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Abstract. Due to the long memory of snow processes, statis-
tically based seasonal streamflow prediction models in snow-
dominated catchments can successfully leverage, but also
typically rely on, snowpack estimates. Using mountainous
catchments in central Asia as a case study, we demonstrate
how seasonal hydrological forecasts benefit from incorporat-
ing large-scale climate oscillations (COs). Firstly, we exam-
ine the teleconnections between the major COs and peak pre-
cipitation season in eight catchments across the Pamir Moun-
tains and the Tian Shan from February to June. We then
employ a machine learning (ML) framework that incorpo-
rates snow water equivalent (SWE) and dominant CO indices
as predictors for mean discharge from April to September.
Our workflow leverages an ensemble technique with multi-
ple SWE estimates from near-time global data sources and
diverse types of explainable machine learning models. We
find that the winter states of the El Niño–Southern Oscil-
lation (ENSO) and the North Atlantic Oscillation (NAO)
enhance SWE-based forecasts of seasonal discharge in the
study catchments. We identify three instances in which the
inclusion of COs as additional predictors could be instru-
mental for snowpack-based seasonal streamflow forecasting:
(1) when forecasts are issued at extended lead times and ac-
cumulated SWE is not yet representative of seasonal terres-
trial water storage, (2) when climate variability during the

forecasted season plays a larger role in shaping seasonal dis-
charge, and (3) when SWE estimates for a catchment are sub-
ject to larger uncertainty. Our approach provides a useful way
to reduce uncertainties in seasonal discharge predictions in
data-scarce, snowmelt-dominated catchments.

1 Introduction

Snowmelt-driven streamflow is a vital source of water supply
for downstream regions around the globe, sustaining ecosys-
tems, agriculture, hydropower, and numerous human activi-
ties (Immerzeel et al., 2020; Viviroli et al., 2007). Around 2
billion people live in snow-sensitive basins (Mankin et al.,
2015). Projections suggest that around one-quarter of the
world‘s lowland population will be critically dependent on
snow- and glacier-melt runoff from mountains by the middle
of the century (Viviroli et al., 2020). Accurate water supply
forecasts are essential for the sustainability and resilience of
water-dependent human and ecological systems in these re-
gions.

Seasonal streamflow forecasts are usually generated us-
ing either process-based or data-driven approaches. Process-
based, dynamical forecasts encompass a hydrological or land
surface model to estimate initial hydrologic conditions, typ-
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ically with the assimilation of observational data, followed
by climate forecasts to project future conditions (Troin et al.,
2021). One major advantage of process-based approaches is
the continuous production of future streamflow states (Modi
et al., 2022). A limitation of dynamical forecasts is their de-
pendence on spatially distributed meteorological variables
obtained from numerical climate models, which are prone
to uncertainties. In addition, process-based approaches typi-
cally have higher computational demands. Meanwhile, data-
driven approaches rely on the empirical relationship between
one or multiple predictor variables and seasonal streamflow.
Data-driven hydrological forecasts offer advantages in terms
of lower computational complexity and reliance on initial
hydrological conditions. Both process-based and data-driven
models for water supply forecasting can ingest seasonal to
subseasonal climate forecasts as input. Process-based mod-
els explicitly represent physical processes, and this improves
their credibility and interpretability. In contrast, data-driven
models do not rely on predefined physical assumptions, al-
lowing greater flexibility in capturing relationships without
the need for explicit process representation in a computa-
tional framework.

Because accumulated snowpack is the main source of pre-
dictability of river streamflow in snowmelt-dominated basins
(Pechlivanidis et al., 2020), statistical forecasts of seasonal
streamflow often rely on accumulated snowpack, with the
use of additional predictors that contribute to the estima-
tion of initial hydrological conditions. North America has the
longest history of systematically developing seasonal stream-
flow forecasts, also known as water supply forecasts, us-
ing empirical relationships between accumulated snow and
spring–summer runoff. While snowpack explains most sea-
sonal streamflow variability in western US basins, climate
variability after the forecast issuance date is the main source
of forecast error (Church, 1935; Schaake and Peck, 1985;
as cited in Pagano and Garen, 2013). Early attempts to use
climate oscillation (CO) indices in water supply forecasts
began in the 1970s, integrating them into operational water
supply forecasting at some agencies at the beginning of the
2000s, though widespread adoption did not follow immedi-
ately (Pagano and Garen, 2013).

Previous research has shown that integrating climate
indices generally improves seasonal streamflow forecasts.
Studies from North America suggest that the improvement is
more evident in long-lead forecasts, as climate indices tend
to account for future climatic conditions after the forecast
issuance dates (Grantz et al., 2005; Hamid and Matthew,
2010; Kalra et al., 2013; Kennedy et al., 2009; Regonda
et al., 2006). Similarly, evidence from High-mountain Asia
suggests that climate indices may be better predictors than
snowpack for streamflow forecasting in snowmelt-dominated
catchments at the beginning of winter (Charles et al., 2018;
Umar et al., 2023). While confirming that snowpack is one
of the main predictors, a multi-model ensemble study on sea-
sonal streamflow forecasting in the Andes also highlights the

utility of large-scale ocean–atmospheric factors as additional
predictors (Mendoza et al., 2014). However, the improve-
ment from combining climate indices into snowpack-based
streamflow forecasts depends on the strength of the telecon-
nections with large-scale climate oscillations (Mendoza et
al., 2017; Opitz-Stapleton et al., 2007). In turn, relationships
between large-scale climate oscillations and hydrometeoro-
logical variability may be non-linear and non-monotonic,
making them challenging to capture with linear approaches
(Fleming and Dahlke, 2014).

From a methodological perspective, data-driven seasonal
streamflow forecasting has undergone two major transforma-
tions over the past decades. Historically dominated by the use
of linear regression and its extensions, such as principal com-
ponent analysis, the field increasingly adopts machine learn-
ing (ML) techniques. ML-based, data-driven approaches ex-
cel at leveraging diverse datasets, capturing non-linear rela-
tionships, and achieving higher predictive accuracy in sea-
sonal streamflow forecasting (Fleming et al., 2024; Kalra et
al., 2013; Korsic et al., 2023). Another notable trend is the
growing use of ensemble approaches because they gener-
ally offer higher prediction accuracy and allow quantification
of prediction uncertainty compared to single-model meth-
ods (Murray, 2018; Zounemat-Kermani et al., 2021). A no-
table example that integrates these two trends for forecasting
in snowmelt-dominated catchments is the multi-model ma-
chine learning metasystem (“M4”) in the western US, which
uses an ensemble approach with multiple ML-based fore-
cast models and pool outputs to generate a consensus predic-
tion (Fleming et al., 2021). Furthermore, Najafi and Morad-
khani (2016) combined outputs from multiple data-driven
seasonal forecast models, which provided valuable insights
into best practices for ensemble forecasting. In addition, en-
semble methods, including those based on ML, can also be
more effective in addressing challenges associated with small
datasets (Alzubaidi et al., 2023; Safonova et al., 2023; Diet-
terich, 2000). It is worth noting that observational data gaps
are common in mountainous regions of the Global South
(Hock et al., 2019).

Water is inextricably intertwined with the development
challenges of central Asia, yet its availability during the
growing season remains erratic. The hydrological discharge
in central Asian rivers is subject to large seasonal tempera-
ture and precipitation cycles; the latter falls as snow in winter,
and its melting contributes to spring and summer runoff. The
high variability in precipitation during the cold season re-
sults in high interannual volatility of river streamflow in the
endorheic rivers of central Asia, since most discharge orig-
inates from snowmelt in the Pamir Mountains and the Tian
Shan (Viviroli and Weingartner, 2004). The large hydrocli-
matic variability underscores the need for improved water
availability forecasting during the irrigation season (Xenar-
ios et al., 2019).

Research on seasonal river discharge forecasting in central
Asia can be classified into two mainstream approaches. The
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first approach explored the predictability of mean discharge
from April to September (hereinafter referred to as “growing
season”) by using estimates of terrestrial water storage that
accumulates in mountain catchments throughout the preced-
ing November to March (hereinafter referred to as “cold sea-
son”). Terrestrial water storage in central Asia is dominated
by large annual cycles, with most precipitation during the
extended cold season falling from autumn to spring and ac-
cumulating as snowpack in the mountain catchments. In the
absence of in situ snow water equivalent (SWE) data, sev-
eral studies explored the use of proxies such as cumulative
precipitation over the cold season (Dixon and Wilby, 2016;
Schär et al., 2004), satellite-derived snow cover, antecedent
discharge, and other predictors (Apel et al., 2018; Gafurov et
al., 2016).

Another approach uses climate indices of global climate
oscillations as predictors, some of which are known to have a
noticeable impact on hydroclimate variability in central Asia.
It was found that the El Niño–Southern Oscillation (ENSO)
during its warm phase (i.e. El Niño) increases precipitation
intensity in central Asia, most pronounced from autumn to
summer (Mariotti, 2007; Chen et al., 2018). In contrast, the
cold phase of ENSO (i.e. La Niña) contributes to below-
average precipitation in the region. The Pacific Decadal Os-
cillation (PDO) can intensify ENSO’s effects: during the La
Niña phase, when the PDO is in its negative phase, cen-
tral Asia is more susceptible to severe droughts (Wang et
al., 2014). The North Atlantic Oscillation (NAO), Scandina-
vian pattern (SCAN), and East Atlantic/West Russia pattern
(EAWR), which all are periodic fluctuations in atmospheric
pressure between specific regions of the Atlantic Ocean and
Eurasia, also affect hydroclimatic variability in central Asia
(Syed et al., 2010). Several studies showed that indices of
these climate oscillations can be used to forecast seasonal
precipitation (Gerlitz et al., 2019; Umirbekov et al., 2022)
and streamflow (Barlow and Tippett, 2008; Dixon and Wilby,
2019).

Another challenge hampering the development of ad-
vanced forecasting techniques in the region is a scarcity of
in situ meteorological and hydrological observations, partic-
ularly for snow mass measurements. In the past, local hy-
drometeorological agencies conducted snow depth measure-
ments across the region’s main catchments. This practice was
discontinued mainly due to the underfinancing of the relevant
agencies that persisted for the past 3 decades (Xenarios et al.,
2019). Satellite or reanalysis datasets available in near-real
time can be an alternative source for estimating SWE. Still,
they might be prone to inherent uncertainties and insufficient
spatial resolution to capture variations in accumulated SWE
(Mortimer et al., 2020), with larger errors in mountainous re-
gions (Mortimer et al., 2024). Combining multiple satellite-
derived or reanalysis estimates may improve snowpack esti-
mation, thereby reducing streamflow prediction uncertainty
(Oğulcan Doğan et al., 2023; Mortimer et al., 2020).

This paper tests a new framework for seasonal streamflow
forecasting in central Asia by combining catchment SWE es-
timates with climate oscillation indices. In our conceptual
framework, basin-averaged SWE represents the initial hy-
drological conditions, while climate oscillation indices serve
as precursors to climate variability during the targeted sea-
son. Assuming that precipitation is the dominant driver of
streamflow, we incorporate climate oscillations that have a
stronger influence on precipitation variability in the targeted
basins as additional predictors. Given the region’s observa-
tional data gaps, we also evaluate the utility of SWE derived
from global reanalysis and satellite products for hydrolog-
ical forecasting in high-elevation catchments. We use gen-
eralised linear regression and machine learning techniques
(random forest, Gaussian process, and support vector regres-
sion) to produce a range of individual forecasts. Finally, we
employ an ensemble-stacking approach that uses the predic-
tions from individual models as inputs to a model that pro-
duces a more reliable final prediction.

2 Study area

The study area encompasses eight diverse snowmelt-
dominated catchments in the Pamir Mountains, the Hindu
Kush, and the Tian Shan (Fig. 1, Table 1). The size of the
selected catchments varies from 343 to 296 000 km2, and the
mean catchment altitude ranges from 1700 to 3500 m. The
catchments include the largest rivers in the region, the Amu
Darya and the Naryn (the main tributary of the Syr Darya),
which embed several smaller tributary sub-catchments. For
reference, Fig. 1 also depicts the annual precipitation cycles
in the study catchments, which, in the absence of in situ mea-
surements, were estimated using TerraClimate data (Abat-
zoglou et al., 2018). It should be noted that, while gridded
precipitation products consistently capture annual climatol-
ogy, they may exhibit high bias in mountainous areas (Hu et
al., 2018; Peña-Guerrero et al., 2022).

3 Data

The predictand variable represents seasonal discharge, calcu-
lated as the mean discharge from April to September. We ob-
tained monthly discharge data for the study catchments from
2000 to 2018 from hydrometeorological agencies in central
Asian countries. We aggregated these into mean discharge
from April to September, resulting in approximately 18 ob-
servations of seasonal discharge for each catchment.

Operational seasonal streamflow forecasting in snowmelt-
dominated catchments primarily relies on snow measure-
ments but usually also incorporates additional variables that
reflect initial hydrological conditions, such as accumulated
precipitation, antecedent flow, and basin soil moisture. Due
to the limited availability of streamflow observations and the
overall objective of assessing the added value of teleconnec-
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Figure 1. Location of the study catchments (a) and the monthly means and ranges for precipitation and runoff for 2000–2018 in millimetres
(mm) (b).

Table 1. Major geographical and hydrological characteristics of the study catchments.

# Catchment Gauging station Station location Catchment Catchment Mean April–September Coefficient of
name (lat, long) area (km2) mean altitude discharge during variation of

(m a.s.l.) 2000–2018 discharge during
(m3 s−1) 2000–2018

1 Murghab Takhta Bazar 35.96, 62.91 35 582 1710 41 0.49
2 Amu Darya Kerki 37.84, 65.23 296 300 2550 1876 0.29
3 Varzob Dagana 38.70, 68.79 1279 2700 79 0.23
4 Vaksh Komsomolabad 38.86, 69.94 28 908 3530 996 0.1
5 Kashkadarya Varganza 40.81, 73.26 343 2663 18 0.35
6 Zarafshan Dupuli 39.49, 67.80 10 310 3125 243 0.17
7 Naryn Toktogul 41.77, 73.29 46 667 2940 561 0.22
8 Chu Kochkor 42.25, 75.83 5305 2934 35 0.31
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tions compared to snowpack-only predictions, we restricted
the predictors to two types: SWE and climate oscillation in-
dices.

As the primary predictor variable, we use four basin-
averaged SWE estimates that can be derived from global cli-
mate datasets available in near-real time (Table 2). These in-
clude two SWE estimates from global and regional reanal-
ysis datasets, i.e. ERA5-Land (Muñoz-Sabater et al., 2021)
and Land Data Assimilation System Central Asia (McNally
et al., 2022). In addition, we obtained two SWE estimates us-
ing the snow model GEMS (Umirbekov et al., 2024) forced
by global precipitation and temperature data available in
near-real time. One simulated SWE time series is obtained
by forcing the snow model with the Multi-Source Weather
(MSWX) dataset, generated by bias-correcting and down-
scaling ERA5 (Beck et al., 2021). The fourth SWE estimate
is simulated using precipitation estimates from the Integrated
Multi-satellite Retrievals for GPM (IMERG) v6 (Huffman et
al., 2019) and temperature estimates from MSWX. We used
a “Late Run” version of IMERG precipitation estimates, ac-
cessible in near-real time, albeit lacking adjustments using
ground precipitation data as in the “Final” product, which
becomes available 2 months later.

Candidates for additional predictors include the monthly
indices of the El Niño–Southern Oscillation (ENSO), the Pa-
cific Decadal Oscillation (PDO), the North Atlantic Oscilla-
tion (NAO), and the Scandinavian Pattern (SCAN).

The hydrological dataset used in this study comprises 18
seasonal discharge observations per study catchment, span-
ning 2000 to 2018. This highlights the data availability limi-
tations in the region. To address the challenges posed by this
small dataset, we employed the aforementioned approach,
which integrates multiple diverse estimates of SWE and
utilises an ensemble methodology described below in Sect. 4,
Methods. It is worth noting that historical data for most
catchments also span the 1970s to the 1990s, with relatively
more complete records available for the largest rivers extend-
ing to 2000. However, incorporating these earlier records is
challenging, as the datasets used to derive some SWE esti-
mates (FLDAS and GPM) are only available from 2000 on-
ward. Extending the observations back in time would restrict
the ensemble to only ERA5-L and MSWX datasets, thereby
reducing its diversity and potentially compromising its ro-
bustness. In addition, using older discharge records in our
framework may be problematic due to the non-stationarity of
climate and hydrological systems (Pagano and Garen, 2005;
Livneh and Badger, 2020), along with runoff alterations in
some large basins induced by land-use changes over the past
century (Hou et al., 2023).

4 Methods

4.1 Determining associations between climate
oscillations and hydroclimatic variability across
study catchments

To determine linkages between the selected climate oscil-
lations and hydroclimatic variability across the catchments,
we calculated Spearman’s rank correlations with precipita-
tion during months with higher magnitude and interannual
variability. We used the global TerraClimate precipitation
dataset (Abatzoglou et al., 2018) to construct catchment-
averaged precipitation time series from 1979 to 2020. The
annual precipitation cycle in the studied catchments exhibits
two distinct sub-regional patterns (see Fig. 1). Catchments
in the Pamir Mountains and the western Tian Shan experi-
ence increasing precipitation during winter, peaking in the
spring and decreasing during summer. In contrast, the Naryn
and Chu catchments, located in the interior and northern
Tian Shan, receive the most precipitation from late spring
to early summer and less precipitation in winter. Across all
catchments, the interannual variability is greatest during the
months with the highest precipitation totals. We have de-
fined the standard peak precipitation season for the region
as February to June, since this period covers the months with
the highest precipitation amounts and the greatest interan-
nual variability across all the studied catchments. We then
calculated Spearman’s rank correlation coefficient between
the catchment-averaged precipitation for February–July (re-
ferred to here as “peak precipitation season”) and each cli-
mate oscillation index at varied lead–lag times. To identify
when oscillations show the strongest association with the
precipitation season, we calculated the correlation for each
oscillation index from August of the preceding year to July,
the final month of the peak precipitation season. In addition,
we computed correlations between the climate indices and
mean discharge during the growing season using the same
procedure.

4.2 Stacked-ensemble-based prediction of seasonal
discharge

Our modelling framework employs an ensemble-stacking ap-
proach. This machine learning technique combines predic-
tions from multiple base models and uses them as inputs to
a higher-level meta-learner, also known as a stacking model.
This approach has seen increasing application in the hydro-
logical field in recent years (Zounemat-Kermani et al., 2021),
including long-term streamflow forecasting, drought moni-
toring, and real-time flood forecasting (Mallick et al., 2022;
Granata and Di Nunno, 2024; Li et al., 2019; Xu et al., 2024).

The ensemble-stacking workflow consists of four main
steps depicted in Fig. 2. In the first stage, we combine each
basin-averaged SWE estimate with climate oscillation in-
dices at months when they exhibit higher association with in-
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Table 2. Snow water equivalent estimates and climate oscillation indices that were used as predictors in this study.

Type Predictor Description Source
(abbreviation)

Snow water ERA5-L Retrieved from the ERA5-Land reanalysis dataset Muñoz-Sabater et al. (2021)

equivalent FLDAS Retrieved from the Land Data Assimilation System Central Asia McNally et al. (2022)

estimates MSWX Simulated using GEMS model forced by precipitation Beck et al. (2021)
and temperature estimates from the MSWX dataset

GPM Simulated using GEMS forced by IMERG Huffman et al. (2019)
precipitation and MSWX temperature

Climate SOI Southern Oscillation Index Ropelewski and Jones (1987)

oscillation PDO Pacific Decadal Oscillation Mantua et al. (1997)

indices EAWR East Atlantic/West Russia pattern (EAWR) Barnston and Livezey (1987)

NAO North Atlantic Oscillation (NAO) Barnston and Livezey (1987)

SCAN Scandinavian pattern Barnston and Livezey (1987)

season precipitation peaks. Having four different SWE prod-
ucts results in four datasets with varying SWE estimates but
the same set of selected climate oscillation indices for each
catchment. Any set of predictors for each basin includes a
maximum of three variables: one SWE estimate and up to
two climate oscillation indices.

We then use four different forecast models (from now on
referred to as base models), each forced with the four in-
put datasets to produce a range of 16 seasonal predictions.
The four base models comprise the generalised linear model
(GLM) with Gaussian identity link, Gaussian process regres-
sion with the linear kernel (GP), support vector regression
(SVR) with the linear kernel (SVR), and random forest (RF).
The latter two model algorithms have parameters that control
internal model complexity. For example, the cost parameter
in SVR limits training errors against maximising the mar-
gin of the decision function, and mtry in RF determines the
number of predictors that can be taken into account at each
split point of a single tree. We confine these parameters to
relatively lower levels (cost= 0.3 in the case of SVR and
mtry= 1 in the case of RF), which helps to avoid overfitting
and facilitates a higher degree of generalisability (Najafi and
Moradkhani, 2016; Safonova et al., 2023).

In the next step, we evaluate each of the 16 base model
predictions using leave-one-out cross-validation (LOOCV),
which is well suited for the small dataset context. It is worth
noting that LOOCV is a standard practice in developing and
evaluating water supply forecasting models in the western
US (Fleming and Garen, 2022). For each base model, we
compute an LOOCV R2 value based on its deterministic
hindcasts. Rather than using all 16 base model hindcasts in
subsequent steps, we apply a selection threshold: only base
models with an LOOCV R2 greater than 0.2 are retained for
further analysis. This threshold requires a LOOCV R2 coef-

ficient of base model performance greater than 0.2 in order
to be considered for further analysis. This threshold was op-
timal during LOOCV in terms of predictive performance for
the stacking ensemble.

In the final step, those base model predictions that pass the
LOOCV test become inputs for a final forecast model (from
now on called meta-learner model). Since all selected base
model predictions would exhibit some degree of correlation
among themselves, we employ the SVR algorithm as a meta-
learner model, which is known to be less sensitive to multi-
collinearity (Farrell et al., 2019). The final prediction of the
meta-learner model is again assessed using LOOCV.

We apply the procedures described above for each stan-
dard forecast issue time adopted by hydrological agencies
in central Asia, starting from 1 January (that is, a 3-month
lead time concerning the April–September season) and end-
ing with the final forecast issued just before the start of the
season, i.e. on 1 April. Each forecast uses inputs that are ac-
cessible by its issue date. For example, 3-month-lead fore-
casts can only use estimates of catchment SWE by 1 January
and state of climate oscillations in previous months. To at-
tain parsimonious forecast models, rather than incorporating
all studied climate oscillation indices into a set of predictors,
we followed a stepwise approach: each of the climate indices
was added one at a time to the predictor set, which was then
evaluated. This approach led to a final predictor set with the
minimal combination necessary to produce plausible predic-
tions for each catchment and each forecast issue date.

The overall modelling framework employed in this study
prioritises parsimony by relying on relatively simple types of
models with few or no internal parameters and a maximum
of three input variables. This design minimises the number of
parameters to estimate from the limited sample size, making
the approach particularly well suited for short datasets.
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Figure 2. Workflow of the ensemble-based forecast approach.

4.3 Uncertainty estimation

We applied bootstrapping (using 500 bootstrap samples) to
assess predictive uncertainty by resampling the input data
and retraining both the base models and the meta-learner
on each bootstrapped sample. From the ensemble of boot-
strapped predictions, we derived 80 % prediction intervals,
defined by the 10th and 90th percentiles.

4.4 Determination of supplementary importance of
incorporating climate oscillations as additional
predictors

We implement two track evaluation analyses to determine
the value of adding COs as additional predictors into snow-
based forecasts. Firstly, we elaborate forecast models that use
only SWE estimates as predictors, using the same approach
described in the previous section, and compare their perfor-
mance with those that use both SWE and COs. Secondly,
we determine the relative importance of COs using the fea-
ture importance ranking measure method (Greenwell et al.,
2018), which quantifies how much each input variable influ-
ences the predictions made by the model. The method as-
sesses the impact of each input variable by estimating partial
dependence plots and assigning higher (lower) importance
rank to features that exhibit a steeper (flatter) partial depen-
dence effect.

5 Results

5.1 Evaluation of SWE estimates

Figure 3 summarises the correlation coefficients between
catchment-averaged SWE at different forecast issue dates
and mean discharge during the growing season. The SWE
estimates obtained from global reanalysis and satellite data

exhibit varied degrees of connection with the seasonal dis-
charge. For all catchments, the correlation in general tends to
increase with shorter lead times, i.e. with SWE estimates for
1 January having the lowest correlation and those for 1 April
having the highest. While SWE estimates based on ERA5-L
and MSWX generally show a higher correlation with sea-
sonal discharge across most catchments, in the absence of in
situ snow measurements, it is impossible to assert which of
the four SWE estimates is relatively more consistent.

5.2 Association between climate oscillations and
hydroclimatic variability across the study
catchments

Evaluation of the climate oscillation indices revealed diverse
associations with peak season precipitation and mean river
discharge during the growing season across the catchments
(Fig. 4, upper graph). In all catchments, the February–July
precipitation exhibits a robust and persistent association with
ENSO, represented by the Southern Oscillation Index (SOI)
and the Pacific Decadal Oscillation (PDO), over an extended
time frame compared to other oscillations. A significant neg-
ative correlation exists between the peak precipitation sea-
son and the SOI in all catchments, evident 3 months before
the season’s commencement. This relationship persists for a
longer duration compared to any other climate oscillation.
On the other hand, the PDO exhibits a positive link with sea-
sonal precipitation, becoming noticeable as early as 4 months
before the season’s onset and reaching its most substantial
level in November. The selected lead months of the SOI and
the PDO exhibit a higher correlation, possibly because the
latter also mirrors the ENSO phenomenon.

Like ENSO and the PDO, the East Atlantic/West Russia
pattern (EAWR) consistently demonstrates a stronger corre-
lation across most catchments before the peak precipitation
season. Notably, the October state of the EAWR shows a sub-
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Figure 3. Pearson‘s correlation coefficients between the SWE estimates and mean seasonal discharge between April and September at
different forecast lead months. The red line is the median across all snow products.

Figure 4. Spearman’s rank correlation coefficients between the climate oscillation indices and precipitation from February to July precipi-
tation. The x axis denotes months of a climate index. The red line represents a median for correlation coefficients across all catchments in
each month.

stantial positive correlation with peak precipitation across all
catchments; however, it becomes more variable as the season
progresses.

On the other hand, the North Atlantic Oscillation (NAO)
and the Scandinavian Pattern (SCAN) show a relatively less
pronounced association with the peak precipitation season,
with correlations that vary depending on the lead time. From
December to March, the NAO shows a weak but persistent
negative relationship with the peak precipitation season in

most catchments. In January, at the beginning of the peak
precipitation season, a considerable portion of the catch-
ments demonstrates a negative correlation with the state of
the SCAN. However, as the season progresses and reaches
March, there is a noticeable shift, with all catchments show-
ing a stronger and more positive correlation with the state of
the SCAN.

The correlation between the climate indices and mean
river discharge during April–September exhibits almost the

Hydrol. Earth Syst. Sci., 29, 3055–3071, 2025 https://doi.org/10.5194/hess-29-3055-2025



A. Umirbekov et al.: Value of teleconnections for snow-based streamflow forecasting 3063

same pattern (Fig. S1 in the Supplement). This implies that
interannual discharge variability is predominantly driven by
precipitation between February and July.

5.3 Performance of seasonal discharge forecasts

Figure 5 below summarises a set of final predictors per
studied catchment, obtained after screening CO associations
with peak precipitation and mean discharge during the grow-
ing season and following a stepwise selection procedure us-
ing the ensemble-stacking forecast approach described in
Sect. 4.2.

While the input dataset for the base models included SWE
estimates, the combination of climate oscillations they rely
on varies depending on a catchment location and elevation.
In most catchments, there is a higher correlation between
the late autumn state of the PDO and the winter state of the
SOI. To avoid redundancy and potential issues with multi-
collinearity, we did not include both indices as predictors in
the models for the same basin. Instead, the PDO or the SOI
was selected for each basin’s model based on which index
exhibited a stronger predictive relationship. As a result, the
SOI mostly appears as a predictor in Tian Shan catchments,
and the PDO generally persists as a predictor in catchments
located in the Pamir Mountains. The winter state of the NAO
and the SCAN are another source of predictability in many of
the catchments but have variable temporal signatures. In the
case of the Murghap, where workable base models were ob-
tained only for the 1 April forecast, they rely solely on SWE
estimates and the SCAN as predictors.

Selected climate indices tend to have the same temporal
lags for neighbouring catchments. For instance, the Naryn
and Chu catchments in the Tian Shan, which have similar
seasonal precipitation patterns, use the NAO condition in
January as one of their predictors. The Varzob and Zarafshan
rivers, both high-elevation tributaries of the Amu Darya, use
the January state of the SCAN.

The ensemble-based forecasting framework plausibly sim-
ulated seasonal discharge across all catchments, albeit with
varying temporal performance based on lead time (Fig. 6).
The meta-learner model’s LOOCV R2 coefficient varies be-
tween 0.2 and 0.5 for the extended lead time forecast (1 Jan-
uary). It gradually increases with decreasing lead time, sur-
passing 0.9 for the 1 April forecast for most catchments ex-
cept the Murghap and Varzob. The accuracy of the meta-
learner model forecasts depends on the number and diversity
of the resultant individual base models, which are superior to
those of the latter. This underscores the strength of ensemble
approaches, which outperform single-model approaches, as
demonstrated in similar studies (Hagedorn et al., 2005; Na-
jafi and Moradkhani, 2016; Fleming et al., 2021).

Due to the threshold criterion (R2 > 0.2) for a base model
to be included in the final meta-learner prediction, the result-
ing stacked ensembles typically consist of fewer than 16 base
models. We observe two trends in this regard: (1) the later the

issue date, the greater the number of base models included
in the ensemble, and (2) larger catchments tend to incorpo-
rate more base models for certain rivers, such as the Varzob,
Kashkadarya, and Chu, which results in fewer base mod-
els being used for ensemble stacking. For the Murghap and
Kashkadarya catchments, no feasible base models were ob-
tained for the 1 January forecast. Furthermore, workable base
models and the derived meta-learner model for the Murghap
are only obtainable for the 1 April forecast. Table S3 in
the Supplement provides information on the number of base
models used for stacking the meta-learner model per each
basin and forecast issue date.

No model types are consistently superior in accuracy
across all lead times, especially for the final (1 April) fore-
cast. However, the base models’ performance has some dis-
tinct spatial heterogeneity, depending on which SWE prod-
uct they use. For example, all base models for the Vaksh
retained after cross-validation rely mostly on SWEERA5-L
or SWEMSWX as inputs. In contrast, forecasts for the Var-
zob catchment have more base models using SWEFLDAS and
SWEGPM. The seasonal discharge in the largest catchments,
such as the Amu Darya and the Naryn, is also better ex-
plained by base models that use SWEERA5-L or SWEMSWX.

The results suggest that models incorporating IMERG
have lower predictive accuracy, reflected in overall lower
cross-validation performance, except in the highly elevated
Varzob and Zarafshan catchments. This is likely due to the
lower accuracy of IMERG’s Late Run product, which in-
cludes only climatological adjustment. In contrast, its final
product (“Final Run”) comes with adjustments using gauge
data. However, the latter is only available at a 3-month la-
tency, precluding its operational forecasting use.

We tested several other ML techniques as base models,
including using the same models with non-linear kernels.
In most cases, the presented combination of models yielded
a better accuracy regarding MAE and R2 coefficients dur-
ing LOOCV. Sometimes, certain non-linear models produced
slightly better predictions depending on the basin or issue
date. However, the existing structure still showed superior
accuracy when generalising across all basins and issue dates.
We assume this may be due to two major and non-exclusive
factors: (1) fewer observations and predictors, which makes
non-linear machine learning models less efficient and prone
to overfitting, and (2) the selection of predictors based on
a linear metric (Pearson’s correlation) may have inherently
favoured linear models.

The inclusion of climate indices generally enhances fore-
cast accuracy across most catchments, as reflected in the
generally lower normalised MAEs for models that combine
SWE and climate indices compared to those that use only
SWE (Fig. 7). However, there are exceptions, such as in the
February forecast for the Kashkadarya and the January fore-
cast for the Vaksh, where SWE-only models exhibit lower
errors. The improvement from including climate indices is
particularly evident in catchments situated in the Tian Shan,
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Figure 5. Predictors at different forecast issue times. Abbreviations within boxes indicate the month of the respective climate oscillation
index or catchment-averaged SWE used as predictors. For example, the 1 April forecast models for the Amu Darya use as predictors the
SWE estimate as of the beginning of March, the state of the PDO index in November, and the SCAN index in January.

Figure 6. LOOCV R2 coefficients of individual base models at different lead months and the LOOCV R2 of the meta-learner model (red
line).

such as the Naryn and the Chu, where SWE-only forecasts
result in substantially higher errors. Moreover, the difference
in MAEs between the two model types becomes more pro-
nounced with reduced lead times in these catchments. A sim-
ilar pattern is observed in the high-elevation Zarafshan catch-
ment. In contrast, in the Amu Darya and the Murghap, large
and relatively low-elevation catchments located in the Pamir
region, the incremental differences between the two model
types for the 1 April forecast are minor or absent, suggesting

that the inclusion of climate indices provides limited added
value in these cases.

Comparison of observed and predicted seasonal discharge
across basins and forecast issue dates (Fig. 8) showcases
the performance and limitations of the modelling frame-
work. The alignment of hindcasts with observed discharge
in most basins indicates reasonable predictive skill, though
deviations are sometimes evident. Hindcasts initialised ear-
lier, such as on 1 January, tend to show a larger scatter, high-
lighting higher uncertainty than forecasts initialised closer to
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Figure 7. Normalised MAE of the meta-learner hindcasts at different forecast lead months.

the target season (e.g. 1 March or 1 April), which display
tighter clustering around the 1 : 1 line. Basins such as the
Murghap and the Kashkadarya exhibit greater scatter in pre-
dictions across all issue dates, particularly at the extremes,
reflecting challenges in low-elevation basins. For the largest
basins, such as the Naryn and the Amu Darya, systematic bi-
ases are also evident in early issue date hindcasts, with over-
estimation at lower quantiles and underestimation at higher
quantiles. These biases likely stem from the uncertainties of
snowmelt and hydrological dynamics in these large basins,
where higher spatial variability in snow accumulation com-
plicates predictions. In contrast, the Zarafshan, Varzob, and
Chu basins align better between hindcasts and observations
across all initialisation dates, suggesting more predictable
hydrological responses.

5.4 Predictive uncertainty

Interannual streamflow variability was generally well cap-
tured by the meta-learner models, with bootstrap-based
80 % predictive uncertainty closely aligning with observa-
tions (Fig. 9). However, the predictive uncertainty varies
across basins, reflecting basin-specific characteristics that
influence predictive reliability. Hindcasts initialised ear-
lier, such as 1 January, tend to have broader uncertainty
bounds and greater variability. In contrast, as forecast issue
dates approach the target season, they become more consis-
tent, with narrower uncertainty bounds and better alignment
with observations. Hindcasts for basins with smaller catch-
ment areas and/or located at lower elevations, such as the
Kashkadarya, tend to have wider uncertainty bounds. Sim-
ilarly, the Murghap, a basin with lower seasonal discharge,
shows higher deviations in predictions. For these two basins,
higher predictive uncertainties may also be attributed to the

comparably higher interannual variability in the seasonal dis-
charge (Table 1). In larger basins, such as the Naryn and the
Amu Darya, variability in uncertainty bounds is more pro-
nounced for early issue dates. However, hindcasts for these
basins become relatively less uncertain with later initialisa-
tion dates as the models incorporate updated snowpack data,
narrowing the uncertainty bounds. In contrast, Zarafshan
and Chu, high-altitude basins, demonstrate stable predictions
and tight uncertainty bounds across all initialisation dates.
The hindcasts exhibit higher predictive uncertainty for some
catchments in certain years, potentially due to extreme cli-
mate conditions or unusual snowpack accumulation patterns.
For instance, the hindcasts tend to have relatively higher un-
certainty in the Amu Darya and Vaksh basins in 2008, a year
that recorded one of the lowest terrestrial water storage lev-
els in those catchments (Gafurov et al., 2024). Furthermore,
although they correctly guessed the trend during those years,
the 80 % predictive uncertainty intervals for the small, high-
elevation Varzob catchment fell short of capturing the two
lowest observed streamflow values.

It should be noted that the uncertainty intervals are esti-
mated by bootstrapping a relatively short streamflow time se-
ries and do not account for uncertainty caused by the poten-
tial limited representativeness of the actual natural variability
by the observations.

5.5 Importance of climate oscillation indices as
predictors

The importance of predictors varies depending on the catch-
ment location and the forecast issue date (Fig. 10). Regard-
less of the forecast issue date, SWE is a major predictor in
most catchments located in the Pamir Mountains, and its sig-
nificance generally arises with decreasing lead times. Its in-
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Figure 8. Observed seasonal discharge and hindcasts produced by meta-learner models at different lead months.

Figure 9. The 80 % predictive uncertainty intervals of the meta-learner models at different lead months.

cremental value is evident in the basins in the western part of
the study area, the Pamir Mountains. Nevertheless, the sup-
plementary predictive value of COs is visible in all basins
regardless of their location, except for the Murghap, where
integration of COs does not noticeably improve prediction
accuracy compared to models relying only on SWE. The pre-
dictive power of COs is highest for the two catchments lo-
cated in the inner and northern Tian Shan: the Naryn and the
Chu. Especially in the Chu, the COs contribute to more than
half of the predictive power of the forecast models across all
forecast issue dates. In addition, a higher reliance on COs is
also evident in the high-elevation catchments of Zarafshan

and Varzob, with their importance surprisingly increasing at
later forecast issue dates.

6 Summary and discussion

Our findings suggest that valid SWE estimates, suitable for
operational seasonal river discharge forecasting, can be ef-
fectively derived from global reanalysis or satellite data. Still,
they are subject to spatial bias and uncertainty, which may
be due to uncertainties in underlying precipitation and tem-
perature inputs. The uncertainties in the SWE estimates may
propagate across time and become more pronounced during
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Figure 10. The relative importance of predictors at different forecast issue dates.

the snow ablation phase by the end of the cold season. Com-
bining SWE data from multiple global sources helps mitigate
these biases, and predictions that pass cross-validation filters
reflect the accuracy of SWE products specific to catchment
locations. Nevertheless, although catchment-averaged SWE
estimates improve with the assimilation of multiple snow
products, they may still tend to contain spatial uncertainties
that increase during the ablation phase.

Multiple global ocean–atmospheric oscillations modulate
the seasonal hydroclimatic patterns in the Pamir Mountains
and the Tian Shan, each with different temporal effects. The
findings suggest that the magnitude of both seasonal precip-
itation and discharge is associated with the late autumn to
winter state of ENSO (approximated in our study with the
SOI). The PDO is known to mimic ENSO-like variability on
monthly to annual scales and has a pronounced impact on the
interdecadal scale (Zhang et al., 1997). This could explain
the similarity in dominant lead times observed in our analy-
sis with the SOI. Late winter to spring states of the NAO and
the SCAN contribute to hydroclimatic predictability in many
studied catchments, mainly showing higher significance in
the Tian Shan domain. All these spatial and temporal pat-
terns are broadly consistent with several earlier findings (e.g.
Mariotti, 2007; Wang et al., 2014; Dixon and Wilby, 2019;
Gerlitz et al., 2019).

The associations between the climate indices with precip-
itation and discharge exhibit an almost identical pattern, im-
plying that interannual volatility of streamflow during the
growing season is substantially driven by the peak precipi-
tation period, which we determine as February to July. This
implies that SWE accumulated by the middle of winter is
a weak precursor of hydrologic variability in the upcom-
ing season, which our findings assert. On the other hand,
this serves as an argument for using climate oscillation in-
dices beside the catchment snowpack in discharge forecasts

at extended lead times. Following the traditional approach to-
wards seasonal hydrological predictions, SWE estimates ini-
tial hydrological conditions and climate oscillation indices as
a proxy of climate variability during the target season.

Our experiment confirms this by demonstrating the com-
plementary roles of SWE and climate oscillation indices in
improving discharge hindcasts at extended lead times. The
resulting forecast models generate credible hindcasts of sea-
sonal discharge across all studied catchments, albeit with per-
formance variations depending on lead time. The forecast
models incorporating both SWE and COs perform better than
the SWE-only models, evidenced by lower forecast errors.
The resulting forecast models underscore the significance of
SWE as one of the primary predictors in most catchments in
the Pamir region, with its importance becoming more pro-
nounced during the peak SWE period, typically occurring in
mid-spring. Nevertheless, the forecast models gain valuable
predictive power from climate oscillation indices during ex-
tended and shorter lead times, but the importance of specific
climate oscillations as predictors varied across catchments.
In most catchments, the SOI, the PDO, or both were utilised,
indicating the dominant influence of ENSO and other climate
variability patterns in the Pacific Ocean. Moreover, the re-
sults suggest that the NAO and the SCAN exhibit a relatively
higher predictive power for catchments in the Tian Shan re-
gion.

The predictive importance of climate oscillations equalled
or exceeded that of SWE in the Naryn and Chu catchments
located in the Tian Shan and in high-elevation catchments
in the Pamir Mountains, such as the Zarafshan, the Varzob,
and the Vaksh. The former might be explained by a distinc-
tive precipitation cycle across the Tian Shan, which peaks
during summer, i.e. considerably later than the final forecast
issue date (1 April). Consequently, SWE estimates have com-
parably smaller power to capture upcoming hydroclimatic
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variability than other catchments where precipitation peak-
ing occurs during spring months and is thus embedded in
SWE estimates by 1 April. This contrasts with the forecast
model for the Murghap catchment, which does not integrate
any climate oscillations, as precipitation in this catchment
peaks before spring. The higher predictive power of the oscil-
lations for high-elevation catchments may be attributed to the
poorer performance of the satellites and reanalyses of pre-
cipitation estimates over high elevations in the region (Peña-
Guerrero et al., 2022), which subsequently propagate as un-
certainties in the SWE estimates. In this regard, the higher
predictive performance of climate oscillation indices across
those catchments is likely because they compensate for errors
in SWE estimates.

Based on the above, we identify three specific cases when
the incorporation of COs as additional predictors helps to im-
prove seasonal discharge forecasts in snow-dominated catch-
ments:

1. Extended lead time forecasts with early seasonal SWE.
When seasonal discharge forecasts are made well in
advance but SWE is not a reliable representation of
seasonal terrestrial water storage, climate oscillations
may provide additional insights into anticipated hydro-
climatic conditions.

2. Dominant climate variability regime during the target
season. When the seasonal discharge is more influenced
by in-season climate variability than by accumulated
SWE before the season, climate oscillations can serve
as adequate proxies for this variability.

3. Uncertainties in catchment SWE estimates. High uncer-
tainties in SWE estimates for a particular catchment re-
sult in higher errors in discharge predictions. These un-
certainties can be partially compensated for by lever-
aging the forecasts with climate oscillations, leading to
more accurate seasonal discharge predictions.

In situ observations of essential climate variables, such as
snowpack properties, are especially scarce in mountainous
regions of the Global South, impeding hydrological forecast-
ing. Previous research has demonstrated how, in the absence
of in situ snow observations, satellite-derived snow cover,
precipitation, and temperature can serve as proxies of ter-
restrial water storage and improve seasonal discharge fore-
casting in central Asia (Apel et al., 2018; Gafurov et al.,
2016). Additionally, other studies have investigated how cli-
mate indices characterise hydroclimatic variability in the re-
gion over longer lead times (Dixon and Wilby, 2019). By
combining the strengths of these two approaches, our mod-
elling framework offers a new way to make hydrological pre-
dictions in the region. It leverages an ensemble technique
that uses multiple estimates from global data and a diverse
set of more straightforward types of machine learning meth-
ods with loose tuning parameters. These elements allow us

to achieve plausible forecast models even when in situ dis-
charge observations are short.
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