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Abstract. Persistent drought conditions may alter catchment
response to precipitation, both during and after the drought
period, hindering accurate streamflow forecasting of high
flows and floods. Yet, the influence of drought characteris-
tics on the catchment response to precipitation remains un-
clear. In this study, we use a comprehensive dataset of global
observations of streamflow and remotely sensed precipita-
tion, soil moisture, total water storage, and normalized differ-
ence vegetation index (NDVI). Using multivariate statistics
on 4487 catchments with a stationary annual streamflow–
precipitation ratio, we investigate the influence of drought
on fluctuations of streamflow response to precipitation. Our
analysis shows that, generally, droughts with streamflow or
soil moisture anomalies below the 15th percentile lead to
around 20 % decrease in streamflow response to precipita-
tion during drought compared to the historical norm. How-
ever, this decrease is reduced to only about 2 % 1 year af-
ter the drought, which suggests a generally low influence of
preceding drought conditions. These effects are more pro-
nounced when droughts are longer and more severe. Most
changes were found in arid and warm-temperate regions,
whereas snow-influenced regions exhibit fewer changes in
catchment response due to drought. In addition, we used step
change analyses on 1107 catchments with non-stationary an-
nual streamflow–precipitation ratios to identify significant
abrupt shifts in the time series, examining the role of drought
in driving these shifts. This analysis revealed both positive
and negative shifts in annual streamflow response to precip-
itation after severe and persistent drought conditions regard-

less of climate and catchment characteristics. Positive shifts
occur only when the drought propagated through the hy-
drological system after extended dry periods, while negative
shifts are usually linked to shorter, intense dry periods. This
study sheds light on the importance of considering climate
characteristics in predicting dynamic catchment response to
precipitation during and after persistent drought conditions.

1 Introduction

Drought is known to exert a significant influence on catch-
ment hydrological behaviour. Events such as the mega
drought in Chile (Alvarez-Garreton et al., 2021; Garreaud
et al., 2017), the Millennium Drought in Australia (Saft
et al., 2016b), and the 2011 Texas drought (Klockow et
al., 2018) have resulted in substantial changes in vegeta-
tion productivity and type, soil hydraulic properties, surface
water–groundwater interactions, and water storage. Yet, un-
derstanding the extent of drought influence on catchment hy-
drologic response remains a crucial question with significant
implications for enhancing hydrological prediction under fu-
ture conditions.

Researchers have studied the impact of persistent drought
conditions on catchment response using linear-regression ap-
proaches (Avanzi et al., 2020; Liu et al., 2022; Massari et al.,
2022; Peterson et al., 2021; Saft et al., 2015, 2016b; Wu et
al., 2021) and water balance models (Liu et al., 2023; Maurer
et al., 2022; Pan et al., 2020), registering a shift in rainfall–

Published by Copernicus Publications on behalf of the European Geosciences Union.



2750 A. Matanó et al.: Drought decreases annual streamflow response to precipitation, especially in arid regions

runoff relationships during long drought periods. According
to Saft et al. (2015, 2016a), persistent drought conditions in
Australia’s multi-year drought resulted in significantly less
than expected runoff for some of the basins studied. This
has been mainly attributed to reduced groundwater levels,
and hence, initial precipitation is used for replenishing water
storage before runoff can occur. This process is prevalent in
arid regions with high surface water–groundwater connection
and large soil thickness, highlighting the linkage between
changes in rainfall–runoff and catchment characteristics dur-
ing persistent drought conditions. Peterson et al. (2021) have
shown that rainfall–runoff shifts can persist after drought,
in this case due to an increase in the fraction of precipita-
tion going to evapotranspiration. Similar to the Australian
study, Avanzi et al. (2020) and Maurer et al. (2022) have
identified less runoff during droughts in California than ex-
pected, attributing this to non-linear feedback mechanisms
between evapotranspiration and storage. Only a few catch-
ments showed runoff increases mainly explained by catch-
ment buffer capacities such as soil storage and snow-to-rain
transitions.

Despite these findings, uncertainties remain on the specific
catchment characteristics that contribute to vulnerability to
drought-induced changes in the Q–P relationship and the
drought conditions that lead to these changes and the direc-
tion of the change (e.g. increase or decrease). Previous stud-
ies relied on samples with limited variability in catchment
characteristics, with a large focus on natural catchments in
Australia (Liu et al., 2021; Pan et al., 2020; Peterson et al.,
2021; Saft et al., 2015, 2016b) and California (Avanzi et al.,
2020; Bales et al., 2018; Maurer et al., 2022). Furthermore,
analyses of changes in rainfall–runoff relationships have pri-
marily focused on the effects of meteorological droughts (Liu
et al., 2021; Massari et al., 2022; Pan et al., 2020; Peterson et
al., 2021; Saft et al., 2015, 2016b), neglecting other drought
types and failing to assess the effect of drought severity and
duration on changes in the rainfall–runoff relationship.

Here, we analysed the temporal dynamics of the annual
streamflow response to precipitation (computed as the ra-
tio between annual streamflow and precipitation) in ap-
proximately 5000 catchments across the world. This an-
nual Q–P ratio indicates the fraction of precipitation that
is converted into streamflow within a year, providing in-
sights into the catchment water balance. Specifically, we ad-
dressed the following questions: (1) how do drought char-
acteristics (types, duration, and severity) influence annual
streamflow response to precipitation in general and in differ-
ent hydro-climatic regions across the globe? (2) When and
where do abrupt changes in annual streamflow response to
precipitation occur, and how do those changes align with
drought periods? To address these research questions, we
first divided the catchments according to stationary and non-
stationary streamflow–precipitation ratio time series. Then,
we employed mixed-effects panel data models on stationary
streamflow–precipitation time series to answer RQ1 and a

step change analysis by using threshold regression models
on non-stationary streamflow–precipitation time series to an-
swer RQ2.

2 Methodology

2.1 Data preparation and drought detection

We identified a large sample of 5590 catchments, whose
hydrometeorological time series span 25 to 34 years from
1980–2016. We compiled the observed streamflow data
from the Global Streamflow Indices and Metadata Archive
(GSIM) database (Do et al., 2018a; Gudmundsson et al.,
2018). Using the catchment delineations in the GSIM dataset,
we derived a set of hydro-climatic time series using Multi-
Source Weighted-Ensemble Precipitation (MSWEP; Beck
et al., 2019) for the precipitation sum over the catchment;
the Global Land Evaporation Amsterdam Model (GLEAM;
Martens et al., 2017) for surface (0–5 cm depth) and root
zone (0–250 cm depth) soil moisture; the Gravity Recovery
And Climate Experiment (GRACE; Boergens et al., 2019)
for total water storage; Landsat for surface water extent
(Donchyts et al., 2016; Earth Resources Observation and Sci-
ence (EROS) Center, 2022); and STAR – Global Vegetation
Health Products for the normalized difference vegetation in-
dex (NDVI; NOAA, 2022). These datasets and their post-
processing are explained in more detail in Table 1 and in
Matanó et al. (2024a). For instance, for streamflow data, we
included only GSIM stations with high delineation quality of
their catchments, no missing months within a given year, and
a minimum record length of 30 years.

From average daily streamflow and total precipitation
per month, we derived annual average daily streamflow
(mmd−1) and annual average daily precipitation (mmd−1)
for each catchment. As such, we assume that the storage
change is negligible over an annual timescale. Data aggre-
gation to a yearly scale was based on water years, defined
for each catchment as the 12-month period beginning in the
month of the lowest average monthly streamflow (Wasko
et al., 2020). We then applied a Box–Cox transformation
(Sakia, 1992) to normalize the skewed yearly streamflow
distribution (Saft et al., 2015, 2016b). This allowed us to
obtain an approximately linear rainfall–runoff relationship,
thereby facilitating the application of various statistical meth-
ods. Further, the Box–Cox transformation allowed us to over-
come the issue of applying a log-transformation to stream-
flow time series with zero flow (e.g. ephemeral or intermit-
tent rivers; Santos et al., 2018). We then computed annual
streamflow–precipitation (Q–P ) ratio time series for each
catchment. This measure represents the annual runoff ratio
and is dynamically influenced by climatic and landscape con-
ditions. By considering an annual timescale, the ratio ac-
counts for within-year evapotranspiration and storage pro-
cesses within the catchment. It is important to note that first
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Table 1. Spatial resolution and temporal coverage of the data used in this study.

Dataset Temporal resolution Spatial resolution Temporal coverage

In situ river streamflow data – GSIM daily statistics per month nodes (catchment outlets/ varying
(Do et al., 2018a; Gudmundsson et al., 2018) (MAX, MIN, MEAN) hydrometric stations) (1900–2016)

Precipitation – MSWEP monthly 11 km 1979–2022
(Beck et al., 2019)

Soil moisture – GLEAM (Global Land monthly 25 km 1980–2020
Evaporation Amsterdam Model) v3.6a
(Martens et al., 2017)

Surface water extent (global surface water) monthly polygons/centroids 1984–2020
(Donchyts et al., 2016)

No noise (smoothed) normalized difference 7 d composite 4 km 1981–2022
vegetation index (STAR – global vegetation
health products, 2022)

Total water storage anomaly is monthly 50 km 2002–2020
computed as standardized deviation of
the GRACE satellite liquid water
equivalent (GRACE) (Boergens et al., 2019)

since the ratio is a lumped representation of these processes,
it does not separate their individual contributions. Second,
in some catchments, storage processes extend beyond a sin-
gle year, which may influence the annual runoff ratio. This
metric differs from other metrics such as elasticity (Ander-
son et al., 2024; Sankarasubramanian et al., 2001; Zhang et
al., 2022). While the annual runoff ratio provides an average
measure of how much precipitation contributes to streamflow
in a given year, elasticity tells us how streamflow reacts to
changes in precipitation (Schaake, 1990).

Drought events were detected using a variable threshold-
level approach for perennial rivers (Van Loon, 2015) and a
combined threshold-level and consecutive dry period method
for ephemeral rivers (Van Huijgevoort et al., 2012; we re-
fer to Matanó et al., 2024a, for details on the method used
for drought detection). We employed monthly varying ex-
ceedance probabilities of the 15th, 10th, 5th, and 1st per-
centiles on precipitation, soil moisture, streamflow, total wa-
ter storage, and surface water extent monthly time series.
Additionally, NDVI anomalies per catchment were analysed
to understand vegetation health and water flux dynamics.
Drought characteristics were summarized at a yearly scale
by calculating maximum severity (defined as the difference
between observed values and a predefined threshold), maxi-
mum cumulative severity (sum of consecutive severity across
years), the sum of severity, maximum cumulative duration
(defined as the number of consecutive months in which ob-
servations are under a certain threshold), and the sum of
months under drought for each water year. These metrics
were computed for each variable and were also aggregated
for three types of drought: meteorological drought (based
solely on precipitation data), soil moisture drought (incorpo-

rating surface and root zone soil moisture), and hydrological
drought (taking into account streamflow, surface water ex-
tent, and total water storage).

2.2 Stationarity test and research framework

We tested the stationarity over time of yearly streamflow–
precipitation ratios (Q–P ) using the Augmented Dickey–
Fuller (ADF) test (Paparoditis and Politis, 2018), with a
significance level set at 0.05. This test primarily assesses
whether the mean of the streamflow–precipitation relation-
ship remained consistent over time, regardless of fluctuations
around it.

We then divided our catchments into two groups: catch-
ments with stationary Q–P time series and those with non-
stationary Q–P time series. For stationary Q–P time se-
ries (ADF test p value < 0.05), we evaluated the influ-
ence of drought on streamflow response to precipitation by
employing a mixed-effects panel data model (Gelman and
Hill, 2007; Fig. 1a). For Q–P time series displaying non-
stationary behaviour (ADF test p value > 0.05), we iden-
tified potential step changes in the streamflow–precipitation
ratio and their coincidence with drought conditions (Fig. 1b).
With the use of these two different approaches, we analysed
both the dynamic influence of drought on the stationary Q–
P time series (RQ1) and the more structural changes during
drought in non-stationary series (RQ2).

2.3 Panel data models for stationary Q–P time series

We used a mixed-effects panel data model (Gelman and Hill,
2007) on 4487 catchments with a stationary streamflow–
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Figure 1. Research framework. (a) Methodology applied to investigate the influence of drought on annual streamflow response to precipi-
tation. (b) Methodology applied to identify step changes in the Q–P ratio trend and system state conditions (e.g. anomaly presence) during
the change year.

precipitation ratio to explore the influence of drought con-
ditions on the variability of annual streamflow response to
precipitation over time. The mixed-effects model offers sev-
eral advantages. First, it estimates both the general effect of
drought characteristics on streamflow response to precipi-
tation across all catchments (fixed effect) and the variation
of this effect between catchments (random effect). Second,
this model is ideal for analysing hydrological units, as it can
account for potential correlations between “nested” basins
(Levy et al., 2018).

We ran two mixed-effects panel data models whose formu-
lation is presented in Eqs. (1) and (4), to assess the impact of
various drought types on the streamflow–precipitation ratio,
accounting for different data availability. Before employing
these formulations, we tested several drought metrics, such
as maximum cumulative drought severity and maximum du-
ration. However, as no substantial difference was found (see
Table S1 in the Supplement), we opted for using maximum
drought severity as a predictor for subsequent analyses.

In the first panel data model (Eqs. 1–3), we quanti-
fied the relationship between the variability of streamflow–
precipitation and maximum drought severity for meteorolog-
ical, soil moisture, hydrological droughts, and NDVI anoma-
lies. We considered the full length of the available time se-
ries (1982–2016) and the influence of drought severity in the
same year and the year after (i.e. t and t−1 in Eq. 1). Drought
type variables included in the model formulation were se-
lected based on correlation analysis (Fig. S1 in the Supple-
ment) and the length of their time series. For soil moisture
drought, we used the maximum anomaly severity between
the soil moisture surface and the root, given the high cor-
relation between these anomalies (Fig. S1c). Hydrological
drought combining streamflow, surface water extent, and to-

tal water storage was chosen over the individual variables, as
the latter two overlap with the other variables only for the
last 10 years of data. Thus, hydrological drought was com-
puted as the maximum anomaly severity among streamflow,
surface water extent, and total water storage, as follows:(
Q

P

)
ct

=(α+αc)+
∑p

i
(βi +βic) ·Di(t)

+

∑p

i
(γi + γic) ·Di(t−1) + ε, (1)∑p

i
Di(t) =DMsv(t) +DSMsv(t) +DHYsv(t)

+DNDVIsv(t) , (2)∑p

i
Di(t−1) =DMsv(t−1) +DSMsv(t−1) +DHYsv(t−1)

+DNDVIsv(t−1) , (3)

where c is a catchment index and t is for year; (Q
P
)ct the ra-

tio between annual average streamflow [mmd−1] and precip-
itation [mmd−1] calculated for the year t in catchment c; α
the intercept (α for the fixed effect and αc for the catchment-
specific effect); Di(t) the max drought severity in the year
t (M: meteorological, SM: soil moisture, HY: hydrologi-
cal, and NDVI anomalies); Di(t−1) the max drought severity
(sv) in the previous year (M: meteorological, SM: soil mois-
ture, HY: hydrological, and NDVI anomalies); βi the unique
effect of drought i occurred in time t on the streamflow–
precipitation ratio; βic the unique effect of drought i occurred
in time t on the streamflow–precipitation ratio for catch-
ment c; γi the unique effect of drought i occurred in time
t − 1 on the streamflow–precipitation ratio; γic the unique
effect of drought i occurred in time t − 1 on the streamflow–
precipitation ratio for catchment c; and ε the error term.

Hydrol. Earth Syst. Sci., 29, 2749–2764, 2025 https://doi.org/10.5194/hess-29-2749-2025



A. Matanó et al.: Drought decreases annual streamflow response to precipitation, especially in arid regions 2753

In the second panel data model (Eqs. 4 and 5), we quan-
tified the same relationship but this time using all variables
as predictors (meteorological, soil moisture, streamflow, sur-
face water extent, total water storage, and NDVI anomalies),
starting from 2002 to encompass the last 14 years. This time
span was chosen to ensure complete overlap of the total wa-
ter storage and surface water extent time series with the other
variables analysed. The variables are defined as follows:(
Q

P

)
ct

= (α+αc)+
∑p

z
(βz+βzc) ·Dz(t) + ε, (4)∑p

z
Dz(t) =DMsv(t) +DSMsv(t) +DSTRsv(t)

+DSWsv(t) +DTWSsv(t) +DNDVIsv(t) , (5)

where c is a catchment index and t is for year; (Q
P
)tc the

ratio between mean streamflow [mmd−1] and precipitation
[mmd−1] calculated for the year t in catchment c; α the inter-
cept (α for the fixed effect and αc for the catchment-specific
effect);Di(t) the max drought severity in the year t (M: mete-
orological, SM: soil moisture, STR: streamflow, SW: surface
water extent, TWS: total water storage, and NDVI anoma-
lies); βz the unique effect of drought z occurred in time t on
the streamflow–precipitation ratio; βzc the unique effect of
drought z occurred in time t on the streamflow–precipitation
ratio for catchment c; and ε the error term.

We assessed possible correlations among the predictors
using Pearson correlation analysis. In the first model, the
highest correlation (0.16) is observed between soil moisture
and hydrological drought (Fig. S1e). In the second model,
the highest correlation (0.18) is found between streamflow
drought and soil moisture (Fig. S1d). Similar values were ob-
tained using Spearman correlation analysis, which accounts
for non-linear relationships (Fig. S2 in the Supplement).
These correlations are assumed to not significantly influence
the estimation of the coefficients.

Autocorrelation in the residuals leads to an incorrect es-
timation of the variance of the estimated regression coef-
ficients, hence a possible overestimation of the test signifi-
cance (Anderson, 1954). Therefore, we applied the Durbin–
Watson test to check for possible autocorrelation between the
residuals, obtaining values between 1 and 2, indicating little
to no autocorrelation. We also applied the fixed-effects panel
data model with clustered standard errors (Moody, 2017) by
catchment to test the robustness of our results. By using clus-
tered standard errors, we allow for the possibility of cor-
related errors within each catchment, while assuming that
errors are independent across different catchments. As the
number of clusters grows, the cluster-robust standard errors
become consistent. In applying the fixed-effects panel data
model, we used the same regressions as in Eqs. (1) and (4).
We first constructed a panel model using all available catch-
ments, which yielded results consistent with those of the
mixed-effects panel data model. Subsequently, we grouped
catchments according to climate types – such as arid, snow,

warm temperate, and equatorial, aligning with the Köppen–
Geiger climate classification (Rubel and Kottek, 2010), and
we applied the model to each category. Finally, we catego-
rized the catchments according to climate and soil types, as
well as climate and land cover types. For the soil-based cat-
egorization, we utilized soil classifications derived from the
fractions of sand, silt, and clay within each analysed catch-
ment, as provided by the GSIM dataset (Do et al., 2018a;
Gudmundsson et al., 2018). The land cover types used in
the second categorization – “forest”, “shrubland”, “grass-
land”, and “agriculture” – were also sourced from the GSIM
dataset, which uses the United Nations Classification System
for 2015, based on the Climate Change Initiative Land Cover
(CCI-LC) dataset from 2015 and assigns the land cover type
that occupies more than 50 % of the catchment area (ESA,
2015). The application of the fixed-effects panel data model
to different clusters allowed us to compare coefficients across
various catchment characteristics and analyse whether these
characteristics might alter the drought influence on the Q–P
relationship.

The coefficients associated with the independent variables
are dimensionless and indicate the magnitude of change in
the response of streamflow to precipitation for a 1 standard
deviation change in each respective independent variable,
while holding all other variables constant. Finally, we anal-
ysed the spread of these coefficient values with catchment
characteristics: mean annual catchment precipitation, maxi-
mum altitude, population density, and artificial water storage.
The mean annual precipitation was computed using precipi-
tation time series extracted from the MSWEP dataset, while
the other variables were obtained from the GSIM dataset (Do
et al., 2018a), which provides various attributes of catchment
characteristics.

2.4 Trend and step change analysis for non-stationary
Q–P time series

To identify shifts in the streamflow response to precipita-
tion from one steady state to another, we carried out a trend
analysis in 1107 catchments with non-stationary streamflow–
precipitation (Q–P ) ratio time series. These catchments also
have no more than 2 years of missing data in their stream-
flow time series. This involved modelling the relationship be-
tween the Q–P ratio and year (adapting the methodology in
Berdugo et al., 2022a). In detail, we investigated whether the
Q–P trends are linear (i.e. monotonic trends or no trends),
curvilinear (with an acceleration or deceleration that makes
the trend non-linear), or abrupt (characterized by a sudden
change maintained until the end of the time period under
analysis). We applied linear and quadratic models to test for
linearity and non-linearity, respectively, and also assessed the
fit without a trend. Additionally, we used a threshold regres-
sion approach to detect any abrupt changes in the Q–P re-
lationship. This approach models the relationship between
variables that change at a specific threshold (i.e. change
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point). When multiple state transitions occurred within the
analysed period, the method identifies the candidate change
point that maximizes the goodness of fit or minimizes the
loss function.

To select the best-fitting model for each trend, we com-
pared the Akaike Information Criterion (AIC; Wagenmakers
and Farrell, 2004) values of each fit. AIC is based on the log-
likelihood of a given fit. A lower value indicates a model that
fits the data better, but candidates with AIC differences lower
than two units usually are similarly good.

To account for potential uncertainty in classifying trends
due to their noisy nature and the relatively short length of
the time series, we bootstrapped each time series 100 times
without replacement and compared the model results of each
bootstrapped iteration. For each bootstrap, we increased the
probability of selecting the least influential points using the
distance-based Mahalanobis method (Berdugo et al., 2022;
Liu et al., 2018). We then computed the number of times that
each model was selected as the best fit out of the 100 boot-
straps, to identify the best-fitted shape for each trajectory.
We used this percentage as a measure of confidence for the
best fit shape of each trajectory (hereafter called confidence
value).

Given the sensitivity of step regressions to outliers, we im-
plemented three criteria to increase confidence in detecting
step trends. First, we discarded step trends where the change
point fell within the first or last 3 years of the period of anal-
ysis. This ensured that abrupt changes were not falsely iden-
tified due to anomalous data points at the start and end of the
time series and guaranteed that detected abrupt changes per-
sisted for at least 4 years after the change, indicating a certain
stability of the change detected.

Second, we recorded the change point position (i.e. the
year in which the trend is detected to change abruptly) for
each trajectory classified as “step change” and calculated the
mean and standard deviation (SD) of these change points
across the 100 bootstrap iterations of each catchment. To de-
termine the value of the change point SD that is critically in-
fluencing anomalous steps, we related the confidence value
in the bootstrap selection and the SD of change points in
all sites. We found that both parameters were related for the
Q–P ratio time series in which the SD of the change point
was lower than 6 years. There was a strong negative corre-
lation between the SD of the change point and the confi-
dence value in the bootstrap selection, whereas higher SDs
in the change point showed similarly low confidence val-
ues (Fig. S3 in the Supplement). Therefore, we only con-
sidered step changes with standard deviations below 6 and
confidence values above 80 %.

Third, we categorized trajectories as step change only if
the Q–P ratios before and after the change point signif-
icantly differed according to a two-sample Kolmogorov–
Smirnov test. This criterion ensured that the observed change
point was sufficiently robust, aligning with the definition of a
regime shift, characterized by significant differences in func-

tioning or structure between two states. The analysis was car-
ried out with a significance level of 0.05. For each of the tra-
jectories classified as step change, we identified the direction
of the step as positive (increasing trend) or negative (decreas-
ing trend). We then continued our analysis only considering
the catchments with a step change in the Q–P time series.

For the trends classified as “step change”, we examined
drought anomalies occurring during and before the identified
change years. Drought severity was categorized as moderate
(between the 15th and 10th percentiles), severe (between the
10th and 5th percentiles), and extremely severe (below the
5th percentile).

3 Results

3.1 Drought influence on streamflow response to
precipitation for stationary catchments

Generally, droughts tend to decrease the yearly response of
streamflow to precipitation (negative coefficient values in
Fig. 2a and Tables S1–S3 in the Supplement), with hydro-
logical drought having a more pronounced effect compared
to other drought types. Soil moisture drought is the sec-
ond most predominant factor (Fig. 2a). In contrast, negative
NDVI anomalies exhibit a slight increase (3 %) in streamflow
response to precipitation. The influence of drought persists
into the following year, maintaining the same direction (in
terms of increased or decreased catchment response to dif-
ferent drought types) but with a reduced magnitude. Further,
both drought severity and duration show a similar influence
on streamflow response to precipitation (Table S1), likely due
to the moderate correlation between these two variables.

While on average we find reduced streamflow response to
precipitation during drought events, spatial variations among
catchments exist (Figs. 2b and 3). In most climate zones, hy-
drological drought has the strongest influence on the Q–P
relationship (Fig. 2b). Arid regions are an exception, with
soil moisture drought having the strongest influence on the
Q–P relationship (a 1 standard deviation increase in soil
moisture drought severity leads to a 30 % decrease in theQ–
P ratio; Fig. 2b). Further, NDVI anomalies in arid regions
lead to a decrease in catchment response (a 1 standard de-
viation increase in NDVI anomalies leads to a 3 % decrease
in the Q–P ratio) compared to the slight increase (around
5 %) in response found in the other climate regions. Catch-
ments located mainly in polar, snow-influenced, and equa-
torial regions present the lower coefficient values, indicating
fewer changes in streamflow response to precipitation dur-
ing drought events (Fig. 2b and Table S4 in the Supplement).
These findings are further supported by the random effects
model, which identifies catchments with lower coefficient
values in the Apennine region, southwest Canada, northeast
United States, and central Brazil (Figs. 3 and S4 in the Sup-
plement).
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Figure 2. Bar plots of the panel data models’ coefficient values for each drought type variable (METEO: meteorological, SM: soil moisture,
HYDRO: hydrological, and NDVI anomalies) with and without a lag time of 1 year. (a) Fixed-effect coefficients from the mixed-effects
panel data model. (b) Fixed-effect coefficients from the panel data model with clustered standard errors, including all data and data grouped
by climate types (refer to Table S3). All results are significant with p values < 0.001, while results marked with asterisks indicate levels of
significance: ∗ p < 0.1 and ∗∗ p < 0.01. Missing bars indicate coefficients with p values > 0.1, which are reported as NaN.

Figure 3. Catchment-specific effects of soil moisture (SM) drought on the Q–P ratio captured with the mixed-effects panel data model.
Results are shown only for soil moisture as it exhibits the largest spatial variation compared to other drought types, which are reported in
Fig. S3.

By identifying the dominant drought type, indicated by
the highest regression coefficient value in each catchment,
we determined which drought type primarily influences the
Q–P relationship spatially (Fig. 4a). This analysis also al-
lowed us to assess the degree of catchment resilience to Q–
P changes during droughts. Hydrological and soil moisture
drought emerge as the most influential drought type (respec-
tively for 30 % and 27 % of the catchments and indicated in
brown and green in Fig. 4), predominantly dampening the
response of Q to P (Fig. 4b). Soil moisture drought dom-

inates in catchments clustered in the south-central United
States, southern Spain, and northeast India. On the other
hand, anomalies in total water storage and NDVI affectQ–P
relationships in 19 % of the catchments each, with total wa-
ter storage anomalies mainly in snow-influenced regions and
northern Australia. Catchments with the highest regression
coefficients (absolute values above 0.7), indicating the lowest
resilience to drought influence on Q–P relationships, are lo-
cated in north Australia and the south-central/eastern United
States. In these regions, the Q–P relationship is primarily
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influenced by soil moisture and groundwater drought. The
most resilient catchments (absolute coefficient values below
0.2) are found in the Alpine region and in southeast Brazil.

Spatial variations in streamflow response to precipitation
due to drought are influenced by both topography and climate
characteristics but to different degrees. Altitude variation has
a minimal effect on the influence of drought on stream-
flow response to precipitation (Fig. S5 in the Supplement).
As maximum catchment altitude increases, the sensitivity
of catchment response to meteorological and soil moisture
drought slightly decreases across all climate regions except
arid ones, with this effect being particularly noticeable in the
Alps, Pyrenees, mountain ranges of Norway, and the Cana-
dian coastal mountains. In contrast, mean catchment precip-
itation exhibits a more pronounced effect, with a decrease in
the drought influence on the Q–P ratio as mean catchment
precipitation increases (Fig. S6 in the Supplement). The ex-
ception to this is hydrological drought, whose influence on
streamflow response to precipitation slightly increases when
mean catchment precipitation increases.

While climate types primarily influence variations in
drought impacts on Q–P relationships across catchments,
predominant land cover also plays a significant role (Fig. S8
in the Supplement). Catchments dominated by grasslands
and shrublands are more sensitive to Q–P changes induced
by soil moisture drought, whereas those with forests and agri-
cultural areas exhibit greater fluctuations in Q–P relation-
ships during hydrological drought (first row of the heatmap in
Fig. S8). These differences become more pronounced when
catchments are clustered by both climate and land cover
(Fig. S8). Specifically, grasslands in arid and equatorial re-
gions exhibit heightened susceptibility to Q–P changes dur-
ing drought. In snow-influenced climates, shrublands experi-
ence the most significant changes, while in warm temperate
regions, agricultural and forested areas are the most affected.
Conversely, negative NDVI anomalies have a minimal effect
on the Q–P relationship in catchments dominated by grass-
lands.

Clustering catchments based on soil and climate type re-
veals that those both in snow-influenced regions and with
sandy soils (sand fraction > 33 %) exhibit the least changes
in streamflow response to precipitation due to drought
(Fig. S9 in the Supplement). Q–P ratios in arid and equa-
torial sandy catchments are significantly influenced by soil
moisture drought, while hydrological drought plays a key
role in warm temperate catchments with both clay and sandy
soils. By clustering the catchments according to the total stor-
age of the dams within a catchment, we can see that the influ-
ence of drought on the Q–P relationships slightly increases
with an increase of reservoir storage (Fig. S11 in the Supple-
ment).

3.2 Analysis of step change in Q–P relationship for
non-stationary catchments

The step analysis identified 197 catchments with a step
change in the Q–P ratio time series, 183 of which occur
during drought conditions. The percentage of catchments
showing a step change was similar for both undisturbed
and human-influenced (presence of reservoirs) catchments,
at around 16 %. Among the human-influenced catchments,
70 % showed a negative step, whereas the undisturbed catch-
ments were nearly evenly split, with about 52 % exhibiting a
positive step and 48 % a negative step.

Catchment clusters with positive steps in the Q–P rela-
tionship (i.e. increased response of streamflow to precipita-
tion) are primarily found in snow-influenced regions but are
also present across other climate regions (Fig. 5d). Those
catchments are concentrated in the north-central United
States, western Canada, and northeastern Brazil. Conversely,
catchment clusters with a negative step are found in south-
ern Canada, scattered across Alpine and Scandinavian coun-
tries, and in central Brazil. By plotting the years in which
the steps occurred, we could identify some notable drought
events (Fig. 5). For instance, a cluster of catchments with a
negative step trend has the step change during the 2011–2012
drought that severely affected north-east Brazil (Rodrigues
and McPhaden, 2014). Within this cluster, only one catch-
ment exhibits a positive step change. This catchment shares
the same equatorial climate and has similar land cover as the
others in the cluster (Table S5 in the Supplement). The only
notable difference is its significantly smaller size (hundreds
of square kilometres compared to the others which span thou-
sands).

Drought events occurring during shifts in the Q–P rela-
tionship are typically extremely severe (below the 5th per-
centile; Fig. 6a and b). This is especially pronounced in mete-
orological droughts and NDVI anomalies for negative shifts
and in soil moisture droughts for positive shifts. Our analy-
sis of drought preceding the change year reveals longer dura-
tions of soil moisture and hydrological drought (> 1 year) for
positive step trends and longer durations of NDVI and mete-
orological droughts for negative steps (> 10 months; Figs. 6c
and S13 in the Supplement).

Finally, 96 % of drought events detected during the change
year had more than one anomaly, with 92 % including meteo-
rological droughts. Instances where the drought anomaly was
solely meteorological resulted mainly in a decrease in the
Q–P ratio following the step change (19 % of catchments,
Fig. 7a). Conversely, instances showing positive shifts were
mainly related to at least two components of the hydrological
system experiencing drought anomalies (Fig. 7b). Specifi-
cally, both positive and negative shifts are initiated by precip-
itation anomalies, but the shift is positive mainly when this
anomaly propagates to soil moisture (88 % of catchments,
Fig. 7b) and then to the hydrological system (75 % of catch-
ments, Fig. 7b).
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Figure 4. Highest regression coefficient per catchment, indicating the predominant drought type (among meteorological (METEO), soil
moisture (SM), streamflow (STR), total water storage (TWS), and NDVI) influencing streamflow response to precipitation, as determined
by the mixed-effects panel data model with time series data spanning the last 14 years (starting from 2002) and using Eq. (2). This time
frame enables a full overlap of GRACE data with other variables. Coefficients of drought anomalies in surface water extent were excluded
from the analysis due to non-significant results (p > 0.1). (a) Spatial distribution of the predominant drought type per catchment. Marker
size corresponds to the magnitude of the highest coefficient. Circular markers represent a decrease in streamflow response to precipitation,
while triangle markers indicate an increase in response. (b) Fraction of catchments with positive and negative coefficients of the predominant
drought type per climate zone.

4 Discussion

4.1 Drought influence on Q–P relationship in
stationary catchments

The panel data analysis showed that drought in general de-
creases annual streamflow response to precipitation in sta-
tionary catchments (Figs. 2 and 3), aligning with previous
research (Liu et al., 2021; Massari et al., 2022; Maurer et
al., 2022; Saft et al., 2016a). This tendency can be explained
by the initial precipitation being used to replenish catchment
water storage before streamflow responds (Barendrecht et al.,
2024; Van Loon and Laaha, 2015; Parry et al., 2016), which
is further confirmed by the higher influence of hydrological

and soil moisture drought on theQ–P relationship compared
to the meteorological drought and the NDVI (Fig. 2). On
the other hand, negative NDVI anomalies lead to a slight in-
crease of streamflow response to precipitation (Fig. 2). This
increase can be attributed to decreased evapotranspiration
and reduced water uptake from dying vegetation (Breshears
et al., 2005; Zhang et al., 2019). In smaller catchments (hun-
dreds of square kilometres), an increase in Q–P relationship
may also be due to drought-induced soil compaction, which
leads to reduced infiltration and higher runoff (Alaoui et al.,
2018; Descroix et al., 2009).

Despite a predominant tendency of decreasing streamflow
response to precipitation during drought, the severity of this
influence and the underlying processes differ spatially. Arid
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Figure 5. Global maps (a) of catchments whose Q–P ratio time series presents a step trend with a positive (triangle markers) or negative
(circle markers) step. Marker colours indicate the years in which the step change occurred. Marker size indicates the magnitude of the shift.
(b) Occurrence of positive or negative step change in Q–P relationship across catchments located in arid, warm temperature, equatorial,
snow, and polar climate regions.

Figure 6. Analysis of severity and duration of drought events detected during the years of change. (a, b) Occurrences of different drought
types (meteorological (METEO), soil moisture (SM), streamflow (STR), surface water extent (SW), total water storage (TWS), and NDVI)
for (a) negative and (b) positive steps. The fractions of total occurrences classified as moderate (10th< x < 15th), severe (5th< x < 10th),
or extremely severe (x < 5th) droughts are represented by blue, yellow, and brown colours, respectively. (c) Total number of months under
anomalies of consecutive drought years preceding the change year (drought may persist after the change year).
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Figure 7. Percentage of drought types (co-)occurring during nega-
tive (a) and positive (b) shifts, propagating from precipitation, soil
moisture, and streamflow droughts to further droughts along the
drought propagation pathway. For example, in panel (b), the blue
flow leading to the yellow bar (88 %) indicates the co-occurrence
of meteorological and soil moisture droughts, while the blue flow
leading to the brown bar (11 %) indicates the co-occurrence of me-
teorological drought and NDVI anomalies. Flow colours represent
the co-occurrence of multiple anomalies (e.g. the green flow (75 %)
represents the co-occurrence of meteorological, soil moisture, and
hydrological droughts). Circular flows (loops returning to the same
drought type) represent events where only one anomaly was de-
tected, indicating no further propagation of drought within the sys-
tem. Percentages are calculated separately for positive and nega-
tive steps, representing the proportion of catchments exhibiting each
specific co-occurrence relative to the total number of catchments
showing a step change.

regions, for instance, show less resilience to drought, which
significantly influences catchment response to precipitation.
This finding aligns with earlier studies (Liu et al., 2023; Mau-
rer et al., 2022; Saft et al., 2015), which observed higher
susceptibility to change in hydrological behaviour during
persistent drought in arid catchments. Our study further re-
veals that the Q–P relationship in arid regions is particu-
larly sensitive to soil moisture drought (Fig. 3). This sug-
gests that decreases in subsurface flow, which affect vege-
tation cover and surface water–groundwater interactions, are
primary mechanisms driving reduced streamflow response to
rainfall. Conversely, snow-influenced and polar regions are
more resilient to drought-induced changes in the Q–P rela-
tionship (Fig. 2b) due to their high storage capacity. In these
basins, snowmelt during drought can replenish subsurface

storage, compensating for reduced precipitation inputs and
limiting the dependency of evapotranspiration on deep sub-
surface storage (Avanzi et al., 2020). In these regions, the re-
lationship between precipitation and streamflow is strongly
influenced by drought anomalies in the total water storage
(Fig. 4), as confirmed by Berghuijs and Slater (2023), Car-
roll et al. (2024), and van Tiel et al. (2024), who highlight
the importance of groundwater for mountain streamflow.

Spatial differences can also be found in the influence of
negative NDVI anomalies on the Q–P relationship, though
the overall influence remains small (less than 5 %). While
the yearly response of streamflow to precipitation generally
increases during negative NDVI anomalies, in arid and semi-
arid catchments, this response decreases (Fig. 2b). This de-
crease could partially be explained by reduced hydrological
connectivity among bare patches (Jaeger et al., 2014) and in-
creased soil evaporation (Guardiola-Claramonte et al., 2011).
However, these processes are highly dependent on the type,
timing, duration of drought, and catchment-specific charac-
teristics (Goodwell et al., 2018; Liu et al., 2024), making
generalizations challenging. Furthermore, we acknowledge
that reduced transpiration, typically associated with negative
NDVI anomalies, may also influence the relationship (John-
son et al., 2009).

Spatial variations are also driven by topographic charac-
teristics and land-cover type, although climate characteris-
tics appear to be more predominant. In general, soil mois-
ture and meteorological drought have a slightly smaller in-
fluence on streamflow response to precipitation at higher al-
titudes, with this behaviour accentuated mainly in certain ar-
eas, such as the Alps and Pyrenees. The same effect was
found by Maurer et al. (2022) and explained by the resilience
of high-elevation runoff to increases in potential evapotran-
spiration due to overall lower temperatures and sparser veg-
etation, which help mitigate runoff losses elsewhere in the
basin. By analysing land cover, we find that forests reduce the
influence of meteorological drought on catchment response,
likely due to their higher hydraulic diversity, which buffers
precipitation anomalies (Anderegg et al., 2018). However,
when drought affects the hydrological system, forests present
marked changes in catchment response. A similar effect is
observed in agricultural and grassland catchments but specif-
ically in response to soil moisture drought. It is important to
consider that hydrological resilience to drought also varies
with plant water use efficiency, which can lead to deviations
from the general pattern observed (Xue et al., 2020).

While the impact of human influence (i.e. reservoirs) on
drought-induced changes on the Q–P relationship is rel-
atively weak, average catchment wetness, represented by
mean annual precipitation, appears to have a stronger influ-
ence. In detail, we found a substantial decrease in soil mois-
ture drought influence on the Q–P relationship with an in-
crease in wetness, which could be explained by the buffering
effects of water storage (Liu et al., 2022).
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4.2 Q–P shifts during drought in non-stationary
catchments

The analysis of step changes in the Q–P relationship in
non-stationary catchments showed slightly different patterns
in how annual streamflow response to precipitation shifts
during drought conditions, compared to Q–P fluctuations
during drought in stationary catchments. While the study
of drought influence primarily indicated a drought-induced
decrease in streamflow response to precipitation, the step
change analysis identified both positive and negative shifts
(Fig. 5). These shifts occurred in various climate regions
and under different catchment characteristics. This suggests
that catchments might experience changes in the rainfall–
runoff relationship regardless of their predominant climate
and catchment characteristics.

Although both positive and negativeQ–P shifts are found
in catchments in different climate regions, catchments in
snow-influenced regions exhibited a slight tendency toward
positive shifts. These consistent increases in streamflow re-
sponse to precipitation for at least 4 years after the shift can
be explained by permafrost thaw (Lamontagne-Hallé et al.,
2018) and glacial melt (Fountain and Tangborn, 1985; Lutz et
al., 2014; Schaner et al., 2012). While these mechanisms can
sustain increased streamflow response to precipitation, they
are ultimately finite resources. As glaciers and permafrost de-
plete and precipitation increasingly falls as rain, streamflow
will eventually reduce (Berghuijs et al., 2014).

Contrary to the drought influence on stationary Q–P rela-
tionships, the severity and duration of droughts play a critical
role in shaping these step changes (Fig. 6). Our analysis indi-
cates that severe droughts, especially with longer durations,
are often linked to positive step changes in theQ–P relation-
ship. For instance, positive step changes are frequently pre-
ceded by extended periods of severe soil moisture and hydro-
logical drought, reflecting how persistent drought anomalies
in the hydrological system can lead to significant adjustments
in catchment response. These adjustments can be related to
drought-induced changes in soil hydraulic properties (Alaoui
et al., 2018; Descroix et al., 2009), vegetation type (Adams
et al., 2012), interaction between shallow groundwater tables
and soil moisture (Barendrecht et al., 2024). Conversely, neg-
ative step changes can occur after shorter drought periods,
often linked to meteorological droughts. This suggests that
negative step changes might be associated with more abrupt
climatic shifts rather than longer-term changes in hydrolog-
ical processes. This is further confirmed by the observation
that positive Q–P shifts occur only when anomalies prop-
agate through the hydrological system, resulting in multi-
ple detected anomalies. In contrast, negative shifts can be
recorded with only a decline in rainfall (Fig. 7).

While there are no significant differences between catch-
ments with human influence and those that are undisturbed
when analysing drought influence on Q–P fluctuations,
more pronounced differences emerged when analysing Q–P

shifts during drought. Shifts occur in both catchments with
reservoirs and those that are undisturbed. However, negative
shifts are prevalent in catchments with reservoirs. This trend
may be attributed to changes in reservoir operational rules
aimed at drought mitigation (Di Baldassarre et al., 2017).
Since a shift in our analysis must persist for at least 4 years
to be considered significant, this suggests that drought events
have a lasting impact on reservoir operational strategies.
These findings indicate that drought not only alters the Q–
P relationships due to changes in the hydrological system
but also through changes in risk perception and adaptation
responses.

4.3 Limitations and challenges

The methodology and data employed in this study come with
a few limitations and challenges.

Firstly, the precision of estimates in mixed-effects panel
data models improves with longer time series, as they en-
able more accurate modelling of random effects and miti-
gate the influence of short-term noise. Similarly, trend anal-
ysis benefits from extended time series. However, increas-
ing the length of the time series can reduce spatial coverage
by excluding some catchments. To balance long-term cover-
age with spatial representation, we opted for a minimum time
span of 25 years for streamflow and precipitation data. This
decision, coupled with strict data quality checks (detailed in
Matanó et al., 2024a), resulted in underrepresentation of re-
gions, such as Asia, Australia, northern and central Africa,
and the western United States in our analysis.

Another significant challenge was the absence of GRACE
measurements before 2002, which resulted in missing to-
tal water storage (TWS) anomalies for earlier years. Addi-
tionally, the surface water extent time series began in 1984,
3 years later than other variables. This led to a trade-off be-
tween maximizing the length of the time series in the panel
data model and ensuring full overlap of all variables. To ad-
dress this, we computed a new variable, the hydrological
anomaly, summarizing the anomalies in streamflow, surface
water extent, and TWS to ensure a consistent time span with
the other variables. Additionally, we ran the panel data mod-
els using the last 18 years of data to guarantee full overlap of
the variables without aggregation. In addition to differences
in temporal scale, satellite datasets also exhibit varying spa-
tial performance. For instance, GRACE has been shown to
perform well in North America and India but demonstrates
lower accuracy in Europe. Similarly, MSWEP tends to per-
form better in the US (Beck et al., 2019), Europe, South
America, and Australia (Beck et al., 2017), while exhibit-
ing lower accuracy in Africa (Beck et al., 2017). However,
since our analysis includes only a small fraction of catch-
ments from Africa, potential errors due to lower performance
in that region have a limited impact on our global assessment.

Further, although drought is a continuum, with temporal
connectivity between events (Van Loon et al., 2024), our
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analysis treats droughts as independent events, summarizing
their characteristics at a yearly scale to facilitate comparison
with the yearly ratio of Q to P . We only partially accounted
for drought connectivity by incorporating drought character-
istics from the preceding year into our analysis. However,
their influence was minimal (less than 5 %), with meteoro-
logical drought showing a slightly higher influence compared
to other drought types.

The accuracy of the percentage values representing the
influence of a certain drought type on the yearly Q–P ra-
tio is affected by uncertainties in precipitation and stream-
flow observations. Although these percentage values are not
exact due to observational uncertainties, the relative magni-
tudes provide meaningful information, allowing us to iden-
tify which drought types have the strongest influence on the
Q–P ratio.

Finally, another challenge lies in bridging the “scale gap”
between drought events, which occur on an event timescale
and the streamflow–precipitation ratios, which are computed
on an annual timescale. To mitigate this, we calculated vari-
ous metrics to represent the characteristics of drought events
on a yearly basis, attempting to reconcile these different tem-
poral scales within our analysis.

5 Conclusion

This study used panel data models to examine the effects
of drought type, duration, and severity on streamflow re-
sponse to precipitation, accounting for variations in climate
types, altitudes, land cover, and average precipitation levels.
Our analysis generally revealed a decrease in streamflow re-
sponse during droughts in stationary catchments, except in
cases of negative NDVI anomalies, which slightly increased
catchment response. Spatial variability was evident, with arid
and semi-arid regions showing lower resilience to drought-
induced changes in the Q–P relationship, while wet catch-
ments, such as those in snow-influenced climates, showed
greater resilience due to their water-buffering mechanisms.
This trend of reduced response intensified with longer and
more severe droughts, though the effects of duration and
severity were similar in magnitude. Further analyses based
on step change methods in non-stationary catchments re-
vealed both positive and negative shifts in catchment re-
sponse. Specifically, longer and more severe droughts re-
lated to soil moisture and hydrology often resulted in pos-
itive shifts in response, whereas shorter, more abrupt me-
teorological droughts were associated with negative shifts.
These findings underscore the complexity of drought im-
pacts on the Q–P relationship and highlight the importance
of considering both drought characteristics and regional dif-
ferences when evaluating streamflow responses. Understand-
ing changes in catchment response to precipitation is crucial
for assessing the resilience and adaptability of catchments to
drought, given its distinct roles in influencing flow regimes.
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