydro-
climatological dependencies, and therefore that generalising
MOS post-processing at ungauged locations is likely to be
challenging. In addition, Fig. B1 (Appendix B) shows the
Pearson correlation coefficient between raw WRF-simulated
and observed daily precipitation time series for the differ-
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ent stations, showing that while regional differences exist
(e.g. correlations in Central UGB, where stations are rela-
tively close to each other, are higher than in East UIB and
West UIB, where the distances between stations are larger)
the pairwise correspondence (or synchrony) between WRF
and observations is low, ranging between 0.1 and 0.5.

Table 3 evaluates the performance of the three GPR post-
processing models (VGLM, MLPS and MLPL) for each ex-
periment and region using NLL. For E1, which assesses
separate-region models for each of the three target regions,
both MLP models marginally outperform the VGLM model
in all three regions, with MLPL performing best. Similar re-
sults are also apparent for E2, which tests how combined-
region models generalise to held-out locations within those
regions. Comparison of E2 and E1 shows that the combined-
region GPR models (E2) perform marginally better than
the separate-region GPR models (E1) for East UIB, but are
marginally poorer for West UIB and Central UGB. However,
the NLL values for E1 and E2 for each region and each GPR
model are very similar and only differ in the second deci-
mal place, i.e. there is little difference between the perfor-
mance of either the separate-region or combined-region mod-
els, as well as between the three GPR models. For E3, which
is analogous to E2 except that the GPR models are trained
using data from two regions combined together and tested
on the third region, NLL values are much higher compared
with E2, highlighting a considerable drop in performance in
all three regions. For example, the NLL value for MLPL for
West UIB is 1.24 for E2 and 2.46 for E3. Additionally, in E3,
the range of NLL values within each region is relatively wide
compared with E2, indicating that GPR performance in E3 is
more sensitive to the choice of model architecture. For ex-
ample, for West UIB the NLL value is 1.50 for VGLM, 2.84
for MLPS and 2.46 for MLPL. For E4, which is analogous to
E1 except that testing happens at locations with higher eleva-
tions than those seen by the models during training, the per-
formance of all GPR models slightly drops compared with
E1. However, the NLL values for E1 and E4 for West UIB
and East UIB still only differ in the second decimal place.
Here, MLPS shows the best performance for West UIB and
East UIB, while for Central UGB it is MLPL that shows the
best performance.

In terms of differences across all experiments and mod-
els for each region, NLL values in East UIB are lower than
those in West UIB by around 0.1, while NLL values in West
UIB are in turn lower than those in Central UGB by (typi-
cally) 0.2 to 0.3 (Table 3). This pattern highlights the domi-
nance of regional variability, driven by the quality/bias of the
raw WRF output and the amount of station data available.
For example, East UIB has the best-performing models and
also the highest number of daily precipitation measurements
(364 713), with West UIB having the second best-performing
models and also the second highest number of measurements
(76 860), and finally Central UGB having the poorest per-

forming models and also the least number of measurements
(15 152) (Table 1).

Table 4 extends the performance assessment by showing
the CRPSS for the three GPR models. The CRPSS values are
largely consistent with the NLL results. For example, both
MLP models outperform VGLM in all three regions for E1
and E2, and MLPL is the best overall performing model. The
CRPSS values for E1 and E2 for each region are very sim-
ilar and only differ in the second decimal place, which was
also found for the NLL results. For E3, all three GPR models
exhibit lower CRPSS values and larger differences between
models compared with E2, i.e, consistent with the consider-
able performance drop in all three regions and a higher sen-
sitivity to the choice of model architecture found by NLL
results. However, as CRPSS values for the GPR models are
relative to the reference CRPSWRF, the positive CRPSS val-
ues achieved still represent an improvement in skill relative
to WRF. For E3, MLPS performs best for West UIB and East
UIB (in contrast to VGLM for West UIB and MLPL for East
UIB for the NLL results), while VGLM performs best for
Central UGB (in agreement with the NLL results). For E4,
the performance of all models slightly drops compared with
E1, with the MLPL model still performing best across all
three regions (in contrast to MLPS for West UIB and East
UIB for the NLL results, but in agreement with MLPL for
Central UGB, for the NLL results). CRPSS values also dis-
play differences across all experiments and models for each
region, with the highest values of ≈0.8 in Central UGB, fol-
lowed by values of ≈0.6 for West UIB and finally ≈0.4 for
East UIB. However, as CRPSS values are relative to (and thus
influenced by) CRPSWRF, which varies for each region, they
are therefore not directly comparable across regions.

Table 4 also shows CRPSS values for WRFSF. For all ex-
periments and regions, the CRPSS values for WRFSF are
lower than those for the GPR models, indicating that the per-
formance of the GPR models is superior to that of WRFSF.
For example, for E1 and E4 the WRFSF values for East
UIB are close to zero (−0.07), but positive in West UIB
(≈0.4) and Central UGB (0.69), i.e. indicating negligible im-
provement relative to the raw WRF output for East UIB, but
some improvement for West UIB and Central UGB. This is
probably related to the direction of WRF-simulated biases
changing with elevation for East UIB, while for West UIB
and Central UGB the biases are larger and unidirectional
(Fig. 3), i.e. large and unidirectional biases are more easily
post-processed and thus the scaling factor approach is also
effective. For E2, WRFSF exhibits CRPSS values close to
zero, indicating negligible improvement relative to the raw
WRF output. For E3, WRFSF shows values close to zero for
West UIB (−0.03) and Central UGB (−0.04), but positive
values for East UIB (0.35).

Additionally, Tables B2 and B3 (Appendix B) show
MSESS and MAESS values, respectively, for all three GPR
models as well as WRFSF. The results yielded by these met-
rics are broadly in line with those for CRPSS and confirm
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Figure 3. Difference between observed and WRF-simulated mean daily precipitation (mm d−1) for each gauging station as a function of
station elevation for (a) West UIB, (b) East UIB and (c) Central UGB.

Table 3. NLL values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM, MLPS and MLPL), calculated
for all four experiments and all three target regions. Lower NLL values indicate better performance, with the best-performing GPR model
for each experiment and region shown in bold. NLL values are directly comparable across experiments and regions. Note that MLPL for E3
West UIB was trained using a learning rate of 10−4 to ensure training convergence, while the other experiments used a learning rate of 10−3.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL VGLM MLPS MLPL VGLM MLPS MLPL

E1 1.263 1.235 1.226 1.179 1.159 1.150 1.480 1.437 1.420
E2 1.267 1.245 1.240 1.181 1.156 1.144 1.501 1.477 1.448
E3 1.502 2.835 2.457 2.414 1.531 1.483 1.683 1.985 1.950
E4 1.283 1.250 1.251 1.187 1.160 1.173 1.875 1.553 1.511

that while the relative performance of GPR models varies de-
pending on the assessment metric, the best-performing GPR
models still outperform WRFSF for all experiments and re-
gions (except for E3 in East UIB, where MLPS and WRFSF
yield the same MAESS value).

To better understand the performance of the GPR mod-
els for various precipitation intensities, Table 5 shows the
BSS for the three GPR models for different daily precip-
itation thresholds. As expected, BSS values are consistent
with CRPSS results but provide further granularity. For
E1, E2 and E4, MLPL is best at capturing the probability
over low-to-moderate precipitation thresholds (i.e. 0, 1 and
10 mm d−1), whereas results for higher precipitation events
(i.e. 30 and 50 mm d−1) are variable. However, for each re-
gion and threshold, the BSS values for different models gen-
erally only differ in the second decimal place, indicating that
the performance of all GPR models is broadly similar for
each region and threshold. For a threshold of 50 mm d−1,
smaller models generally perform marginally better for E1
(i.e. MLPS in West UIB and East UIB and VGLM in Cen-
tral UGB), E3 (MLPS) and E4 (VGLM), whereas MLPL per-
forms best in E2 for East UIB and Central UGB. For E3,
the VGLM model considerably outperforms the MLP mod-
els for low precipitation thresholds (i.e. 0 and 1 mm d−1) in
West UIB and Central UGB, whereas MLPS performs best
for higher thresholds (i.e. 30 and 50 mm d−1) in these re-
gions. Moreover, E3 also shows a much wider difference be-

tween models for West UIB and Central UGB. For example,
for West UIB and a threshold of 30 mm d−1, the BSS value
is 0.47 for VGLM, 0.75 for MLPS and 0.68 for MLPL.

For all experiments and regions, the BSS values for
WRFSF are generally much lower than for the GPR mod-
els, indicating that the performance of the GPR models is
superior to WRFSF (i.e. consistent with the CRPSS results).
However, for E1 and E4, WRFSF can have BSS values that
are comparable to the GPR models for higher thresholds, es-
pecially for East UIB and Central UGB. For example, for
Central UGB, the BSS values for a threshold of 50 mm d−1

are 0.91 for MLPL and 0.90 for WRFSF.
In addition, Tables B4 and B5 (Appendix B) include

twCRPSS values using 10 and 30 mm d−1 thresholds, respec-
tively, for the three GPR models and WRFSF. These results,
which provide further insight regarding the ability of post-
processing methods to capture extreme precipitation events,
show that MLP models are best at characterising the tails
of the predictive distributions in E1, E2 and E4 (excluding
E2 for Central UGB in Table B5, where WRFSF outper-
forms GPR models), whereas VGLM is the most robust op-
tion in E3. In West UIB and Central UGB, twCRPSS values
for thresholds of 30 mm d−1 show all methods performing
poorly; this can be explained by the relative lack of obser-
vations for events exceeding this threshold in both regions
(Table B1).
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Table 4. CRPSS values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM, MLPS and MLPL) and
WRFSF, calculated for all three regions and all four experiments. Higher CRPSS values indicate better performance, with the best-performing
MOS method for each experiment and region shown in bold. Positive CRPSS values indicate improved skill relative to raw WRF hindcasts.
CRPSS values are directly comparable across experiments but not across regions. Note that MLPL for E3 West UIB was trained using a
learning rate of 10−4 to ensure training convergence, while the other experiments used a learning rate of 10−3.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 0.646 0.654 0.657 0.397 0.416 0.433 0.434 −0.075 0.820 0.823 0.824 0.691
E2 0.645 0.647 0.652 0.021 0.416 0.428 0.439 0.022 0.814 0.811 0.825 0.043
E3 0.491 0.585 0.556 −0.027 0.346 0.384 0.354 0.234 0.812 0.779 0.782 −0.039
E4 0.625 0.628 0.644 0.398 0.414 0.427 0.430 −0.073 0.808 0.818 0.818 0.690

Table 5. BSS values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM, MLPS and MLPL) and
WRFSF, calculated for all three regions and all four experiments using a range of daily precipitation thresholds (0, 1, 10, 30 and 50 mm d−1).
Higher BSS values indicate better performance, with the best-performing MOS method for each experiment and region shown in bold.
Positive BSS values indicate improved skill relative to raw WRF hindcasts. BSS values are directly comparable across experiments but not
across regions.

West UIB East UIB Central UGB

Experiment Threshold (mm) VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 0 0.528 0.544 0.550 0.000 0.520 0.548 0.559 0.000 0.515 0.522 0.537 0.000
E1 1 0.484 0.502 0.511 0.110 0.390 0.426 0.441 −0.010 0.582 0.595 0.615 0.142
E1 10 0.748 0.753 0.753 0.554 0.403 0.425 0.428 −0.035 0.823 0.829 0.830 0.699
E1 30 0.746 0.752 0.744 0.667 0.448 0.456 0.451 −0.111 0.934 0.932 0.926 0.929
E1 50 0.686 0.692 0.680 0.667 0.461 0.465 0.457 −0.143 0.914 0.911 0.907 0.903

E2 0 0.528 0.529 0.538 0.000 0.524 0.550 0.561 0.000 0.474 0.497 0.522 0.000
E2 1 0.493 0.492 0.496 0.004 0.397 0.426 0.441 0.005 0.545 0.560 0.597 0.006
E2 10 0.747 0.748 0.752 0.024 0.404 0.419 0.433 0.012 0.820 0.810 0.825 0.020
E2 30 0.741 0.750 0.748 0.054 0.443 0.450 0.458 0.027 0.938 0.937 0.938 0.086
E2 50 0.679 0.692 0.672 0.060 0.457 0.461 0.465 0.048 0.917 0.917 0.919 0.101

E3 0 0.519 0.299 0.308 0.000 0.427 0.458 0.442 0.000 0.418 0.051 0.117 0.000
E3 1 0.485 0.331 0.338 −0.005 0.263 0.340 0.314 0.054 0.534 0.318 0.360 −0.003
E3 10 0.471 0.741 0.728 −0.028 0.326 0.375 0.329 0.172 0.817 0.811 0.808 −0.024
E3 30 0.473 0.745 0.680 −0.060 0.400 0.416 0.399 0.341 0.934 0.939 0.936 −0.074
E3 50 0.516 0.686 0.483 −0.090 0.432 0.438 0.431 0.410 0.916 0.916 0.912 −0.099

E4 0 0.521 0.534 0.546 0.000 0.519 0.544 0.555 0.000 0.441 0.461 0.501 0.000
E4 1 0.458 0.486 0.504 0.110 0.390 0.422 0.432 −0.010 0.566 0.556 0.577 0.142
E4 10 0.732 0.720 0.736 0.554 0.400 0.418 0.422 −0.035 0.806 0.824 0.826 0.688
E4 30 0.741 0.728 0.743 0.667 0.444 0.448 0.449 −0.111 0.938 0.939 0.932 0.926
E4 50 0.683 0.669 0.683 0.667 0.460 0.458 0.459 −0.143 0.916 0.916 0.908 0.903

Tables C3, C4 and C5 show how the three GPR models
rank for each experiment and region, in terms of AIC, AICc
and KIC, respectively. The rankings yielded by these metrics
are generally consistent with the NLL results (Table 3), i.e.
showing that MLP models tend to outperform VGLM mod-
els. These criteria penalise models with larger number of pa-
rameters (i.e. MLPL; Table C2), especially in regions where
the number of test data points is low (e.g. Central UGB and,
to a lesser extent, West UIB; Table C1). AIC (Table C3) is
the most lenient criterion, whereas AICc (Table C4) is more
stringent with larger models and KIC (Table C5) penalises
large models the most. Thus, in contrast to NLL results,
MLPS is favoured over MLPL, except in East UIB, where

MLPL ranks first for E2 (based on AIC, AICc and KIC) and
E3 (based on AIC and AICc).

Figure 4 shows reliability diagrams and corresponding ob-
served precipitation event histograms for daily precipitation
thresholds exceeding 0, 1, 10 and 30 mm d−1 for E2, i.e.
the combined-region model. For low precipitation thresh-
olds (i.e. 0 and 1 mm d−1), the reliability diagrams show that
the majority of predicted probabilities are well-calibrated
(Fig. 4a, b), as indicated by the data points correlating anal-
ogous levels to predicted probability and by the observed
frequency of precipitation (dashed line) coinciding with the
diagonal line (solid line). However, the calibration accuracy
declines for predicted probability values of between 0.9 and
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1.0 due to the model overpredicting the observed frequency.
This occurs when the count of predicted instances for a given
cumulative probability value decreases below a threshold of
around 103 (Fig. 4e, f). This effect is even more evident
for higher precipitation thresholds (i.e. 10 and 30 mm d−1),
where predicted probabilities and observed frequencies start
to deviate at around 0.5 and 0.2, respectively (Fig. 4c, d),
due to the model overpredicting the observed frequency. This
also coincides with the number of predicted instances for
these higher precipitation events dropping below a thresh-
old of around 103 (Fig. 4g, h), highlighting the challenge of
predicting extreme precipitation events.

Figure 5 displays ROC curves for daily precipitation
thresholds exceeding 0.1, 1, 10 and 30 mm d−1 for E2. This
shows that GPR models exhibit superior binary classification
accuracy, compared with raw WRF and WRFSF, for all pre-
cipitation thresholds. This is graphically depicted in Fig. 5 by
the (probabilistic) curves sitting considerably above the (de-
terministic) point values in the diagrams, indicating that the
GPR models have higher true hit rates at equivalent or lower
false alarm rates, compared with WRF and WRFSF. Such a
consistent pattern reinforces the evidence that GPR models
not only provide a more nuanced forecast by quantifying un-
certainty but also deliver a more reliable prediction in terms
of discriminating between events and non-events for a given
daily precipitation threshold. Additionally, Fig. 5 also shows
for all precipitation thresholds that MLPL consistently yields
the best performance of the GPR models. Note that, for the
ROC diagrams in Fig. 5, data points with no observed pre-
cipitation (i.e. dry days) are excluded from the analysis.

Figure 6 shows the effect that progressively adding input
variables (listed in Table 2) has on GPR model performance
for E2, in particular on the held-out NLL value for MLPL.
Starting with a set of core input variables (i.e. PRECIP,
RAIN, DOYSIN, DOYCOS and Z), the MLPL model yields
a held-out NLL value of 1.33 (configuration labelled “Core
variables” in Fig. 6). By comparison, adding the spatial vari-
ables Y and X to the core set yields a held-out NLL value
of 1.24 (labelled “+ Spatial variables”), while further adding
the vertically integrated thermodynamic/cloud-related input
variables WVP and CAPE to this configuration yields a value
of 1.20 (labelled “+ Integrated variables”), i.e, indicating a
systematic improvement in skill as the number of input vari-
ables increases. However, adding the temperature-related in-
put variables T2 m, T2 m,MAX, T2 m,MIN and T2 m,R (labelled
“+ Temperature variables”), and then further adding the hor-
izontal and vertical wind-related input variablesU10 m, V10 m,
U500, V500, U250, V250, W500 and W250 (labelled “+ Wind
variables”), results in held-out NLL values of 1.20, i.e. in-
dicating negligible gain in skill compared with the “+ Inte-
grated variables” configuration. By contrast, adding the rel-
ative humidity variables RH2 m and RH500 further reduces
the held-out NLL value to 1.18, which is likely to be due
to these input variables being thermodynamic/cloud-related.
Lastly, adding the remaining input variables GPH (i.e. WRF

orography), LU and YEAR yields a held-out NLL value of
1.18, i.e. no significant improvement.

Figure 7 assesses the relative influence that the input vari-
ables listed in Table 2 have on predicted outputs (i.e. the dis-
tributional parameters π , α and β) for the three GPR model
architectures in E2. The feature importance analysis shows
that the VGLM model is heavily influenced by a relatively
limited set of input variables, whereas the MLP models (in
particular MLPL) leverage a more extensive array of predic-
tors. The set of influential input variables is moderately con-
sistent for all three output parameters. However, one notable
exception is the dominant effect that T2 m has on π (Fig. 7a),
but not on α and β (Fig. 7b, c), for the VGLM model. The
results further show that, for all three GPR models, the ver-
tically integrated thermodynamic/cloud variables (WVP and
CAPE), the relative humidity variables (RH2 m and RH500)
and the near-surface temperature variables (T2 m, T2 m,MAX,
T2 m,MIN and T2 m,R) stand out as important features, as well
as inputs such as LAT, Z and GPH. Moreover, and perhaps
surprisingly, the precipitation input variables PRECIP and
RAIN exhibit minimal influence on the GPR model outputs;
this probably also explains the importance of the vertically
integrated thermodynamic/cloud variables and the relative
humidity variables, as these play a dominant role in control-
ling precipitation. Furthermore, the contribution of the hor-
izontal and vertical wind velocity fields to the GPR outputs
is also relatively minor. It is important to note that this fea-
ture ablation analysis does not assess multivariate effects, but
only the effect that removing a single input variable (i.e. re-
placing it with zeros) has on the GPR model outputs. As a
result, the lack of influence shown by certain variables could
be due to these being redundant, given all other input vari-
ables (as evident in Fig. 6).

4 Discussion

4.1 Performance of GPR method for post-processing
daily precipitation

In this study, we have shown that using a GPR approach to
MOS post-processing (i.e. downscaling and bias-correcting)
daily precipitation outputs from a reanalysis-driven RCM,
for which simulated and observed daily precipitation data
are expected to exhibit pairwise correspondence, improves
predictions at ungauged locations across all tested regions,
precipitation thresholds and experiments. We use three scor-
ing metrics (NLL, CRPSS and BSS) to evaluate the quality of
hindcasts and find that, overall, the three GPR models we em-
ploy (VGLM, MLPS and MLPL) exhibit similar performance
(Tables 3, 4, 5) and consistently yield superior skill relative
to the raw RCM output (WRF) and deterministic MOS bias
correction (WRFSF) (Tables 4, 5). We find that NLL (Table 3)
and CRPSS (Table 4) yield similar relative rankings of GPR
model performance. This is not surprising given that both the
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Figure 4. (a–d) Reliability diagrams and (e–h) predicted probability histograms for different observed daily precipitation thresholds: (a, e)
0.1 mm d−1, (b, f) 1 mm d−1, (c, g) 10 mm d−1 and (d, h) 30 mm d−1. Reliability diagrams (a–d) display the relationship between predicted
probabilities and the actual observed frequencies of precipitation exceeding a certain threshold (dotted line), with a perfect agreement
indicated by the diagonal line (solid line). Predicted probability histograms (e–h) display the counts of observed events exceeding a certain
threshold associated with various predicted probability levels.

Figure 5. Receiver operating characteristic (ROC) curves yielded by the three GPR models, as well as hit rates and false alarm rates for WRF
and WRFSF, for different daily precipitation thresholds of (a) 0.1 mm d−1, (b) 1 mm d−1, (c) 10 mm d−1, and (d) 30 mm d−1. ROC curves
exclude data points with no observed precipitation.

NLL and CRPS are strictly proper scoring rules that assess
the goodness of fit of a predictive distribution against, in our
case, a single observation and have their minima at the same
value. However, the NLL is much more sensitive to extreme
cases (as it involves a harsh penalty for events with low pre-
dicted probabilities) than the CRPS (Gneiting and Raftery,
2007). Therefore, it is insightful to corroborate the consis-
tency of performance by using both scoring rules, whilst also
noting that using the CRPS as the optimisation criterion for
the GPR model parameters would have resulted in different
GPR models and associated predictions. The BS assesses the
accuracy of probabilistic predictions specifically for binary
events. Whilst the CRPS is the integral of the BS over all real-
valued probability thresholds and can therefore be viewed as
a generalisation of the latter (Gneiting and Raftery, 2007),
calculating the BS for specific precipitation thresholds pro-
vides additional granularity and shows insightful patterns for
extreme precipitation events (Table 5).

MOS post-processing of RCM daily precipitation outputs
at ungauged locations involves using separate groups of sta-
tions for model training, validation and testing. However,
given the high spatial variability that daily precipitation ex-
hibits both within and across regions, such an approach in-
volves testing on out-of-distribution data, that is, models are
assessed on their ability to generalise to held-out data that
significantly deviate from the training data. This presents
a particular challenge in representing extreme precipitation
events. Daily precipitation in the three target regions is heav-
ily skewed towards dry and very low precipitation amounts,
with high-intensity precipitation events accounting for a very
low fraction of the data (not shown). This imbalance hin-
ders the models’ ability to learn a robust representation of
the probabilities associated with extreme precipitation events
and how these vary spatially and temporally. For instance,
the smaller/simpler GPR models, such as VGLM and MLPS,
stand out as more robust options for extreme precipitation
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Figure 6. Test NLL yielded by MLPL in E2 for different configurations of input variables. Each configuration includes all the input variables
from the preceding rows in addition to the specific set of input variables listed for that configuration. For example, the configuration labelled
“Core variables” comprises the input variables PRECIP, RAIN, DOYSIN, DOYCOS and Z, whilst the configuration labelled “+ Spatial
variables” comprises “Core variables” plus Y and X.

Figure 7. Feature ablation analysis for the three GPR models for E2, showing the effect that removing each input variable has on the output
distributional parameters (a) π , (b) α and (c) β. Each vertical bar shows the average absolute-value output shift caused by ablating (i.e.
replacing by zeros) a specific input variable, i.e. the larger the bar the more important the input variable is to the model.

events (Table 5), probably because they have fewer trainable
parameters (Table C2) and are thus able to learn less intricate
patterns from the training data. In this context, information
criteria such as AIC, AICc and KIC (Tables C3, C4 and C5)
emerge as complementary measures for comparing model
quality (by balancing model performance and complexity);
however, their interpretation for probably over-parametrised
models (such as MLPs) is less straightforward because the
effective number of parameters may be smaller than the nom-
inal parameter count. In addition, given the variability of test
set sizes across regions and experiments (Table C1), it is not
clear which of these criteria is more appropriate, as each one
of them has its own limitations and yields slightly different
rankings. Therefore, we choose to interpret them with cau-
tion.

The four experiments we perform in this study assess GPR
model performance across different post-processing tasks,
which involve different ways of splitting data into training,
validation and test sets. The dependencies between the train-
ing, validation and test datasets vary widely depending on
whether the task involves a single region (E1) or multiple
combined regions (E2), or extrapolating to either new regions
(E3) or high elevations (E4). This explains the need for train-
ing models specific to each experiment and also highlights
the spread of post-processing tasks considered in this work,
attempting various degrees of generalisation. Consequently,
the properties of the models trained to perform each task will
also be different, which explains why GPR models ranked
differently depending on the experiment.
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In comparing GPR model performance across experi-
ments, we showed that combined-region GPR models (E2)
result in marginally better predictions than separate-region
models (E1) for East UIB (Tables 3 and 4). Here, we hy-
pothesise that East UIB benefits from combining data from
all three regions because of the inherent challenges of this
region, which is characterised by a complex bias-elevation
distribution (Fig. 3), as well as an under-representation of
station data at high-elevation bands (>2500 m a.s.l., Fig. 1).
We also find that GPR models are capable of improving daily
precipitation hindcasts in completely ungauged regions (E3)
by leveraging data from other regions (Tables 4 and 5). This
result contradicts with the assumption that, because RCM
daily precipitation biases are region-specific (Maussion et al.,
2011; Norris et al., 2017; Bannister et al., 2019; ul Has-
son et al., 2019), they are therefore not easily transferable to
other regions. It is likely that GPR models are partially able
to overcome this issue because, conditional on enough in-
formation (i.e. relevant input features), daily precipitation bi-
ases for different regions share some similarities. E4 explores
GPR model generalisation to locations situated at higher ele-
vations than the gauging stations used to train the models.
We find that GPR models successfully post-process WRF
precipitation for all regions and thresholds, exhibiting only
a marginal performance drop relative to E1 (Tables 3, 4, 5).
This finding is particularly important given that much of the
high-elevation regions of HKH suffer from a profound lack
of gauges (Pritchard, 2021; Thornton et al., 2022; Krishnan
et al., 2019).

We find that training GPR models with progressively
richer predictor configurations (i.e. with additional input
variables, see Table 2) has a consistently positive effect on
model performance, with some input variables (e.g. spatial,
vertically integrated and relative humidity variables) driv-
ing most of the performance improvement (Fig. 6). Notwith-
standing this, the performance gain yielded by incorporat-
ing additional input variables is strongly dependent on the
previously added input variables. Thus, the relatively minor
beneficial effect of variables such as temperatures and winds
is likely to be only highlighting some degree of redundancy
in the signal provided by different input variables. Further-
more, the three GPR models respond differently to the ab-
lation of single input variables (Fig. 7); this highlights the
complex interplay between input variables and model archi-
tecture. The reliance of the VGLM model architecture on
a few input features contrasts the broader utilisation of in-
puts necessary for the MLPL model. The influence exhibited
by input variables such as elevation and latitude (i.e. repre-
senting topography), as well as convective available potential
energy, water vapour and relative humidity (i.e. represent-
ing thermodynamics) for post-processing daily precipitation
is in line with findings from previous studies showing that
precipitation in this region is strongly associated with ther-
modynamic and dynamic interactions with topography (Orr
et al., 2017; Potter et al., 2018; Bannister et al., 2019; Med-

ina et al., 2010; Ziarani et al., 2019; Dimri et al., 2017). In
contrast, somewhat surprisingly, input variables such as total
and liquid precipitation have little influence on output values
(Fig. 7), which we hypothesise is partly due to the redun-
dancy that exists between input variables, which in turn en-
ables GPR models to compensate for the ablation of a single
input variable by leveraging other variables.

4.2 Downstream use of GPR post-processed daily
precipitation probability distributions

Probabilistic and deterministic predictions are inherently dif-
ferent and it is important to consider this when evaluat-
ing the quality of the products produced by both types of
model. In this work, we are interested in assessing the per-
formance of (probabilistic) GPR models, which leverage the
pairwise correspondence between WRF daily precipitation
output and observations, whilst capturing the predictive un-
certainty that arises from multiple sources. A probabilistic
MOS approach is justified if the goal is to fully leverage
the richer predictions yielded by these models. For exam-
ple, GPR model predictions can be used to map probabilities
of exceedance for different precipitation thresholds (Fig. 8a,
b, c), which form the basis of early warning systems (Reich-
stein et al., 2025), infrastructure planning (Salem et al., 2020)
and climate risk analysis (Jones and Mearns, 2005). This is
particularly relevant for mountainous areas with steep ter-
rain (e.g. HKH), where extreme precipitation drives hydro-
meteorological hazards such as floods or flash-floods, land-
slides and avalanches (Haslinger et al., 2025; Dimri et al.,
2017; Hunt and Dimri, 2021). More generally, probabilistic
outputs provide a calibrated uncertainty estimate for RCM-
modelled daily precipitation at each spatio-temporal loca-
tion, offering useful information to impact modellers, espe-
cially given that raw RCM precipitation hindcasts do not
exhibit direct pairwise correspondence with observations
(Fig. B1). Additionally, there are downstream impact mod-
elling settings that are capable of leveraging probability dis-
tributions over precipitation. The latter is an emerging but
largely untapped area of research for many impact modelling
fields reliant on precipitation as one of the main inputs (e.g.
hydrological and crop modelling; Li et al., 2013; Peleg et al.,
2017). Conversely, if the intended use of the models is to es-
sentially reduce the probabilistic predictions into a determin-
istic product, then deterministic metrics should be used to
evaluate them. To this end, we use ROC curves to show that,
for different precipitation thresholds, deterministic projec-
tions of GPR predictions still consistently outperform WRF
and WRFSF (Fig. 5).

Accurate representation of past and present-day daily pre-
cipitation holds significant importance for various down-
stream tasks, such as hydrological modelling, crop mod-
elling or hazard analysis, all of which heavily rely on the
hindcast precipitation for calibration. In hydrological mod-
elling, knowing the distribution and timing of daily precip-
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Figure 8. (a–c) Maps showing the probability of precipitation exceeding (a) 0.1 mm d−1, (b) 10 mm d−1 and (c) 50 mm d−1 over the entire
WRF spatial domain on an arbitrary date (1 January 2010) using the MLPL post-processing model trained using one of the k-fold splits in E2.
(d) Map of modelled precipitation occurrence based on independently drawn samples from each grid cell’s predicted probability distribution
for the entire WRF spatial domain on an arbitrary date (1 January 2010) using the MLPL post-processing model trained using one of the
k-fold splits in E2. The 3000 m a.s.l. contour is shown in orange in all four maps.

itation is crucial for simulating streamflow and predicting
river flooding events (e.g. Andermann et al., 2011; Huang
et al., 2019; Li et al., 2017; Wulf et al., 2016). Similarly,
in crop modelling, precise knowledge of daily precipitation
patterns enables accurate estimation of water availability and
crop growth, leading to improved yield predictions and agri-
cultural management decisions (Wit et al., 2005). In hazard
analysis, past climate data are paired with historic events
(e.g. glacial lake outburst floods; Shrestha et al., 2023) to be
able to determine what precipitation intensity triggered them.
However, most impact modelling frameworks rely on the
availability of spatio-temporal coherent precipitation fields,
which the GPR framework does not directly support. This is
a limitation of this study and we discuss ways to address this
in more detail next.

4.3 Limitations and future work

Local-scale variability of precipitation in HKH remains a
challenge for MOS post-processing models aimed at un-
gauged locations. The diverse climatic conditions and com-
plex terrain in the region result in contrasting precipitation
patterns among nearby stations, which limits the degree to
which patterns observed in one location are representative of
nearby locations (Immerzeel et al., 2014; Orr et al., 2017;
Bhardwaj et al., 2021; Ren et al., 2017; Dimri et al., 2017;
Thayyen et al., 2013; Potter et al., 2018). Using different lo-
cations to train, validate and test models is a common strat-
egy in spatial prediction settings but it can introduce model
biases (Burt et al., 2024), especially when the distribution of
the gauging stations is uneven. Furthermore, the reliability
of daily precipitation measurements in mountainous areas is
compromised by issues such as gauge undercatch (Pritchard,
2021). Such challenges hinder our ability to thoroughly test
MOS models across an entire region and thus to gain con-
fidence in their use for operational post-processing of RCM
daily precipitation.

Another important limitation of the study relates to the
lack of spatial coherence when sampling from the pre-
dicted probability distributions. The GPR post-processing
approach, as implemented in this work, assumes that the

daily precipitation probability for each grid cell, conditional
on a set of input features, is independent of its neighbours.
This assumption, coupled with the large variability of pre-
cipitation in the region, leads to scattered precipitation occur-
rence maps when drawing independent samples from the pre-
dicted probability distribution at each location across the grid
(Fig. 8d). There are several methods to introduce spatial and
temporal coherence into probabilistic precipitation fields, in-
cluding reordering techniques such as the Schaake Shuffle
(Clark et al., 2004), as well as more advanced machine learn-
ing techniques such as latent variable models (Garnelo et al.,
2018) and diffusion-based approaches (Yang et al., 2024;
Turner et al., 2024). However, implementing these meth-
ods requires a reference dataset that captures realistic spatio-
temporal correlations. In the context of HKH, given the
sparse observational network, direct estimation of these de-
pendencies from in situ observations is not feasible. Instead,
all such methods must rely on a pseudo-observational dataset
to reconstruct coherent structures. We argue that the raw
WRF precipitation outputs, which capture spatio-temporal
precipitation structures, provide a natural choice for this role.
In the case of the Schaake Shuffle, the weak conditioning
of the probabilistic predictions on raw WRF precipitation –
this is evidenced by the low influence WRF precipitation has
on model outputs (Fig. 7, which can in turn be explained
by the low pairwise correspondence between observed and
WRF-simulated daily precipitation (Fig. B1)) – supports us-
ing the RCM hindcast as the reference dataset for structured
reordering. This method can be directly applied to a set of
sampled values from the GPR output distributions at each
location. Alternatively, (i) the GPR framework can be ex-
tended by conditioning the post-processed daily precipita-
tion distributions on a latent variable defined across space (or
any other dimension, e.g. elevation) to build correlations be-
tween neighbouring locations, e.g. using Gaussian processes
(Rasmussen and Williams, 2006), or (ii) a diffusion model
could be used to recover spatio-temporal coherent maps con-
ditional on GPR-sampled precipitation fields. However, these
approaches would also probably need to rely on the raw WRF
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precipitation fields for pre-training and thus capturing the
spatio-temporal correlations.

Accurate representation of extreme precipitation events is
another challenging area. Machine learning and statistical
methods inherently perform best where there are sufficient
training data; however, by definition, extreme precipitation
events are relatively data-sparse. This is a well-known limi-
tation of data-driven approaches and results in increased un-
certainty in predictions at high precipitation thresholds com-
pared with low thresholds. This is particularly true in the
HKH region, where there is a pressing need for more station-
based datasets, which would in turn increase the amount
of observations for extreme events. Future work could fur-
ther explore the performance and added value of GPR post-
processing for extreme precipitation events by focusing on
a specific observed high-intensity precipitation event in the
region.

Disaggregating results spatially and temporally is im-
portant to assess the extent to which different MOS post-
processing models improve results at finer scales. In this
work, we have presented results (dis)aggregated at the re-
gional level, enabling an analysis of regional differences.
However, further spatial granularity (e.g. at the station level)
would potentially lead to a better understanding of model
performance across different elevations and latitudes. Sea-
sonality of precipitation also varies greatly across the three
study regions. For example, the winter westerlies are respon-
sible for much of the annual precipitation in West UIB, whilst
East UIB and Central UGB are summer monsoon dominated
(Bookhagen and Burbank, 2010; Palazzi et al., 2013; Dimri
et al., 2015). Given their relevance when it comes to im-
pacts on water resources, flooding and other rainfall-induced
natural disasters, correctly post-processing dominating sea-
sons for each region is another important aspect to assess. To
some extent, optimising GPR models to perform best across
all seasons inherently weights seasons by their relative sig-
nificance. However, this work does not explicitly optimise
models by season. This is therefore a direction that could be
explored in future work.

Although we considered various parametric distributions
for modelling the conditional probability over daily precip-
itation and found that the Bernoulli–gamma mixture model
is a previously used, robust and effective choice (Williams,
1998; Cannon, 2008), we suggest that further work be fo-
cused on the study of distributions for modelling the prob-
ability over daily precipitation (conditional on a set of vari-
ables). Finally, as we have shown that RCM post-processing
patterns learnt from one region may be relevant for post-
processing other (poorly gauged or completely ungauged)
regions, future effort should be devoted to investigating
the benefits of applying transfer learning (Pan and Yang,
2010) and meta-learning (Vanschoren, 2018) techniques for
mountainous/data-sparse regions like HKH, i.e. involving a
model being pre-trained using data from a set of regions (es-

pecially those that are relatively data-rich, such as the Alps)
and then fine-tuned for a different region or set of regions.

5 Conclusions

The compound effect of the local-scale variability and
sparse observations that characterise daily precipitation in
HKH poses a significant challenge when it comes to post-
processing RCM outputs for ungauged locations. In this
work, we address this issue by introducing a generalised
probabilistic regression (GPR) approach to MOS post-
processing (i.e. downscaling and bias-correcting) of RCM-
simulated daily precipitation hindcasts for ungauged moun-
tain locations using sparse in situ observations. We test the
GPR approach across three HKH regions and four experi-
ments that mimic real-world scenarios. These experiments
explore the ability of GPR models to generalise to the fol-
lowing:

i. ungauged locations within each region using separate-
region models,

ii. ungauged locations within each region using combined-
region models,

iii. an entirely ungauged region using combined-region
models and

iv. high-elevation ungauged locations within each region
using separate-region models.

Overall, the three GPR model architectures we employ ex-
hibit similar and consistently large performance improve-
ments relative to both the WRF baseline and the WRFSF de-
terministic bias correction approach. Vector generalised lin-
ear models (VGLMs) are found to be a robust choice for
GPR-based post-processing of WRF daily precipitation but
non-linear models (MLPS and MLPL) do, in most cases, lead
to improved performance. We find that GPR models are able
to learn from sparsely distributed (both spatially and tempo-
rally) in situ observations and to generalise to new locations,
using both separate-region or combined-region training set-
tings. Performance of separate-region and combined-region
GPR models is largely similar, resulting in much improved
skill relative to WRF and WRFSF. Combined-region GPR
models are also capable of generalising to new (completely
ungauged) regions by leveraging data from other two regions.
Although there is an expected drop in performance com-
pared with other experiments, this experiment still results
in large skill improvements relative to WRF and WRFSF,
with simpler model architectures being more robust choices
in this setting. Furthermore, we explore the degree to which
GPR models are effective at post-processing ungauged high-
elevation locations and find that their performance is consis-
tent with previous experiments, suggesting that this approach
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could be used to better understand much of the ungauged
high-elevation regions of HKH.

GPR model performance exhibits large regional variabil-
ity, driven by a combination of factors, including the avail-
ability of in situ observations, performance/bias of WRF
baseline and hydro-meteorological characteristics of each
region. Simple GPR models are best for large precipita-
tion events. The differential influence that input variables
have for different GPR models underscores the complex
interplay between input features and GPR model architec-
ture, with thermodynamic/cloud-related input variables be-
ing especially important. Lastly, our results show that GPR
models can use patterns learnt from one region to improve
RCM post-processing in other regions and we therefore
suggest/hypothesise that transfer learning and meta-learning
may be promising approaches to leverage observations/-
knowledge from data-rich mountain regions (e.g. Alps) to
improve RCM post-processing in other (data-poor) regions.

Appendix A: Spike-and-slab mixture models

To explicitly model the probability over both precipitation
occurrence (zero and non-zero values) and magnitude, we
resort to a special type of mixture model called a spike-and-
slab model. A spike-and-slab model for a random variable Y
is a generative model in which Y attains some fixed value v
(spike) or is drawn from a probability distribution p (slab).

To implement a spike-and-slab model, let us consider a set
of inputs x1:M and outputs y1:M . Now, let r1:M be a collection
ofM additional binary values, themth of which is 1 if ym > 0
and 0 if ym = 0. Assume that observations y1:M are drawn
from, respectively, a collection of random variables Y1:M .
Assume that r1:M is sampled independently from a Bernoulli
distribution. Following that, ym is 0 if rm is 0, and sam-
pled from a continuous distribution with support (0,∞) (e.g.
gamma or log-normal) if rm is 1. Below we detail the proba-
bilistic models and associated conditional log-probability for
various mixture models of this type.

If we choose a gamma distribution with parameters αm and
βm to model the continuous part of the distribution, ym is
produced via the following probabilistic model:

rm ∼ B(πm),

(ym|rm = 1)∼ 0(αm,βm).

We call this model a Bernoulli–gamma mixture model,
for which the conditional log-probability of the collection of
(y,r)1:M value pairs is given by

M∑
m=1

logp(ym, rm|xm)

=

M∑
m=1

logB(rm;πm)0(ym;αm,βm)
rm

=

M∑
m=1

rm
[
logπm+ log0(ym;αm,βm)

]
+ (1− rm) log(1−πm).
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Appendix B: Additional results

B1 Daily precipitation thresholds

To justify the choice of precipitation intensity thresholds and
illustrate the rarity of extreme precipitation events in the sta-
tion data used in this study, Table B1 shows the percentage
(and total number) of in situ observations exceeding specific
daily precipitation thresholds, highlighting that (i) events ex-
ceeding 10 mm d−1 account for 2.56 % of the data in West
UIB, 9.26 % in East UIB and 6.17 % in Central UGB; (ii) at
higher thresholds (30 and 50 mm d−1), observations are lim-
ited – especially for West UIB and Central UGB, where less
than 1 % of observed events are above these thresholds; and
(iii) events exceeding 100 mm d−1 are extremely rare in all
three regions, with the total number of observations being
too low to justify the use of this threshold.

Table B1. Percentage (and total number) of in situ observations that exceed, or are equal to, a threshold of daily precipitation, for various
thresholds (mm d−1).

Threshold West UIB East UIB Central UGB
(mm d−1)

0 (all events) 100 % (76 860) 100 % (364 713) 100 % (15 152)
1 26.00 % (19 983) 20.08 % (73 231) 28.30 % (4288)
10 2.56 % (1969) 9.26 % (33 779) 6.17 % (935)
30 0.33 % (252) 2.95 % (10 761) 0.68 % (103)
50 0.08 % (63) 1.24 % (4511) 0.26 % (39)
100 0.00 % (1) 0.22 % (788) 0.10 % (15)

B2 Additional evaluation metrics

The mean squared error (MSE) quantifies the squared differ-
ence between a set of predicted and observed value pairs. We
calculate the MSE between the deterministic predictions ym
and the observations yobs

m . For probabilistic predictions, we
use the mean of the predicted probability distribution as the
predicted value ym:

MSE=
1
M

M∑
m=1

(
ym− y

obs
m

)2
. (B1)

Using this, the MSE skill score (MSESS) is calculated as

MSESS= 1−
MSE

MSEWRF
. (B2)

The mean absolute error (MAE) quantifies the absolute
difference between a set of predicted and observed value
pairs. For deterministic predictions, we calculate the MAE
between the predicted values ym and the observations yobs

m .
For probabilistic predictions, we use the mean values of the
predicted probability distributions as predicted values ym:

MAE=
1
M

M∑
m=1

∣∣∣ym− y
obs
m

∣∣∣ . (B3)

Using this, we calculate the MAE skill score (MAESS) as

MAESS= 1−
MAE

MAEWRF
. (B4)

The threshold-weighted CRPS (twCRPS; Gneiting and
Ranjan, 2011) extends the CRPS by incorporating weight
functions that emphasise specific portions of the predictive
distribution. This modification allows for a tailored assess-
ment of hindcast performance, particularly focusing on des-
ignated ranges within the support; in our case, extreme events
with daily precipitation above a threshold value τ :

twCRPS=
1
M

M∑
m=1

u
(
yobs

m

) ∞∫
−∞

(
F (ym)−H

(
ym− y

obs
m

))2
dym. (B5)

where

u(yobs
m )=

{
0 if yobs

m < τ

1 if yobs
m ≥ τ

. (B6)

Using this, the twCRPSS is then calculated as

twCRPSS= 1−
twCRPS

twCRPSWRF
. (B7)
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Table B2. MSE skill score (MSESS) values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM,
MLPS and MLPL) and WRFSF, calculated for all three regions and all four experiments. Higher MSESS values indicate better performance,
with the best-performing MOS method for each experiment and region shown in bold. Note that MLPL for E3 West UIB was trained using
a learning rate of 10−4 to ensure training convergence, while the other experiments used a learning rate of 10−3.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 0.646 0.659 0.646 0.587 0.318 0.336 0.330 −0.161 0.795 0.806 0.793 0.791
E2 0.640 0.666 0.630 0.037 0.297 0.322 0.313 0.041 0.801 0.792 0.802 0.077
E3 0.111 0.513 0.400 −0.056 0.361 0.356 0.322 0.302 0.777 0.742 0.791 −0.073
E4 0.613 0.660 0.636 0.586 0.309 0.323 0.246 −0.153 0.798 0.803 0.802 0.790

Table B3. MAE skill score (MAESS) values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM,
MLPS and MLPL) and WRFSF, calculated for all three regions and all four experiments. Higher MAESS values indicate better performance,
with the best-performing MOS method for each experiment and region shown in bold. Note that MLPL for E3 West UIB was trained using
a learning rate of 10−4 to ensure training convergence, while the other experiments used a learning rate of 10−3.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 0.472 0.477 0.501 0.397 0.089 0.110 0.114 −0.075 0.725 0.729 0.731 0.691
E2 0.443 0.486 0.457 0.021 0.075 0.095 0.080 0.022 0.707 0.706 0.746 0.043
E3 0.133 0.532 0.543 −0.027 0.181 0.233 0.162 0.233 0.716 0.697 0.750 −0.039
E4 0.422 0.487 0.475 0.398 0.063 0.079 −0.006 −0.073 0.750 0.739 0.740 0.690

Table B4. Threshold-weighted CRPS skill score (twCRPSS) values at a threshold of 10 mm d−1 for post-processed daily WRF precipitation
for the three GPR model architectures (VGLM, MLPS and MLPL) and WRFSF, calculated for all three regions and all four experiments.
Higher twCRPSS values indicate better performance, with the best-performing MOS method for each experiment and region shown in bold.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 0.010 0.067 0.045 −0.058 0.221 0.245 0.260 −0.018 0.239 0.322 0.315 0.159
E2 0.009 0.042 0.056 0.001 0.225 0.243 0.272 0.003 0.228 0.244 0.259 0.036
E3 0.184 −0.193 −0.187 −0.002 0.134 0.100 0.109 −0.019 0.278 0.257 0.023 −0.033
E4 −0.010 0.035 0.044 −0.063 0.231 0.250 0.257 −0.018 0.122 0.222 0.261 0.157
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Table B5. Threshold-weighted CRPS skill score (twCRPSS) values at a threshold of 30 mm d−1 for post-processed daily WRF precipitation
for the three GPR model architectures (VGLM, MLPS and MLPL) and WRFSF, calculated for all three regions and all four experiments.
Higher twCRPSS values indicate better performance, with the best-performing MOS method for each experiment and region shown in bold.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 −0.083 −0.002 −0.018 −0.109 0.126 0.147 0.166 0.006 −0.395 −0.275 −0.327 −0.421
E2 −0.082 −0.023 0.007 −0.006 0.137 0.146 0.183 −0.004 −0.393 −0.386 −0.396 −0.007
E3 0.093 −0.163 −0.139 0.004 0.009 −0.023 0.003 −0.095 0.278 0.257 −0.539 0.001
E4 −0.092 −0.031 −0.008 −0.113 0.136 0.148 0.167 0.006 −0.468 −0.382 −0.333 −0.423

Figure B1. Pearson correlation coefficient between raw WRF-simulated and observed daily precipitation for each station, sorted by station
elevation and coloured by region.

Appendix C: Information criteria for model selection

In order to assess the trade-off between the goodness of fit
and model complexity, we consider various information cri-
teria. In particular, we compute the Akaike information cri-
terion (AIC; Akaike, 1973), as well as its small-sample cor-
rected version (AICc; Sugiura, 1978) and the large-sample
Kullback information criterion (KIC; Cavanaugh, 1999).
These criteria are computed based on the maximum likeli-
hood value and the number of parameters in the model. While
our primary model evaluation relies on cross-validation and
proper scoring rules, these criteria offer a complementary
perspective, as discussed next.

The Akaike information criterion (AIC) is derived from an
approximation of the Kullback–Leibler divergence between
the true data generating process and a candidate model. It is
given by

AIC=−2 logL
(
φ̂
)
+ 2k, (C1)

where L(φ̂) denotes the maximum likelihood of the model
(with parameters φ) and k is the number of free parameters.
A lower AIC value indicates a model that is closer, in the
Kullback–Leibler sense, to the true model. Moreover, when
the sample size n is small relative to the number of param-
eters k, the AIC tends to be biased. Therefore, a corrected
version (AICc), given by

AICc= AIC+
2k(k+ 1)
n− k− 1

, (C2)

is recommended in such cases. The AICc penalises models
more strongly when n is only moderately larger than k. In
the limit as n→∞, AICc converges to AIC.

The Kullback information criterion (KIC) is based on the
symmetric version of the Kullback divergence and is defined
as

KIC=−2 logL
(
φ̂
)
+ 3k. (C3)
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By using a penalty term of 3k rather than 2k, the KIC gen-
erally imposes a more severe penalty for model complexity,
thereby favouring models with fewer parameters.

For each candidate model, we compute the total log-
likelihood logL(φ̂) by summing the per-observation contri-
butions over the test set. In particular, we use the average per-
observation negative log-likelihood (NLL) values in Table 3
and the number of test samples n in Table C1, to compute

logL
(
φ̂
)
=−NLL× n. (C4)

The information criteria are then computed via these expres-
sions, with values of k specified in Table C2.

Table C1. Test set size n for each experiment and region.

Experiment West UIB East UIB Central UGB

E1, E2, E3 76 860 364 713 15 152
E4 7189 26 847 1787

Table C2. Parameter count k for each candidate model.

GPR model Parameter count (k)

VGLM 81
MLPS 303
MLPL 4053

Table C3. AIC values for the three GPR model architectures (VGLM, MLPS and MLPL), calculated for all four experiments and all three
target regions. Lower AIC values indicate better quality, with the best GPR model for each experiment and region shown in bold.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL VGLM MLPS MLPL VGLM MLPS MLPL

E1 194 310 190 450 196 567 860 155 846 011 846 946 45 012 44 153 51 138
E2 194 925 191 987 198 719 861 614 843 822 842 569 45 648 45 365 51 986
E3 231 049 436 402 385 796 1 760 996 1 117 357 1 089 845 51 164 60 759 67 199
E4 18 609 18 578 26 093 63 897 62 891 71 089 6 863 6 156 13 506
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Table C4. AICc values for the three GPR model architectures (VGLM, MLPS and MLPL), calculated for all four experiments and all three
target regions. Lower AICc values indicate better quality, with the best GPR model for each experiment and region shown in bold. Note that
AICc is not defined for k > n (i.e. MLPL for E4) and ND indicates “not defined”.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL VGLM MLPS MLPL VGLM MLPS MLPL

E1 194 310.53 190 452.61 197 018.08 860 155.29 846 011.24 847 037.02 45 012.80 44 165.26 54 098.73
E2 194 925.41 191 989.81 199 170.16 861 614.14 843 822.96 842 660.46 45 649.19 45 377.42 54 947.24
E3 231 049.61 436 404.61 386 247.40 1 760 996.40 1 117 357.71 1 089 935.87 51 164.51 60 771.85 70 159.85
E4 18 610.84 18 605.26 36 575.09 63 897.27 62 897.98 72 530.81 6 871.04 6 280.65 ND

Table C5. KIC values for the three GPR model architectures (VGLM, MLPS and MLPL), calculated for all four experiments and all three
target regions. Lower KIC values indicate better quality, with the best GPR model for each experiment and region shown in bold.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL VGLM MLPS MLPL VGLM MLPS MLPL

E1 194 391 190 753 200 620 860 236 846 314 850 999 45 093 44 456 55 191
E2 195 006 192 290 202 772 861 695 844 125 846 622 45 729 45 668 56 039
E3 231 130 436 705 389 849 1 761 077 1 117 660 1 093 898 51 245 61 062 71 252
E4 18 690 18 882 30 146 63 978 63 194 75 142 6 944 6 459 17 559

Code and data availability. The code used to reproduce the ex-
periments, generate figures and analyse the results presented
in this study is available at https://github.com/mgironamata/
pddp-mountains (Girona-Mata, 2025). The WRF simulation output
is available via Norris et al. (2019). The SRTM elevation data are
available at https://earthexplorer.usgs.gov/ (NASA Shuttle Radar
Topography Mission, 2013). In situ gauge datasets were collected
and provided by the Bhakra Beas Management Board and the In-
dian Meteorological Department (East UIB), the Pakistan Meteoro-
logical Department and the Water and Power Development Author-
ity (West UIB), and the International Centre for Integrated Moun-
tain Development (Central UGB). The authors of this paper do not
have the required permission to make the gauge datasets publicly
available but suggest that any readers interested in obtaining them
contact the above organisations.
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