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Abstract. Groundwater is a crucial resource for society and
the environment, e.g., for drinking-water supply and dry-
weather stream flows. The recent severe drought in Europe
(2018–2020) has demonstrated that these services could be
jeopardized by ongoing global warming and the associated
increase in the frequency and duration of hydroclimatic ex-
tremes such as droughts. To assess the effects of meteo-
rological variability on groundwater heads throughout Ger-
many, we systematically analyzed the response of groundwa-
ter heads at 6626 wells over a period of 30 years. We char-
acterized and clustered groundwater head responses, quanti-
fied response timescales, and linked the identified patterns
to spatial controls such as land cover and topography us-
ing machine learning. We identified eight distinct clusters of
groundwater responses with emerging regional patterns. Me-
teorological variations explained about 50 % of the ground-
water head variations, with response timescales ranging from
a few months to several years between clusters. The differ-
ences in groundwater head responses between the regions
could be attributed to regional meteorological variations,
while the differences within the regions depended on local
landscape controls. Here, the depth to groundwater best ex-
plained the timescale of the observed head response, with
shorter response times in shallower groundwater. Two of the
clusters showed consistent long-term trends that were not ex-
plained by meteorological controls and could be attributed to
anthropogenic impacts. Our study contributes to a better un-
derstanding of the regional controls of groundwater head dy-
namics and to the classification of groundwater vulnerability
to hydroclimatic extremes.

1 Introduction

Groundwater is the largest available freshwater resource
worldwide, serving numerous water demands such as for
drinking, irrigation, and industrial water, as well as for
groundwater-dependent ecosystems, minimum discharges in
streams, and dilution of pollutants (Taylor et al., 2013).
Droughts can threaten the availability and usability of
groundwater to meet these demands and can cause severe so-
cioeconomic and ecological impacts (Stahl et al., 2016). The
recent multi-year drought in Europe (2018–2020) has set a
new benchmark, with extreme socioeconomic damage, re-
sulting in increased public and stakeholder awareness of the
vulnerability of water resources to droughts (Rakovec et al.,
2022; Blauhut et al., 2022; Hari et al., 2020). With ongoing
climate warming, climatic extremes are intensifying (IPCC,
2023). This includes an increasing frequency, intensity, and
duration of droughts (Rakovec et al., 2022; Hari et al., 2020;
Rodell and Li, 2023), as well as an increasing frequency and
intensity of extreme precipitation events (IPCC, 2023). This
raises the need to develop a thorough understanding of the
effects of hydroclimatic variability (including droughts) on
groundwater resources and their vulnerabilities to enable an
improved knowledge-based water management.

Droughts are periods with persistent below-normal wa-
ter availability, often differentiated by the affected com-
partments which the drought signal may propagate through,
i.e., meteorological, agricultural (soils), and hydrological
droughts (groundwater and surface water) (Van Loon, 2015;
Entekhabi, 2023). Generally, when drought signals propa-
gate from the meteorological driving force to groundwater,
the landscape acts as a low-pass filter so that the drought re-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2926 P. Ebeling et al.: Groundwater head responses to droughts across Germany

sponse gets attenuated, elongated, and delayed from a more
erratic forcing variable to a dynamic with higher memory
(Van Loon, 2015; Bloomfield and Marchant, 2013; Kumar
et al., 2016). However, this propagation is highly variable
across the landscape, with the result that groundwater heads
can respond very differently to the driving meteorological
forces (Bloomfield and Marchant, 2013; Kumar et al., 2016).
Previous studies have investigated the controls of ground-
water dynamics at different spatial scales (local to integral
catchment scales) and temporal representations (daily heads
to monthly anomalies). They have highlighted the impor-
tance of hydrogeological conditions and the well location –
more specifically, the aquifer type (Bloomfield et al., 2015;
Hellwig and Stahl, 2018), the confinement status (Haaf et
al., 2020; Bloomfield and Marchant, 2013), the hydrologi-
cal conductivity (Hellwig et al., 2020), the unsaturated zone
thickness or depth to groundwater (Bloomfield et al., 2015;
Haaf et al., 2020; Lischeid et al., 2021; Wossenyeleh et al.,
2020; Kumar et al., 2016), the distance to stream (Haaf et al.,
2020), and the location along the topographic gradient (Haaf
et al., 2020; Schuler et al., 2022; Rinderer et al., 2017). Haaf
et al. (2023) and Peters et al. (2006) also highlighted the non-
linearity of processes, which can cause different controls of
groundwater dynamics to dominate during wet and dry con-
ditions or during groundwater recharge and discharge. Nev-
ertheless, uncertainties in future groundwater resource avail-
ability (Marx et al., 2021; Wunsch et al., 2022; Kumar et al.,
2025; Reinecke et al., 2021; Berghuijs et al., 2024) are re-
lated not only to uncertainties in climate projections (e.g.,
Naumann et al., 2021) and model implementation (e.g., Ku-
mar et al., 2025; Reinecke et al., 2021) but also to the chal-
lenge of fully understanding the spatial variability of ground-
water head responses across locations (e.g., Lischeid et al.,
2021). Consequently, we argue that it is still insufficiently
known how the different meteorological and landscape con-
trols play out together to create spatial and temporal variabil-
ity in groundwater heads and to what extent the controls can
be generalized.

Large-sample data-driven analyses of groundwater re-
sponses to climatic drivers and underlying controls of spatial
variability can be a promising way to further elucidate this
interplay in controls. Standardized indicators create compa-
rability across stations, regions, and compartments of the hy-
drological cycle. Often, meteorological drought indicators
are used to assess hydrological droughts as the data are com-
prehensive and easily accessible (Van Loon, 2015; Bachmair
et al., 2016), although these indicators are not directly trans-
ferable to groundwater droughts observed locally at ground-
water wells (Kumar et al., 2016). In contrast, large-sample
analyses of groundwater droughts are challenged by the lim-
ited availability of consistent groundwater head data sets as
the indicators are sensitive to the covered time periods (Van
Loon, 2015; Bloomfield and Marchant, 2013; Bachmair et
al., 2016). Groundwater data sets often have systematic gaps,
cover different periods and sampling frequencies, and/or are

not fully accessible (Bikše et al., 2023; Barthel et al., 2021).
Such limited data availability and limited consistency often
hamper large-scale and comparative groundwater analysis
(Barthel et al., 2021; Haaf et al., 2020), the understanding of
the spatial variability in groundwater responses and drought
propagation, and the inference of drought vulnerability.

The vulnerability of a system can be interpreted as its in-
ability to maintain or return to its state in the face of partic-
ular stresses. For groundwater heads, the most obvious ex-
ample of stress is a meteorological anomaly, such as an ex-
treme meteorological drought. However, hydroclimatic ex-
tremes can have different manifestations, e.g., a short dura-
tion with a high intensity or a long duration with a lower
intensity (Hari et al., 2020; Hosseinzadehtalaei et al., 2020;
Westra et al., 2014; e.g., Christian et al., 2023). Moreover, as
indicated above, groundwater responses and associated re-
sponse timescales are highly variable in space (e.g., Lischeid
et al., 2021). The different manifestations of groundwater
head responses suggest different vulnerabilities of their cor-
responding groundwater systems, with implications, for ex-
ample, for surface–groundwater interactions, ecosystems, or
groundwater management and with distinct sensitivities re-
garding expected changes in climate. Therefore, a better un-
derstanding of the types of vulnerability and their controls is
required.

In this study, we perform a large-sample data-driven analy-
sis of groundwater head responses to meteorological anoma-
lies to understand their spatial variability and controlling
factors. We use a consistent large-sample data set of 6626
monthly groundwater head time series over 30 years across
Germany to identify similarities and differences in ground-
water responses and to quantify timescales of propagation
from meteorological anomalies to groundwater. Finally, we
link the response patterns to spatial controls including cli-
matic and landscape properties. On this basis, we can clas-
sify different vulnerabilities of groundwater to meteorologi-
cal droughts and discuss implications for water management
and ecology.

2 Methods

2.1 Data

The groundwater head data used in this study are monthly
mean groundwater head time series across Germany pro-
vided by journalists of the CORRECTIV.Lokal network for
the period from 1990 to 2021 (Donheiser, 2022; Joeres et al.,
2022). CORRECTIV is a non-profit network of journalists
that collected the groundwater head time series from the dif-
ferent environmental federal state authorities responsible for
groundwater monitoring in order to report on the groundwa-
ter conditions during the recent drought years (Joeres et al.,
2022). They homogenized the data by aggregating the orig-
inal observations (heterogeneous, partly daily resolution) to
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monthly resolution and provide those in a free repository (for
details, refer to Donheiser, 2022). This implies that we have
a consistent monthly timescale for the analysis, at the cost
of having less control over the preprocessing of the original
data. For the initial selection of stations for our study, we
used the 6677 stations identified by CORRECTIV based on
the following criteria: availability of data for at least 95 % of
the months, no shifts in the head time series, and availability
of station coordinates (Donheiser, 2022).

We filled gaps in monthly heads with linear interpolation
without extrapolation using the function na.interp (R pack-
age forecast, version 8.21; Hyndman and Khandakar, 2008;
Hyndman et al., 2023). For 4197 of the wells, at least one
missing value had been filled, out of which 69.1 % of the
wells (2899) had a maximum filled gap length of less than 3
months, and, overall, the maximum gap length was 19. We
finally selected 6626 stations covering the complete period
from January 1991 to December 2020.

The wells of the data set (Fig. 1) tend to be located
in highly productive porous aquifers (60.3 % of wells;
aquifer types from IHME1500; BGR, 2014), coarse sedi-
ments (i.e., gravels and sands, lithology from IHME1500;
BGR, 2014), and medium to high hydraulic conductivities
(62.5 %; BGR and SGD, 2016). Moreover, wells are pre-
dominantly in shallow aquifers; i.e., 50.7 % of wells have a
mean groundwater depth of < 5 m, and 74.5 % have a mean
groundwater depth of < 10 m (based on mean_gwdepth; see
Table 2). Such a sampling bias is typical for groundwater
wells as these locations are more relevant for water man-
agement (e.g., Barthel et al., 2021). The majority of wells
(50.2 %) are located in agricultural areas, while 27.0 % are
located in urban areas, and 21.7 % are located in forested
areas (EEA, 2019b). About one-third of the wells are lo-
cated in areas classified as riparian zones (EEA, 2021). Re-
gionally, particularly high densities of wells are found in
the city of Berlin (388 wells, i.e., 0.44 wells km−2) and in
the southwestern Upper Rhine Plain (German: Oberrheinis-
che Tiefebene), whereas low densities (< 0.01 wells km−2)
are found in the federal states of Mecklenburg-Vorpommern,
North Rhine-Westphalia, and Bavaria (Fig. 1). No data are
available for the federal states of Saarland, Bremen, and
Hamburg.

For time series of meteorological drivers at each well lo-
cation, we extracted daily time series of climate variables
(i.e., precipitation and maximum, minimum, and average
air temperature) from the gridded (approx. 1 km resolution)
products derived based on measurements from the German
weather service (DWD; Boeing et al., 2022; Zink et al.,
2017) from 1971 until 2020. Potential evapotranspiration was
calculated using the approach from Hargreaves and Samani
(1985). Daily time series were then aggregated to monthly
mean values.

2.2 Characterizing anomalies

To characterize the groundwater responses with a focus on
droughts and to ensure comparability across locations (Van
Loon, 2015), we standardize the groundwater and meteoro-
logical time series representing anomalies. Anomalies gener-
ally describe deviations from average conditions, with posi-
tive values indicating relatively wetter conditions and nega-
tive values indicating drier conditions.

2.2.1 Groundwater

Groundwater head anomalies were characterized based on
the median groundwater heads of each month using the non-
parametric Standardized Groundwater Index (SGI; Bloom-
field and Marchant, 2013). This approach assesses anomalies
in a groundwater head time series by comparing the value
for a given month to the distribution of all values for the
same month, effectively eliminating seasonal variability in
groundwater heads. More specifically, we used the normal
score transform by assigning equally spaced probabilities to
the ranked groundwater heads of each month of a given time
series separately and applying the inverse normal cumula-
tive distribution function to get standard normal distributed
values (mean of 0, standard deviation of 1; Bloomfield and
Marchant, 2013). This implies that probabilities range from
(1/2n) to (1− 1/2n) with n= 30 due to the 30 values for
each month, and the corresponding SGI values from the nor-
mal distribution are sorted according to the ranks of the
groundwater heads; i.e., the lowest SGI is assigned to the
lowest groundwater head of the respective month. This non-
parametric standardization is particularly suitable for irregu-
lar and different distributions that are typical for groundwater
heads as it does not require fitting different distribution func-
tions that hamper the comparability of the resulting SGI time
series (Bloomfield and Marchant, 2013).

To characterize groundwater droughts, we calculated dif-
ferent intrinsic properties of the SGI time series (Table 2).
Firstly, we determined the autocorrelation length, which we
defined as the maximum lag, where both the lag itself and all
smaller lags exhibit correlation coefficients greater than 0.11
in relation to the significance level of approx. 5 % (Bloom-
field and Marchant, 2013). Secondly, we identified ground-
water drought events defined as consecutive months with SGI
<−1 (i.e., a probability of < 15.9 % according to the stan-
dard normal distribution). We then calculated the number, av-
erage duration, and severity of drought events for fully cov-
ered events within the 30-year time period. The event sever-
ity is defined as the integral event anomaly determined by
cumulative SGI values during the event. Thirdly, we quanti-
fied monotonic trends in the SGI time series by applying the
Mann–Kendall trend and Sen’s slope analysis. We used the
functions mk.test (p value< 0.01) and sens.slope from the R
package trend (version 1.1.5; Pohlert, 2023).
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Figure 1. Study area with groundwater wells (Donheiser, 2022), hydrogeological classes of aquifer types (Data source: HY1000 © BGR,
Hannover, 2019), and major rivers (from Strahler order 6; EEA, 2020) (a) and time series of monthly precipitation and accumulated precip-
itation of preceding 12 months (P12, green line), monthly P−PET, and 12-month-accumulated P12−PET12 (pink line), SPI1, SPI12, and
SGI as spatial averages across wells (b). The thin gray lines in panel (b) indicate the 25th and 75th percentiles across wells. P – precipitation;
PET – potential evapotranspiration; SGI – Standardized Groundwater Index; SPI – Standardized Precipitation Index.

2.2.2 Meteorology

Meteorological anomalies generally represent deviations
from average conditions at a specified location and time,
e.g., precipitation deficits or surplus. To characterize them,
we computed the Standardized Precipitation Index (SPI, Mc-
Kee et al., 1993) from monthly mean precipitation and the
Standardized Precipitation Evapotranspiration Index (SPEI,
Vicente-Serrano et al., 2010) from monthly mean differences
between precipitation and potential evapotranspiration. The
SPI and SPEI were estimated based on the monthly mean
values using the same non-parametric standardization as for
the SGI, comparing values to all other values of the same
month (details are described in Sect. 2.2.1).

To represent meteorological anomalies across longer an-
tecedent time periods and thereby account for the different
relationships that SGI and meteorological variables may have
(Kumar et al., 2016; Bloomfield and Marchant, 2013), we
calculated the SPIacc and SPEIacc for different accumulation
periods (acc) of precipitation and precipitation− potential
evapotranspiration preceding the corresponding month by up
to 132 months (11 years). For example, the SPI3 is calculated

based on precipitation sums of 3 months and thus character-
izes the precipitation anomaly of the past 3 months.

The advantage of the SPEI over the SPI is that it is sen-
sitive to temperature effects on drought severity and, thus,
global warming (Vicente-Serrano et al., 2010; Van Loon,
2015). However, we acknowledge that the period of 30 years
covered in this study is too short to robustly represent climate
change effects as, generally, trend analyses of groundwater
heads and drought indicators have been shown to be sensi-
tive to the covered periods (Bloomfield and Marchant, 2013;
Hellwig and Stahl, 2018; Lischeid et al., 2021).

2.3 Clustering of groundwater anomalies

To find regional similarities and differences in the responses
of the groundwater wells, we clustered the SGI time series
using k-means as an unsupervised machine learning algo-
rithm. We applied the kmeans function implemented in R’s
stats package (R Core Team, 2023) using Euclidean distance
to quantify dissimilarities and/or similarities. The Euclidean
distance measures similarity based on the squared differ-
ences of two SGI time series, making it sensitive to extreme
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differences and temporal shifts but also computationally ef-
ficient.

We selected the optimal number of clusters (k) based on
the average silhouette distance, which measures the compact-
ness of the clusters and the separation from other clusters
based on the dissimilarity of the members within one clus-
ter and compared to the members of the nearest neighbor-
ing cluster. The silhouette coefficient range is [−1, 1], with
1 being the optimal value, while 0 indicates that the mem-
ber is placed exactly in between two clusters, and a negative
value indicates that the identity is instead more similar to a
neighboring cluster. To compute the distances, we used the
silhouette function from the R package cluster (version 2.1.4;
Maechler et al., 2022), with 25 iterations for starting points
of cluster centers (nstart= 25). Across different k values up
to 20, the silhouette distance showed local maxima at k = 2,
5, and 8, with average distances around 0.11 (in decreasing
order; see Fig. S1).

To take a confident decision, we additionally consulted the
total within-cluster sum of squares as a measure of cluster
compactness in a scree plot. This method is known as the
“elbow method”, where the inflection point indicates the op-
timal number of clusters. The results from the analysis of
silhouette distance and from the elbow method are shown in
the supporting material (Figs. S1–3 in the Supplement). Fi-
nally, we decided on eight clusters as an optimum between
differentiating and generalizing the individual identities.

2.4 Response times of groundwater to meteorological
drivers

To investigate the propagation of meteorological drought to
groundwater drought, we calculated the cross-correlation be-
tween SGI time series and meteorological drivers (SPI, SPEI)
in a positive direction (i.e., meteorological forcing preced-
ing the groundwater response). The cross-correlation is cal-
culated for the different accumulation periods up to lag times
of 5 years (60 months) using the ccf function in R. The max-
imum cross-correlation coefficient (cc) result yielded the op-
timal accumulation time (acc) and the corresponding lag time
(lag; Table 2).

To quantify trends in meteorological drivers in comparison
to the groundwater SGI, we calculated the Mann–Kendall
trend and Sen’s slope based on standardized meteorologi-
cal variables (SPI, SPEI) and on the residuals from a linear
regression between SGI and SPIacc (and SPEIacc), applying
the cross-correlation results of each well. Assuming a simple
linear relationship between SGI and SPIacc and SPEIacc, this
provides an estimate of trends not reflected in the meteoro-
logical driving forces which could hint towards other relevant
drivers, such as anthropogenic impacts.

2.5 Spatial controls of groundwater responses

2.5.1 Spatial properties

To investigate controls of groundwater drought response pat-
terns, we determined several spatial properties including to-
pographical, climatic, land cover, and hydrogeological char-
acteristics, as well as the relative location of the well in the
landscape. The total set includes 26 parameters. Details on
the calculated properties are provided in Table 2. To quantify
collinearity among the properties, we calculated pair-wise
Spearman rank correlations (Fig. S4).

2.5.2 Machine learning

To identify spatial controls on the observed groundwater re-
sponses, we first trained different random forest (RF) clas-
sification and regression models (Breiman, 2001) to pre-
dict the identified clusters (Sect. 2.3) and groundwater re-
sponse times (Sect. 2.4) of the 6626 wells from the 26 spatial
controls (Sect. 2.5.1). Second, we use interpretable machine
learning tools to reveal insights into the relationships learned
by the machine learning models. More specifically, we ap-
ply the global model-agnostic methods’ permutation feature
importance and partial-dependence plots (PDPs), allowing
us to investigate average model behavior and thus to dis-
cuss prevalent relationships. RFs are particularly well-suited
for efficiently handling large data sets, managing collinear-
ity among descriptors through random feature selection, and
identifying complex non-linear relationships without a priori
assumptions. Moreover, they are robust in relation to outliers
and noise due to their ensemble-approach averaging across
trees (Breiman, 2001).

In detail, to predict the clusters of groundwater responses
and groundwater response times, we train (1) two RF clas-
sification models for (i) all clusters and (ii) clusters with re-
gional prevalence and (2) RF regression models for the char-
acteristics acf_lag, acc, respt, and resid_sen for both SPI and
SPEI (Table 1). We used 5-fold cross-validation to evaluate
the models, i.e., five iterations for each model. Model perfor-
mance was evaluated based on the five sets of test data using
the mean accuracy (percentage of correct classifications) for
classification and the mean coefficient of determination R2

for regression models.
Feature importance was evaluated by the relative increase

in model error with permutation using the classification error
(percentage of incorrect classifications) and the root mean
square error for regression as loss functions. Each feature
was permuted 10 times for each of the five test data sets of
the cross-validation to acquire robust results. Subsequently,
the importance results were aggregated across the five re-
samplings providing an average and a range of importance
for each feature. For selected features and models, we created
partial-dependence plots (PDPs) to analyze the effect of fea-
tures on the model output by using the RF models trained on
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Table 2. Spatial properties calculated for each groundwater well. For each parameter, the corresponding method used to calculate it (including
the data source, if applicable); the unit; and the minimum, median, and maximum values within the data set are provided.

Category Parameter Method Unit Min Median Max

Topography dem Elevation extracted from EU DEM with 100 m
resolution (Ebeling et al., 2022; EEA, 2013)

m −4.5 95.1 920.3

slo Topographic slope based on DEM (Ebeling et
al., 2022; EEA, 2013)

° 0 0.8 21.9

twi Topographic wetness index based on DEM
(Ebeling et al., 2022; EEA, 2013; Beven and
Kirkby, 1979)

10.5 14.2 28.2

Climate P_mm Mean annual precipitation (1971–2020) mm 466 698 2062

PET_mm Mean annual potential evapotranspiration
(1971–2020)

mm 543 773 882

AI Mean annual aridity index
AI=PET_mm /P_mm

0.34 1.19 1.77

P_SI Precipitation seasonality index as the sum of
absolute differences between the mean
monthly precipitation and one-twelfth of the
annual precipitation (P_mm / 12) normalized
by P_mm

0.07 0.17 0.39

PET_SI Potential evapotranspiration (PET) seasonality
index as the sum of absolute differences
between the mean monthly PET and
one-twelfth of the annual PET (PET_mm / 12)
normalized by PET_mm

0.60 0.67 0.72

Relative
location

mean_gwdepth Difference between elevation (dem) and the
mean groundwater level based on the
filled-head time series analyzed in this study

m −11.3 4.9 141.6

river_dist_m Horizontal distance to the closest stream from
EU-Hydro (EEA, 2020)

m 0.14 518.16 10 952.35

lake_dist_m Horizontal distance to the closest lake from
EU-Hydro (EEA, 2020)

m 0 1816 20 324

dsdorder Distance to stream and catchment divide from
the data set multi-order hydrological position
(MOHP, Nölscher et al., 2022a, b) (“order”
refers to the stream order considered for
assessing the point location relative to the
stream network – to reduce redundancies, only
orders 2, 4, and 6 were used; note that values
are from order 6)

m 930 48 526 133 638

lporder Lateral position from the MOHP (Nölscher et
al., 2022a, b) (see also dsdorder); the lateral
position indicates proximity to stream relative
to the watershed divide, with 0 denoting at
stream and 1 denoting at boundary

0.0003 0.4 1

sdorder Stream distance from the MOHP (Nölscher et
al., 2022a, b) (see also dsdorder)

m 30 14072 91454
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Table 2. Continued.

Category Parameter Method Unit Min Median Max

Hydrogeology kf_rank Hydrologic conductivity rank order based on
L_KF class from HÜK200 (BGR and SGD,
2016) for upper aquifer at well location; ranks
sort the hydraulic conductivities from high
(L_KF class 2) to extremely low (L_KF class
7); mixed classes were assigned mean numeric
values of the corresponding classes (e.g., L_KF
class 9 represents a mix of classes 3 and 4 and
thus got the value 3.5)

2 3 7

Land cover y18_artificial_10km Fraction of artificial land cover within a 10 km
buffer around the well (code 1 from level-1
classes) from CORINE land cover map 2018
(EEA, 2019b)

0.000 0.098 0.977

y18_agriculture_10km Fraction of agriculture (code 2) (see y18_
artificial_10km (EEA, 2019b))

0.000 0.5585 0.957

y18_forest_10km Fraction of forest (code 3) (see
y18_artificial_10km (EEA, 2019b))

0.000 0.237 0.945

y90_mining_frac_10km Fraction of mining within a 10 km buffer
around the well (code 13 from level-2 classes)
from CORINE land cover map 1990 (EEA,
2019a) within a 10 km buffer around the well

0 0 0.215

hy_3km_intersect Intersection with mining areas indicated in
HY1000 map (BGR, 2019) and 3 km buffer
around

Boolean 0 0 1

the full data set. For model training and evaluation, we used
the mlr3 package in R (version 0.17.0, Lang et al., 2019),
and for model agnostics, we used the iml package (version
0.11.1, Molnar, 2018).

2.6 Classifying vulnerability to droughts

Here, the vulnerability of groundwater systems to droughts
is defined based on the response times to meteorological
anomalies, with different possible implications for manage-
ment and ecology. We understand response times as the time
delay in the propagation of the anomaly signal from the driv-
ing force to the responding variable. The accumulation time
includes this temporal delay as it accounts for meteorologi-
cal anomalies preceding the corresponding time (Sect. 2.4).
The center of these anomalies can be considered to be half
of the accumulation time. We thus calculated the response
times from the SPEI (resptSPEI) by taking half of the opti-
mal accumulation time (accSPEI) and adding the identified
corresponding cross-correlation time lag (lagSPEI) (Table 1).
The resptSPEI can thus be interpreted as a response time
from center to center (or, in other words, peak to peak). Fi-
nally, we classified the wells into fast-, medium-, and slow-
responding groundwater systems based on three quantiles of
the distribution of resptSPEI (i.e., the 33rd and the 67th per-

centiles). These classes can serve as an important element in
vulnerability assessments of groundwater to meteorological
droughts with different characteristics.

3 Results

3.1 Variability in groundwater responses

Overall, groundwater head responses were diverse in terms
of both temporal and across-site variability. Regional pat-
terns emerged with distinct groundwater drought responses
grouped into eight clusters based on the similarities in the
SGI time series (Fig. 2). Two clusters spread across the en-
tire country (clusters lt_inc and lt_dec), while two clusters
each predominated in three distinct regions, i.e., in northeast-
ern (ne_lf, ne_hf), northwestern (nw_hf, nw_lf), and south-
ern (sw_lf, sw_hf) Germany, respectively. More closely, the
cluster lt_inc, although scattered across Germany, was still
more prevalent around Berlin and in the Upper Rhine Plain.
The number of wells within each cluster ranged from 570
(8.6 %, cluster lt_dec) to 1179 (17.8 %, cluster sw_hf). We
named the eight clusters according to their dominant charac-
teristics, referring to the clusters’ regional prevalences (nw
– northwest, ne – northeast, sw – southwest), their intrin-
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sic frequency of the change in the SGI time series (lf – low
frequency, hf – high frequency), or the dominant long-term
trend in the SGI time series (lt_inc – increasing trend, lt_dec
– decreasing trend). The characteristic response patterns are
described in the following paragraphs and are summarized in
Table 3.

Across all wells, about 36 % of the wells reached their dri-
est conditions, based on the minimum mean annual SGI, in
the last 2 years of the covered 30-year period (i.e., 2019 and
2020), and an additional 4.2 % reached their driest conditions
in the year 2018. Across the 30 years, we found 48.2 % of the
wells to have significant negative trends in the monthly SGI,
indicating drying processes, while 26.2 % showed positive
trends, indicating increasing wetness. Across clusters, the
number of positive and negative trends in SGI varied, with
cluster lt_inc, with long-term increasing heads, being dom-
inated by positive trends (98.4 %) and with cluster lt_dec,
with long-term decreasing heads, being dominated by nega-
tive (100 %) trends. All other clusters were more balanced,
with a maximum of 76.8 % of cluster wells (in the case
of cluster nw_lf, with negative trends) in one trend class
(Fig. S8, Table 3). In contrast, in precipitation anomalies
in the form of the monthly SPI1, only 11.4 % of well lo-
cations showed negative trends, and the majority had no
significant trends (88.5 %), while < 0.1 % showed positive
trends. In terms of the time series of the meteorological
anomaly SPEI1, 60.2 % show negative trends, 39.8 % show
non-significant trends, and< 0.1 % show positive trends. For
longer accumulation periods of the anomalies, the meteoro-
logical trends shift towards more negative trends, e.g., 56.9 %
for SPI24 and 92.5 % for SPEI24. The SPI and SPEI show
systematic differences, with SPEI showing more pronounced
negative trends, linking to higher SPEI values during the
1990s and lower values in the last decade of the time series
(Fig. S5).

Intrinsic time series properties also varied across sites and
clusters (Table 3). Autocorrelation length (acf_lag) across the
SGI time series ranged from 1 month to 11.4 years, with
a median of 1.75 years (Table 1, Fig. S8). The distribution
of mean drought durations across stations was right-skewed,
with a median of 3.6 months and an average drought sever-
ity of −5.12, while the median number of drought events
during the 30 years was 13. Across clusters, three clusters
(nw_hf, ne_hf, and sw_hf) had considerably shorter autocor-
relation lengths on average (median acf_lag between 0.5 and
1.5 years) than the other three clusters (nw_lf, ne_lf, sw_lf)
dominating within the same region (acf_lag between 1.5 and
2.1 years; see Fig. S8). This means that they have a higher
frequency in terms of their SGI variability (hf) compared to
their regional counterparts with a lower frequency (lf). Simi-
larly, the high-frequency clusters with shorter autocorrelation
lengths (nw_hf, ne_hf, and sw_hf) had more drought events
(median of 14–22 events compared to 8–9) with shorter
mean drought durations (median event_length between 2.7
and 3.5 months compared to 5.0 and 5.9 months) and lower

mean drought severity (median event_cumm above −5 com-
pared to below −7) than the low-frequency clusters nw_lf,
ne_lf, and sw_lf. The clusters describing the long-term trends
(lt_inc, lt_dec), on the other hand, had the highest autocorre-
lation lengths on average (median acf_lag of 4.67 and 5.00
years, respectively), although these generally also covered a
broad range of values.

3.2 Response times of groundwater heads to
meteorological drivers

Relationships between individual SGI time series and
the meteorological variables varied strongly with cross-
correlation coefficients from around 0 up to 0.95 (Figs. 3,
S8), with a median of around 0.70 for both SPI and SPEI.
This corresponds to 50 % of the variance of the groundwa-
ter head anomalies being explained by the meteorological
drivers on average. The optimal accumulation periods yield-
ing maximum cross-correlation had a median of 13 months.
The corresponding time lag between the time series at max-
imum cross-correlation was mostly zero; nevertheless, it is
important to note that there is a delay from the driver to the
groundwater response implicitly included in the correspond-
ing accumulation period considering the antecedent meteo-
rological variables.

The cross-correlation results indicate that the high-
frequency clusters (nw_hf, ne_hf, and sw_hf) with shorter
autocorrelation lengths (Sect. 3.1) were characterized by
shorter optimal accumulation periods, with median accSPEI
ranging from 4 months (sw_hf) to 1 year (ne_hf) (Figs. 3,
S8; Table 3), i.e., representing systems with shorter system
memories. In contrast, for the low-frequency clusters (nw_lf,
ne_lf, sw_lf), the median accumulation times were about 2
years. This is also reflected in cluster means, with accumu-
lation times accSPI and accSPEI of the high-frequency clus-
ters being considerably lower (between 0.3 and 1.1 years)
than their regional low-frequency counterparts (2–2.5 years,
Fig. 2b). The cross-correlations were weakest for the cluster
with a long-term increase in SGI (lt_inc), particularly for the
Standardized Precipitation Evapotranspiration Index (SPEI),
with a median coefficient of 0.41 across cluster members,
while the median was 0.60 for the Standardized Precipitation
Index (SPI, Table 3, Fig. S7 and S8). Cluster lt_dec, with
long-term decreasing SGI, in contrast, had higher median
cross-correlations for the SPEI (0.70) compared to the SPI
(0.61, Fig. S8).

This weaker link of trend clusters lt_inc and lt_dec with
the meteorological driver is also reflected in predominant
trends in the residuals between the SGI and corresponding
meteorological SPEI time series (see Fig. 5a, Table 3). Clus-
ter lt_inc has 98.4 % positive trends in the SGI−SPEIacc
residuals and 88.2 % positive trends in the SGI−SPIacc
residuals, whereas cluster lt_dec has 94.6 % negative trends
in the SGI−SPIacc residuals and 84.7 % negative trends in
the SGI−SPEIacc residuals.
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Figure 2. Spatial distribution of clusters of groundwater head anomalies within Germany and major rivers (blue lines, Strahler order
6 and higher; EEA, 2020) (a) and time series of groundwater head anomaly (SGI), precipitation anomaly (SPIacc), and precipitation–
evapotranspiration anomaly (SPEIacc) of the clusters (i.e., mean across cluster members) (b). Orange shading in (b) refers to negative
SGI values (i.e., relatively dry conditions), and blue shading refers to positive SGI values (relatively wet conditions). The orange line at
SGI=−1 indicates the threshold used for drought events, while orange segments below indicate occurrences of drought events for cluster
means. The time series in gray and purple denote the SPIacc and SPEIacc, respectively, of the highest cross-correlation derived for the cluster
means. Cluster names according to their regional prevalence (nw – northwest, ne – northeast, sw – southwest) and intrinsic SGI pattern (hf –
high frequency, lf – low frequency, lt_dec – long-term decrease, lt_inc – long-term increase; see Table 3).

3.3 Spatial controls of groundwater head responses

Random forest (RF) models were trained and evaluated
to identify controls of groundwater response patterns and
timescales in relation to meteorological drivers. Results of
selected models including the three most important features
are presented in Table 4 (results of all models shown in Ta-
ble S1 of the Supplement). The full feature importance re-
sults of the selected models are provided in Fig. S10.

The RF classification model of all eight clusters reached an
accuracy of 0.68, with accuracies ranging from 0.22 and 0.51
for the long-term trend clusters lt_dec and lt_inc up to 0.85
for the high-frequency southwestern (sw_hf) cluster. The
performance improved to an accuracy of 0.79 when predict-
ing only the six regional clusters and excluding clusters lt_inc
and lt_dec. In both models, the most important features were
the seasonality in potential evapotranspiration (PET_SI) and

the mean depth to groundwater (mean_gwdepth), with higher
feature importance values for the six-cluster model.

In the case of RF regressions, the highest R2 in the models
including all wells was 0.42 for the trend in SGI−SPEIacc
residuals (resid_senSPEI), followed by SGI−SPIacc resid-
uals (resid_senSPI) with R2

= 0.41. Both models showed
the mean annual potential evapotranspiration (PET_mm)
and the fraction of artificial surfaces within a 10 km radius
(y18_artificial_10km) as the most important features. Simi-
lar performances were reached for the models predicting the
response (resptSPEI) and accumulation (accSPEI) time of the
six-cluster data subset, with mean_gwdepth and PET_SI re-
sulting as the most important features. All other regression
models had lower performances (R2< 0.4), and, thus, fea-
ture importance is not discussed further, although there is
high overlap in rankings (Table S1).
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Figure 3. Groundwater memory timescales in relation to meteorological drivers: (a) relationship between cross-correlation between ground-
water anomaly SGI and precipitation–evapotranspiration anomaly SPEI with different accumulation periods for cluster means (lines) and
maximum cross-correlations of cluster means and of individual wells (points) and (b) distribution of optimal SPEI accumulation times of
wells within the clusters as violin plots, with additional boxplots visualizing summary statistics (median and the 25th and 75th percentiles).
n denotes number of wells per cluster.

The most important feature distinguishing the clusters in
the RF models from each other is the seasonality in evap-
otranspiration (PET_SI). This meteorological spatial fea-
ture differs for the different regions; in particular, clusters
sw_lf and sw_hf, prevalent in southern Germany, have lower
PET_SI values, whereas the northeast (especially ne_lf) has
the highest PET_SI values (Figs. 4a, S9). RF predictions re-

flect these differences, as shown in the PDPs for the six-
cluster model (Fig. 4a).

Apart from the control–response relationships learned by
the RF models, comparing the SGI and meteorological time
series reveals that groundwater anomalies vary more across
locations than those in the meteorological drivers. This is
shown by the different bandwidths representing the spatial
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Table 4. Random forest (RF) results for predicting the observed groundwater responses including the three most important features from
permutation. Performance is given as mean accuracy for classification and coefficient of variation (R2) for regression models across the
cross-validation iterations. The number of samples differs between RF models for all wells and for only the wells from regional clusters.
Note that, for RF regression, only results with R2>0.4 are shown; the results of all RF models are provided in Table S1. Feature importance
is given as the mean (across cross-validation iterations) of the median importance values of the permutation repetitions.

RF model Predicted Number of Performance Feature Importance
variable samples (accuracy, R2) (mean of medians)

Classification Cluster (all) 6620 0.68 PET_SI 1.43
mean_gwdepth 1.13
dem 1.08

Cluster (regional) 5120 0.79 PET_SI 1.81
mean_gwdepth 1.25
dem 1.20

Regression resptSPEI 5120 0.42 mean_gwdepth 1.26
PET_SI 1.12
dem 1.05

accSPEI 5120 0.41 mean_gwdepth 1.23
PET_SI 1.12
dem 1.06

resid_senSPEI 6620 0.42 PET_mm 1.11
y18_artificial_10km 1.09
PET_SI 1.06

resid_senSPI 6620 0.41 PET_mm 1.09
y18_artificial_10km 1.08
PET_SI 1.07

variability of the SGI versus the SPEI12 across all wells
(Fig. S6) and the SPEI24 across wells of the low-frequency
clusters only (Fig. 4b). The latter also shows that the main
differences between the SGI time series of the slower-
responding clusters (nw_lf, ne_lf, sw_lf) are also apparent in
the mean regional meteorological anomalies (Fig. 4b). Ex-
amples are the drought in 1997, which was more pronounced
in the northwest; the dry period in 2003 in the northeast while
the southwest was rather wet; and the wetter period in the
northeast in 2012. This shows that regional differences in
the anomalies of the meteorological drivers transfer into the
groundwater, thus resulting in distinct groundwater response
clusters for different regions.

The second most important feature to distinguish the clus-
ters in the RF models and the most important feature for
metrics of groundwater response times (respt and acc) was
the mean depth to groundwater (mean_gwdepth). Here, over-
all, clusters with a higher frequency in their internal SGI
changes (cluster nw_hf, ne_hf, sw_hf) compared to their re-
gional counterparts were linked to smaller mean groundwa-
ter depths below the surface (i.e., shallower groundwater).
This is apparent in the higher sample density of the high-
frequency clusters at lower mean_gwdepth values and is also
reflected in the higher predicted probabilities of the RF mod-
els, as shown in the partial-dependence plots (PDPs) of the

six-cluster RF model (Fig. 4a). Similarly, the tendency of
a higher depth to groundwater being linked to higher re-
sponse times (resptSPEI) within regions is apparent in the data
(Fig. 4c) and is also reflected in the relationships learned by
the RF regression model (see PDPs in Fig. S11).

The elevation (dem) was identified as the third most im-
portant predictor in the RF classification and regression mod-
els of groundwater response times (resptSPEI and accSPEI).
For the elevation, the differences between low- and high-
frequency (lf and hf) clusters varied between regions: in the
northwest, the hf cluster was located at lower elevations on
average, whereas, in the northeast and southwest, the hf clus-
ters were located at higher elevations compared to the respec-
tive lf cluster (Fig. S9). Additionally, we found that the hf
clusters tended to be closer to the streams compared to their
regional lf counterparts (Fig. S9). The distance to streams
of the fourth order (sd_order_4) was ranked as the sixth
most important and significant feature (whole range of im-
portance values > 1; see Fig. S10a and b), followed by the
second-order stream distance (sd_order_2) in the resptSPEI
and accSPEI RF models. Similarly, the hf clusters intersected
more often with riparian zones outlined in EEA (2021) with
at least 19.6 % (nw_hf) and a maximum of 59.8 % (sw_hf),
while the lf clusters varied between 4.5 % (nw_lf) and 31.8 %
(sw_lf) only.
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Figure 4. Meteorological and landscape controls of observed groundwater response patterns: (a) 2D partial-dependence plot (PDP) of
the effects of mean depth to groundwater (mean_gwdepth) and seasonality in evapotranspiration (PET_SI) on the predicted probabilities
of the six-cluster RF classification model; (b) time series of the mean SGI and SPEI24 of all clusters (gray) and of the regional low-
frequency (lf) clusters (colored lines), with the 5th–95th percentile range as shaded areas; and (c) response time in relation to precipitation–
evapotranspiration anomaly (SPEI) resptSPEI versus mean depth to groundwater for cluster members of the six regional clusters, with 2D
kernel density estimates for probabilities 0.05 and 0.1. Note that mean_gwdepth can be negative in some cases due to data uncertainty from
the approximation method using a DEM or in the case of artesian groundwater conditions.

The RF regression models for predicting the trends in
the residuals between SGI and the meteorological anomalies
(resid_sen) for all wells include land cover characteristics as
a dominant feature, namely the fraction of artificial surfaces
within a 10 km radius (y18_artificial_10km). Here, a higher
urbanization is linked to more positive trends in the residu-
als, predominant in clusters with long-term increasing SGI
lt_inc (Fig. 5a and b). The southwestern low-frequency clus-
ter sw_lt also shows a tendency towards higher resid_senSPEI
and a higher fraction of artificial surfaces. Cluster lt_inc was,
additionally, more often located in proximity to mining areas
as compared to other clusters (Fig. 5c). Thus, overall, cluster

lt_inc was found to be linked to higher urbanization levels
and mining areas.

3.4 Vulnerability of groundwater to meteorological
droughts

The vulnerability of groundwater systems was classified into
vulnerability to short-, medium-, and long-term meteorologi-
cal anomalies based on percentiles of the resptSPEI character-
istic of the six regional clusters (Fig. 6). The class of short-
term vulnerability has response times of up to 3.5 months
(containing 35.2 % of wells), whereas the class of long-
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Figure 5. Trends beyond meteorological drivers linked to anthropogenic controls; in particular, the long-term increasing SGI cluster lt_inc
has a higher fraction of artificial land cover and proximity to mining areas than other clusters. (a) Cluster-wise distributions of the trend
in the residuals of the SGI with the identified SPEIacc (resid_senSPEI). (b) Cluster-wise distributions of the fraction of artificial land cover
class within a 10 km distance based on the CORINE land cover map from 2018 (EEA, 2019b). (c) The number of wells in mining proximity
(3 km) per cluster and heatmap color according to the fraction of the cluster within the group of proximity (yes) or no proximity (no).

term vulnerability responds only after more than 9 months
(31.8 %). Note that the clusters with long-term trends over-
laying the meteorological controls (lt_inc, lt_dec) were ex-
cluded from this assessment as the response time metrics
cannot be considered to be representative of the climatic-
groundwater system response for these two clusters.

The spatial pattern of vulnerabilities shows a high vari-
ability within regions, reflecting the individual response
timescales and the concurrent occurrence of both fast-
responding (hf) and slow-responding (lf) clusters within re-
gions. Nevertheless, the represented northeastern groundwa-
ter wells have a slight tendency towards medium- or long-
term vulnerabilities as, in particular, the faster-responding
cluster (ne_hf) tends to have higher response times, with
a median of 6 months compared to 2.5 months (sw_hf)
and 3.5 months (nw_hf) for the other hf clusters (Ta-
ble 3, Fig. S8). This reflects the slightly higher accSPEI
values within ne_hf (Fig. 3). Accordingly, across regions,
we found the highest share (45.4 %) of long memories
(resptSPEI>9 months) in the northeastern clusters (ne_lf,
ne_hf). About half (49.9 %) of the wells with short response
times (resptSPEI< 3.5 months) were allocated to the southern
clusters (sw_lf, sw_hf).

4 Discussion

4.1 Spatial variability in groundwater responses

Out of the eight identified clusters, six, in three pairs of two,
were predominant in three distinct regions, while two clus-
ters were distributed across Germany (Fig. 2). Overall, the
spatial variability in groundwater head anomalies was found
to be larger than that in the meteorological driving forces
(Figs. 4b, S6). This is not surprising as a relatively high sim-
ilarity in terms of meteorology arises from the spatial coher-

Figure 6. Vulnerability classes of groundwater systems in relation
to short- (purple), medium- (green), and long-term (yellow) mete-
orological anomalies based on the 33rd and 67th percentiles of the
response time of groundwater anomaly SGI to the precipitation–
evapotranspiration anomaly SPEI (resptSPEI in months) from the
member of the six regional clusters (Table 3).
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ence in the occurrence of meteorological extremes like pre-
cipitation deficits and temperature anomalies resulting from
stable atmospheric conditions across large scales (Hari et al.,
2020; Christian et al., 2023). This contrasts with a high vari-
ability in hydrological processes in the subsurface and result-
ing site-specific groundwater dynamics (e.g., Heudorfer et
al., 2019; Lischeid et al., 2021; Kumar et al., 2016). This ap-
plies even though the spatial extent, duration, and severity of
meteorological droughts vary strongly across drought events
(Oikonomou et al., 2020; Rakovec et al., 2022). Similar ob-
servations have been described, for example, by Bloomfield
and Marchant (2013) and Kumar et al. (2016).

We found a majority of negative trends in the SGI time
series and a high number of minimum SGI values in the
last years, which is in line with prevalent negative mono-
tonic trends and minimum heads described by CORRECTIV
(Donheiser, 2022). Negative trends in the regional clusters
were more predominant in northwestern Germany, followed
by the northeast with still mostly negative trends and the
southwest with a balanced distribution of trends (Fig. S8, Sen
slope SGI). These mostly reflected trends in meteorological
drivers in contrast to the trends of the clusters with domi-
nant long-term trends (lt_inc, lt_dec), which deviated from
those of the drivers (Fig. 5a). The SPEI shows higher nega-
tive trends than the SPI (Fig. S5) in response to the increase
in temperature and, thus, potential evapotranspiration with
global warming during the study period, including the ex-
ceptionally hot summers in 2018 and 2019 (Vicente-Serrano
et al., 2010; Hari et al., 2020), in line with, for example, dif-
ferences between SPI and SPEI trends in Europe as found by
Ionita and Nagavciuc (2021). This explains the higher cor-
relations between cluster lt_dec with SPEI time series com-
pared to lt_inc and vice versa for the SPI.

The groundwater response characteristics differed across
clusters, with three clusters showing a prevalence of high
frequencies in the SGI variability, representing fast re-
sponses and shorter system memories (nw_hf, ne_hf, sw_hf),
whereas another three clusters exhibited lower frequencies
in SGI variability, representing slower responses and longer
system memories caused by dampening and attenuation of
the variability (nw_lf, ne_lf, sw_lf; Fig. 3). The median ac-
cumulation time (as a measure of memory timescale) across
the 6626 wells over 13 months was similar to previous stud-
ies (Bloomfield and Marchant, 2013; Kumar et al., 2016).
The differences in system memories were closely linked
to the groundwater drought characteristics of the clusters,
with systems with shorter memories experiencing shorter
and less severe groundwater droughts (in terms of accumu-
lated SGI) but facing drought events more often (Fig. S8), in
line with previous studies (Bloomfield and Marchant, 2013;
Bloomfield et al., 2015). The overall high variability in opti-
mal accumulation times underlines the finding by Kumar et
al. (2016) that groundwater droughts cannot be described by
a uniform meteorological drought index (in the form of the

SPI with one accumulation time); this finding was also cor-
roborated in terms of the SPEI and for Germany as a whole.

Both the autocorrelation length and the optimal accumula-
tion time identified with cross-correlations can be considered
to be metrics of system memory. Accordingly, we found both
to be lower on average in the identified fast-responding (hf)
clusters and higher in the slow-responding, low-frequency
(lf) clusters. Bloomfield and Marchant (2013) found the two
metrics, autocorrelation lengths and SPI accumulation pe-
riods, to align with a correlation coefficient of 0.79 across
14 groundwater wells in the UK. However, across the large
sample (6626 wells) in our study, this relationship could not
be confirmed with the same strength, i.e., ρspearman = 0.64
for accSPI and ρspearman = 0.60 for accSPEI. This brings into
question the transferability of one metric to the other and the
generality of this link at the level of individual wells. Al-
though both metrics represent memory timescales and are
related, they ultimately describe different properties: the op-
timal accumulation time represents the system’s memory for
past meteorological drivers, while the autocorrelation length
represents the overall persistence in the time series resulting
from the sum of effects on groundwater dynamics. Nonethe-
less, both metrics can be affected by interacting effects. For
example, some deviations might be caused by the superposi-
tion of long-term trends that interfere with the identification
of these intrinsic system response properties. Bloomfield et
al. (2015), for example, described weaker cross-correlations
between SPI and SGI time series in the case of significant
trends in the SGI. Interestingly, the SPEI accumulation times
and autocorrelation lengths deviate most for the clusters with
dominating long-term trends and, albeit less so, for the high-
frequency (hf) clusters and the northeastern low-frequency
(ne_lf) cluster (Fig. S7). This could indicate that those sys-
tems are less strongly linked to meteorological drivers. How-
ever, relatively high correlation coefficients in relation to the
SGI from cross-correlation (ccSPI and ccSPEI, respectively,
except for the cluster with long-term increasing SGI lt_inc)
generally do not support this interpretation. Another factor
could be the method of identifying accumulation times based
on the absolute maximum in correlation coefficients, while
similar values could be reached for several different accumu-
lation times in the case of stagnating accumulation, as ob-
served, for example, for the cluster with long-term decreas-
ing SGI (lt_dec) with regard to the SPEI accumulation times
(Fig. 3a).

4.2 Controls of groundwater response dynamics

We could demonstrate that the interplay between the me-
teorological drivers, landscape filtering, and anthropogenic
impacts controls groundwater response patterns and sepa-
rates them into clusters, as discussed based on the RF model
results in the following. This means that different controls
jointly operate to cause distinct groundwater head responses
at individual locations. This is also supported by the fact
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that similar features ranked high in the different RF models,
e.g., the eight-cluster and six-regional-cluster classification
model, although with varying performances and feature im-
portance values (Table 4). The similar rankings provide con-
fidence in the robustness of the results, even if model perfor-
mances are not high in the regression models, with R2< 0.5.
This range of performance is, however, not surprising given
the heterogeneity of subsurface conditions and the complex-
ity of processes, which cannot be fully represented by the
simple characteristics used as predictors. The highest model
performances, with a mean accuracy of 0.79 for predicting
the six regional clusters and of 0.42 for the groundwater re-
sponse times in relation to the SPEIacc out of the different
RF models, are comparable to those of Schuler et al. (2022).
They reached a model performance (R2

= 0.49) in the out-
of-bag evaluation of RF models for predicting autocorrela-
tion lengths at 114 wells in Ireland.

4.2.1 Different responses across regions are linked to
meteorological drivers

Meteorological drivers were identified as the major control
for distinguishing groundwater head anomalies across re-
gions based on the RF results and the regionally temporal
coherence in SPEI24 and SGI time series (Fig. 4). Three main
regions with predominant clusters were identified, i.e., north-
western, northeastern, and southern Germany.

On average, the meteorological drivers (SPEI, SPI) could
explain 50 % of the temporal variability in groundwater
heads (corresponding to the median of cross-correlation co-
efficients of cc= 0.7). This is in the same range as in previ-
ous SGI investigations (Kumar et al., 2016; Bloomfield et al.,
2015). This high explained variance was predominant in the
six regional clusters, whereas the national clusters with dom-
inant long-term trends (lt_inc and lt_dec) were less strongly
cross-correlated with the SPEI and SPI, respectively (Figs. 3,
S8).

We argue that meteorological anomalies control interre-
gional differences in groundwater head anomalies. As shown
for clusters with longer response times (Fig. 4b), major tem-
poral differences in the regional meteorological anomalies
are reflected in the average groundwater anomalies of the
same regions. For example, drier periods in the northwest
occurred around the years of 1997 and 2004, while wetter pe-
riods occurred in the northeast around 2012 and in the south-
west around 2001. In recent years (around 2018–2020), Ger-
many as a whole faced a severe meteorological multi-annual
drought (e.g., Rakovec et al., 2022), with similar average me-
teorological anomalies (based on SPEI24) mostly reaching
their absolute minima across the 30 years, translating into
wide-spread severe groundwater droughts across Germany.
Regarding the groundwater clusters with longer response
times (lf clusters), the two northern clusters (nw_lf, ne_lf)
faced more severe groundwater droughts (reflected in more
severe anomalies, i.e., lower SGI values) on average in these

recent years compared to the southern cluster (sw_lf). For the
Netherlands, the spatio-temporal development and recovery
of the groundwater drought were connected with regionally
different courses of the meteorological drought severity dur-
ing 2018–2020 (Brakkee et al., 2022), which highlights the
regional control of the meteorological driver.

The feature importance results from the RF classification
models for predicting the clusters underline this observation.
In both classification models, the seasonality in evapotran-
spiration PET_SI turned out to be the most important pre-
dictor. Nevertheless, in the six-cluster model, the model per-
formance (accuracy= 0.79) and the feature importance of
PET_SI (1.81; i.e., the prediction error was reduced by more
than 80 %) were higher than in the eight-cluster RF model.
This indicates that the predictive power of PET_SI relates
to the regional differentiation of the clusters rather than to
the two long-term trend clusters. PET_SI varies dominantly
across regions, with a general gradient from southwest to
northeast due to the variations in temperature and solar radia-
tion, depending on latitude and proximity to the sea (i.e., con-
tinental versus maritime climate), leading to the highest sea-
sonal variations in northeastern and northern Germany and
the lowest values in southern Germany. Accordingly, it has a
well-defined regional gradient, which proved to be capable of
distinguishing major regional differences in the drivers and
resulting response patterns.

4.2.2 Different responses within regions are linked to
landscape filtering

Even though a region is subject to similar meteorological
forcings (in terms of anomalies), we found a large variety
of groundwater responses within regions. These different
responses were mainly characterized by different response
timescales, i.e., the frequency in the change of the SGI or, in
other words, the system memories, and were closely linked
to the number, duration, and severity of droughts. Within the
three identified regions, landscape filtering (i.e., modulations
of the driver signal by the landscape) was identified as the
main control of the groundwater response timescale.

The mean depth to groundwater (mean_gwdepth) was
found to be the second most important feature in the RF
classifications and the highest-ranked feature in the RF re-
gressions for the response time (resptSPEI) and optimal accu-
mulation time (accSPEI) of the SPEI (Table 4). The depth to
groundwater can be referred to as the thickness of the unsatu-
rated zone in the case of an unconfined aquifer and the depth
of the water pressure head below the surface in the case of
a confined aquifer. The unsaturated zone or depth to ground-
water has been discussed as a major control of memory ef-
fects and groundwater dynamics in previous studies (Bloom-
field and Marchant, 2013; Haaf et al., 2020, 2023; Kumar et
al., 2016; Lischeid et al., 2021; Wossenyeleh et al., 2020).
Mechanistically, this can be explained by the delay of wa-
ter transport from precipitation to groundwater recharge with
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long flow paths and water travel times through the vadose
zone and by the attenuation as the infiltration front widens
due to different flow paths and flow velocities through the
unsaturated pore spaces. Wossenyeleh et al. (2020), for ex-
ample, showed that the groundwater recharge delay is closely
linked to the depth to groundwater and can be up to more
than 4 years in Belgium by modeling the flow through the
unsaturated zone. Schreiner-McGraw and Ajami (2021), in
addition, discussed the fact that the depth to groundwater in-
directly controls the response times of groundwater to multi-
year meteorological droughts as it covaries with aquifer
transmissivity and shifts the relative importance between
mechanisms, e.g., between climatic versus geographic con-
trols. Shallow unconfined aquifers can be recharged by rel-
atively fast percolation of local precipitation through a shal-
low unsaturated zone in addition to distant recharge and to-
pographic convergence of lateral flows. In contrast, in deeper
aquifers, local percolation may take significantly longer to
reach the water table (Lischeid et al., 2021), creating a de-
layed, attenuated response in groundwater heads. However,
in confined aquifers, recharge from more distant recharge
zones (e.g., a nearby mountain front) could still produce a
more immediate head response via pressure transmission.
This underlines the multi-faceted role of subsurface geo-
logic structures and geometry in defining recharge flow paths
and, in turn, depth to groundwater and groundwater head re-
sponse timescales. Indeed, although mean_gwdepth clearly
turned out to be the most important landscape predictor in
the RF models and showed a clear tendency toward shallower
groundwater being linked to shorter response times (Fig. 4),
there is scatter around this relationship (Fig. 4c) resulting
from interactions with other spatial controls and reflected in
explained variances below 50 % (R2< 0.5).

Additionally, response timescales are linked to the to-
pography. Different linkages between elevation and slow,
dampened versus fast responses (represented in the lf and
hf clusters) in the three distinct regions suggest differ-
ent mechanisms connecting elevation to response times.
On the one hand, higher elevations are usually linked to
deeper unsaturated zones (i.e., mean_gwdepth; Haitjema and
Mitchell-Bruker, 2005) and, thus, higher response times,
while groundwater heads at lower elevations close to streams
fluctuate at shorter timescales (e.g., Peters et al., 2006; Haaf
et al., 2023). This could be a dominant process in the north-
west of Germany where the fast-responding systems (nw_hf)
tend to be located at lower elevations compared to the slow-
responding systems (nw_lf; Fig. S9). Similarly, Brakkee et
al. (2022) found groundwater response times to be longer
in more elevated areas of the Netherlands, coinciding with
deeper water table depths. On the other hand, high elevations
can be linked to small depths to bedrock and aquifer thick-
ness and, thus, shorter response times and memories, as de-
scribed, for example, for Ireland, with depths to bedrock be-
low 10 m, by Schuler et al. (2022). Furthermore, in higher-
elevation mountainous regions, wells often tend to be placed

in alluvial valley fills near streams, with shallow depth to
groundwater and, in turn, faster response times. The regional
cluster pairs in the northeast and southwest have smaller
overlap in their spatial extent; e.g., in the south, the fast-
responding hf cluster includes more wells in the Upper Rhine
Plain and in the southeastern regions compared to the re-
spective slow-responding lf cluster. In the northeast, the hf
cluster extends more towards the south into more mountain-
ous areas, e.g., the Ore Mountains, while the lf cluster is
centered more in Brandenburg. Note the positive (although
not strong) correlation between the mean_gwdepth and to-
pographic variables: for the elevation ρ = 0.20, for the slope
ρ = 0.43, or for the topographic wetness index (twi) ρ =
−0.38 (Spearman correlation, Fig. S8). High mean_gwdepth
was linked to higher topographic slopes and lower wetness
indices, while the link was less clear for absolute elevation
because of the higher relevance of relative height in the hy-
drologic system between the water divide and stream net-
work (Schuler et al., 2022; Haaf et al., 2020; Rinderer et al.,
2017; Haitjema and Mitchell-Bruker, 2005). This could ex-
plain the importance of elevation in the RF models, which
can represent non-linear relationships, while the underlying
processes cannot be uniquely interpreted across regions.

Closely linked to the topography, the RF models fur-
ther indicated a link between clusters and response times
in relation to the distance to stream. The hf clusters with
shorter response times and memories (i.e., SGI changes at a
higher frequency) tended to be located closer to streams than
their regional counterparts with longer memories (lf clusters,
Fig. S9). This is in line with Peters et al. (2006), who found
higher attenuation of groundwater drought signals closer to
the water divide compared to closer to the stream. Similarly,
Haaf et al. (2023) showed that, overall, locations closer to
streams tended to show higher flashiness in daily groundwa-
ter heads and pointed out the non-linearity in the controls,
with higher importance of stream distance during wet con-
ditions. In proximity to streams, groundwater dynamics are
typically directly linked to interactions between groundwa-
ter and surface waters (Haaf et al., 2023; Nogueira et al.,
2021). For example, near-stream groundwater heads often re-
spond quickly to stream water level fluctuations via a pres-
sure response and show very similar variability due to the
confined or semi-confined conditions commonly found in al-
luvial aquifers (Bartsch et al., 2014; Gianni et al., 2016). The
distance of wells to fourth-order streams (or higher) in our
study also varied systematically between southwestern and
northern regions, which likely results from the proximity of
most wells to the Rhine (order 7) in the southwest. For larger
stream orders, Belitz et al. (2019) also pointed out that the
distances are more descriptive of the overall location than the
process, which is in contrast to smaller stream orders, where
the distance to stream is linked more directly to hydrologi-
cal mechanisms. For these small orders, Belitz et al. (2019)
showed a generally positive relationship between the well lo-
cations relative to the stream and the water divide and the wa-
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ter table depths based on random forest models. In our study,
this link between distance to stream and groundwater depth
was, however, weak across the wells; i.e., the highest corre-
lation between mean_gwdepth and the distances to different
stream orders was only ρ = 0.2 for the stream distances in-
cluding the first order (river_dist_m, Spearman correlation,
Fig. S4) and ρ = 0.16 for sd_order_1 (note that sd_order_1
was not used in RF to reduce redundancies; see Table 1).

The hydrogeological setting, as a landscape property con-
trolling the water flow in the subsurface, has been identi-
fied as a dominant control on groundwater dynamics in sev-
eral studies. Hellwig and Stahl (2018) found hydrogeolog-
ical conditions to control the response times of baseflow
from headwater catchments, which were shorter in fractured
aquifers compared to in porous aquifers. Several other stud-
ies discuss a dominant effect of aquifer transmissivity, effec-
tive porosity, storativity, or aquifer thickness on groundwa-
ter dynamics (Bloomfield and Marchant, 2013; Haaf et al.,
2023; Schuler et al., 2022). In our study, we used only satu-
rated hydraulic conductivity, which we extracted from a hy-
drogeological map representing the upper aquifers (BGR and
SGD, 2016), because of a lack of data on subsurface charac-
teristics in the used groundwater data set, including infor-
mation on the aquifer that the wells tap into. There was no
clear relationship between the saturated hydraulic conductiv-
ity (characterized by kf_rank, Table 1) and response times
and cluster, in line with Kumar et al. (2016). Differences
in terms of the effects of hydrogeological controls on head
response times identified in these studies could be due to
several reasons: the overrepresentation of specific hydroge-
ologic characteristics in the data set (e.g., highly productive
aquifers), a misrepresentation of local hydrogeological con-
ditions at a well location in a coarse hydrogeological map
(especially when local borehole data are missing), or differ-
ences in the investigated response variables (e.g., ground-
water heads with strong seasonal variations (e.g., Haaf et
al., 2020), head anomalies (e.g., Bloomfield et al., 2015), or
groundwater discharge as baseflow (e.g., Hellwig and Stahl,
2018)). For example, Haaf et al. (2020) found different con-
trols of groundwater head dynamics for confined and uncon-
fined aquifers for southern Germany. Also, different effects
of controls at local or spatially integrated scales are likely as
they represent different system characteristics and have been
shown to not be directly transferable (Kumar et al., 2016;
Hellwig et al., 2020; Van Loon et al., 2017). Studies repre-
senting spatially integrated response signals (e.g., raster or
catchment-integrated indicators such as the baseflow) seem
to find a higher relevance in terms of hydrogeological condi-
tions (Hellwig and Stahl, 2018; Hellwig et al., 2020).

In summary, the identified and discussed landscape con-
trols suggest that the spatial variability in local groundwater
drought response timescales (i.e., system memories) within
meteorologically distinct regions is dominantly controlled by
vertical low-pass filtering through the unsaturated zone and
secondarily by controls affecting the lateral flow conditions

linked to subsurface hydraulic and storage conditions. At the
integral landscape (or catchment) scale, the hydrogeological
controls of storage and discharge seem to be a more domi-
nant driver of drought propagation timescales. In this study,
we did not find a dominant and clear influence of the one hy-
drogeological variable at hand (saturated hydraulic conduc-
tivity); however, additional hydrogeologic information lack-
ing in our data set, such as the depth of the well screen, the
aquifer type (unconfined versus confined), and the aquifer
transmissivity and storativity, could provide further insights
into the causes of variable head responses.

Although differences in response times within regions
were found to be larger than between regions in Ger-
many and were dominantly controlled by landscape filter-
ing, systematic regional differences in groundwater response
times may also be linked to general climatic conditions
(humid vs. drier) and related groundwater recharge rates
(Berghuijs et al., 2024). The feature importance results from
the RF models for resptSPEI and accSPEI also ranked cli-
matic variables high, i.e., ranking the seasonality in poten-
tial evapotranspiration (PET_SI) as second, the mean an-
nual precipitation (P_mm) as fourth, and the aridity (AI) as
fifth. Cuthbert et al. (2019) showed that arid areas across
the globe with low recharge have much longer groundwa-
ter response times (i.e., hydraulic memories), which they
defined as the time to re-equilibrate when recharge con-
ditions change. In line with this, Schreiner-McGraw and
Ajami (2021) demonstrated that locations with low recharge
rates (< 200 mm yr−1) commonly experienced slower recov-
ery (recovery times > 3 years in half of the wells) from
multi-year droughts compared to areas with higher recharge
rates. This could be one reason for the overall slightly
higher response times of the groundwater systems (mem-
ories) in the less humid northeast of Germany, with lower
average groundwater recharge rates than in the more hu-
mid northwestern and southern parts. Especially for the fast-
responding clusters, the northeastern ne_hf has longer re-
sponse times compared to nw_hf and sw_hf (Fig. 3b, Ta-
ble 3). Another effect could arise from regional differences in
landscape genesis. Aquifers across northern Germany were
formed by thick, glaciofluvial deposits with stacked aquifers,
interbedded with layers of finer, less conductive sediments
such as tills and clays (e.g., Lischeid et al., 2021). In con-
trast, in the south, the hydrogeological setting is more di-
verse, including fractured and karstic aquifers, as well as al-
luvial aquifers in river valleys, where many of the wells are
located. The latter were formed under periglacial conditions
from coarse, conductive sediments derived from the Alps.

4.2.3 Anthropogenic impacts cause superimposing
trends

Across Germany, two clusters were clearly characterized by
long-term trends in the groundwater head anomalies (SGI)
and also in the residuals between the SGI and the meteo-
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rological drivers (SPI or SPEI, respectively). More specifi-
cally, they showed dominant increasing (cluster lt_inc) and
decreasing (cluster lt_dec) trends that clearly deviated from
trends present in the meteorological drivers (Fig. 5a). Those
trends are presumably caused by anthropogenic activities, as
indicated by the linkages of the cluster with rising trends
(lt_inc) and the trend variable resid_senSPEI to artificial (ur-
ban) and mining areas. The underlying mechanisms are dis-
cussed in the following.

Upward trends in groundwater heads (cluster lt_inc) were
more prevalent in regions with mining activities, such as the
open-pit lignite mining areas in western and central east-
ern Germany, and in urban areas, including the metropolitan
area of Berlin. This suggests that human activities, such as
changes in water management, are the main cause. Open-pit
mining is commonly associated with significant groundwa-
ter pumping to keep the mining pits dry, resulting in mas-
sive head drops of up to several hundred meters. Observa-
tions of rising groundwater heads can thus be linked to de-
creased groundwater pumping due to the relocation or clo-
sure of open-pit lignite mines and may occur in relative
proximity to falling groundwater heads. For example, the
trend clusters lt_inc and lt_dec both occurred in the Rhen-
ish lignite area (German: Rheinisches Braunkohlegebiet) in
central western Germany (west of Cologne). Many of the
lignite mines in the central German lignite area (German:
Mitteldeutsches Braunkohlerevier) were closed in the early
1990s after the German reunification, in line with the positive
trends in groundwater heads (lt_inc) prevailing in our data.
These effects can be expected to continue as lignite mining
activities are phased out because of the Coal Exit Act aiming
to reduce CO2 emissions in Germany.

In urban areas, changing groundwater heads can be linked
to changes in water use. Potential causes include changes in
the water demand due to demographic or industrial devel-
opments or in the used water sources. Overall, water use
in Germany has drastically decreased by more than 50 %
since the 1990s for several reasons, including technolog-
ical improvements (Umweltbundesamt, 2022b). Water de-
mand for energy (mostly cooling water) as the greatest user
has strongly decreased, but, also, the public water use de-
creased from 144l d−1 per capita in 1991 to 128l d−1 per
capita in 2019 (Umweltbundesamt, 2022a, b). Particularly in
Berlin, we found a prevalence of rising groundwater heads
(lt_inc cluster) as the water demand, which is mainly met
with supply from groundwater in this densely populated area,
has decreased by about 42 % since the 1990s (Umweltat-
las Berlin, 2018; Frommen and Moss, 2021). This contrasts
with observed groundwater head declines associated with
large urban areas and tourism and an increased water de-
mand in other temperate regions, such as in parts of France
(Chávez García Silva et al., 2024). Another reason for chang-
ing groundwater heads could be the relocation of resources
and supply wells, e.g., due to decaying water quality due to,
for example, high nitrate or sulfate concentrations, such as in

Berlin (Marx et al., 2023). It should be noted here that 25 %
of the wells in the cluster with dominant positive trends in the
SGI (lt_inc) are located in Berlin, with a very high station
density in the data set, especially in western Berlin, which
could bias the identified controls. Nevertheless, the identi-
fied effects of changing water demands can be considered to
be transferable to other urban areas, depending on local de-
mographic and industrial settings.

Additionally, active groundwater resource management
such as managed aquifer recharge can lead to rising ground-
water heads. The region of Hessian Ried (German: Hessis-
ches Ried) in the Upper Rhine Plain is a prominent exam-
ple of a region into which treated Rhine water is infiltrated
since 1989 in order to increase groundwater resources to sup-
ply water demand for agriculture and the population of the
metropolitan region, including the city of Frankfurt (Main)
(Staude, 2023; Weber and Mikat, 2011). In line with the
subsequent groundwater head increases, our study showed a
strong prevalence of the cluster with upward trends (lt_inc) in
this region. Similarly, improved groundwater management,
including managed aquifer recharge, has led to a recovery in
groundwater heads in some semiarid Mediterranean aquifers
with intense agriculture (Chávez García Silva et al., 2024)
and in other regions such as Arizona, Thailand, and Iran
(Jasechko et al., 2024). Overall, several local and regional
reasons could be identified for increasing groundwater heads
relating to either decreased groundwater abstractions or man-
aged artificial recharge of groundwater resources.

Downward trends in SGI not explainable by the mete-
orological signal alone (cluster lt_dec) could similarly be
linked to changes in anthropogenic water use, though no
clear spatial controls could be identified. Increased water
abstractions can result from various factors, including de-
mographic change; changes in mining activities; or agricul-
tural needs, which can temporarily be higher during droughts
and heatwaves, representing a positive feedback loop on wa-
ter resources. However, hard data on groundwater abstrac-
tions are typically hard to get. In our study, the spatial con-
trols associated with such potential increase in water ab-
stractions were non-unique or data characterizing them were
missing in our analysis. This is also reflected in a generally
low predictability of the cluster with decreasing SGI values
(lt_dec, with only 22 % correct classifications). Consistently,
national-scale data on groundwater abstractions are thus cru-
cial to clearly identify and assess controls and to differentiate
between meteorological and human influences on observed
changes in groundwater heads.

Overall, the anthropogenic controls identified in the ran-
dom forest regression for the trends in residuals between
groundwater and meteorological anomalies proved to be
more indicative for the positive trend deviations prevalent in
cluster lt_inc than for the less predictable negative trend de-
viations prevalent in cluster lt_dec.

Hydrol. Earth Syst. Sci., 29, 2925–2950, 2025 https://doi.org/10.5194/hess-29-2925-2025



P. Ebeling et al.: Groundwater head responses to droughts across Germany 2945

4.3 Implications

This study indicated that there is a large spatial variability in
groundwater response timescales in relation to meteorolog-
ical forcing, even within the same region. This implies dif-
ferent vulnerabilities to the different types of driving meteo-
rological drought events, i.e., meteorological extremes with
respect to different timescales represented by different accu-
mulation times.

Systems with short response times, i.e., wells with a high
frequency of head changes, are more prone to respond heav-
ily to short meteorological anomalies but can also recover
faster when the climatic drivers return to “normal” or wet-
ter conditions. Extreme short-term anomalies can be particu-
larly critical for stream ecosystems as members of the high-
frequency clusters are more closely connected to streams
(Sects. 3.3 and 4.2.2). In our study, 61.5 % of the mem-
bers of the short-term vulnerable class are located within a
500 m distance from the nearest stream, and 49 % are lo-
cated within riparian zones (EEA, 2021). The southern clus-
ters represent half of the wells with short response times
(resptSPEI< 3.5 months) and are, at the same time, more of-
ten located in proximity to streams (Figs. 2, S9) so that re-
gional differences in processes cannot be fully disentangled
due to this data bias. Stream ecosystems and groundwater-
dependent ecosystems, such as riparian wetlands, may be
severely impacted by short-term droughts if groundwater
heads drop, if stream discharge falls below the ecological
minimum flows, and if streams become losing (i.e. stream
water flows into the groundwater) or even fall dry. Moreover,
baseflow has also been shown to have short response times,
within a range of a few months only (Hellwig et al., 2020).
Thus, groundwater systems with short response times seem
to imply a high ecological drought vulnerability. In addition,
small, fast-responding aquifers, like local riparian aquifers,
may be highly susceptible to short-term droughts (Schuler
et al., 2022) and, thus, may require backup water supply re-
sources.

Systems with long response times, i.e., wells with a low
frequency of head changes, show a response when meteo-
rological anomalies accumulate over longer periods, such as
for more than a year. At the same time, these systems only
recover slowly and retain a long memory, potentially leading
to legacy effects from past management or climate condi-
tions even after (driving) conditions normalize. While they
can buffer short-term climatic fluctuations and thus serve to
bridge short droughts of a few months with regard to wa-
ter demands, they are more vulnerable to extended droughts
or overuse due to their long recovery times. Consequently,
locations with long response and recovery times may be
particularly at risk in relation to consecutive droughts, in-
creasing with climate change (e.g., Rakovec et al., 2022),
if the intervals between extreme events are too short or if
precipitation and subsequent recharge events are insufficient
for full recovery of the groundwater storage lost during the

drought (Schreiner-McGraw and Ajami, 2021). A large-scale
groundwater modeling study for Germany, which assessed
recovery times after severe drought under long-term aver-
age recharge conditions, found the longest recovery times of
more than 5 years in the northeast (Hellwig et al., 2021). This
is in line with the regional patterns of groundwater response
times observed in this study as the northeastern clusters in-
cluded almost half of the wells (45.4 %) with long memories
(resptSPEI>9 months) despite the intra-regional variability
in observed response times. Identifying and understanding
these systems with long response times might be particularly
crucial for water management and could thus be classified in
terms of management sensitivity.

Different implications for the different response patterns
can be derived from changes in the climatic variability due to
global warming.

– Firstly, hydroclimatic seasonality is expected to in-
crease, i.e., longer periods of heatwaves and precipita-
tion deficits in summer, as well as more heavy rainfall
in the wet winter periods (IPCC, 2023). This change is
reflected in past observations of seasonal meteorolog-
ical drought indices showing more negative trends in
summer SPEI3 compared to during other seasons (Ionita
and Nagavciuc, 2021). For the future, the more extreme
meteorological seasonal conditions are projected to re-
sult in increases in winter groundwater recharge (main
recharge season) and decreases in summer groundwa-
ter recharge in central Europe, although a high uncer-
tainty resulting from different climate projections and
from different hydrological models exists (Kumar et
al., 2025). This is expected to affect both groundwa-
ter head and baseflow seasonality (Hellwig et al., 2021).
In this context, Hellwig and Stahl (2018) discussed the
fact that catchments with short response times could
be more prone to decreasing low flows as precipitation
deficits in summer could not be buffered across seasons
in such systems. Wunsch et al. (2024) also found that
meteorological conditions during summer mainly con-
trol low groundwater heads in autumn in shallow uncon-
fined aquifers, which cannot be prevented by a preced-
ing wet winter. However, there has been little reflection
on the dependence on response times in groundwater,
which we found to be highly variable spatially. Indeed,
we also found groundwater wells with subseasonal re-
sponse times (about one-third of wells had response
times of resptSPEI ≤ 3.5 months). These groundwater
systems with short-term memories could thus poten-
tially be more strongly affected by the increasing hy-
droclimatic seasonality. As these fast-responding sys-
tems are often located in proximity to streams (Fig. S9,
Sects. 3.3 and 4.2.2), this could lead to an increase of
losing and intermittent streams and could further exac-
erbate ecological drought vulnerability.
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– Secondly, multi-year or consecutive meteorological
droughts are expected to increase in terms of frequency
and intensity with climate warming (e.g., Rakovec et al.,
2022; IPCC, 2023). They will likely affect the ground-
water systems with long memory more heavily as the
time for recovery in between may be too short. For ex-
ample, in the recent multi-year drought (2018–2020),
45.9 % of the slow-responding (lf) wells experienced
their minimum mean annual SGI (since 1991), out of
which only < 1 % had their minimum in 2018, but
58.9 % had their minimum in 2020, while meteorologi-
cal anomalies on an annual basis were strongest in 2018.
In contrast, 17.5 % of the 41.5 % of the fast-responding
(hf) wells with minima in 2018–2020 already showed
their minimum in 2018, and about 49.4 % showed their
minimum in 2019. Droughts of this or even more sever-
ity challenge water management, particularly consider-
ing the positive feedback between climatic conditions
and human use as water demand increases during heat-
waves and droughts.

– Lastly, increasing temperatures impact water balance
components in multiple ways, such as by increasing po-
tential evaporation and glacier melt, as well as by de-
creasing snowfall in the long term (e.g., Fontrodona
Bach et al., 2018). Such changes in the water balance
are likely to affect future groundwater resources through
changes in groundwater recharge; however, this is out of
the scope of this study.

As the derived response times of the cluster members with
a dominant long-term trend (lt_inc, lt_dec) are likely not
to be representative for the climatic groundwater system re-
sponse, the vulnerability map only refers to the other six re-
gional cluster members. Nevertheless, the clusters with long-
term decreasing trends might be specifically vulnerable, not
only to variability in the climatic drivers but also to superim-
posed changes in boundary conditions, such as from anthro-
pogenic activities or long-term changes in the climate.

Inspired by the discussion in Bloomfield et al. (2015), the
identified SGI clusters could also be used to identify repre-
sentative wells for larger regions or aquifers (i.e., the specific
clusters) and for short-term forecasting using seasonal hydro-
climatic forecasts. Both aims could be combined into repre-
sentative (for cluster) and meteorologically “well-behaved”
(high cross-correlation between anomalies) wells represent-
ing characteristic systems. This would, however, need further
evaluation.

Furthermore, spatially comprehensive predictions of re-
sponse timescales would be desirable to inform water man-
agement, which relies on spatially representative information
regarding the groundwater status. However, the fact that the
main identified control of response timescales within regions,
i.e., mean depth to groundwater, is not known in space and,
in addition, can change in the long term challenges this goal.
Potentially, for areas where mean groundwater depth can be

associated with other controls, such as the topography, spa-
tial predictions could be tested (Schuler et al., 2022). Further
research is needed to establish a spatially seamless mapping
of groundwater drought vulnerabilities in Germany.

5 Conclusions

Overall, this large-sample analysis of groundwater head
anomalies across 6626 wells in Germany revealed a high spa-
tial variability in groundwater head responses to meteorolog-
ical anomalies. Within this variability, wells were grouped
by similarity in terms of groundwater head anomalies into
six regional clusters, distinguished by three meteorologically
distinct regions and two response timescales, and two coun-
trywide clusters. The identified regions with similar response
patterns were the northwest, northeast, and the south of Ger-
many. The median response timescales in terms of meteo-
rological accumulation times ranged from a few months for
systems with shorter memory to several years for systems
with longer memory (or persistence). The characteristic re-
sponse timescales were closely linked to the frequency, du-
ration, and severity of groundwater droughts.

The main cause for distinct groundwater responses (repre-
sented by the SGI) across regions was found to be the dif-
ferences in the meteorological driving forces (SPI, SPEI).
These drivers could, on average, yield cross-correlation re-
sults of cc= 0.7 considering the individual optimal response
timescales. Variables defining landscape filtering – in par-
ticular, the depth to groundwater – were the main controls
of response timescales distinguishing the high- and low-
frequency clusters within the same regions. Apart from that,
long-term trends in the SGI superimposing the meteorolog-
ical drivers defined the two countrywide clusters and were
attributed to changes in anthropogenic impacts. In particular,
the long-term increasing-trend cluster was linked to urban
and mining areas potentially associated with decreased ab-
stractions due to ceased mining (e.g., in the central German
lignite mining area) and declining water use (e.g., in the city
of Berlin) or to artificially recharged groundwater (e.g., in
Hessian Ried).

The vulnerability of groundwater systems to different
meteorological droughts was classified according to their
short-, medium- or long-term response times, with different
implications for ecosystems and water management. Fast-
responding systems, prevailing in the proximity of streams,
might be at higher risk with increasing seasonality in meteo-
rological drivers under climate change as hydroclimatic vari-
ability cannot be buffered across seasons. Slow-responding
systems could be more affected by consecutive and multi-
year droughts, as was experienced recently in the 2018–2020
drought, with these being projected to increase in terms of
frequency and severity under climate change, due to long re-
covery timescales.
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Overall, this study increased the understanding of dynamic
groundwater responses to droughts and their different re-
gional and local controls and derived vulnerability classes
within Germany. The distinct responses to meteorological
drivers reveal different implications to be expected under cli-
mate change. These insights can inform policymakers, water
resource managers, and stakeholders for developing effective
strategies for mitigating the impacts of droughts on ground-
water systems and ensuring sustainable water management
practices.
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