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Abstract. Increasing watershed disturbance regimes, such as
from wildfire, are a growing concern for natural resource
managers. However, the influence of watershed disturbances
on event-scale rainfall–runoff patterns has proved challeng-
ing to disentangle from other hydrologic controls. To bet-
ter isolate watershed disturbance effects, this study evalu-
ates the influence of several time-varying hydrologic controls
on event-scale rainfall–runoff patterns, including water year
type, seasonality, and antecedent precipitation. To accom-
plish this, we developed the Rainfall–Runoff Event Detection
and Identification (RREDI) toolkit, an automated time-series
event separation and attribution algorithm that overcomes
several limitations of existing techniques. The RREDI toolkit
was used to generate a dataset of 5042 rainfall–runoff events
from nine western US watersheds. By analyzing this large
dataset, water year type and season were identified as signifi-
cant controls on rainfall–runoff patterns, whereas antecedent
moisture was pinpointed as a limited control. Specific effects
of wildfire disturbance on runoff response were then demon-
strated for two burned watersheds by first grouping rainfall–
runoff events based on identified hydrologic controls, such as
wet versus dry water year types. The role of water year type
and season should be considered in future hydrologic anal-
ysis to better isolate the increasing and changing effects of
wildfires on streamflow. The RREDI toolkit could be readily
applied to investigate the influence of other hydrologic con-
trols and watershed disturbances on rainfall–runoff patterns.

1 Introduction

Watershed disturbances can have broad, long-lasting, and
variable impacts on watershed hydrology (Ebel and Mirus,
2014). A range of disturbances including wildfire, drought,
flood, insect infestation, invasive species, agriculture, urban-
ization, mining, and forest management have been observed
to alter streamflow (Adams et al., 2012; Brantley et al., 2013;
Ebel and Mirus, 2014; Goeking and Tarboton, 2020; Hop-
kins et al., 2015; Kelly et al., 2017; Miller and Zégre, 2016).
Wildfire is particularly impactful: since 2000, an average of
7.0× 106 acres (28 000 km2) has burned annually in the US
(Hoover and Hanson, 2020). Further, with a changing cli-
mate, the observed occurrence and severity of wildfire has
increased in the western US in recent decades, presenting
growing challenges for human and water security (Abat-
zoglou et al., 2021; Abatzoglou and Williams, 2016; Hallema
et al., 2018; Murphy et al., 2018; Robinne et al., 2021).
Distilling the influence of watershed disturbance from the
natural variability within streamflow has proved challeng-
ing across disturbance regimes (Beyene et al., 2021; Bieder-
man et al., 2022; Hallema et al., 2017; Kinoshita and Hogue,
2015; Long and Chang, 2022; Newcomer et al., 2023; Saxe et
al., 2018; Wine et al., 2018; Wine and Cadol, 2016). A better
understanding of hydrologic controls that vary in time in dis-
turbed watersheds is critical for watershed management re-
siliency in the face of increasing disturbance regimes (Mirus
et al., 2017).

Time-varying hydrologic controls including water year
type (WYT), seasonality, and antecedent precipitation have
been found to influence event runoff response. Differ-
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ent WYTs associated with differences in annual snow-
pack (Cayan, 1995) or the occurrence and intensity of pre-
cipitation from monsoons or atmospheric rivers (Arriaga-
Ramierez and Cavazos, 2010; Pascolini-Campbell et al.,
2015) may alter runoff response (Biederman et al., 2022;
Null and Viers, 2013). Observed seasonal differences in
rainfall–runoff patterns have been attributed to precipitation
type, rainfall properties (intensity or depth), water balance,
and antecedent wetness conditions (Berghuijs et al., 2014;
Merz et al., 2006; Merz and Blöschl, 2009; Norbiato et al.,
2009; Tarasova et al., 2018b; Zheng et al., 2023; Jahan-
shahi and Booij, 2024). Antecedent moisture – and the more
widely available proxy of antecedent precipitation – have
also been found to alter event runoff response (Jahanshahi
and Booij, 2024; Merz et al., 2006; Merz and Blöschl, 2009;
Tarasova et al., 2018b; Zheng et al., 2023). Despite their
established influence on event runoff response, these time-
varying hydrologic controls are inconsistently considered in
hydrologic disturbance studies.

Large-sample hydrology studies are frequently used
to investigate time-varying and static watershed controls
on event-scale rainfall–runoff patterns. The rainfall–runoff
event scale enables a process-based understanding of driv-
ing hydrologic processes in catchment hydrology (Gupta
et al., 2014; Sivapalan, 2009). Large-sample investigations
into event-scale controls in Europe have found that time-
varying hydrologic controls influence event runoff ratios
(Merz et al., 2006; Merz and Blöschl, 2009; Norbiato et al.,
2009; Tarasova et al., 2018a; Tarasova et al., 2018b; Zheng
et al., 2023). A similar event-scale large-sample study of
432 US watersheds evaluated only static controls on event
runoff response and identified aridity, topographic slope, soil
permeability, rock type, and vegetation density as signifi-
cant factors (Wu et al., 2021). None of these studies con-
sidered the separate impact of watershed disturbance. Con-
versely, the body of wildfire-disturbed streamflow change lit-
erature has sporadically and inconsistently considered these
time-varying hydrologic controls (e.g., Balocchi et al., 2020;
Beyene et al., 2021; Biederman et al., 2022; Hallema et al.,
2017; Kinoshita and Hogue, 2015; Long and Chang, 2022;
Saxe et al., 2018; Wine et al., 2018; Wine and Cadol, 2016).
Long and Chang (2022) considered WYT and antecedent
precipitation while investigating the influence of wildfire dis-
turbance on event runoff response. However, they analyzed
only a small sample of rainfall–runoff events from 2 years, 1
year pre- and 1 year post-fire, in a sample of six watersheds
in Oregon (US).

Investigating large samples of rainfall–runoff events re-
quires automated, transferable methods for time-series event
separation. Common rainfall–runoff event separation tech-
niques rely on established baseflow methods to isolate event
flow (e.g., Chapman and Maxwell, 1996; Duncan, 2019;
Eckhardt, 2005; Xie et al., 2020). Runoff events are then
identified where baseflow diverges from total flow (Long and
Chang, 2022; Mei and Anagnostou, 2015; Merz et al., 2006;

Merz and Blöschl, 2009; Tarasova et al., 2018b). Giani et
al. (2022b) identified the need for increased method transfer-
ability across watersheds, as the baseflow separation methods
require multiple calibrated parameters in each watershed. To
increase transferability, separation methods use fewer modi-
fying watershed parameters (Blume et al., 2007; Nagy et al.,
2022) or time-series signal processing to identify rainfall–
runoff events (Giani et al., 2022b; Patterson et al., 2020). The
commonly used separation methods are not able to identify
sub-daily rainfall–runoff events, as many are developed or
calibrated to use only daily streamflow (Long and Chang,
2022; Mei and Anagnostou, 2015; Merz et al., 2006; Merz
and Blöschl, 2009; Tarasova et al., 2018b). These methods
cannot capture the sub-daily rainfall–runoff events that may
result from convective rainfall events in mountainous water-
sheds (Kampf et al., 2016). Further, there are limitations in
the existing available separation methods, including the lack
of identification of rainfall events with no runoff response
and the filtering of diurnal-cycling-influenced runoff events,
that have limited the application of the available methods in
snow-dominated watersheds.

The objectives of this paper were twofold: the first was
to describe and evaluate the performance of the Rainfall–
Runoff Event Detection and Identification (RREDI) toolkit,
an automated time-series event separation method (Canham
and Lane, 2022), and the second was to apply the RREDI
toolkit to investigate the influence of time-varying hydro-
logic controls including WYT, season, antecedent precipi-
tation, and wildfire on event runoff response. The specific
research aims were to (1) evaluate rainfall–runoff patterns,
(2) identify significant time-varying hydrologic controls on
event runoff response across nine western US watersheds,
and (3) use the findings from (1) and (2) to explore the ef-
fects of wildfire in two burned case study watersheds. The
resulting hydrologic patterns and time-varying controls are
expected to reflect broader trends across western US water-
sheds and provide foundational methods and understanding
related to watershed disturbances.

2 Study watersheds

Nine watersheds in the western US were selected for this
analysis (Fig. 1a) to span a wide range of watershed proper-
ties and streamflow regimes (Table 1). Watersheds were re-
quired to have at least 20 years of continuous 15 min stream-
flow records comprising at least 10 years of undisturbed
streamflow records including from wildfire (MTBS, 2023;
Falcone, 2011). Study watershed contributing areas ranged
3 orders of magnitude, from 14 km2 (Ash Canyon Creek) to
2966 km2 (Cache la Poudre River). The mean annual stream-
flow ranged from 38 mm (Camp Creek) to 1217 mm (Shitike
Creek). The mean annual precipitation ranged from 531 mm
(Cache la Poudre River) to 1572 mm (Shitike Creek) (Fal-
cone, 2011), while the mean annual potential evapotranspi-
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ration ranged from 401 mm (Valley Creek) to 780 mm (Wet
Bottom Creek) (Falcone, 2011). Seven of the selected water-
sheds had snowmelt-dominated flow regimes with average
annual peak flows between April and June and two water-
sheds had wet-season-rain-dominated regimes with average
annual peak flows between January and February.

Two of the nine study watersheds were selected for a more
in-depth exploration of wildfire effects: Arroyo Seco and
Clear Creek (Fig. 1b and c, respectively). These watersheds
both experienced high-severity wildfires that burned a sub-
stantial portion of the watershed. The Station Fire (2009)
burned 100 % of Arroyo Seco (78 % high and moderate burn
severity) and the Twitchell Canyon Fire (2010) burned 25 %
of Clear Creek (15 % high and moderate severity) (MTBS,
2023). Arroyo Seco and Clear Creek also present an inter-
esting comparison, as they have very different contributing
areas; a nearly 3-fold difference in mean annual streamflow;
and are rain- and snowmelt-dominated regimes, respectively.

Hydrologic data inputs

Streamflow and precipitation data were obtained for each
study watershed as follows. Daily and 15 min stream-
flow records were retrieved from the US Geological Sur-
vey (USGS) National Water Information System and used
to calculate total annual streamflow data. Streamflow was
defined as undisturbed before or more than 6 years post-
fire, whereas streamflow was defined as disturbed for a pe-
riod of 6 years post-fire (Ebel et al., 2022; Wagenbrenner
et al., 2021). The total annual precipitation at the centroid
of each study watershed over the same period was retrieved
from the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) gridded annual precipitation dataset
(PRISM Climate Group, 2022). Hourly precipitation time se-
ries were obtained for the watershed centroid from the Anal-
ysis of Record Calibration (AORC) 4 km2 resolution data
product for water years 1980 to 2022 (Fall et al., 2023). Lin-
ear interpolation was used to develop an instantaneous pre-
cipitation record at the AORC resolution of 1 mm by identi-
fying uniform sub-time steps within the hour time-step reso-
lution. For example, hourly precipitation of 2 mm depth was
uniformly spread over the hour with two timestamps of 1 mm
each. The AORC data product was selected because of the
hourly temporal resolution and comparable or higher correla-
tion between the AORC data product and rain gage measure-
ments compared with other gridded precipitation data prod-
ucts in studies in a mountainous area in Colorado, Louisiana,
and the Great Lakes basins (Hong et al., 2022; Kim and Vil-
larini, 2022; Partridge et al., 2024).

3 Methods

We describe the four key steps of the RREDI toolkit in
Sect. 3.1 (Fig. 2) and provide additional in-depth details in

Sect. S1 in the Supplement. A rainfall–runoff event dataset
(Table S4 in the Supplement) was created by applying the
RREDI toolkit to nine western US watersheds. This dataset
was then used to explore rainfall–runoff event patterns, iden-
tify significant time-varying hydrologic controls, and evalu-
ate the influence of these controls on rainfall–runoff patterns
(Fig. 2). The hydrologic conditions associated with each
time-varying hydrologic control were identified and assigned
for each rainfall–runoff event (as described in Sect. 3.2).
The assigned rainfall–runoff events were then sorted by hy-
drologic condition and explored (as described in Sect. 3.3).
Trends in rainfall–runoff event patterns were identified, and
inferential statistics were used to test the significance of the
hydrologic conditions to identify significant time-varying hy-
drologic controls for generalized runoff metric groups. The
influence of wildfire was then evaluated relative to undis-
turbed significant condition group rainfall–runoff trends in
two burned watersheds.

3.1 RREDI toolkit

The RREDI toolkit was developed to automatically separate
rainfall–runoff events for any watershed using time-series
signal processing in four steps (Canham and Lane, 2022)
(Fig. 2). Given the inherent challenges of deterministically
identifying rainfall–runoff events from only streamflow and
precipitation data, we took a time-series signal-processing
approach that relies in part on expert understanding to define
“accurate” rainfall–runoff events like numerous other large-
sample hydrology studies, including Patterson et al. (2020),
Tarasova et al. (2018b), and Giani et al. (2022b). Additional
in-depth descriptions of each step are included in Sect. S1
(Figs. S1–S5 in the Supplement). All watershed-specific and
calibrated parameters used are also documented (Tables S1
and S2 in the Supplement). Signal-processing theory pro-
vided techniques, including data smoothing, peak detection,
and window processing, that were used to automate detection
of features from a time series (Patterson et al., 2020). The
RREDI toolkit was fully automated using the open-source
Python language.

In Step 1 of the RREDI toolkit, rainfall–runoff event pairs
and the associated event window were identified using daily
streamflow and precipitation data based on the co-occurrence
of separately identified rainfall and runoff events by sepa-
rating precipitation time series into storms and runoff into
events using signal-processing theory from the overlapping
period of record (Fig. 2). Rainfall events were character-
ized by their duration, depth, and 60 min intensity. For each
rainfall–runoff event pair, the window from the start of rain-
fall to the end of runoff was determined. In Step 2, the runoff
event start, peak, and end timing and magnitude and the
runoff event volume were then identified within that time
window using 15 min streamflow data and 60 min rainfall in-
tensity (Figs. 2 and 3). For each rainfall–runoff event, a set
of 17 runoff metrics were calculated using the identified rain-
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Figure 1. Panel (a) presents the nine selected watersheds (labeled) used in the study. Panels (b) and (c) display the respective Arroyo Seco
and Clear Creek burned watersheds used as case studies. Shown are watersheds (black), fire perimeters (red), and burn severity mosaics
(MTBS, 2023).

Table 1. Watershed characteristics of the study watersheds. PET denotes potential evapotranspiration.

Watershed State USGS Contributing Mean annual Mean annual Mean Streamflow
gage ID area streamflow annual PET∗ regime

(km2) (mm) precipitation∗ (mm)
(mm)

Arroyo Seco CA 11098000 42 203 788 776 Rain
Ash Canyon Creek NV 10311200 14 225 759 479 Snow
Cache la Poudre CO 06752260 2966 52 531 449 Snow
Camp Creek CO 07103703 25 38 557 479 Snow
Clear Creek UT 10194200 426 74 537 508 Snow
Shitike Creek OR 14092750 57 1217 1572 492 Snow
Thompson River MT 12389500 1652 231 761 476 Snow
Valley Creek ID 13295000 376 478 882 401 Snow
Wet Bottom Creek AZ 09508300 94 131 617 780 Rain

∗ Falcone (2011).

fall and runoff timings in Step 3 (Fig. 2). Metrics fell within
four groups: runoff volume, runoff magnitude, runoff dura-
tion, and rainfall–runoff timing metrics (Fig. S4 and Table S3
in the Supplement). The selected metrics in each respective
group that were utilized further in this study were as follows
(Fig. 3b): event volume; runoff peak, defined by the runoff
peak magnitude; event duration, calculated as the difference
between the runoff event start and end times; and response
time, calculated as the difference between the rainfall start
time and the runoff start time. Metrics were also normalized
by their respective watershed contributing area to facilitate
comparison between study watersheds. Finally, in Step 4,
event flagging was performed to remove incorrectly identi-
fied rainfall–runoff events falling within four event identifi-
cation issues: gaps in 15 min streamflow data; diurnal cycling

identified by regular daily rises and falls of flow, commonly
due to irrigation or snowmelt cycles (Fig. S5 in the Sup-
plement); duplicate rainfall–runoff events; and no identified
runoff event end time (Fig. 2 and Fig. S3 in the Supplement).
From a time-series analysis perspective, these misidentified
rainfall–runoff events were very similar in appearance to true
rainfall–runoff events but were functionally driven by differ-
ent or uncertain processes that were not applicable to the ap-
plication of the RREDI toolkit and thus removed.

A visual assessment of the RREDI toolkit performance
was iteratively completed for all identified rainfall–runoff
events within the wettest, mean, and driest water years for
each study watershed. These years were selected based on the
watershed-average total precipitation from PRISM (PRISM
Climate Group, 2022). For each rainfall–runoff event, the
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Figure 2. The workflow to explore the influence of time-varying hydrologic controls on rainfall–runoff event patterns. The four key steps of
the RREDI toolkit (dashed black box) are outlined: Step 1 – event pair identification; Step 2 – event timing; Step 3 – event metrics calculation;
Step 4 – event flagging. Major connections between workflow steps and research aims (Q) are shown.

Figure 3. RREDI toolkit rainfall–runoff event examples and metrics. Panel (a) presents eight example rainfall–runoff events identified using
the RREDI toolkit. Shown are the rainfall event (blue); the paired runoff event hydrograph (black); and the identified runoff start, peak, and
end times and magnitudes (black dots). Panel (b) provides an example rainfall–runoff event showing relevant event metrics, including runoff
event volume, peak, duration, and response time. Separation (dashed black line) between the runoff event volume and baseflow is shown.

runoff start, peak, and end timing and magnitude identified
by the RREDI toolkit were visually compared with the same
metrics independently identified by manual inspection, sim-
ilar to the performance assessment in other event separa-
tion methods (Giani et al., 2022b; Patterson et al., 2020;
Tarasova et al., 2018b). A rainfall–runoff event was deter-
mined to be accurately identified by the RREDI toolkit if
the runoff start, peak, and end magnitude and timing of each
rainfall–runoff event were sufficiently similar to those tim-
ings identified through independent visual assessment such
that the rise in runoff from the start to the peak and the
runoff duration were considered reasonable. In this manner,

we visually assessed 11 % of rainfall–runoff events used in
this study (774 rainfall–runoff events) that spanned a range
of watersheds, watershed wetness conditions, and seasons.
RREDI toolkit performance assessment results were sum-
marized for each study watershed and across study water-
sheds (Sect. 4.1). Performance results included the percent of
RREDI-identified rainfall–runoff events within the wettest,
mean, and driest water years with accurately identified tim-
ing output from the RREDI toolkit, the percent of rainfall–
runoff events flagged in Step 4, and the percent of rainfall–
runoff events retained after the removal of flagged rainfall–
runoff events.
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3.2 Hydrologic condition identification and assignment

Hydrologic conditions were identified and assigned for each
rainfall–runoff event with respect to three time-varying hy-
drologic controls: WYT, season, and antecedent precipita-
tion. Water year type was assigned as wet or dry following
Biederman et al. (2022) (Fig. 4a and Fig. S6 in the Sup-
plement). Plots of annual cumulative runoff versus precipi-
tation over the undisturbed period of record were used to vi-
sually identify pronounced annual precipitation break points
above which streamflow increased linearly with precipita-
tion. Years (both undisturbed and disturbed) with annual pre-
cipitation above or below the threshold were then classified
as wet or dry, respectively. For watersheds where no break
point was identified, the driest third of years (both undis-
turbed and disturbed) by annual precipitation were consid-
ered dry. Alternative methods such as change point detection
may be able to more objectively identify that break point, but
automating water year or season identification was beyond
the study scope. Winter, melt, and summer hydrologic sea-
sons were identified for each watershed based on inspection
of the average annual hydrograph and the earliest and lat-
est mean (2001–2018) snow-off dates within the watershed
(O’Leary III et al., 2020) (Fig. 4b and Fig. S7 in the Sup-
plement). The start of the winter season was uniformly set
as 1 November to capture the change in precipitation pat-
tern and type between summer and winter. The melt season
started the month after the earliest snow-off date in the wa-
tershed, while the summer season started the month after the
latest snow-off date to account for the lagged streamflow re-
sponse to snowmelt. Watersheds with less than 10 % area
with an identified snowmelt date were considered to have
no melt season (i.e., only winter and summer). In water-
sheds with no melt season, the summer season started the
month that baseflow dominated over winter rainfall peaks in
the mean annual hydrograph. Event-scale antecedent precip-
itation was assigned as none (< 1 mm), low (1–25 mm), or
high (> 25 mm) based on cumulative precipitation over the
6 d prior to the rainfall event start time (Long and Chang,
2022; Merz et al., 2006; Merz and Blöschl, 2009; Tarasova
et al., 2018b) (Fig. 4c). When evaluating antecedent mois-
ture to isolate the influence of soil moisture on runoff rather
than snowmelt and rain-on-snow influences, only snow-off
rainfall–runoff events were considered, including only sum-
mer events in watersheds with a melt season and all events
in watersheds without a melt season. We do not expect that
using alternative available methods to assign rainfall–runoff
events to hydrologic conditions would substantially alter the
proposed approach or findings in this study.

3.3 Statistical assessment of rainfall–runoff patterns

Several statistical methods were used to investigate the influ-
ence of the time-varying controls and wildfire disturbance on
event runoff response. Trends in undisturbed rainfall–runoff

event patterns were first evaluated using a locally weighted
scatterplot smoothing (LOWESS) curve (Q1; Fig. 2). Infer-
ential statistics and the kernel density estimation (KDE) dis-
tributions were used to assess the effects of time-varying hy-
drologic conditions on undisturbed rainfall–runoff event met-
rics (Q2; Fig. 2). A nonparametric Mann–Whitney U test
was used to evaluate the effect of WYT, and nonparamet-
ric Kruskal–Wallis and Dunn tests were used to evaluate the
effect of season and antecedent precipitation, all at a 95 %
confidence level. The null hypothesis for all tests was that hy-
drologic conditions did not impact rainfall–runoff event met-
rics (Table S3 in the Supplement). The effect size was cal-
culated using the Glass biserial rank correlation coefficient
for Mann–Whitney U test results and the Eta-squared test
for Kruskal–Wallis test results (Tables S7–S9 in the Supple-
ment).

The statistical test results for all area-normalized metrics
were summarized into relative significance rates for each of
four runoff metric groups across and within study water-
sheds to facilitate comparisons. The use of relative signifi-
cance rates reduced the issue of multiple comparisons and
reduced the emphasis on specific metric calculation meth-
ods. For each runoff metric group and hydrologic condition,
the relative significance rate was calculated, either across all
study watersheds or for an individual watershed, by dividing
the number of statistically significant rainfall–runoff event
metrics in the category by the number of metrics in the runoff
metric group. The relative importance of each time-varying
hydrologic control was assessed by comparing the signifi-
cance rates for each watershed and runoff metric group.

3.4 Wildfire effects on rainfall–runoff patterns

Additional analysis was performed for two contrasting
burned study watersheds, Arroyo Seco and Clear Creek
(Fig. 1b and c, respectively, and Table 1), to explore the
influence of wildfire relative to other time-varying hydro-
logic controls (Q3; Fig. 2). Significant hydrologic condition
groups were identified for the rainfall depth versus runoff
peak relationship. To do this, the undisturbed rainfall–runoff
events in each watershed were sorted into hydrologic condi-
tion permutations of the significant hydrologic controls for
peak runoff. A power trend was fit to each permutation using
ordinary least-squares regression. The significant condition
groups were identified by combining the permutations with
similar power trends. An updated power trend was fit to each
significant condition group.

Considering the runoff peak metric, the influence of wild-
fire on event runoff response was then evaluated relative to
each significant condition group undisturbed trend and stan-
dard deviation. The percentage of post-fire rainfall–runoff
events falling above and over 1 standard deviation above the
significant condition group trend was calculated for all post-
fire years combined and individually. The calculated percent-
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Figure 4. Example hydrologic condition identification for time-varying hydrologic controls. Panel (a) presents the water year type – wet
(blue) and dry (orange) years – for Arroyo Seco. The ordinary least-squares linear regression lines for above and below the threshold
are shown. Panel (b) shows the seasons (vertical dashed lines) delineated from the undisturbed average annual hydrograph for a no-snow
watershed (top panel) for winter and summer (Arroyo Seco) and a snow-dominated watershed (bottom panel) for winter, melt, and summer
(Clear Creek). The minimum and maximum snowmelt dates are shown consecutively (dashed purple line). Panel (c) presents the 6 d prior to
rainfall start – the antecedent precipitation period (between the dashed lines) – for an example rainfall–runoff event (rainfall is dark blue and
runoff is black). Shown are all rainfall events that were summed within the antecedent precipitation period (light blue).

ages were compared to the expected 50 % above the trend
line and 16 % above 1 standard deviation.

4 Results

4.1 RREDI toolkit performance

The RREDI toolkit resulted in a dataset of 5042 rainfall–
runoff events across the nine study watersheds (Table S4 in
the Supplement). A total of 7026 rainfall–runoff events were
initially identified after Step 2. Of these, 774 rainfall–runoff
events (11 % of the total events or 5 %–34 % of events by
watershed) were inspected for runoff event timing and flag-
ging accuracy (Table 2). Rainfall–runoff events were identi-
fied at a 69 % accuracy rate pre-flagging (Step 2) and a 90 %
accuracy rate after flagging (Step 4). The occurrence rates
for each of the four known issues across watersheds were
2 % for 15 min streamflow data gaps, 13 % for diurnal cy-
cling, 4 % for duplicate rainfall–runoff events, and 15 % for
rainfall–runoff events with no identified end time (Table S5
in the Supplement). The total rainfall–runoff event retention

rate after flagging was 72 %, with the highest retention rate
of 83 % in Arroyo Seco and the lowest retention rate of 45 %
in Camp Creek. The rainfall–runoff event dataset generated
by the RREDI toolkit was sufficiently large to allow for the
use of the described inferential statistical methods (Table S6
in the Supplement).

4.2 Undisturbed rainfall–runoff patterns

Across watersheds, the event runoff peak generally increased
with rainfall depth (Fig. 5). A break point in these relation-
ships was visually identified at approximately 10 mm rainfall
depth, above which the runoff peak increased more rapidly
with increasing rainfall depth. The break point was most
apparent in Arroyo Seco, Shitike Creek, and Wet Bottom
Creek. Arroyo Seco, Cache la Poudre River, Camp Creek,
and Wet Bottom Creek had larger spreads in the LOWESS
curve residuals compared with the other five watersheds.

Differences were apparent in four selected undisturbed
runoff event metric distributions based on WYT, season, and
antecedent precipitation. In both the Arroyo Seco and Clear
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Figure 5. The relationship between rainfall depth (mm) and runoff peak (m3 s−1 km−2) for undisturbed rainfall–runoff events in all study
watersheds and each individual watershed. Dashed black lines are LOWESS curves.

Table 2. RREDI toolkit performance results including pre- and
post-flagging rainfall–runoff event accuracy rates and pre- and post-
flagging retention counts (no.) and rates across the study water-
sheds.

Watershed Rainfall– Rainfall– Rainfall– Rainfall–
runoff runoff runoff runoff
event event events events

accuracy accuracy retained retained
pre- post- post- post-

flagging flagging flagging flagging
(%) (%) (no.) (%)

Arroyo Seco 88 91 394 83
Ash Canyon Creek 75 78 374 75
Cache la Poudre 80 93 1208 72
Camp Creek 42 88 162 45
Clear Creek 77 89 886 73
Thompson River 67 91 449 75
Shitike Creek 62 93 663 75
Valley Creek 74 91 624 73
Wet Bottom Creek 70 100 282 63
Overall 69 90 5042 72

Creek watersheds, wet years exhibited higher median val-
ues than dry years for runoff volume, peak, duration, and
response time metrics (Fig. 6). Winter had higher median
values than summer for runoff volume, peak, and response
time metrics in Arroyo Seco, but directional shifts were less
consistent in Clear Creek. The highest median peak runoff
and shortest median response time occurred under high-
antecedent-precipitation conditions in both watersheds.

In Arroyo Seco and Clear Creek, all three time-varying hy-
drologic controls were significant with respect to the undis-
turbed rainfall–runoff events, but relative significance rates
varied by runoff metric and watershed (Fig. 6 and Table 3).
Water year type was the most often significant hydrologic
control across the four selected runoff metrics in Arroyo
Seco, while season was the most often significant control
in Clear Creek (Fig. 6 and Table 3). Antecedent precipita-
tion had the lowest relative significance rates in both wa-
tersheds and exhibited the most variation by runoff met-
ric. Peak runoff was the most often significant runoff metric
across study watersheds and hydrologic controls (Tables S7–
S9 in the Supplement) and was significant across all hydro-
logic controls in both Arroyo Seco and Clear Creek except
during the antecedent precipitation period in Clear Creek
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Figure 6. Undisturbed rainfall–runoff event KDE distributions for hydrologic conditions for natural-log-transformed WYT, season, and
antecedent precipitation in (a) Arroyo Seco and (b) Clear Creek for four selected runoff metrics: volume, peak, duration, and response time.
Distributions are color-coded by hydrologic condition. The median value of each distribution is shown (dashed line). Significant differences
between distributions are indicated (∗). Note there is no melt season in Arroyo Seco.

(Fig. 6 and Table 3). Conversely, the least frequently signifi-
cant runoff metric varied across hydrologic controls, includ-
ing runoff duration and response time for WYT, runoff du-
ration for season, and runoff volume for antecedent precip-
itation (Tables S7–S9 in the Supplement). Even so, WYTs
exhibited significant differences in runoff response time in
Arroyo Seco and seasons exhibited significant differences in
runoff duration in Clear Creek (Fig. 6 and Table 3).

Water year type and season differentiate runoff event met-
rics (> 50 % relative significance rate; Fig. 7), but results
vary across watersheds and runoff metric groups. For exam-
ple, in Arroyo Seco, the relative significant rate was 100 %
for the WYT runoff volume metric group (both runoff vol-
ume and runoff ratio were significant; Tables S3 and S7 in
the Supplement) but only 33 % for the WYT runoff dura-
tion metric group. When averaging across watersheds, the
runoff duration and magnitude metric groups were differ-

entiated with respect to both WYT and season (Fig. 7a).
The relative significance rates of most metric groups in Ar-
royo Seco (Fig. 7b) and Clear Creek (Fig. 7c) exceeded
the watershed-average rates. Compared with the watershed-
average total precipitation, WYT was generally more differ-
entiating of runoff response in Arroyo Seco, Ash Canyon
Creek, Camp Creek, and Shitike Creek; less differentiating
in Clear Creek, Valley Creek, and Wet Bottom Creek; and
similarly important in Cache la Poudre River and Thompson
River (Fig. S8 in the Supplement). By contrast, compared
with the watershed-average total precipitation, season was
generally more differentiating of runoff response in Cache
la Poudre River, Clear Creek, Thompson River, and Valley
Creek; less differentiating in Ash Canyon Creek and Camp
Creek; and similarly differentiating in Arroyo Seco, Shitike
Creek, and Wet Bottom Creek (Fig. 7b and Fig. S8 in the
Supplement).
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Table 3. Undisturbed rainfall–runoff event hydrologic condition statistical test p-value results for the Mann–Whitney U test (WYT) and
Kruskal–Wallis and Dunn tests (season and antecedent precipitation) for Arroyo Seco and Clear Creek for four selected area-normalized
runoff event metrics. Bold indicates rejection of the null hypothesis at a significance level of 0.05. In bolded cells, an indicator marks the
significantly different condition from the Dunn test, whereas no indicator means that all conditions were significantly different.

Watershed Time-varying hydrologic control Runoff event metric statistical test p values

Volume Peak Duration Response
time

Arroyo Seco Water year type < 0.001 < 0.001 0.05 0.005
Season 0.48 0.013 0.15 0.47
Antecedent precipitation 0.55 < 0.001c 0.29 0.33

Clear Creek Water year type 0.009 < 0.001 0.56 0.60
Season < 0.001a < 0.001 < 0.001b < 0.001b

Antecedent precipitation 0.34 0.05 0.15 0.32

The seasons are as follows: a winter; b summer. Antecedent precipitation is as follows: c high.

Compared with WYT and season, antecedent precipitation
did a poor job of differentiating event runoff response across
watersheds (Fig. 7). Compared with the watershed-average
total precipitation, antecedent precipitation better differenti-
ated runoff magnitude metrics in Arroyo Seco (Fig. 7b) and
all runoff metric groups in Clear Creek (Fig. 7c); was gen-
erally less differentiating of runoff response in Camp Creek,
Shitike Creek, and Valley Creek; and similarly differentiated
runoff magnitude metrics in Cache la Poudre River, Thomp-
son River, and Wet Bottom Creek (Fig. S8 in the Supple-
ment).

4.3 Wildfire effects on rainfall–runoff patterns

Several significant condition groups and trends emerged
for the undisturbed rainfall depth versus peak runoff re-
lationship in Arroyo Seco and Clear Creek (Fig. 8). The
watershed-specific significant condition groups were iden-
tified from eight and six hydrologic condition permutations
of the watershed-specific significant hydrologic controls in
the respective aforementioned regions (Fig. S9 in the Supple-
ment). The three significant condition groups in Arroyo Seco
were (1) wet none+ low, (2) wet high, and (3) dry. The four
significant condition groups in Clear Creek were (1) summer,
(2) winter, (3) wet melt, and (4) wet dry. Significant condi-
tion group trends were only assessed above a 10 mm rain-
fall depth in Arroyo Seco, consistent with the rainfall depth
threshold observed in this watershed (Fig. 5). Each signif-
icant condition group’s power trend fell within a different
portion of the full rainfall–runoff event distribution (Fig. 8
and Table S10 in the Supplement).

For the rainfall depth versus runoff peak relationship, the
portion of post-fire rainfall–runoff events that plotted both
above and 1 standard deviation above the significant con-
dition group undisturbed trends was generally greater than
undisturbed expectations (Fig. 8 and Table S11 in the Sup-
plement). In Arroyo Seco, post-fire events plotted above the

significant condition group trend more than 50 % of the time
for all groups and above 1 standard deviation more than 16 %
of the time for all groups except dry. In Clear Creek, post-
fire events plotted above 1 standard deviation from the undis-
turbed trend more than expected for all groups except winter.
In general, the percentage of post-fire rainfall–runoff events
above the significant condition group trend and 1 standard
deviation decreased with increasing time since fire (as illus-
trated in Fig. 8 by a decreasing point size).

5 Discussion

5.1 RREDI toolkit

The RREDI toolkit automatically separated covarying
streamflow and precipitation time series into rainfall–runoff
events using an approach that was transferable across wa-
tersheds. The RREDI toolkit had an overall accuracy rate
of 90 %, ranging from 78 % to 100 % across study water-
sheds. There were no clear watershed characteristics influ-
encing performance. Lower rainfall–runoff event accuracy
rates in Ash Canyon Creek, Camp Creek, and Clear Creek
may be associated with factors including poor quantification
of rainfall timing, water withdrawals, temporally aggregated
streamflow, and extended periods of diurnal cycling. Accu-
racy increased after the removal of flagged rainfall–runoff
events for all study watersheds. Rainfall–runoff event reten-
tion rates were below average in Camp Creek and Wet Bot-
tom Creek, but post-flagging accuracy rates were near aver-
age and 100 %, respectively. Both watersheds have flashy hy-
drology and substantial periods of low-flow diurnal cycling
that resulted in several identified rainfall–runoff event pairs
where no event runoff response was identified.

The event identification performance was affected by pre-
cipitation data processing challenges, particularly the accu-
rate identification of rainfall timing. A gridded precipitation
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Figure 7. Summary plots of the relative significance rates of four
runoff event metric groups (colored bars) with respect to three time-
varying hydrologic controls (x axis) for (a) all watersheds, (b) Ar-
royo Seco, and (c) Clear Creek under undisturbed conditions. The
50 % relative significance rate is indicated (dashed black lines).
Hatching within the season and antecedent precipitation bars rep-
resents statistically different hydrologic conditions from the Dunn
test, whereas no hatching indicates that all conditions were differ-
ent.

data product was used to overcome sparse rain gage den-
sity and limited or sporadic periods of record in the moun-
tainous western US. The rainfall measured in valleys, where
long-term rain gages are more common (such as the NOAA
Cooperative Observer Program, COOP, network), often di-
verges from mountain rainfall characteristics due to oro-
graphic gradients (Roe, 2005). Differences in rain gage dis-
tance to the watershed and watershed outlet also complicated
inter-watershed comparison. Using gridded precipitation al-
lowed for a spatially consistent precipitation time series to
be created for all study watersheds. The centroid of the wa-
tershed was used to extract precipitation as the best available
method given the large computational requirement for addi-
tional watershed analysis, but future work could incorporate
watershed-average precipitation or other methods to better
capture spatial variability (Giani et al., 2022a; Kampf et al.,
2016; Wang et al., 2023). The high spatial and temporal res-

olution of the AORC data product performed well compared
to rain gage measurements (Hong et al., 2022; Kim and Vil-
larini, 2022; Partridge et al., 2024). However, the hourly tem-
poral resolution did result in some loss of information related
to short-duration, high-intensity rainfall events as precipita-
tion was linearly interpolated across the time step.

The RREDI toolkit time-series event separation method
improves on existing methods by being readily transfer-
able across diverse watersheds and implementing an event-
flagging algorithm. Watershed transferability, a need identi-
fied by Giani et al. (2022b), was accomplished here using
time-series signal processing and only two watershed param-
eters. By using 15 min streamflow time series, the RREDI
toolkit could identify and characterize sub-daily rainfall–
runoff events, a critical limitation in many other time-series
separation methods (Long and Chang, 2022; Mei and Anag-
nostou, 2015; Merz et al., 2006; Merz and Blöschl, 2009;
Tarasova et al., 2018b). The use of time-series signal pro-
cessing also allowed for the identification of rainfall events
with no runoff response, providing more information about
precipitation thresholds and antecedent wetness conditions
required for runoff generation. An algorithm to remove di-
urnal cycling events was also implemented, something not
previously addressed.

The time-series event separation method introduced in this
study allowed for large-sample hydrologic analysis to in-
vestigate event-scale rainfall–runoff patterns and controls.
Future work could expand this analysis to a larger set of
watersheds and potential controls (Gupta et al., 2014). The
RREDI toolkit could also be applied to address other press-
ing event-scale hydrologic challenges, including the influ-
ence of other watershed disturbances (e.g., urbanization, for-
est treatments, or insect infestation) (Ebel and Mirus, 2014;
Goeking and Tarboton, 2020), evaluation of design rainfall
events, flood prediction, or event recurrence interval analy-
sis. Beyond rainfall–runoff event analysis, the RREDI toolkit
could be used to identify paired rainfall–runoff events in
other rainfall-peaking time-series data relationships, such as
water quality events (e.g., turbidity) or soil moisture events.

5.2 Undisturbed rainfall–runoff patterns

Differences in the significance of time-varying hydrologic
controls between study watersheds correspond with the find-
ings of other large-sample rainfall–runoff analysis (Jahan-
shahi and Booij, 2024; Merz et al., 2006; Merz and Blöschl,
2009; Norbiato et al., 2009; Tarasova et al., 2018a, b; Wu
et al., 2021; Zheng et al., 2023). Variability in the signifi-
cance of runoff metrics within a watershed underlines the im-
portance of comparing similar metrics between watersheds
and studies to assess event runoff response. Differences be-
tween event runoff response in wet and dry years were signif-
icant across the runoff metrics in six of the seven watersheds
where a WYT precipitation threshold was identified (Fig. 7
and Fig. S8 in the Supplement). This aligns with the find-
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Figure 8. Significant condition groups for event runoff peak (m3 s−1 km−2) in Arroyo Seco and Clear Creek. Shown for the rainfall depth
versus runoff peak relationship are the undisturbed trends (black lines) and significant condition group trends (colored lines) and their
standard deviation bounds (dashed lines). The undisturbed (top panel) and post-fire rainfall–runoff events within each significant condition
group are plotted.

ing of Biederman et al. (2022) that the threshold between
wet and dry years was important in event runoff response in
semiarid watersheds. Differences in rainfall–runoff processes
between wet and dry years, such as the interaction between
soil drainage and vegetation rooting depth, may drive these
observed differences in runoff response (Bart, 2016; Bieder-
man et al., 2022). High interannual variation in snowpack
(Cayan, 1995) may be a driver of WYT significance identi-
fied in six of the seven snow-dominated watersheds. Water
year type was significant for one of the two rain-dominated
watersheds, Arroyo Seco, which may be explained by the
extreme interannual variability in the frequency and inten-
sity of atmospheric rivers that generate most of the precipi-
tation (Lamjiri et al., 2018). Surprisingly, WYT was not sig-
nificant in Wet Bottom Creek, despite interannual variation
in the summer North American monsoon in this watershed
(Arriaga-Ramierez and Cavazos, 2010; Pascolini-Campbell
et al., 2015). This may be because, despite the monsoon in-
fluence, most of the watershed precipitation instead comes
from winter rainfall events (Arriaga-Ramierez and Cavazos,
2010).

Seasonal differences in event runoff response were signif-
icant across the runoff metrics in seven watersheds including
both snow- and rain-dominated systems (Fig. 7 and Fig. S8
in the Supplement). Similar patterns have been observed
across other watersheds spanning a range of precipitation

and streamflow regimes and catchment properties (Jahan-
shahi and Booij, 2024; Merz et al., 2006; Merz and Blöschl,
2009; Norbiato et al., 2009; Tarasova et al., 2018a; Zheng et
al., 2023). In snow-dominated watersheds, observed season-
ality has been attributed to differences in precipitation type
(Merz et al., 2006; Merz and Blöschl, 2009; Tarasova et al.,
2018b), seasonal water balance (Berghuijs et al., 2014; Merz
et al., 2006; Tarasova et al., 2018a), and the influence of snow
on antecedent moisture conditions (Hammond and Kampf,
2020; Jahanshahi and Booij, 2024; Merz et al., 2006; Merz
and Blöschl, 2009; Norbiato et al., 2009). Seasonality in
rain-dominated watersheds has been attributed to differences
in rainfall properties (intensity and depth) and antecedent
moisture driven by seasonal water balance (Berghuijs et al.,
2014; Jahanshahi and Booij, 2024; Merz and Blöschl, 2009;
Tarasova et al., 2018b). In fact, seasonal water balance has
been identified as more important than topography in event
runoff response differences between watersheds (Merz et al.,
2006). As rainfall properties were separately accounted for
in this analysis by evaluating the event runoff response with
respect to specific rainfall metrics (e.g., rainfall depth), the
significance of seasonality is likely associated with seasonal
differences in evapotranspiration and soil moisture.

Antecedent precipitation was only significant across the
runoff metrics in one very arid watershed, Clear Creek (Fig. 7
and Fig. S8 in the Supplement). These findings contrast with
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our expectation that antecedent precipitation, as a proxy for
antecedent soil moisture, would be a control on rainfall–
runoff patterns. Antecedent precipitation has been used has a
proxy for antecedent soil moisture in several studies (Jahan-
shahi and Booij, 2024; Long and Chang, 2022; Merz et al.,
2006; Tarasova et al., 2018b) and in the Soil Conservation
Service (SCS) curve method for runoff generation (Mishra
and Singh, 2003). Past studies have found conflicting results
in the significance of antecedent precipitation. Both 10 d an-
tecedent precipitation (Merz et al., 2006) and antecedent soil
moisture in Italy (Merz and Blöschl, 2009; Tarasova et al.,
2018b) and 5 d antecedent precipitation in Iran (Jahanshahi
and Booij, 2024) have been found to influence event runoff
response. However, 10 d antecedent precipitation in Germany
(Tarasova et al., 2018b) and 3 d antecedent precipitation in
Oregon (US; Long and Chang, 2022) were not significant
controls at the event scale. A possible reason why antecedent
precipitation was not significant in most study watersheds
may be the dominance of the seasonal water balance (Jahan-
shahi and Booij, 2024; Merz et al., 2006), which may not
be captured in short-window (< 10 d) antecedent precipita-
tion (Tarasova et al., 2018b). To mitigate this, Tarasova et
al. (2018b) suggested applying a longer antecedent precipita-
tion window (30–60 d) to better account for seasonal changes
in the water balance.

5.3 Wildfire effects on rainfall–runoff patterns

Consideration of WYT and seasonality was critical to dis-
cerning the influence of wildfire disturbance on event runoff
response. The influence of wildfire was most apparent in win-
ter in Arroyo Seco and in summer in Clear Creek (Fig. 8).
The differences in the post-fire response between Arroyo
Seco and Clear Creek are consistent with the large range of
post-fire responses observed across western US watersheds
(Hallema et al., 2017; Saxe et al., 2018). In Arroyo Seco,
for each year post-fire, the event runoff peak magnitudes
were greater than expected based on the undisturbed rainfall–
runoff event distribution. This post-fire increase in the runoff
peak is consistent with previously observed increases in to-
tal annual flow in the watershed (Bart, 2016; Beyene et al.,
2021). In Arroyo Seco, the first 2 years post-fire were wet and
the subsequent years were dry. Without considering the dry
years separately, the influence of the fire would have been ob-
scured within the full undisturbed rainfall–runoff event dis-
tribution. Distilling the disturbed event runoff response from
natural WYT variability has been identified as a challenge by
other studies (Biederman et al., 2022; Hallema et al., 2017;
Long and Chang, 2022; Mahat et al., 2016; Newcomer et al.,
2023; Owens et al., 2013). Without consideration of WYT,
interannual hydrologic variability may obscure changes in
post-fire rainfall–runoff patterns (Mahat et al., 2016; New-
comer et al., 2023; Owens et al., 2013) or falsely exaggerate
the impact of wildfire if, for example, a fire is followed by
very wet years, as occurred in Arroyo Seco and Clear Creek.

Altered post-fire rainfall–runoff patterns also appear to be
seasonal (Fig. 8). In Clear Creek, the post-fire peak runoff
was greater than expected every year in summer, but the trend
was inconsistent in the winter and melt seasons. Biederman
et al. (2022) similarly observed greater post-fire changes in
summer compared with winter in watersheds in the south-
west US. Wildfire has also been found to influence snow ac-
cumulation and melt timing (Ebel et al., 2012; Gleason et
al., 2019; Kampf et al., 2022; Maina and Siirila-Woodburn,
2020). However, less wildfire influence on event runoff re-
sponse in the winter and melt seasons in snow-dominated wa-
tersheds like Clear Creek makes sense, as snow accumulation
and melt dynamics likely dominate runoff response during
these periods. The altered post-fire summer rainfall–runoff
events would have been obscured by the larger snowmelt
events without considering seasonality in Clear Creek. In
Oregon, where Long and Chang (2022) found no significant
change between pre- and post-fire rainfall–runoff patterns de-
spite comparing 2 dry years, seasonality may have similarly
obscured post-fire effects.

6 Conclusions

This study presents and utilizes the RREDI toolkit, an au-
tomated and transferable time-series signal-processing event
separation and attribution algorithm, to disentangle the in-
fluence of time-varying hydrologic controls on event runoff
response. A dataset of 5042 rainfall–runoff events was gen-
erated by applying the RREDI toolkit to nine study water-
sheds in the western US. This dataset was used to investi-
gate rainfall–runoff event patterns, identify significant time-
varying hydrologic controls by watershed and runoff met-
ric group, and evaluate how the identified controls influ-
ence event runoff response and the effects of wildfire in two
case study burned watersheds. Water year type and season
were generally found to be significant hydrologic controls,
but results varied between watersheds and runoff metrics.
Antecedent precipitation was generally less significant, in-
dicating a more complex influence on runoff response, con-
sistent with the literature. In Arroyo Seco and Clear Creek,
post-fire rainfall–runoff events generally exhibited a higher
peak runoff for a given rainfall depth than expected based
on the undisturbed trends. Grouping rainfall–runoff events
into significant hydrologic condition groups helped to reveal
the effects of wildfire on the event runoff response. Study
findings improve the fundamental understanding of multiple,
confounding controls on event rainfall–runoff patterns and
emphasize the need to consider the influence of interannual
and seasonal variability to better isolate watershed distur-
bance effects. Better understanding the effects of watershed
disturbances on streamflow patterns is critical to managing
our natural resources under increasing disturbance regimes.
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Code and data availability. All code for data processing and visu-
alization is available upon request from the corresponding author.
The RREDI toolkit Python code and documentation for the cre-
ation of the rainfall–runoff event dataset used in this study can be
accessed via HydroShare at https://www.hydroshare.org/resource/
797fe26dfefb4d658b8f8bc898b320de/ (Canham and Lane, 2022).
Streamflow data from the USGS are publicly available at https:
//waterdata.usgs.gov/nwis (USGS, 2024), and the AORC precip-
itation gridded dataset is publicly available at Fall et al. (2023).
Wildfire perimeters and burn severity mosaics are available at https:
//www.mtbs.gov/ (MTBS, 2023), and PRISM gridded precipitation
data are available at https://www.prism.oregonstate.edu (PRISM
Climate Group, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-29-27-2025-supplement.
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