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Abstract. Hydrological fluxes typically vary across seasons
with several existing metrics available to characterize their
seasonality. These metrics are beneficial when many catch-
ments across diverse climates and landscapes are studied
concurrently. Here, we present directional statistics to char-
acterize streamflow seasonality, capturing the timing of the
streamflow (center of mass timing) and the strength of its sea-
sonal cycle (center of mass concentration). We show that di-
rectional statistics are mathematically more robust than sev-
eral widely used metrics to quantify streamflow seasonality.
We extend the application of directional statistics to analyze
seasonality in other hydrological fluxes, including precipita-
tion, evapotranspiration, and snowmelt, and we introduce a
trend analysis framework for both the timing and strength
of seasonal cycles. Using an Alpine catchment (Dischma,
Switzerland) as a test bed for this methodology, we identify
a shift in the streamflow center of mass to earlier in the year
and a weakening of the seasonal cycle. Additionally, we ap-
ply directional statistics to streamflow data from 11 118 Eu-
ropean catchments, highlighting their utility for large-scale
hydrological analyses. The introduced metrics, leveraging di-
rectional statistics, can improve our understanding of stream-
flow seasonality and associated changes and can also be used
to study the seasonality of other environmental fluxes within
and beyond hydrology.

1 Introduction

Most rivers have distinct seasonal variations in stream-
flow, which tend to affect floods, droughts, water resources,
and ecosystems (Poff et al., 1997; Sivapalan et al., 2005;
Berghuijs et al., 2014; Knoben et al., 2018; Blöschl et al.,
2017; Patil et al., 2023). Anthropogenic climate change has
influenced streamflow seasonality globally with changes that
are often especially pronounced in snow-affected regions
(Wang et al., 2024). In such regions, climate warming acts
to shift the precipitation phase from snowfall towards rain-
fall, reduces snowpacks, and causes earlier snowmelt, of-
ten leading to earlier streamflow (Barnett et al., 2005; Luce
and Holden, 2009; Wang et al., 2024; Berghuijs and Hale,
2025). However, shifts in streamflow seasonality can also be
substantial in largely snow-free environments (Wasko et al.,
2020; Chalise et al., 2021; Wang et al., 2024).

Quantitative summaries of streamflow seasonality across
space and/or time typically rely on analyses related to select
streamflow characteristics. For example, streamflow records
can be described by their multi-year mean monthly flows,
which are sometimes normalized by the mean annual flow
rate (Pardé, 1933). Such quantitative descriptions can help
understand streamflow regime patterns and their changes,
but mean monthly flows continue to be time series. There-
fore, if one aimed to, for example, create groups of sim-
ilar flow regimes, further steps are required to character-
ize streamflow seasonality across many catchments simul-
taneously (e.g., Haines et al., 1988; Berghuijs et al., 2014;
Knoben et al., 2018).

Singular metrics capturing streamflow timing characteris-
tics can be calculated to target when a particular amount of
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flow has passed since the start of the (water) year, allowing
for comparisons of seasonal flow regimes across many catch-
ments and evaluation of flow regime shifts. For example, the
half-flow date marks the time elapsed from the beginning
of the water year to when half of the annual streamflow is
reached (Court, 1962):

t1/2 =

∫ t=t1/2
t=0 Q(t)dt∫ t=1
t=0 Q(t)dt

= 0.5, (1)

where t1/2 is the half-flow date [T], t is the time (fraction)
since the start of the water year [T], and Q(t) is the mean
flow rate at time t [L3 T−1 or LT−1] (averaged over the stud-
ied period). t1/2 represents the date corresponding to the me-
dian of the cumulative flow distribution. Alternatively, a cen-
ter of mass represents the point in time when the weighted
position vectors of the streamflow relative to this moment
(i.e., streamflow multiplied by the time difference to the cen-
ter of mass), sum to zero:

t
Q̂
=

∫ t=1
t=0 (t ·Q(t))dt∫ t=1
t=0 Q(t)dt

, (2)

where t
Q̂

is the center of mass [T], t is the time (fraction)
since the start of the water year [T], and Q(t) is the flow
rate at time t [L3 T−1 or LT−1] (averaged over the studied
period). t

Q̂
represents the date corresponding to the mean of

the cumulative flow distribution. The concepts of half-flow
date and center of mass are widely used (e.g., Court, 1962;
Stewart et al., 2005; Yang et al., 2007; Regonda et al., 2005;
Hodgkins et al., 2003; Luce and Holden, 2009; Clow, 2010;
Kormos et al., 2016; Renner and Bernhofer, 2011; Han et al.,
2024; Gnann et al., 2021; Chen et al., 2023; Botterill and
McMillan, 2023; Almagro et al., 2024). However, it is im-
portant to note that while these terms are often used inter-
changeably, Eqs. (1) and (2) yield different values when the
seasonal flow regime is even slightly skewed, which invari-
ably occurs. Additionally, it is important to recognize that
seasonal streamflow patterns within water years occur in un-
bounded time series (i.e., annual cycles), meaning two dates
can be considered adjacent even if they fall on opposite ends
of the time series. For example, if the water year begins on
1 October, 30 September marks the end of the time series but
is also directly adjacent to 1 October.

The strength of streamflow seasonality can also be cal-
culated using a variety of metrics (also commonly ap-
plied to precipitation). These metrics quantify the degree of
(monthly) variability without considering the sequence of
these mean monthly values. For example, a commonly used
seasonality index is (Walsh and Lawler, 1981; Eisner et al.,
2017)

Is1 =
1
Qa

∑12
n=1

∣∣∣∣Qn−
Qa

12

∣∣∣∣ , (3)

where Is1 is the seasonality index [–], Qa is the mean an-
nual streamflow sum [L3 T−1 or LT−1], and Qn is the mean

monthly streamflow sum [L3 T−1 or LT−1] for month n. Al-
ternatively, the strength of seasonality can be calculated us-
ing (Oliver 1980; Han et al., 2024)

Is2 =

∑12
n=1

(
Q2
n

)
Q2

a
(4)

or using apportionment entropy (Feng et al., 2013; Wang
et al., 2024):

Is3 =−
∑12

n=1

(
Qn

Qa
log2

(
Qn

Qa

))
. (5)

Equations (3)–(5) are straightforward to compute but lose
valuable information from the (mean monthly) time series
as they ignore the sequence of mean monthly flow rates.

A method that considers both the periodic nature of a mean
seasonal streamflow cycle and the sequence of its flow rates
is the description of streamflow seasonality using a sine func-
tion (e.g., Marvel et al., 2021; Gnann et al., 2020):

Q(t)=Q

(
1+ δQ sin

(
2π(t −φQ)

Z

))
. (6)

Q(t) is the flow rate [L3 T−1 or LT−1] at time t , Q is the
mean streamflow rate [L3 T−1 or LT−1], δQ is a (dimension-
less) streamflow seasonality, φQ is the phase [T] of seasonal
streamflow, and Z is the period of interest [T] set to 1 year.
A sine function is most effective for variables with an an-
nual cycle that closely aligns with a sine curve, such as tem-
perature seasonality (e.g., Stine et al., 2009; Berghuijs and
Woods, 2016; Marvel et al., 2021). However, in our experi-
ence, most streamflow seasonality distributions deviate sub-
stantially from a sine curve (e.g., see Fig. 5 of Knoben et al.,
2018).

Here, we discuss the use of directional statistics for ex-
pressing streamflow seasonality. Directional statistics (Mar-
dia and Jupp, 1972) allow for consideration of the cycli-
cal nature and the sequence of streamflow and can be used
for non-sinusoidal time series (e.g., snowmelt). Directional
statistics have been widely used to characterize the season-
ality of extreme flows and extreme precipitation (e.g., Burn,
1997; Young et al., 2000; Merz and Blöschl, 2003; Laaha and
Blöschl, 2006; Dhakal et al., 2015; Villarini, 2016; Blöschl
et al., 2017; Berghuijs et al., 2016, 2019; Floriancic et al.,
2021; Chagas et al., 2022). Recent developments show these
can be adapted to represent the overall intra-annual distribu-
tion of streamflow (Jiang et al., 2022; Nan and Tian, 2024;
Hanus et al., 2024). Such an approach parallels applications
in other scientific fields (e.g., image processing), where cen-
ters of mass are calculated for unbounded environments (Bai
and Breen, 2008). We show how directional statistics en-
able simultaneous characterization of both the timing (center
of mass timing) and strength (center of mass concentration)
of the seasonal streamflow cycle. We compare these direc-
tional statistics with widely used metrics (e.g., Eqs. 1–5) and
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discuss how directional statistics are often (mathematically)
more robust. To illustrate potential applications, we use this
approach to quantify the seasonality of different hydrolog-
ical fluxes in an Alpine catchment. Additionally, we apply
directional statistics to streamflow time series across 11 117
catchments in Europe and quantify trends in the timing and
concentration of the seasonal cycle for these catchments.

2 Seasonality using directional statistics definitions

The concept of center of mass is not confined to hydrology.
It is widely used to determine the average (spatial) position
of all mass in a system or object and has many applications
in, for example, engineering, astronomy, and biomechanics
and can be adapted to a temporal framework. We discuss the
seasonal flux equivalent of the center of mass, representing
the distribution of a flux in time rather than in space, and
account for the cyclical nature of seasonal cycles.

Directional statistics can express the center of mass timing
of streamflow, t

Q̂
[T]:

t
Q̂
=

atan2(y,x)
2π

(7)

and its concentration, R [dimensionless]

R =

√
x2
+ y2, (8)

where the cosine and sine components of streamflow are

x =
1∫ t=1

t=0 Q(t)dt

∫ t=1

t=0
(cos(2πt)Q(t))dt, (9)

y =
1∫ t=1

t=0 Q(t)dt

∫ t=1

t=0
(sin(2πt)Q(t))dt. (10)

Here, t
Q̂

is the center of mass timing expressed as a fraction
of a year [T] compared to the start of a (water) year, t is
the time (fraction of year) since the start of the (water) year
[T], and Q(t) is the flow rate at time t [L3 T−1 or L T−1].
Numerical implementation of the above equations requires
considering the time interval at which data are provided (e.g.,
hourly, daily, or weekly; see Appendix A1 for discrete form).
However, unlike the aforementioned methods (Eqs. 1–5), no
further time averaging of data is required.

The center of mass timing (t
Q̂

) represents the unique tim-
ing of streamflow concentration within a year, ensuring that
the streamflow distribution, weighted by its relative position
(streamflow multiplied by the time offset from the center of
mass), sums to zero. This is equivalent to the center of mass
provided in Eq. (2), except that t

Q̂
considers the periodic na-

ture of a seasonal streamflow pattern.
R indicates the strength of mass concentration at that time.

An R value close to 1 indicates all streamflow occurs dur-
ing one isolated moment in the year, whereas R = 0 indi-
cates that this mass is symmetrically distributed throughout

the year. In the latter case, the center of mass timing would
remain undefined (indicating no seasonality), but this would
be extremely rare using real-world streamflow data. The (di-
rectional) variance of t

Q̂
is Var(t

Q̂
)= 1−R and the (direc-

tional) standard deviation equals σt
Q̂
=

√
2ln(R−1). In this

technical note, we report the concentration (Eq. 8), not the
variance or standard deviation.

To illustrate the use and interpretation of directional statis-
tics, we calculate the center of mass timing and associated
concentrations for three example catchments (Fig. 1). The
seasonal hydrographs of these catchments show distinct pat-
terns (Fig. 1a–c). The Tiebel River in Himmelberg (Austria)
drains a 40 km2 pre-Alpine catchment with most of the flow
originating from over 40 springs. These springs are fed by the
groundwater flow out of the neighboring Gurktal and remain
almost constant throughout the year (largely unaffected by
snowmelt and major rainfall). Consequently, its streamflow
exhibits minimal seasonality (Fig. 1a). The Alfenz River in
Klösterle (Austria) drains a 66 km2 Alpine catchment with a
seasonal hydrograph with spring melt (Fig. 1b). The Horn-
drup River in Sortholmvej (Denmark) drains a 5.5 km2 agri-
cultural and energy-limited catchment with relatively con-
sistent rainfall throughout the year (Bastrup-Birk and Gun-
dersen, 2004) and thereby experiences winter-dominated
streamflow (Fig. 1c). The calculated centers of mass tim-
ings (here expressed as the fraction of the year since 1 Jan-
uary) and concentration make these intra-annual variations in
streamflow quantitative (Fig. 1d–f).

3 Robustness of directional statistics

Suggesting directional statistics for analyzing streamflow
seasonality may seem redundant considering the many al-
ready existing metrics (e.g., Eqs. 1–5). However, directional
statistics consider the periodic nature and sequence of mean
seasonal flow rates, regardless of the analysis start date, and
can be used for non-sinusoidal time series. It thereby can
have several advantages over commonly used methods used
to summarize seasonality. We illustrate this using simple ex-
amples demonstrated below. We acknowledge that no single
metric can fully replace all others as the choice of metrics de-
pends on the specific case and questions at hand. In many in-
stances, combining different metrics (including beyond those
discussed in this paper) likely yields the most insights.

3.1 Robust timings and shifts

Directional statistics offer an advantage to evaluating stream-
flow seasonality across space and through time by eliminat-
ing the need to specify a start date for the water year, thereby
producing stable and more robust timing results. In contrast,
alternative metrics for determining streamflow timing, such
as the half-flow date (as defined in Eq. 1) and the center of
mass (as defined in Eq. 2), are dependent on an arbitrarily
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Figure 1. Seasonal hydrographs and streamflow seasonality for three example catchments. The top row shows the multi-year mean daily
streamflow and center of mass for the Tiebel River at Himmelberg (Austria) (a), Alfenz River at Klösterle (Austria) (b), and Horndrup
River at Sortholmvej (Denmark) (c). The bottom row presents the streamflow mass distribution using directional statistics, highlighting the
center of mass timing (fraction of a year) and concentration (dimensionless). Streamflow data are obtained from the EStreams database (do
Nascimento et al., 2024).

established start date for the water year. While some environ-
ments have clearly defined water years, establishing a consis-
tent start date across diverse catchments and climates can be
challenging whereby suitable starting dates vary regionally
(Wasko et al., 2020; Sun and Cheruvelil, 2024). For example,
most of Europe uses 1 October as the start of the water year,
whereas 1 November is the norm in Germany (e.g., Renner
and Bernhofer, 2011). Note that in considering science ques-
tions that compare state or flux timing in the context of a
water year, it is inherently required to define a start date re-
gardless of methodology. This may be particularly helpful in
some instances, but in many other instances, a defined start
date is redundant or unnecessary information.

Whitfield (2013) already illustrated that the selection of
a start date can problematically influence the inferred half-
flow date (as defined in Eq. 1) and the center of mass (as
defined in Eq. 2). We further demonstrate this with an exam-
ple of a (simplified) flow regime before and after a temporal
shift in streamflow (Fig. 2a). In this scenario, the original
seasonal streamflow regime peaks after one-third of the year,
while the shifted streamflow regime mirrors this but with its
flows shifted to 1 month earlier. Using directional statistics,
the streamflow center of mass timing has a stable date (in-
dependent of the water-year start date). In this case, the date
is 0.45 years since the start of the water year for the original
streamflow regime and 0.37 years for the shifted streamflow
regime. Thus, the center of mass date remains stable, and

the temporal streamflow shift is fixed at a physically intuitive
value of 1 month (Fig. 2c). In contrast, for the half-flow date
(Eq. 1) and the center of mass (Eq. 2), the inferred central
timing of streamflow shifts at a different rate than changes in
the water-year start date do. Consequently, the inferred tim-
ings become unstable (Fig. 2b). This instability indicates a
high sensitivity of the inferred streamflow shift to the user’s
choice of start date (Fig. 2c), and the shift does not align
with the intuitive 1-month shift. We recognize that these ex-
emplar streamflow regimes are simplified and that it would
be illogical to select the beginning of the water year outside
the low-flow season; however, we highlight these examples
to demonstrate that similar issues can and likely will arise
when evaluating more complex streamflow regimes.

3.2 Robust seasonality strength

Streamflow seasonality analyses using directional statistics
assess the strength of seasonality based on the original tem-
poral resolution of the dataset. For instance, when daily flow
rates are provided, the timing and concentration can be de-
rived from this daily data resolution. In contrast, most met-
rics that quantify the strength of seasonality (Eqs. 3–5) re-
quire binning the data into a longer time interval, typically
per month (e.g., Feng et al., 2013; Wang et al., 2024; Oliver,
1980; Han et al., 2024). However, these approaches that rely
on binning come with several limitations. First, the theo-
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Figure 2. Effects of starting date of the water year on inferred streamflow timing. Panel (a) shows an example streamflow regime and a
shifted regime, which is shifted in streamflow 1 month earlier. Panel (b) highlights instability in inferred central timing (using methodologies
other than directional statistics; Eqs. 1 and 2) of the original regime (not shown for the shifted regime) as the start date of the year is shifted
forward. The shift in the selected start date (problematically) affects the inferred temporal streamflow shifts using Eqs. (1) and (2) but would
remain stable as 1-month change using directional statistics (c).

retical range of seasonality values depends on the binning
timescale. Second, Eqs. (3)–(5) do not account for the se-
quential nature of the (binned) time series, which prevents
unambiguous differentiation between short-term variability
and seasonal variations. Third, selecting a binning interval
length is inherently arbitrary, and, as just stated, this decision
impacts both the attainable range of seasonality values and
the degree to which the method captures short-term versus
seasonal variations.

We exemplify such limitations based on a 15 min hydro-
graph for 1 year. For this hydrograph, we aggregate data
to daily, weekly, and monthly resolution and calculate the
strength of seasonality using traditional methods (Eqs. 3–
5) and using directional statistics (Eq. 8) (Fig. 3). We also
highlight the potential range of the seasonality indices based
on a constant flow regime and a flow regime where all flow
occurs at one single time interval (indicated in parenthe-
ses in Fig. 3) and the seasonality compared to its theoreti-
cal maximum value (expressed in percentage). Note that for
the entropy-based measure, stronger seasonality is associated
with lower entropy values. A time series binned into longer
intervals loses a part of its temporal variability and shifts its
potential seasonality range (Fig. 3). As a result, the absolute
and the relative inferred seasonality strengths shift depend-
ing on the binning. For some methods, these changes are
very large (e.g., Eq. 4), whereas for other methods, changes
are smaller (e.g., Eqs. 3 and 5). However, also in these lat-
ter cases, inferred seasonality strengths do not unambigu-
ously differentiate between short-term variability and sea-
sonal variations. Directional statistics are insensitive to these
problems (and do not require binning) and thereby have rela-
tively constant absolute seasonality and potential seasonality
ranges and quantify seasonal variations without the degree of
short-term variations substantially affecting the inferred sea-
sonality strength.

Most methods used to quantify the strength of streamflow
seasonality do not consider the sequential order of stream-
flow values. However, the sequences can determine the ex-
tent of seasonal bias within a flow regime. To illustrate this,
we provide a simplified example of two regimes (Fig. 4)

that, when analyzed using the seasonality metrics defined in
Eqs. (3)–(5) (which do not consider the order of (monthly)
flow values), would be assessed as having the same degree of
seasonality. In contrast, when applying directional statistics
to the concentration (Eq. 3), flow regime 1 is classified as
seasonal (R = 0.21), whereas flow regime 2 is classified as
non-seasonal (R = 0.0) due to its identical flow rates across
spring, summer, winter, and fall. In theory, strong seasonal
variations in flow, with periodicities of 6 months or less,
could occur and might be considered indicative of the sea-
sonality of these flow regimes. However, such patterns are
typically absent in measured streamflow time series (e.g., see
Fig. 5 in Knoben et al., 2018). For other phenomena, such
as bimodal precipitation regimes, directional statistics will
struggle to characterize the bimodal nature of the annual cy-
cle. It is important to note that the inferred strength of sea-
sonality, as determined by Eqs. (3)–(5), is sensitive to the
timing of the seasonal pattern. For example, in Fig. 4 (as-
suming constant rates within each month), any timing shift
in the seasonal cycle would reduce the inferred seasonality
by making monthly values more uniform. In contrast, direc-
tional statistics are not affected by this issue.

4 Example applications

4.1 Water balances

The application of seasonality metrics can extend beyond
streamflow. For example, directional statistics can charac-
terize the seasonality of multiple water balance components
within a catchment. Here, we illustrate this using the 43 km2

Alpine Dischma catchment in Switzerland (mean elevation
2376 m a.s.l.) (Fig. 5). In this catchment, precipitation is sea-
sonal, with higher rates in summer (t

P̂
= 0.58, R = 0.28)

(Fig. 5a). A substantial fraction of annual precipitation falls
as snow, as winter temperatures are below zero for part of the
year, leading to highly seasonal snowpacks (R = 0.75) with
a center of mass at the end of winter (t

Ŝ
= 0.20) (Fig. 5b).

Snowmelt from this snowpack is slightly less seasonally con-
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Figure 3. Effects of the binning interval on inferred seasonality
strength. An example hydrograph given at 15 min (a), daily (b),
weekly (c), and monthly (d) resolution and the values of the associ-
ated seasonality metrics (Eqs. 3–5 and 8) with their possible range
indicated in parentheses (constant regime to most seasonal regime)
and the seasonality compared to its theoretical maximum value (ex-
pressed as a percentage). This indicates that traditional seasonal-
ity metrics tend to be more sensitive to the binning process than
directional statistics are. This sensitivity is present in the absolute
value of seasonality strength, the values relative to their potential
minimum and maximum, and the reference values determining the
possible seasonality range. Note that binning is not required for di-
rectional statistics.

centrated (R = 0.72), with a center of mass in spring (t
M̂
=

0.34) (Fig. 5c). While most snow melts in spring, a smaller
proportion of snowmelt also occurs during fall and early win-
ter, slightly reducing the seasonal concentration of snowmelt.
Energy availability in terms of potential evapotranspiration
peaks in summer (t

ÊP
= 0.50, R = 0.39) (Fig. 5d), and con-

sequently evapotranspiration rates also have a distinct sea-
sonality (t

Ê
= 0.53,R = 0.36) (Fig. 5e). Streamflow remains

low during the winter period (as no snowmelt occurs) and
rises following snow melts, and its center of mass occurs in
early summer (t

Q̂
= 0.51) with substantial seasonality (R =

0.46) (Fig. 5f). This approach enables us to track the evo-

Figure 4. Comparison of streamflow regimes illustrating differ-
ences in assessing the strength of seasonality. While both regimes
appear to have the same degree of seasonality when analyzed using
traditional metrics (Eqs. 3–5), directional statistics quantify the fact
that flow regime 1 is seasonal (R = 0.21), whereas flow regime 2
is non-seasonal (R = 0.0) due to identical flow rates throughout the
different seasons.

lution in the center of mass (and its strength) from snow to
streamflow, highlighting seasonal interconnections between
different water and energy fluxes.

4.2 Large-sample studies

A directional statistics approach to seasonality metrics can
characterize the spatial gradients and regional differences in
the strength and timing of seasonal hydrological fluxes. To
illustrate an example, we apply this approach to EStreams, a
dataset of 17 130 European catchments (do Nascimento et al.,
2024). First, we demonstrate regional seasonality differences
by calculating the center of mass timing and concentration
for catchments with at least 10 years of continuous stream-
flow data (11 117 stations).

Streamflow center of mass timing varies notably across
Europe, and most variations are spatially highly autocorre-
lated. Winter-centered flows are widespread in the British
Isles, coastal areas of the Baltic states, Denmark, much
of western Europe, Portugal, Extremadura and Andalucía
(Spain), Italy, and Croatia (Fig. 6a), with varying degrees of
seasonality strength (Fig. 6b). These winter-centered flows
show the strongest seasonality in Portugal, southwestern
Spain, Brittany (France), and a band in northern France
stretching towards Luxembourg. Spring-centered flows are
prevalent across much of central and eastern Europe, south-
ern Finland, and pre-Alps (Fig. 6a), generally with weaker
seasonality, such as in the northern Carpathians. Summer-
centered flows are observed in the Alps, Norway, Sweden,
and northern Finland (Fig. 6a), with the most pronounced
seasonality in the Scandinavian Mountains and the higher
regions of the Alps. These maps highlight broad-scale con-
tinental streamflow seasonality differences, likely largely
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Figure 5. Seasonality statistics of several water balance components of the Dischma catchment in Switzerland. Half-hourly precipitation
and evapotranspiration are from the Davos flux site (Hörtnagl et al., 2023; data are available at https://www.swissfluxnet.ethz.ch/index.php/
sites/site-info-ch-dav/, last access: 14 December 2024). Streamflow data at the Kriegsmatte station are provided by the Federal Office for
the Environment (FOEN), and snow data from the Dischma station (MCH.DMA2) are provided by MeteoSwiss. Streamflow and snow depth
datasets are available in Magnusson et al. (2025). Snowmelt runoff are modeled at a daily time step using operational snow-hydrological
service (OSHD) model from 1998–2022 (Mott, 2023).

driven by climate conditions, while also offering potential
insights into the influence of landscape on these patterns.
For instance, there is evidence of a geological signature in
streamflow seasonality, such as the locally delayed center of
mass in the Chalk aquifer in the Thames Basin (England)
and northern France (Fig. 6a), or the stronger seasonality ob-
served in Brittany and along a band of Jurassic rock in north-
ern France (Fig. 6b). The center of mass timing (Eq. 7 and
Fig. 6a) shows stronger regional timing differences than tra-
ditional metrics such as half-flow date (Eq. 1) and center of
mass (Eq. 2) (Fig. A1).

4.3 Trend analyses

Directional statistics can be applied in trend analyses to eval-
uate whether the center of mass timing and the strength of the
seasonal cycle have trends. The specifics of such trend analy-
ses may vary depending on the exact research questions, the
availability of data, and the selected trend estimator. Here,

we demonstrate an example using the Theil–Sen estimator.
Similar steps could be followed with other methods.

For each catchment, we calculate the center of mass tim-
ing values on an annual basis (1 October–30 September) and
assess possible trends using the Theil–Sen estimator:

βt
Q̂
=median

(
t
Q̂j
− t

Q̂i

j − i

)
. (11)

The trend estimator βt
Q̂

(year per year) is calculated as the
median of the differences in dates across all possible year
pairs (i and j ) based on annual values of t

Q̂
(expressed as a

fraction of the year). Such a trend analysis must account for
the periodic nature of the year. We applied the unwrap func-
tion from NumPy (Harris et al., 2020) to t

Q̂
to ensure that

such discontinuities in t
Q̂

are removed, creating a continu-
ous representation of t

Q̂
changes over time. Almost identical

approaches have been applied to annual flood timings (e.g.,
Blöschl et al., 2017). These approaches do not require an un-
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Figure 6. Seasonality of flow regimes according to directional statistics. The center of mass timing (a) and its concentration (b) of catch-
ments are shown at the location of the streamflow gauges and vary notably across Europe. Most of these variations are spatially highly
autocorrelated. For illustration purposes, we do not show (the small number of) Icelandic catchments and streamflow gauges located east of
32° E.

wrap function but assume two dates (e.g., t
Q̂j
− t

Q̂i
) cannot

be more than 0.5 years apart. However, this assumption can
sometimes violate the time’s arrow in trend analyses. The
Theil–Sen estimator of the concentration βR (one per year)
can be calculated as

βR =median
(
Rj −Ri

j − i

)
. (12)

The trend estimator βR (one per year) is calculated as the me-
dian of the differences in dates across all possible year pairs
(i and j ) based on annual values of R. To conduct these trend
analyses, we use the theilslopes function from the scipy.stats
module in SciPy (Virtanen et al., 2020).

For instance, trend analysis of the streamflow in the Dis-
chma catchment (same gauge as in Fig. 5) reveals that the
center of mass has shifted earlier in the year at a rate of
0.0005 years (or 0.18 d) per year from 1980–2020 (90 % con-
fidence bounds:−0.0010,−0.0001) (Fig. 7a), while the con-
centration has decreased at a rate of 0.0025 years per year
(90 % confidence bounds:−0.0032,−0.0012) (Fig. 7b). This
suggests that the streamflow has shifted earlier in the year
(7.3 d total) with less seasonality. Note that such an analysis
could be applied to a larger dataset or to ask detailed process
questions. Such application is not provided as this should be
separate studies and not part of this technical note.

5 Summary

Streamflow and other hydrological fluxes typically vary
across seasons. Existing metrics designed to characterize sea-
sonality often do not account for the periodic nature of sea-
sonal cycles. Here, we use directional statistics to apply the
concept of the center of mass for unbounded environments.
This approach allows for the simultaneous quantification of
seasonal timing (center of mass timing) and strength (cen-
ter of mass concentration). We demonstrate that using direc-
tional statistics provides a more mathematically robust quan-
tification of seasonality compared to several widely used sea-
sonality metrics. To illustrate its application, we analyze data
from European catchments, showcasing the method’s utility
for various water balance components, large-sample hydro-
logical studies, and trend analyses. The introduced metrics,
leveraging directional statistics, offer tools for studying the
seasonality of environmental fluxes both within and beyond
hydrology.
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Figure 7. Trend analysis of the center of mass timing (a) and its
concentration (b) for streamflow in the Dischma catchment. The
90 % confidence interval reflects the uncertainty in the estimated
slope. Over the period 1980–2020, center of mass of streamflow
has shifted earlier in the year with weaker seasonality.

Appendix A: Methodological equations, discrete form

In discrete form, the center of mass timing (t
Q̂

[T]) is calcu-
lated as

t
Q̂
=

atan2(y,x)
2π

, (A1)

and its concentration, R [dimensionless], as

R =

√
x2
+ y2, (A2)

where the cosine and sine components of streamflow are

x =
1∑n
i=1Qi

∑n

i=1
cos(2πti)×Qi, (A3)

y =
1∑n
i=1Qi

∑n

i=1
sin(2πti)×Qi, (A4)

where Qi is the streamflow rate at interval i [L T−1 or
L3 T−1], n is the total number of intervals considered, and
ti expresses the timing at interval i (years since 1 January).
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Appendix B: Traditional seasonality metrics

Figure B1. Seasonal timing of flow regimes (without directional statistics) according to the half-flow date (Eq. 1) and center of mass (Eq. 2)
based on a water year starting 1 October.
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