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Abstract. Large-scale hydrologic models (LHMs) are in-
creasingly relied upon for assessing climate-driven hydro-
logic changes from watershed to global scales. However,
their ability to provide robust projections for a range of hy-
drologic variables remains unclear. Here, we evaluate the his-
torical performance and future projections from the Com-
munity Water Model (CWatM) LHM against the Variable
Infiltration Capacity (VIC) watershed hydrologic model for
the Liard River basin (drainage area of ∼ 275 000 km2) in
subarctic Canada. The model setups have key differences in
terms of model configuration (CWatM is set up with two
subbasins, and VIC is set up with 28 subbasins) and model
structure (e.g., snowmelt and frozen soil representation). We
drive both models with an ensemble of eight global climate
models from the Coupled Model Intercomparison Project
Phase 6, downscaled and bias-corrected with a multivariate
method. We analyze a range of hydrologic projections at 1.5
to 4.0 °C global warming levels (GWLs) above the preindus-
trial period. The historical performance benchmarking shows
reasonable goodness-of-fit metrics for both models, with a
slightly better performance for VIC. Projected hydrologic
responses from CWatM are generally consistent with VIC
in terms of annual water balance, as well as monthly snow
water equivalent and flow changes, suggesting the robust-
ness of the projections. Both models project coherent hydro-
logic changes, including progressively higher annual evap-
otranspiration; increased annual, winter, spring, and maxi-
mum flows; increased frequency of extreme flow; and ear-
lier timing of maximum flow, with higher GWLs. However,
the magnitudes of maximum flow and late-summer flow di-
verge between the two models, which can be explained by
structural uncertainties associated with the representation of

frozen soil and groundwater processes. Thus, our study pro-
vides insights into the robustness of hydrologic projections
from an LHM and offers a basis for model improvements.

1 Introduction

Hydrologic models are essential tools for assessing histori-
cal and future changes in water cycle variables from a water-
shed to regional and global scales. It is a common practice
to employ watershed-scale hydrologic models for assessing
the impacts of anthropogenically driven change, such as land
use, riverine change and climate change (e.g., Byun et al.,
2019; Chegwidden et al., 2019; Eum et al., 2016; Shrestha
et al., 2019). In recent years, global water models have in-
creasingly been relied upon for assessing the past or present
changes and for projecting future changes in hydrological
variables from regional to global scales (e.g., Döll et al.,
2018; Krysanova et al., 2020; Pokhrel et al., 2021; Greve et
al., 2023).

Global water models broadly originate from the climate
science community as land surface models, from the global
hydrology and water resources community as global hydro-
logic models (GHMs), and from the vegetation and car-
bon modelling community as dynamic vegetation models
(Bierkens, 2015; Telteu et al., 2021). Particularly, GHMs are
closely related to watershed hydrologic models (WHMs) in
terms of modelling philosophy and functionality but may dif-
fer with WHMs in physical process representation and spa-
tial discretization. Specifically, GHMs are generally designed
to provide consistent simulation of the water cycle compo-
nents at continental or global scales with a simplified rep-
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resentation of physical processes (Hattermann et al., 2017;
Veldkamp et al., 2018). In contrast, WHMs typically include
more sophisticated and complex process representations that
are often tailored to the specific characteristics of a water-
shed or river basin. In terms of spatial discretization, WHMs
offer finer resolution (typically ≤ 10 km) than GHMs (typi-
cally 0.5°× 0.5° or ∼ 50 km× 50 km at the Equator), allow-
ing for greater topographic complexity. The two modelling
approaches may also differ in terms of model parameteriza-
tion, with GHMs generally parameterized to represent large-
scale processes and not calibrated to watershed-specific con-
ditions, whereas WHM parameters are calibrated using river
discharge and other available observations, e.g., snow water
equivalent and evaporation (Krysanova et al., 2020). These
differences could cause GHM-simulated responses to diverge
from observations and WHM simulations, especially in repli-
cating extreme maximum and minimum flows (Zaherpour et
al., 2018; Heinicke et al., 2024). In northern regions, some
GHMs may perform poorly due to the lack of representation
of cold-climate processes (Gädeke et al., 2020).

These limitations are being addressed through ongoing
enhancements in the GHMs (Bierkens, 2015; Telteu et al.,
2021). For example, improvements in physical process rep-
resentation have resulted in a more reasonable reproduction
of monthly and seasonal streamflow dynamics, as well as
extreme flows (Huang et al., 2017; Veldkamp et al., 2018).
Calibration of GHMs against observations (e.g., streamflow
and evaporation) has also led to improvements in model per-
formance (e.g., Zaherpour et al., 2018; Burek et al., 2020;
Döll et al., 2024). Furthermore, parameterization of GHMs
using regionalization methods has also improved their per-
formance (e.g., Beck et al., 2016; Qi et al., 2022; Yoshida et
al., 2022). Additionally, finer spatial resolutions of 5 arcmin
or less are becoming more common in GHMs (e.g., Burek et
al., 2020; Hanasaki et al., 2022; van Jaarsveld et al., 2024).
Thus, the distinction between the GHM and WHM when ap-
plied at a large river basin scale is diminishing, and more
consistent hydrological assessments from river basin to re-
gional and global scales is being facilitated. In this respect,
GHMs, when applied at river basin scales, have also been re-
ferred to as large-scale hydrologic models (LHMs) (Merz et
al., 2022; Hanus et al., 2024). However, key differences be-
tween the two modelling approaches may remain in terms of
model configuration, e.g., LHMs are usually configured over
entire river basins, whereas WHMs are usually configured
with multiple subbasins. Furthermore, differences in physi-
cal process representation, especially dominant processes in
a basin, may results in differences in hydrologic responses.

In this respect, as suggested by Beven (2023), a fit-for-
purpose benchmarking to consider the suitability of a hydro-
logic model structure prior to a specific application is highly
relevant. Benchmarking LHMs prior to watershed-scale or
regional applications is also important as these models are
designed to represent large-scale hydrologic processes and
are not tailored to specific hydrologic conditions. There is,

of course, no guarantee that a model that performs well for
the historical climate will provide reliable future projections
(Krysanova et al., 2020). However, it could be argued that
an LHM’s ability to replicate future simulations of a WHM
increases the confidence in LHM-based projections.

Here, we present a benchmarking study that assesses the
robustness of hydrologic responses from an LHM in compar-
ison to a WHM in the context of climate change impacts. We
focus on two key research questions. (1) Can an LHM, set up
at a river basin scale, replicate the historical simulations and
future projections from a WHM, configured with multiple
subbasins? (2) How do the structural differences between the
two modelling approaches affect the magnitude and direc-
tion of the projected hydrologic response? To address these
questions, we set up the Community Water Model (CWatM)
(Burek et al., 2020) as an LHM and the widely used Variable
Infiltration Capacity (VIC) (Liang et al., 1994; Hamman et
al., 2018) as a WHM for the Liard River basin in subarc-
tic Canada. We drive both models with an ensemble of eight
global climate models (GCMs) that participated in the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) exper-
iment (Eyring et al., 2016), downscaled and bias-corrected
with the multivariate bias correction algorithm (MBCn; Can-
non, 2018). After benchmarking a set of statistical goodness-
of-fit metrics of CWatM and VIC simulations, we analyze
the robustness of a set of projected hydrologic responses,
including annual water balance, monthly flow, snow water
equivalent, annual maximum flow and timing, and flood fre-
quencies. We compare the range, magnitude and direction of
changes, as well as agreement among ensembles, at the 1.5,
2.0, 3.0 and 4.0 °C global warming levels above the preindus-
trial period. Furthermore, this study updates CMIP5-based
VIC model projections for the Liard River basin from previ-
ous studies (Shrestha et al., 2019, 2022).

2 Study basin

This study focuses on the Liard River basin (LRB), a large
mountainous basin in northwestern Canada with a drainage
area of approximately 275 000 km2. The river’s headwaters
originate in the Cordillera mountains, with the drainage area
covering parts of four Canadian provinces/territories: Yukon,
British Columbia, Northwest Territories and Alberta (Fig. 1).
The Liard River is a major tributary of the Mackenzie River,
covering about 16 % of its drainage area and contributing
about 25 % of discharge (Shrestha et al., 2019). Located in
the subarctic zone, most of the basin is underlain by dis-
continuous permafrost (based on the classification by Hegin-
bottom et al., 1995). The LRB is mostly in a pristine state,
with very limited resource development and about 74 % for-
est coverage (Bonsal et al., 2020). Thus, the basin offers a
good case for assessing the effects of LHM and WHM struc-
tures in simulating the cold-climate hydrologic regime, dom-
inated by flows from snowmelt and frozen ground, and not
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affected by direct human impacts such as dams and reser-
voirs.

The mountainous topography of the region exerts a strong
influence on the basin’s climatology, particularly over the
Cordillera mountains, creating a strong precipitation gradient
(Szeto et al., 2008). The mean annual precipitation, temper-
ature and runoff in the basin over the years 1979–2012 were
about 570 mm, −2.0 °C and 290 mm, respectively (Shrestha
et al., 2019). Seasonally, the basin receives a higher frac-
tion of annual precipitation between April and September,
while the runoff regime is dominated by snowmelt-driven
high flows during the spring and summer months (Woo and
Thorne, 2006). Annual air temperature and precipitation in
the basin have increased by 2.2 °C and 12 %, respectively,
over the years 1948–2016 (Bonsal et al., 2020). However,
mean annual and maximum streamflow trends for most sta-
tions in the basin are negligible, except for the minimum flow
increases (Shrestha et al., 2021).

3 Models, data and analyses

3.1 Hydrologic models

We employed the Variable Infiltration Capacity (VIC) hydro-
logic model version 5.0.0 (Liang et al., 1994, 1996; Hamman
et al., 2018), set up at a 1/16° spatial resolution for the LRB
(Shrestha et al., 2019, 2022), as a benchmark WHM. VIC is
a process-based, semi-distributed hydrologic model that ac-
counts for sub-grid variability in snow and vegetation. Since
its initial development in the 1990s, the model has undergone
several updates and refinements. Especially the inclusion of
key cold-region processes of energy balance over snow and
frozen ground (Cherkauer and Lettenmaier, 1999, 2003; An-
dreadis et al., 2009) makes VIC suitable for the LRB; hence,
VIC was considered a WHM. VIC has been used extensively
for assessing the hydrologic impacts of climate change across
cold-region river basins (e.g., Schnorbus et al., 2014; Eum et
al., 2016; Chegwidden et al., 2019; Shrestha et al., 2019).

We compared the Community Water Model (CWatM) ver-
sion 1.081, a large-scale, semi-distributed model developed
for regional- to global-scale hydrologic applications (Bu-
rek et al., 2020), with the VIC model. Although CWatM
was originally designed as a GHM, it has been adapted as
an LHM with finer spatial resolution and model calibration
setup. CWatM is not tailored for a specific region and de-
veloped with the philosophy of “as complex as necessary
but not more” (Burek et al., 2020); it includes a simpli-
fied representation of cold-region processes, such as snow
accumulation and melt and soil water movement through
frozen soil. Similar to VIC, it accounts for sub-grid vari-
ability in snow and land cover. Furthermore, recent cou-
pling of CWatM with a glacier model (Hanus et al., 2024)
makes it suitable for cold-region applications, such as an as-
sessment of impacts of climate change in glaciated water-

sheds. CWatM has been used for streamflow simulation in
several global-scale assessments (Burek et al., 2020; Greve
et al., 2020; Heinicke et al., 2024) and as part of a multi-
GHM ensemble for future projections of floods, water short-
age and drought (Boulange et al., 2021; Pokhrel et al., 2021;
Satoh et al., 2022). However, to our knowledge, applications
specifically focused on climate change impacts in cold re-
gions are not available. For this study, we used the 5 arcmin
(or 1/12°) resolution CWatM configuration, including the
static geospatial data made available by the model devel-
opers (ftp://rcwatm:Water1090@ftp.iiasa.ac.at/, last access:
3 June 2025).

As summarized in Table 1, a major difference in the two
model setups is the number of subbasins, with VIC con-
figured as WHM by subdividing LRB into 28 subbasins
and CWatM configured as an LHM by subdividing into 2
subbasins. While it is technically feasible to subdivide the
CWatM setup to match the VIC subbasin structure, setting
up and running it over 28 subbasins will be cumbersome, be-
cause, like most LHMs, CWatM is designed for large-scale
applications and not for running over nested subbasins with
multiple parameter sets. Note that VIC could also be set up
as an LHM similar to CWatM. However, we wanted to apply
these models as they were designed to be used – an LHM
at the large basin scale and a WHM over multiple subbasins
– and address research question 1. Nevertheless, we set up
CWatM for the Liard River at the Upper Crossing (Liard-UC)
subbasin to compare with the VIC model setup (Liard-UC is
further subdivided into three subbasins in VIC) for a rela-
tively small subbasin (drainage area= 32 600 km2). Besides
the number of subbasins, the two model setups also differ in
terms of spatial resolution and base geospatial datasets (soil,
land cover and digital elevation model) (Table 1).

The representations of hydrologic processes in VIC and
CWatM are mostly similar, except for subsurface flow,
snow and frozen ground (Table 2). Specifically, the three-
component runoff generation processes in CWatM, consist-
ing of direct runoff, interflow and baseflow, differ from
the two-component formulation in VIC, consisting of sur-
face runoff and subsurface flow (baseflow). The presence of
groundwater storage in CWatM can be expected to lead to
delayed baseflow response compared to VIC without ground-
water storage and baseflow response represented by a nonlin-
ear function. Additionally, the representation of cold-region
processes differs between the two models, with a full en-
ergy balance snow model and coupled soil thermal and mois-
ture flux frozen ground model in VIC and with radiation-
restricted snowmelt and frost index methods in CWatM. The
differences in snowmelt methods could potentially lead to
differences in snowmelt and runoff outputs. Finally, frozen
soil methods control the soil water movement through frozen
soil, and the differences can be expected to influence runoff
generation pathways and consequently streamflow simula-
tion. We considered these differences in VIC and CWatM
structures for assessing effects on the magnitude and direc-
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Figure 1. Location map of the Liard River basin. Also shown are the outlets of the Liard-M (Mouth) and Liard-UC (Upper Crossing) basins
for which analyses were performed.

tion of hydrologic responses, according to research ques-
tion 2.

3.2 Climate data and downscaling

We used daily temperature, precipitation and wind speed
from the Pacific North Western North America gridded mete-
orological data (PNWNAmet; Werner et al., 2019) as inputs
for the calibration of both VIC and CWatM and as the tar-
get dataset for statistical downscaling (Table 1). PNWNAmet
is a spatially contiguous and temporally consistent dataset
spanning the years 1945–2012, which has been found to out-
perform other gridded observational data products available
for the region in terms of climate means, extremes and vari-
ability, as well as streamflow trends and runoff ratios, when
used to drive the VIC model (Werner et al., 2019). The PN-
WNAmet dataset has a spatial resolution of 1/16°, matching
the resolution of the VIC model used in this study.

We used an ensemble of eight CMIP6 GCMs (summa-
rized in Table S1 in the Supplement) based on the GCM
selection by Mahony et al. (2022) for the Intergovernmen-
tal Panel on Climate Change (IPCC) reference Northwest-
ern North America region. The GCM selection methodology
uses 10 different criteria, and the selected eight-model sub-
set represents the very likely range of Earth’s equilibrium
sensitivity according to IPCC’s recent assessment (Arias et
al., 2021). For each GCM, we considered the historical pe-
riod (1950–2014) and two shared socioeconomic pathways
(SSPs), consisting of high (SSP5-8.5) and moderate (SSP2-

4.5) scenarios over the years 2015–2100. Thus, uncertainties
due to GCM structure, greenhouse gas concentration and an-
thropogenic forcing pathways – which are the most important
sources of uncertainties in projecting hydrologic impacts of
climate change (Hattermann et al., 2018; Chegwidden et al.,
2019) – are considered in this study.

We employed a state-of-the-art N -dimensional probability
density function transform and multivariate bias correction
method (MBCn; Cannon, 2022, 2018) to spatially disaggre-
gate and bias-correct coarse-resolution GCM outputs, con-
sisting of daily precipitation, maximum and minimum tem-
perature, and wind speed, to the 1/16° resolution of the PN-
WNAmet dataset. This method preserves multivariate depen-
dence of the target observational data, which is an important
consideration for multivariate climate extremes (Zscheis-
chler et al., 2019) and cold-region hydrologic processes, such
as precipitation and temperature interactions on snow accu-
mulation and melt processes (Meyer et al., 2019; Warden et
al., 2024). MBCn builds on an image processing technique
(Pitié et al., 2007) that operates by iteratively (i) applying a
random orthogonal rotation to both climate model and ob-
servational target datasets, (ii) correcting the marginal distri-
butions via quantile mapping, and (iii) rotating datasets back
to the original axes and checking convergence. The iterative
steps ensure the transfer of the climate model’s marginal dis-
tributions and empirical copula in the historical calibration
period to those of observations. For the future period, pro-
jected changes in the corrected quantiles are also constrained
to match those of the raw climate model. We used the 63-year
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Table 1. Model resolution, geospatial and meteorological datasets, and model calibration for VIC and CWatM setups in this study.

VIC CWatM

Spatial resolution 225 arcsec, sub-grids for vegetation and
elevation bands for snow

300 arcsec, sub-grids for land cover and
elevation bands for snow

Digital elevation model 7.5 arcsec Global Multiresolution Terrain
Elevation Data 2010 (Danielson and Gesch,
2011)

3 arcsec from the National Aeronautics and
Space Administration Shuttle Radar
Topographic Mission (Jarvis et al., 2008)

Land cover 250 m land cover dataset from North American
land change monitoring system (Latifovic et
al., 2012)

1 arcsec forest land cover (Hansen et al., 2013),
300 arcsec land use dataset with crop groups
from the Hyde 3.2 database (Klein Goldewijk
et al., 2017)

Soil 300 arcsec soil classification and
parameterization dataset based on the Soils
Program in the Global Soil Data Products
CD-ROM (Global Soil Data Task, 2014)

30 arcsec from Harmonized World Soil
Database 1.2 (FAO, 2012)

Temporal resolu-
tion/meteorological
inputs

3 hourly: mean air temperature, total
precipitation, wind speed, atmospheric
pressure, incoming shortwave radiation,
incoming longwave radiation and vapour
pressure. Disaggregated and generated from
daily maximum and minimum air temperature,
total precipitation, and wind speed
(PNWNAmet datasets, Werner et al., 2019, and
downscaled GCMs) using MTCLIM built into
the VIC model (Thornton et al., 2000)

Daily: mean, maximum, and minimum air
temperature; total precipitation; wind speed;
atmospheric pressure; relative humidity;
incoming shortwave radiation; and incoming
longwave radiation. Generated from daily
maximum and minimum air temperature, total
precipitation, wind speed (PNWNAmet
datasets, Werner et al., 2019, and downscaled
GCMs) using MTCLIM/MetSim (Thornton et
al., 2000; Bennett et al., 2020)

Model calibration Model calibrated at the outlets of 28 subbasins
by comparing with the discharge data from the
Water Survey of Canada hydrometric stations
(https://wateroffice.ec.gc.ca/, last access:
3 June 2025). Calibration using the
non-dominated sorting genetic algorithm
(NSGA-II) (Deb et al., 2002). Best performing
model selected from the trade-off of three
objective functions: (i) Nash–Sutcliffe
coefficient of efficiency (NSE), (ii) NSE of
log-transformed discharge (LNSE) and
(iii) volume bias (VB) using fuzzy preference
selection method (Shrestha and Rode, 2008).
Calibration period: 1984–1993; validation
period: 1994–2003.

Model calibrated at the outlet of two subbasins
only (headwaters: Liard-UC, outlet: Liard-M)
by comparing with observed discharge from
the Water Survey of Canada hydrometric
stations (https://wateroffice.ec.gc.ca/).
Calibration using the single objective version
of the NSGA-II (Deb et al., 2002) as
implemented in the Python DEAP package
(Fortin et al., 2012) with Kling–Gupta
efficiency (KGE) criteria (which is a
combination of correlation, bias ratio and
variability ratio; Gupta et al., 2009).
Calibration period: 1984–1993; validation
period: 1994–2003.

Calibration parameters Six parameters: variable infiltration curve
parameter, fraction of maximum soil moisture
for nonlinear baseflow, maximum velocity of
baseflow, fraction of maximum velocity for
nonlinear baseflow and saturated hydraulic
conductivity with soil moisture.

10 parameters: snowmelt coefficient, crop
factor for evapotranspiration, soil depth factor,
preferential flow constant, infiltration capacity,
interflow factor, groundwater recession
coefficient, runoff concentration, Manning’s
roughness coefficient (n) and reservoir normal
storage limit.

1950–2012 period for calibration of MBCn, with bias cor-
rections applied over three 21-year sliding window blocks to
match the length of the calibration period. For further details
on the MBCn, readers are referred to Cannon (2018).

Both PNWNAmet and downscaled GCMs required pre-
processing before they could be used as inputs to VIC and
CWatM. For VIC, we employed the built-in Mountain Micro-
climate Simulation Model (MTCLIM) (Thornton and Run-
ning, 1999) to disaggregate and generate 3-hourly meteoro-
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Table 2. Summary of key physical process representation in VIC and CWatM as used in this study.

VIC CWatM

Potential
evapotranspiration

Penman–Monteith equation with canopy
resistance set to zero (Shuttleworth, 1993)

FAO Penman–Monteith with hypothetical
reference vegetation (Allen et al., 1998)

Snow accumulation
and melt

two-layer energy balance snow model
(Andreadis et al., 2009)

Radiation-restricted degree-day factor
(Erlandsen et al., 2021) – introduced in
CWatM version 1.081 – modified for this study
to account for snow albedo decay as in the VIC
model (https://github.com/aranhax/CWatM,
last access: 3 June 2025).

Infiltration Xinanjiang infiltration capacity method (Zhao
and Liu, 1995)

Xinanjiang infiltration capacity method (Zhao
and Liu, 1995)

Soil water
movement

Unsaturated flow through three-layer soil
column using the one-dimensional Richards
equation.

Unsaturated flow through three-layer soil
column using the one-dimensional Richards
equation.

Runoff components,
groundwater storage
and baseflow

Two-component runoff: surface runoff and
baseflow. Groundwater storage not available,
ARNO baseflow recession curve for drainage
from bottom soil layer, with parameters
controlling nonlinear baseflow (Franchini and
Pacciani, 1991).

Three-component runoff: direct runoff,
interflow (that contributes to both surface
runoff and groundwater) and baseflow.
Groundwater storage using linear reservoir
approach and baseflow a function of
groundwater storage and recession coefficient
(Burek et al., 2020).

Frozen ground Soil thermal and moisture fluxes are coupled
processes, with soil water movement under
frozen soil condition dependent on ice content.
Ground heat flux through the soil temperature
profile using the finite difference method and
no flux boundary (Cherkauer and Lettenmaier,
1999, 2003).

No frozen soil formulation, empirical frost
index method (Molnau and Bissell, 1983) to
consider frozen soil state and restrict soil water
movement through the top two layers.

River routing Linearized version of the Saint-Venant
equations, with impulse response functions
(i.e., unit hydrographs) to represent distribution
of flow at the outlet point (Lohmann et al.,
1998).

Kinematic wave approximation of the
Saint-Venant equations (Chow, 2010) with
coefficients calculated using Manning’s
equation.

logical inputs of precipitation, maximum and minimum air
temperature, wind speed, longwave radiation, shortwave ra-
diation, atmospheric pressure, and vapour pressure for run-
ning it in an energy balance mode. For CWatM, we first
regridded the daily maximum and minimum air temper-
ature, total precipitation, and wind speed from both PN-
WNAmet and downscaled GCMs to the CWatM resolution
of 1/12° by using bilinear interpolation. We then used the
MTCLIM method, available in the Python Meteorology Sim-
ulator package (Bennett et al., 2020), to generate additional
daily inputs required for CWatM, which include longwave
radiation, shortwave radiation, atmospheric pressure and rel-
ative humidity.

3.3 Model calibration and projection runs

VIC and CWatM were calibrated at a subbasin level us-
ing pre-processed PNWNAmet datasets (Table 1) as inputs.
Specifically, for VIC, we calibrated 28 subbasins of the LRB
using three objective functions, as described in our previous
study (Shrestha et al., 2019). For CWatM, we calibrated two
subbasins using a single objective function, as designed for
a typical calibration setup by the model developers (Burek et
al., 2020). The calibration of the two models also differs in
terms of the number of parameters (Table 1). More impor-
tantly, several different parameter combinations could yield
similar model performance due to model equifinality (Beven,
2006). Given these challenges, we ran the calibration setups
for both models at least three times and considered the mod-
els’ ability to simulate peak flow, low flow and water bal-
ance by visualizing hydrographs and annual water balance
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obtained from top parameter sets from each calibration run.
We used the modeller’s judgement for selecting the best pa-
rameter set, which is not necessarily the parameter set with
the best score for one of the objective functions considered.
The calibrated VIC and CWatM data following these steps
were forced with pre-processed CMIP6 GCMs over the tran-
sient period 1950–2100, by combining historical and SSP
scenarios. Hence, this study updates the CMIP5 GCM-driven
VIC model simulations from previous studies (Shrestha et
al., 2019, 2022) with consistent CMIP6 GCM-driven projec-
tions.

3.4 Evaluation methods and metrics

We evaluated the performance of calibrated VIC and CWatM
simulations by comparing simulated results against observa-
tions using four goodness-of-fit (GOF) metrics: (i) Nash–
Sutcliffe coefficient of efficiency (NSE) (Nash and Sut-
cliffe, 1970), (ii) NSE of log-transformed discharge (LNSE),
(iii) Kling–Gupta efficiency (KGE) (Gupta et al., 2009) and
(iv) volume bias (VB). NSE, LNSE, and KGE values closer
to one represent a better model fit, whereas volume bias close
to zero indicates a better model fit.

Following the IPCC Working Group I Sixth Assessment
Report (AR6) (Arias et al., 2021), we analyzed model results
at 1.5, 2.0, 3.0 and 4.0 °C global warming levels (GWLs)
above the preindustrial period of 1850–1900. The period
when each GWL is reached for individual GCMs depends on
its climate sensitivity, as different GCMs respond very differ-
ently to the same combination of radiative forcings (Smith et
al., 2020). Since we used bias-corrected GCMs, we calcu-
lated GWLs for individual GCMs relative to the recent pe-
riod of 1995–2014 by assuming 0.85 °C warming between
1850–1900 and 1995–2014, which is the amount of observed
temperature increase reported in IPCC AR6 (Gulev et al.,
2021). As summarized in Table S1, not all GCMs reach the
3.0 and 4.0 °C GWLs by the end of their simulations in the
year 2100. We analyzed projected responses at each GWL
by combining all available ensemble members of SSP5-8.5
and SSP2-4.5 scenarios, which consist of 16 ensemble mem-
bers for 1.5 and 2.0 °C GWLs, and 12 and 6 ensemble mem-
bers for 3.0 and 4.0 °C GWL, respectively. We considered
the 30-year climatological period of 1971–2000 as the refer-
ence period – which corresponds to observed warming of ap-
proximately 0.5 °C since the preindustrial period (Forster et
al., 2023) – to compare future projections at the four GWLs.
The model projections were analyzed for a set of responses
(annual water balance, monthly flow, snow water equivalent,
annual maximum streamflow and timing, and flood frequen-
cies) by comparing the range, magnitude and direction of
changes relative to the reference period, as well as the per-
centage agreement of ensemble members with the direction
of median change.

We analyzed extreme value statistics of annual maximum
flows for the 1971–2000 reference period and four GWLs by

combining all annual maximum flow values from all mod-
els in the ensemble. The combined sample sizes for 1971–
2000 and 1.5, 2.0, 3.0, and 4.0 °C GWLs are 240 (i.e.,
30 years× 8 members) and 256 (i.e., 20× 16), 256 (i.e.,
20×16), 240 (i.e., 20×12), and 120 (i.e., 20×6), respectively.
The use of combined annual maximum flow values from all
GCM and SSP ensemble members – following a similar ap-
proach by Curry et al. (2019) – provides adequate samples
for analyzing large return periods (e.g., 100 and 200 years),
with the assumption that the reference period and each GWL
can be considered roughly stationary. We fitted a generalized
extreme value distribution to the samples by using the max-
imum likelihood parameter estimation (Hosking and Wallis,
1993), as implemented in the R extRemes package (Gille-
land, 2024).

4 Results and discussion

4.1 Hydrologic model calibration/validation

We present simulated streamflow results for the Liard River
at Mouth (Liard-M) station as an aggregate response for the
entire LRB, as well as for the Liard River at Upper Crossing
(Liard-UC) station as a subbasin response (Fig. 2). The sim-
ulated results, in general, indicate a good ability of both VIC
and CWatM to reproduce the dynamics of streamflow hy-
drograph, characterized by high snowmelt-driven flow dur-
ing spring and summer and by low flow in winter. However,
both models have difficulty in matching the magnitude of the
peak flow at both stations. Additionally, CWatM tends to pro-
duce earlier peak flows than observations and VIC simula-
tions, especially for the Liard-M station (Fig. 2a). CWatM
also underpredicts winter low flows at Liard-M, while VIC
provides a better match. For the Liard-UC station, CWatM
results match with observations and VIC results better, both
for low and high flows.

The comparison of the statistical GOF metrics of NSE,
LNSE, KGE and VB reveals generally better performance
for VIC compared to CWatM (Table 3). The two models are
calibrated using different objective functions, which could
potentially lead to some differences in the model perfor-
mance. Furthermore, the performance of the selected mod-
els is influenced by model selection based on automatic cal-
ibration supplemented by the modeller’s judgement. Specifi-
cally, for the Liard-UC station for the calibration period, the
KGE performance for CWatM is inferior to that of VIC, al-
though KGE was used as an objective function for the cal-
ibration for CWatM but not for VIC. In contrast, the NSE
and LNSE performances of CWatM – which are used for
the calibration of VIC but not for CWatM – are similar to
that of VIC. Additionally, while VIC results are similar for
the Liard-UC and Liard-M stations, CWatM performed bet-
ter for Liard-UC than Liard-M. Several factors likely con-
tribute to these differences. Firstly, the subdivision of the
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Figure 2. Observed vs. simulated discharge from CWatM and VIC models for calibration (1984–1994) and validation (1994–2004) periods
for (a) Liard-M station and (b) Liard-UC station.

LRB into 28 subbasins allowed VIC to parameterize and
calibrate to subbasin-specific conditions (6 parameters× 28
subbasins in total), and the use of calibrated upstream flows
as inflows helped to better match the flows at the outlets of
Liard-UC and Liard-M. In contrast, since CWatM was cali-
brated by lumping the large LRB into only two sets of param-
eters (10 parameters× 2 subbasins), it is not able to capture
the subbasin-level heterogeneity. Additionally, the aforemen-
tioned differences in model structure, especially those related
to frozen ground and groundwater, affect the runoff genera-
tion processes and subsequently model performance. Particu-
larly, the frost index method in CWatM, which prevents infil-
tration through the top two soil layers under frozen soil con-
dition, likely led to a higher proportion of surface runoff and
earlier peak flows in CWatM compared to VIC, which allows
infiltration through frozen soil using the coupled soil ther-
mal and moisture flux representation (Cherkauer and Letten-
maier, 2003). Besides these model-related differences, both
model results are also affected by uncertainties associated
with input and calibration data. Specifically, the represen-
tativeness of the precipitation and temperature in the PN-
WNAmet dataset due to sparse station density at the high-
latitude region (Werner et al., 2019), as well as limitations
in observed discharge estimation during ice-covered and ice
breakup events (Hamilton and Moore, 2012), can be major
sources of uncertainty.

Further, the comparison of VIC- and CWatM-simulated
snow water equivalent (SWE) with observations at three

snow pillow sites with the highest number of observations
generally shows a good replication of the seasonal dynamics
by both models (Fig. S1 in the Supplement). Specifically, the
seasonal SWE accumulation and ablation, as well as max-
imum SWE values, are reasonably well replicated by both
models. The good model performance is also indicated by
GOF values (Table S2). The SWE simulations from both
models are also affected by uncertainties related to model
structure and meteorological inputs, as discussed earlier. Ad-
ditional sources of uncertainty include the mismatches be-
tween the observation station location and elevation with the
model grid and elevation band, respectively, and measure-
ment errors (e.g., SWE calculation from snow depth). Nev-
ertheless, given the reasonable replication of the magnitude
and dynamics of observed SWE and streamflow, as well as
VIC-simulated values, the calibrated CWatM can be consid-
ered suitable for projecting future hydrologic responses.

4.2 Temperature and precipitation changes

Before evaluating projected future hydrologic responses
from VIC and CWatM, we analyzed the MBCn downscaled
temperature and precipitation from the GCM ensemble. As
expected, the seasonal and annual temperature and pre-
cipitation over the LRB show progressive increases with
the GWLs (Fig. 3). Furthermore, consistent with the pro-
jected higher warming over northern latitudes (Flato et al.,
2019), the basin-scale seasonal and annual temperature in-
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Table 3. Comparison of the goodness-of-fit (GOF) metrics for VIC and CWatM results. Summarized metrics include Nash–Sutcliffe co-
efficient of efficiency (NSE), NSE of log flows, Kling–Gupta coefficient (KGE) and percent volume bias (VB) for calibration (validation)
1984–1993 (1994–2003). NSE, LNSE and VB were used as objective functions for the calibration of VIC, and KGE was used as an objective
function for the calibration of CWatM.

Basin/subbasin VIC CWatM

NSE LNSE KGE VB NSE LNSE KGE VB

Liard-M 0.86 (0.83) 0.87 (0.88) 0.92 (0.90) −1.6 (4.3) 0.72 (0.65) 0.82 (0.79) 0.83 (0.82) −6.4 (2.0)
Liard-UC 0.86 (0.79) 0.88 (0.83) 0.92 (0.89) −2.0 (−0.9) 0.86 (0.68) 0.89 (0.80) 0.82 (0.81) −6.4 (−4.2)

creases are higher than global temperature increases, with
median increases of +1.8, +2.6, +4.1 and +5.6 °C rela-
tive to the 1971–2000 period at +1.5 (or +1.0 global warm-
ing from 1971–2000), +2.0 (+1.5), +3.0 (+2.5) and +4.0
(+3.5) °C GWLs, respectively. Seasonally, higher tempera-
ture increases are projected for the colder months (October–
November–December (OND) and January–February–March
(JFM)) than warmer months (April–May–June (AMJ) and
July–August–September (JAS)).

The projected annual precipitation in the LRB mostly
shows progressive increases with GWLs, with median basin-
scale annual increases of 6.5, 8.8, 16.9 and 24.3 % relative
to the 1970–2000 reference period at 1.5, 2.0, 3.0 and 4.0 °C
GWLs, respectively. Seasonally, projected precipitation for
most GCMs shows increases, with a larger variability of
change for AMJ and smaller variability for OND. The me-
dian seasonal precipitation increases are largest in OND, ex-
cept for the larger increases in AMJ at 4.0 °C GWL. Over-
all, the enhanced temperature and precipitation increases for
CMIP6 GCMs over the LRB are similar to CMIP5 GCMs
assessed in our previous study (Shrestha et al., 2019).

4.3 Annual water balance change

We first compared VIC and CWatM simulations of annual
water balance variables, consisting of precipitation, evapo-
transpiration (ET) and runoff, averaged over the entire LRB
(Fig. 4). Additionally, we assessed maximum SWE (SWE-
max), as it is related to all water balance variables. The re-
sults from the two models depict very similar changes, char-
acterized by progressive increases in annual ET and runoff in
response to increasing precipitation and temperature. SWE-
max changes are minimal at the four GWLs for both models,
suggesting that the projected winter precipitation increases
offset the temperature-driven snowpack declines. The ranges
of median percentage changes are generally similar, and
models typically agree on the direction of median change,
except for the small changes in SWEmax.

The results are consistent when comparing the distribu-
tion of precipitation between ET and runoff. Specifically,
for both models, the median ET / precipitation ratios range
between 0.45 and 0.48, while the runoff / precipitation ra-
tios range between 0.52 and 0.55, with generally decreasing

ET / precipitation ratios and increasing runoff / precipitation
ratios at higher GWLs. Furthermore, the median SWE-
max / October–March precipitation ratios, with a ratio > 0.5
used to characterize the hydrologic regime of a basin as
snow-dominated (Elsner et al., 2010), decline successively
from 0.84 to 0.65 with higher GWLs for both models. Over-
all, the projected annual water balance changes from CWatM
are consistent those from VIC.

4.4 Monthly SWE changes

Changes in basin-averaged monthly SWE values from the
two models at different GWLs are also generally consis-
tent (Fig. 5). Both models show slightly higher SWE ac-
cumulation in the colder upstream Liard-UC subbasin than
the entire Liard-M basin. Furthermore, monthly SWE val-
ues successively decline with higher GWLs during October
and November, while the changes from December to March
are relatively smaller. Monthly SWE values also decline suc-
cessively with higher GWLs in April and May, with CWatM
showing more rapid declines, particularly for the Liard-UC
subbasin. However, the differences are marginal, the direc-
tion of median changes is generally consistent between VIC
and CWatM for both Liard-M and Liard-UC. Additionally,
the model ensembles show higher agreement with the direc-
tion of median change in the months with larger snowpack
loss (October, November, May and June) and lower agree-
ment in the months with smaller snowpack change (January
to March). The generally consistent monthly SWE and SWE-
max results (Figs. 4 and 5) suggest that the differences in
snowmelt algorithms in the two models (VIC: full energy
balance; CWatM: radiation-restricted degree-day) have a mi-
nor effect on the magnitude and timing of snowmelt at the
basin-scale and monthly time periods. However, these results
may have been influenced by the necessity to calculate all en-
ergy fluxes from the same air temperature, precipitation and
wind speed datasets for both models using MTCLIM.

4.5 Monthly and maximum flow changes

A key challenge in modelling hydrologic change is accu-
rately simulating different flow components, such as monthly
mean flows and maximum and minimum flows. A compari-
son of the VIC- and CWatM-simulated monthly flows from
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Figure 3. Mean annual and seasonal (a) temperature and (b) precipitation changes at 1.5 to 4.0 °C global warming levels (GWLs) relative to
the 1971–2000 reference period. The projected changes for SSP2-4.5 and SSP5-8.5 scenarios are shown together in one column.

Figure 4. Historical (1971–2000) and projected annual water balance variables [mm] at 1.5 to 4.0 °C GWLs obtained from the GCM
ensemble. The results show basin-averaged values for the entire Liard River basin, consisting of precipitation used as forcings, and (a) VIC
and (b) CWatM-simulated evapotranspiration (ET), runoff and maximum snow water equivalent (SWEmax). Median change [%] at the four
GWLs relative to 1971–2000, along with the agreement of ensemble members [%] with the direction of median change, is shown on the top
of each panel.

the ensemble with observations over the period 1971–2000
shows that both models have difficulty in replicating ob-
served flows in some months, as indicated by the range of
simulated flows from the ensemble not covering the observed
flow values (Fig. 6). Based on this criterion, both model sim-
ulations depict larger discrepancies for the Liard-M station
and relatively smaller discrepancies for the upstream Liard-
UC station. In the case of maximum flow, the ensemble range
generally covers the observed flow values, with similar per-
formance for VIC and CWatM simulations (Fig. 7). For max-

imum flow timings, the discrepancies between observations
and simulated median values are of the order of 3 to 8 d,
with the ensemble from VIC not covering the observed flow
values for either stations. Such mixed model performance in
replicating different components of streamflow hydrographs
is partly related to model uncertainties discussed in Sect. 4.1.
Similar discrepancies in reproducing streamflow components
by different hydrologic models have also been reported in
previous studies (e.g., Shrestha et al., 2014, 2019; Vigiak et
al., 2018; Visser-Quinn et al., 2019). Given this challenge, it
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Figure 5. Historical (1971–2000) and projected monthly SWE [mm] at 1.5 to 4.0 °C GWLs obtained from the GCM ensemble. All SWE
results are simulated, basin-averaged values from model simulations, consisting of (a) VIC for Liard-M station, (b) CWatM for Liard-M
station, (c) VIC for Liard-UC station and (d) CWatM for Liard-UC station. Median change [%] at four GWLs relative to 1971–2000, along
with the agreement of the ensemble members [%] with the direction of median change, is shown on the top of each panel. July to September
months are not shown because SWE values are very small.
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is common practice to assess future hydrologic changes as a
relative change between simulated historical and future flows
(e.g., Schnorbus et al., 2014; Eum et al., 2016; Byun et al.,
2019; Shrestha et al., 2019), and the same approach is used
in this study for benchmarking future hydrologic change.

Simulated mean monthly flow (Qmean) projections from
the two models display consistent patterns, with progressive
increases in cold-season (October–March) flows with higher
GWLs for both Liard-M and Liard-UC stations (Fig. 6). Fur-
thermore, both models project generally increased Qmean
with higher GWLs in April and May, following the declin-
ing SWE patterns for these 2 months (Fig. 5). The direction
of projected Qmean change in June differs between the two
stations but is consistent between VIC and CWatM, with a
declining pattern at higher GWLs for the upstream Liard-UC
station and an increasing pattern for the downstream Liard-M
station. The larger uncertainties in projected AMJ precipita-
tion at 3.0 and 4.0 °C GWLs (Fig. 3) likely contributed to
larger spreads of the projected flow responses during these
months and GWLs. July and August Qmean projections from
the two models show some differences, with CWatM projec-
tions showing smaller declines for Liard-M and smaller de-
creases or increases for Liard-UC, compared to VIC, which
shows larger declines for both stations. September Qmean re-
sponses are consistent between the two models, with pro-
gressive increases in flows at higher GWLs. These similari-
ties and differences in responses between the two models are
also reflected by the median changes and model ensemble
agreements. Specifically, both models show progressive in-
creases in median values and high model agreements among
ensemble members between October and May. For June to
August, the median changes are less consistent, and direc-
tion of changes shows lower agreement.

These differences in VIC and CWatM projections arise
from the combined effect of several factors related to pro-
cess representation and parameterization. As discussed, the
differences in the treatment of frozen soil processes in the
two models affect infiltration and runoff pathways, with a
higher proportion of surface runoff generation in CWatM
than in VIC (Fig. S2), influencing early-summer (June)
Qmean. On the other hand, the presence of groundwater stor-
age in CWatM, which stores percolated water and releases it
as baseflow using a linear reservoir approach (Burek et al.,
2020), delays the baseflow response and results in a higher
late-summer (July and August) Qmean from CWatM than
from VIC, which uses a nonlinear baseflow function to re-
lease water stored in the bottom layer. Other factors that con-
tribute to these differences include the routing method and
parameterization, which influence runoff transport through
the watershed and the timing and magnitude of flow deliv-
ered to the outlet, and the differences in watershed subdi-
vision and model calibration. However, despite the inferior
calibration performance for the downstream Liard-M station
(Table 3), CWatM projection results for this station are not
substantially different from VIC results. This suggests that

the uncertainties in projected responses due to lumped pa-
rameters and calibration may be relatively small.

Projected changes in maximum flows (Qmax) and their
timing are generally consistent between the two models in
terms of the direction of change and are seen to be depen-
dent on GWLs, with progressively higher Qmax values and
earlier Qmax timing with higher GWLs for both Liard-M and
Liard-UC (Fig. 7). However, while the median Qmax values
and timing are similar between the two models for Liard-
UC, Liard-M Qmax values are generally smaller, and Qmax
timing occurs earlier for CWatM, compared to correspond-
ing projections from VIC.

The 2- to 200-year flood frequency curves show progres-
sively higher flow values at a given return period at 2.0 and
4.0 °C GWLs compared to the 1971–2000 reference period
for both models and stations (Fig. 8). An alternative inter-
pretation of these nonstationary changes is that the return pe-
riods associated with specific magnitudes of flow decrease
with higher GWLs. Increasing spreads of the 95 % confi-
dence intervals from 2- to 200-year return periods can also be
seen from both models and stations. Interestingly, the flood
frequency curve for Liard-M at 3.0 °C GWL (Fig. S3) covers
a higher range than at 4.0 °C for both models, especially at
higher return periods (> 40-year periods for VIC and > 80-
year periods for CWatM). Although such patterns are not
present for the Liard-UC station, the results for 4.0 °C GWL
are affected by a smaller sample size (6× 20 values) com-
pared to 3.0 °C (12× 20 values), given that 6 and 12 out of
16 ensemble members reach 3.0 and 4.0 °C GWLs, respec-
tively.

Additionally, while the flood frequency curves are similar
for the 1971–2000 reference period for the two models, the
curves tend to diverge at higher GWLs and return periods,
and the magnitudes of extreme flows at a specific return pe-
riod are considerably lower for CWatM than VIC (Fig. 8).
For Liard-UC, it is notable that extreme flow values from the
flood frequency curves are substantially lower for CWatM
than corresponding values for VIC, although the median val-
ues from the two models are close to each other (Fig. 7).
The divergence in responses arises from the differences in
distribution of the entire ensemble, with the higher upper
limit of VIC projections contributing to higher values in the
flood frequency curves for both stations. As such, while the
largest recorded 2012 flood events are within the range of the
flood frequency curve at 1.5 °C GWL for VIC for both sta-
tions, they are only covered at 3.0 or 4.0 °C GWL for CWatM
(Figs. 8 and S3).

As in the case of Qmean, the magnitudes and timing of
Qmax are affected by structural differences in the two models,
particularly runoff pathways. Specifically, the earlier Qmax
timing in CWatM than VIC can be linked to the higher frac-
tion of quicker-flowing surface runoff in the former (Fig. S2),
resulting from the frost index method that prevents soil wa-
ter movement through the frozen soil. The higher Qmax from
VIC compared to CWatM can be linked to the lack of ground-
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Figure 6. Historical (1971–2000) and projected monthly flow at 1.5 to 4.0 °C GWLs obtained from the GCM ensemble, consisting of (a) VIC
for Liard-M station, (b) CWatM for Liard-M station, (c) VIC for Liard-UC station and (d) CWatM for Liard-UC station. Median change [%]
at four GWLs relative to 1971–2000, along with the agreement of the ensemble members [%] with the direction of median change, is shown
on the top of each panel.
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Figure 7. Historical (1971–2000) and projected annual maximum flows and their timings at 1.5 to 4.0 °C GWLs obtained from the GCM
ensemble. Median change [% or d] at four GWLs relative to 1971–2000, along with the agreement of ensemble members [%] with the
direction of median change, is shown on the top of each figure panel.

water storage in the former, which causes baseflow to in-
crease rapidly using a nonlinear function when soil mois-
ture exceeds a certain threshold and gets added to the to-
tal runoff (Fig. S2). Hence, the lack of groundwater stor-
age in VIC likely causes an overestimation of annual max-
imum flows, and the lack of soil water movement through
the frozen soil in CWatM likely causes an overestimation of
the surface runoff contribution to the annual maximum flow
and earlier annual maximum flows. However, notwithstand-
ing these differences, key climate change signals of earlier
and higher maximum flows, nonstationary increases in the

magnitudes of extreme flows, are consistent between the two
models.

5 Summary and conclusions

Our study contributes important insights into the robustness
of future hydrologic projections from a large-scale hydro-
logic model (LHM) in comparison to a watershed hydro-
logic model (WHM). As suggested by Beven (2023), we de-
signed a fit-for-purpose benchmarking study to compare fu-
ture hydrologic projections from a state-of-the-art CWatM
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Figure 8. Flood frequency plots of annual maximum flows obtained from the model simulations driven by the GCM ensembles: (a) VIC for
Liard-M station, (b) CWatM for Liard-M station, (c) VIC for Liard-UC station and (d) CWatM for Liard-UC station. The results are shown
for the historical period (1971–2000) and 2.0 and 4.0 °C GWLs. Dashed lines show the 95 % confidence intervals. The years on the right
axes of each plot indicate the two highest-recorded historical flood events.

simulation with the widely used VIC model for the Liard
River basin in subarctic Canada, with CWatM setup as an
LHM with two subbasins and VIC setup as a WHM with 28
subbasins. We used a consistent set of downscaled CMIP6
climate forcings to drive the two models. Since the assess-
ment focuses on a northern basin and the structure of the
two models differs in terms of representation of cold-climate
snowmelt and frozen soil processes, our study provides a
good case for evaluating the effects of model structural un-
certainties on historical and future projections.

Our evaluation revealed generally consistent patterns of
projected hydrologic responses from the two models in terms
of annual water balance and monthly distribution of SWE

and flow. Key hydrologic change signals of increasing an-
nual evapotranspiration and runoff with higher global warm-
ing levels are projected by both models. CWatM is also able
to replicate the prominent snowpack change signals from
VIC, particularly the successive declines in late-spring SWE
with higher GWLs. Likewise, CWatM simulates increasing
winter and spring flows with higher GWLs, consistent with
the VIC model simulation. The direction of maximum flow
and timing changes from CWatM are generally in agreement
with VIC, characterized by increasing and earlier flows with
higher GWLs. However, the magnitude of annual maximum
flows diverges between the two models, with CWatM gen-
erally producing lower magnitudes and earlier timing com-
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pared to corresponding VIC projections. These differences in
the annual maximum flows are also reflected in the extreme
value analysis, with CWatM projecting considerably smaller
extreme flood events than VIC at all GWLs, especially for
longer return periods.

The similarities and differences between the two model
simulations lead to a subsequent question about the robust-
ness of the projected changes. Overall, the consistency of the
projected changes from the two models suggests that a cali-
brated LHM can provide robust projections of future hydro-
logic responses at annual and monthly timescales. The direc-
tion of SWE and flow changes obtained from both models
are also consistent with the previous study based on CMIP5
GCM-driven VIC model simulations (Shrestha et al., 2019).
Furthermore, generally consistent results from two models
for upstream and downstream subbasins increase the confi-
dence in projections. However, given that this study is fo-
cused on single cold-region river basin, broader generaliza-
tion of the results to other regions is not recommended. Ad-
ditionally, our results are specific to the calibrated CWatM
LHM and not representative of the capabilities of other
LHMs or GHMs.

An important consideration in this study is the representa-
tion of cold-climate processes of snow ablation and melt, as
well as frozen soil. In this respect, CWatM produced very
similar monthly and annual maximum SWE values when
compared to VIC, despite having a simplified radiation-
restricted snowmelt module versus the full energy balance
in VIC. However, these results may have been influenced
by the necessity to calculate all energy fluxes based on the
same air temperature, precipitation and wind speed datasets
for both models using MTCLIM. Differences in the represen-
tation of frozen soil processes, however, led to differences in
surface and subsurface flow pathways. Specifically, the sim-
plified frost index approach (Molnau and Bissell, 1983) in
CWatM, which prevents soil water movement through the
frozen soil, results in a higher fraction of surface runoff
than VIC, which includes a coupled soil thermal and mois-
ture fluxes approach, with soil water movement under frozen
conditions dependent on ice content (Cherkauer and Let-
tenmaier, 1999, 2003). These differences in flow pathways
seem to have affected late-summer monthly flows and an-
nual maximum flows, with a larger fraction of surface runoff
in CWatM likely resulting in earlier annual maximum flows.
Additionally, the lack of groundwater storage in VIC likely
led to a more rapid baseflow response and consequently an
overestimation of annual maximum flow and amplified ex-
treme values. In contrast, the groundwater storage in CWatM,
albeit a simplified linear reservoir approach, likely caused a
delayed baseflow response and smaller maximum flows, as
well as a smaller reduction or no change in summer flows.
Regarding other factors, such as the subdivision of the wa-
tershed into subbasins and model calibration, given that the
projected results are not substantially different for the down-

stream Liard-M station despite lumped parameter sets and
inferior calibration performance, their effects seem small.

Overall, the CWatM setup for the Liard River basin is gen-
erally able to replicate the projected hydrologic responses
from VIC. The results are very consistent for directions of
change and most magnitudes of change, except maximum
flows and summer flows. Hydrologic model structural un-
certainties, specifically the representation of frozen soil and
groundwater processes, provide an explanation for the dif-
ferences in the annual maximum flows and summer flows.
Given such uncertainties, an important consideration is the
robustness of model structure in simulating hydrologic met-
rics of interest for climate change impacts research (Ekström
et al., 2018; Shrestha et al., 2016). Based on the findings
of this study, an implementation of groundwater storage in
VIC could potentially lead to a better representation of runoff
pathways and timing, as well as improvement in the stream-
flow simulation. On the other hand, an improved frozen soil
method in CWatM could potentially lead to a better repre-
sentation of groundwater storage and improvement in the
surface runoff and baseflow partitioning, with consequently
improved streamflow response at the basin outlet. Such en-
hancements have a potential to reduce the uncertainties in
future hydrologic projections. Hence, our results provide an
important basis for improving not only the LHMs but also
the WHMs.
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