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Abstract. Typically, in finite element groundwater mod-
els, fractures are represented by two-dimensional triangu-
lar or quadrilateral elements. When embedded in a three-
dimensional space, the Jacobian matrix governing the trans-
formation from the global three-dimensional space to the
local two-dimensional space is rectangular and thus not in-
vertible. There exist different approaches to obtain a unique
mapping from local to global space even though the Jaco-
bian matrix is not invertible. These approaches are discussed
in this study. It is illustrated that all approaches yield the
same result and may be applied to curved elements. The map-
ping of anisotropic hydraulic conductivity tensors for possi-
bly curved fracture elements is also discussed.

1 Introduction

The finite element method is well suited for accommodat-
ing fractures in groundwater models. Typically, fractures
are represented by discrete two-dimensional elements, and
these fracture elements can be embedded within a three-
dimensional continuum consisting of three-dimensional el-
ements. For example, within a tetrahedral mesh, fractures
can be embedded by using triangular elements such that
each triangle corresponds to a face shared by two adjacent
tetrahedral elements. Similarly, quadrilaterals can be em-
bedded within a hexahedral mesh. Indeed, such discrete-
continuum models with embedded fractures are routinely ap-
plied (Blessent et al., 2009, 2011; Li et al., 2020; Watanabe,
2011).

A key component in the finite element method is the
mapping of the gradient matrix from local to global space,
where the global space is typically defined by a standard

orthogonal coordinate system. The local space within a fi-
nite element can be curvilinear and has the same dimen-
sion as the element itself. If the global space has the same
dimension as the local space, then the mapping is defined
by the inverse of the Jacobian matrix. However, in the case
of two-dimensional fractures embedded in a global three-
dimensional space, the Jacobian matrix is non-square and
thus not invertible (Juanes et al., 2002; Perrochet, 1995). A
couple of different techniques enable a mapping from two-
dimensional local to three-dimensional global space.

A first approach is based on using contravariant base vec-
tors and the contravariant metric tensor (Kiraly, 1985; Cor-
naton et al., 2004; Juanes et al., 2002; Perrochet, 1995).
This approach requires some understanding of tensor calcu-
lus, and the few studies that describe this approach refer to
mathematical textbooks for more details. Nonetheless, this
approach yields a rather simple expression for the mapping
and is directly applicable to curved elements.

A second approach uses the right Penrose–Moore inverse
of the Jacobian matrix. As shown in this study, the derivation
of this pseudo-inverse is relatively straightforward. Within
the field of finite elements, the left Penrose–Moore inverse
has been applied for the reverse mapping from a three-
dimensional global space to a two-dimensional local space
(Rognes et al., 2013). One study mentions the pseudo-inverse
for mapping finite elements to higher dimensions (Reichen-
berger et al., 2004) but only within the context of non-curved
elements and without much further detail.

A third approach is to introduce an intermediate mapping
to an orthonormal two-dimensional space tangent to the frac-
ture space. The Jacobian of such a mapping is invertible. A
matrix of directional cosines is used for a subsequent map-
ping to the global space. This approach is widely used, and
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the available literature is quite detailed (Diersch et al., 2005;
Watanabe, 2011; Kolditz, 2002). However, the approach as
discussed in the available literature is only applicable to non-
curved finite elements.

The existence of multiple approaches, which are quite dif-
ferent from a mathematical point of view, makes it difficult
to navigate the literature for those in need of implementing
the mapping of a gradient matrix to higher dimensions. This
study provides a comprehensive discussion of the three ap-
proaches. It is shown that all approaches yield the exact same
result. It is illustrated that the third approach can be applied
to curved elements by a minor adjustment. Although rarely
discussed, this study highlights that the right Penrose–Moore
inverse is an elegant alternative approach to find the gradient
matrix in global coordinates.

The mapping of locally defined hydraulic conductivity
tensors to the global space is also discussed. Although this
mapping is discussed in the existing literature for non-curved
elements (Kolditz, 2002), here a more general mapping is
presented that is also applicable to curved fracture elements.
This is useful, as such a mapping for curved elements is not
discussed in the existing literature.

2 Preliminary on the geometry of a fracture finite
element

Figure 1 illustrates a curved quadrilateral fracture finite el-
ement. The orientation of the fracture element can be de-
fined by the normal, strike and dip directions. The local
space within the curved quadrilateral is defined by local
coordinates sk with − 1≤ sk ≤ 1. To describe this curved
space, some differential geometry of surfaces is needed (Far-
rashkhalvat and Miles, 2003; Nguyen-Schäfer and Schmidt,
2014; Lebedev et al., 2010; Itskov, 2007). The covariant base
vectors are tangent to the local coordinate axes and are given
by

ak =
∂xj

∂sk
ej . (1)

The contravariant base vectors (ak) are perpendicular to
planes along which sk varies and are given by

ak =
∂sk

∂xi
ei, (2)

such that

aj · ai = δ
i
j , (3)

where δij is the Kronecker delta symbol. The contravariant
base vectors and the covariant base vectors are related by

ai =Gija
j ,

ai =H ijaj ,
(4)

whereGij andH ij are the covariant and contravariant metric
tensors, respectively. These tensors are given by

Gij = ai · aj ,

H ij
= ai · aj =G−1

ij .
(5)

The unit normal vector is simply defined by the cross product
of the covariant base vectors:

n=
a1× a2

|a1× a2|
. (6)

Making use of Lagrange’s identity, the area spanned by the
covariant base vectors can be shown to equal the square root
of the determinant of G:

|a1× a2| =
√
(a1 · a1)(a2 · a2)− (a1 · a2)2 =

√
detG. (7)

The local two-dimensional space can be expanded to a local
three-dimensional space with the following base vectors all
normal to the fracture surface:

a3 = a3
= n. (8)

Then Eq. (3) implies that the contravariant base vectors can
also be expressed as

a1
=

1
√
g
(a2× a3),

a2
=

1
√
g
(a3× a1),

a3
=

1
√
g
(a1× a2),

(9)

where g = detG. It is noted that covariant and contravariant
base vectors as well as metric tensors can similarly be defined
for triangular finite elements.

3 The basic mapping problem

The finite element formulations for groundwater flow result
in element matrices that require the element shape functions
and their partial derivatives with respect to global Cartesian
coordinates. These matrices also involve an integration over
the finite element domain �e. For the objective of this study,
it suffices to consider the element conductance matrix for sat-
urated groundwater flow:

G=
∫
�e

∇NK∇NTd�e, (10)

where K is the hydraulic conductivity tensor defined with
respect to a global Cartesian coordinate system xi , and ∇N
is the gradient matrix often denoted by B (Perrochet, 1995):

Bni =
∂Nn

∂xi
, (11)
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Figure 1. Geometry of a curved fracture element.

where Nn is the nth nodal shape function. Typically, how-
ever, the shape functions are provided with respect to a local
coordinate system sk . To find the partial derivatives of the
shape functions with respect to global coordinates, the stan-
dard approach is to use the Jacobian matrix of the coordi-
nate transformation between local and global space. Follow-
ing the chain rule,

∂Nn

∂sk
=
∂Nn

∂xi

∂xi

∂sk
. (12)

The Jacobian is defined as follows:

Jki =
∂xi

∂sk
. (13)

The components of the Jacobian are computed using the
derivatives of the shape functions with respect to local co-
ordinates and the nodal coordinates:

∂xi

∂sk
=
∂Nn

∂sk
xin. (14)

It can be observed that the Jacobian contains the covariant
base vectors per row, and Eq. (14) illustrates how to compute
these vectors from local shape functions and nodal coordi-
nates. If the Jacobian is invertible, then the derivatives with
respect to global coordinates can be computed as follows:

BT
= J−1B∗T, (15)

where B∗ denoted the gradient matrix with respect to local
coordinates:

B∗nk =
∂Nn

∂sk
. (16)

Once BT has been computed, the matrix B can be computed
easily by taking the transpose of BT. Introducing the coor-
dinate matrix X containing the nodal coordinates per row, it
follows from Eq. (14) that the Jacobian can be computed us-
ing

J= B∗TX. (17)

Typically, the element matrices are computed using Gaus-
sian quadrature, although for a limited number of element
types the integration can be carried out analytically (Diersch,
2013). The advantage of numerical integration is that it can
be applied to any element type, including curved elements.
To perform Gaussian quadrature, the integration limits need
to be defined with respect to the local domain d�∗. If the
Jacobian is invertible, then (Perrochet, 1995)

d�= det (J)d�∗. (18)

However, if the Jacobian is not a square matrix, then the Ja-
cobian matrix it is not invertible, and Eqs. (15) and (18) can-
not be used for the finite element computations. This occurs
when the local space has a lower dimension than the global
space. Thus, for two-dimensional fracture elements embed-
ded within a three-dimensional model space, the problem is
that the Jacobian is not a square matrix.

In Eq. (10), the hydraulic conductivity tensor for fractures
is to be defined with respect to the global Cartesian space. In
general, it is more convenient to start with tensors which are
defined with respect to the strike and dip directions along a
fracture. The strike, dip and normal directions provide a lo-
cally orthogonal coordinate system. On curvilinear elements,
this local coordinate system varies from point to point.

4 Gradient mapping using contravariant and covariant
bases

Similar to Eq. (12), it follows from the chain rule that

∂Nn

∂xi
=
∂Nn

∂sk

∂sk

∂xi
. (19)

This indicates that the gradient matrix with respect to global
coordinates can be obtained using the contravariant base vec-
tors. Introducing a matrix D in which the columns contain the
contravariant base vectors,

Dik =
∂sk

∂xi
, (20)

and it follows that

∇NT
= D∇∗NT. (21)

The components in matrix D can be rewritten in terms of
covariant vectors using Eq. (5):

Dij = (a
j )i =

(
H jkak

)
i
. (22)
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Since the Jacobian J contains the covariant vectors per row,
this can be written as

D= JTH. (23)

The contravariant metric tensor H can also be written in
terms of the Jacobian matrices:

H=G−1
= (JJT)−1, (24)

where it is noted that JJT is an invertible square matrix. Thus,
the gradient matrix in global coordinates is given by

∇NT
= JT(JJT)−1

∇
∗NT. (25)

Once the Jacobian is available, Eq. (25) provides a straight-
forward solution for the gradient matrix in global coordi-
nates.

The differential volume follows from Eq. (7):

d�=
√

det (G)d�∗ =
√

det (JJT)d�∗ (26)

It is interesting to observe that Eq. (9) permits one to write
the matrix D as

D=
1
√
g

(a2× a3)1 (a3× a1)1
(a2× a3)2 (a3× a1)2
(a2× a3)3 (a3× a1)3

 . (27)

Using the vector triple product, it can be shown that

a2× a3 = a2×
a1× a2

|a1× a2|

=
1
√
g
((a2 · a2)a1− (a2 · a1)a2),

a3× a1 =
a1× a2

|a1× a2|
× a1

=
1
√
g
((a1 · a1)a2− (a1 · a2)a1).

(28)

Eventually, after expanding the cross products in Eq. (27)
using the vector triple products in Eq. (28), it can be shown
that this eventually yields the same result D= JT(JJT)−1.

5 Gradient mapping using the right Penrose–Moore
inverse

Equation (15) can be written as

J∇NT
=∇

∗NT. (29)

Since the Jacobian is rectangular, Eq. (29) represents an un-
derdetermined system with infinite solutions. However, the
particular solution that represents the desired mapping needs
to be a solution that lies in the row space of J, namely, the
row space of J contains the covariant base vectors spanning

the local fracture space. To reflect this condition, Eq. (29) is
written as

JJTM=∇∗NT, (30)

where the matrix ∇NT
= JTM now lies within the row space

of J. Equation (30) has a unique solution:

M= (JJT)−1
∇
∗NT. (31)

Thus, the same result as in Eq. (25) is obtained:

∇NT
= JT(JJT)−1

∇
∗NT. (32)

This can also be written as

∇NT
= J†
∇
∗NT, (33)

where J† is the so-called right Penrose–Moore inverse given
by

J†
= JT(JJT)−1. (34)

A more in-depth background on the Penrose–Moore inverse
is provided in Appendix A.

6 Gradient mapping using directional cosines

For each point on a possibly curved two-dimensional dis-
crete element, it is possible to construct a two-dimensional
orthonormal coordinate system tangent to the fracture de-
fined by unit vectors ê1 and ê2. There are several possibil-
ities, but here the procedure starts with taking the vector ê1
parallel to the first covariant basis a1:

ê1 =
a1

|a1|
. (35)

The vector ê2 can be easily obtained making use of the nor-
mal n.

ê2 = ê1×n (36)

This two-dimensional orthonormal coordinate system can be
expanded into three dimensions by adding a third unit vector:

ê3 = n. (37)

The differential volume simply follows from the covariant
base vectors:

d�= |a1× a2|d�
∗. (38)

The transformation from the global coordinate system to the
new coordinate system x̂i is given by a 2×3 matrix of direc-
tional cosines:

T 2×3
ij =

∂x̂i

∂xj
= êi · ej = cos(x̂i,xj ). (39)
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The matrix of directional cosines can also be expressed as

T=
[
ê1

ê2

]
, (40)

where it is noted that the inverse of T is TT.
The gradient matrix with respect to the new two-

dimensional orthonormal coordinate system ∇∧NT is given
by

∇
∧NT
= Ĵ−1

∇
∗NT, (41)

where the Jacobian matrix Ĵ is an invertible 2× 2 matrix:

Ĵki =
∂x̂i

∂sk
=
∂Nn

∂sk
x̂in. (42)

Using the global coordinate matrix, this Jacobian is com-
puted with

Ĵ= B∗TXTT. (43)

The gradient matrix with respect to global coordinates fol-
lows from using the chain rule:

∂Nn

∂xi
=
∂Nn

∂x̂k

∂x̂k

∂xi
(44)

which can be expressed using the transformation matrix:

∇NT
= TTĴ−1

∇
∗NT (45)

This expression looks quite different compared to the expres-
sions obtained using the first and second approach. However,
it can be illustrated that the result is identical. From the chain
rule:

∂sk

dx̂i
=
∂xj

dx̂i

∂sk

dxj
, (46)

and it follows that

Ĵ−1
= TD. (47)

Therefore, Eq. (45) is identical to Eq. (21):

∇NT
= TTĴ−1

∇
∗NT
= TTTD∇∗NT

= D∇∗NT (48)

Since the covariant bases are used to construct a two-
dimensional orthonormal coordinate system, the approach as
discussed here is applicable to curved fracture elements. In
the existing literature (Diersch, 2013; Kolditz, 2002; Watan-
abe, 2011), the two-dimensional orthonormal space is often
constructed using the edges of non-curved fracture elements.
That is, the unit normal is constructed from two element
edges: the first unit vector is taken parallel to the first edge
and finally a cross product of the unit normal and the first
unit vector is used to compute the second unit vector. Such
an approach assumes that the two-dimensional orthonormal
space is constant across the fracture element, which is only
valid for non-curved fracture elements.

7 Coordinate transformations for the hydraulic
conductivity tensor

Here, it is assumed that a hydraulic tensor is initially pro-
vided with respect to the local strike and dip directions for
each fracture element. On curvilinear elements, the strike and
dip directions vary from point to point. Given the normal n,
which also varies from point to point within a curved frac-
ture element and a vertical unit vector v, the unit vector in
the strike direction is given by

e1 = n× v. (49)

The unit vector in the dip direction follows directly from the
following cross product:

e2 = n× e1. (50)

Finally, the unit vector normal to the fracture is given by

e3 = n. (51)

The transformation from the orthonormal local coordinate
system aligned with the strike and dip directions to the global
coordinate system is defined by the following 3× 2 matrix:

Q=
[
ê1 ê2 ]

(52)

Denoting the two-dimensional hydraulic conductivity tensor
in local coordinates by K, the hydraulic conductivity tensor
in global coordinates is given by

K=QKQT. (53)

For curved elements, the normal is to be computed from the
covariant vectors using Eq. (6). For non-curved elements, the
normal is constant across the element and can be computed
by taking the cross product between two element edges.

8 Example

To illustrate how the different gradient mappings are applied
in practice, a curved quadratic triangular element is consid-
ered. Three Gauss points, each at the midpoint on an edge,
are used for numerical integration. The nodal shape functions
are defined (Oñate, 2010):

N1 = (1− r − s)(1− 2r − 2s),

N2 = r(2r − 1),
N3 = s(2s− 1),
N4 = 4r(1− r − s),
N5 = 4rs,
N6 = 4s(1− r − s),

(54)

with r and s being the local coordinates (0≤ r ≤ 1 and 0≤
s ≤ 1). The gradient matrix with respect to local coordinates,
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which varies within the triangle, is given by

B∗ =


−3+ 4r + 4s −3+ 4r + 4s

4r − 1 0
0 4s− 1

4− 8r − 4s −4r
4s 4r
−4s 4− 4r − 8s

 . (55)

In this example, the coordinates of the element nodes are
given by the following coordinate matrix:

X=



0 0 0

1 0 0

0 0 1
1
2 0 0
1
2 −

1
8

1
2

0 −
1
8

1
2


. (56)

Figure 2 illustrates the triangle. The conductivity tensor in
this example is defined as

K=
[

1 0
0 1

]
. (57)

The Jacobian for each Gauss point is computed using J=
B∗TX. For the first Gauss point given by (r,s)= (0,1/2),
the Jacobian is

J=
[

1 0 0
0 −

1
2 1

]
. (58)

This Jacobian provides the covariant base vectors per
row. Once the Jacobian is computed, the gradient ma-
trix in global coordinates is easily computed using ∇NT

=

JT(JJT)−1
∇
∗NT. This is the expression that results from

either using contravariant and covariant bases or a right
Penrose–Moore inverse. For the first Gauss point, the gra-
dient matrix is given by

∇NT
=

−1 1 0 0 0 0
2
5 0 2

5
4
5 −

4
5 −

4
5

−
4
5 0 −

4
5 −

8
5

8
5

8
5

 (59)

and

∂�=

√
det (JJT)=

√
5

2
. (60)

The transformation matrix for the hydraulic conductivity ten-
sor is obtained from the vectors e1 and e1. For the first Gauss
point,

Q=


0 −1

−

√
5

5 0
2
√

5
5 0

 . (61)

Applying Eq. (53) gives

K=

1 0 0

0 1
5

−2
5

0 −2
5

4
5

 . (62)

The contribution to G from each Gauss point i is computed
from

wi(∇NK∇NT∂�)i, (63)

where wi is the Gauss weight for each Gauss point i. For
the triangular element considered here, this weight is 1/6 for
all Gauss points (Diersch, 2013; Oñate, 2010). For the first
Gauss point, this contribution equals

3
20

−1
12

1
15

2
15

−2
15

−2
15

−1
12

1
12 0 0 0 0

1
15 0 1

15
2

15
−2
15

−2
15

2
15 0 2

15
4

15
−4
15

−4
15

−2
15 0 −2

15
−4
15

4
15

4
15

−2
15 0 −2

15
−4
15

4
15

4
15


√

5. (64)

For brevity, the calculations for the other two Gauss points
are not presented but are computed similarly.

Using the gradient mapping based on directional cosines
requires more work, as illustrated below. After obtaining the
Jacobian, the covariant base vectors are used to compute ê1
and ê2. For the first Gauss point, this results in the following
2× 3 transformation matrix:

T=

[
1 0 0
0
√

5
5

−2
√

5
5

]
. (65)

Using Ĵ= B∗TXTT (Eq. 43) and ∇NT
= TTĴ−1

∇
∗NT

(Eq. 45) then yields the same result as before (Eq. 60).

9 Application

The application considers steady-state flow towards a pipe
penetrating a curved fracture using quadratic triangles. Al-
though relatively simple, this model application could be
used, for example, to simulate the water inrush during tun-
nel construction when a fracture is penetrated, provided the
geometry and hydraulic properties of the fracture are known.
The triangular mesh is generated with Triangle (Shewchuk,
1996) on a flat surface with a length of a 100 m and a height
of 50 m. Subsequently, the mesh is wrapped on a curved sur-
face. The pipe is represented by a hole approximating a cir-
cular pipe that intersects the fracture horizontally. A constant
pressure head of 0 m is prescribed at the nodes around this
hole. At the top and bottom of the fracture, constant hydraulic
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Figure 2. The curved quadratic triangle as used in the example.
Nodes are represented as red circles.

heads of 10 m are prescribed. The hydraulic conductivity ten-
sor is given by

K=
[

0.75 0.25
0.25 0.75

]
10−5 ms−1. (66)

Thus, the principal axes of this tensor make an angle of 45°
with respect to local strike and dip directions.

The simulation is carried out with a finite element ground-
water flow model developed by the author. Figure 3 illus-
trates the solution in terms of hydraulic heads inside the
fracture. It is observed that the hydraulic head contours in
the vicinity of the pipe follow an ellipsoid as a result of the
anisotropic hydraulic conductivity tensor. The pipe penetrat-
ing the fracture is represented by a hole instead of a sin-
gle boundary node for two reasons. Firstly, by using a hole,
the radius of the pipe is accounted for (approximately). Sec-
ondly, since the hole is represented by relatively short edges,
relatively small triangles are generated around the pipe, such
that the model can better resolve the steep hydraulic gradi-
ents around this part of the model domain.

It is noticed that because the fracture does not lie in a flat
plane, the fracture is embedded in three-dimensional space.
Therefore, gradient matrices must be mapped from two-
dimensional local to three-dimensional global space. In the
finite element code applied here, this mapping is preferably

based the expression∇NT
= JT(JJT)−1

∇
∗NT as the routines

for this mapping are most concise. The alternative gradient
mapping based on directional cosines provides exactly the
same result. The hydraulic conductivity tensor must also be
mapped to global space.

10 Discussion and conclusion

A key component in the finite element method is the map-
ping of the gradient matrix from local to global space. If the
global space has the same dimension as the local space, then
the mapping is defined by the inverse of the Jacobian matrix.
However, in the case of two-dimensional fractures embed-
ded in a global three-dimensional space, the Jacobian matrix
is non-square and thus not invertible (Juanes et al., 2002; Per-
rochet, 1995). A couple of different techniques enable a map-
ping from two-dimensional local to three-dimensional global
space.

It is shown in this work that applying the right Penrose–
Moore inverse is an efficient, elegant and relatively simple
alternative to find an expression to map the gradient matrix.
This alternative avoids the use of tensor calculus or the use
of cumbersome rotation matrices. Instead, it uses the con-
cept of subspaces associated with matrices. It is also shown
that the mapping approach based on an intermediate map-
ping to a two-dimensional orthonormal space and a subse-
quent mapping to the global space can be applied to curved
elements. The approach based on the right Penrose–Moore
inverse, the approach based on covariant and contravariant
vectors, and the approach based on an intermediate mapping
to a two-dimensional orthonormal space and a subsequent
mapping to the global space all yield the same mapping re-
sult. If the Jacobian J is readily available, the expression
∇NT

= JT(JJT)−1
∇
∗NT, as derived from the right Penrose–

Moore inverse or from the approach based on covariant and
contravariant vectors, is particularly straightforward to im-
plement in computer code. While the approach based on
an intermediate mapping to a two-dimensional orthonormal
space and a subsequent mapping to the global space is easier
to understand from a mathematical point of view, it involves
extra steps that involve cumbersome rotation matrices. The
Jacobian J is readily available if the finite element code uses
numerical integration. It is noted that analytical integration
avoids the need to define the local space, and as such the Ja-
cobian J is not defined. Thus, if analytical integration is used,
then there is no alternative for implementing the intermedi-
ate mapping to a two-dimensional orthonormal space and the
subsequent rotation to the global space. In general, however,
it can be argued that numerical integration is to be preferred,
since it is far easier to implement (even without considering
the mapping problem for fracture elements). Moreover, nu-
merical integration is more general as it can be applied to all
finite element types including curved elements.
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Figure 3. Hydraulic heads simulated in a curved fracture with an anisotropic hydraulic conductivity tensor.

Finally, this work provides a general approach, applicable
to curved elements, to map hydraulic tensors as defined in a
local orthonormal coordinate system aligned with the strike,
dip and normal directions to the global coordinate system.

Appendix A

The Penrose–Moore inverse is widely used to solve overde-
termined and underdetermined linear systems. By definition,
the Penrose–Moore inverse satisfies the following conditions
(Penrose, 1955):

AA†A= A (I)

A†AA†
= A (II)

AA†
= (AA†)T (III)

A†A= (A†A)T (IV)

(A1)

Condition (I) implies that A†A is idempotent (A†AA†A=
A†A), and condition (IV) implies that A†A is Hermitian.
Therefore, A†A is an orthogonal projection matrix. Using the
right Penrose–Moore inverse A†

= AT(AAT)−1 as used for
an underdetermined system, A†A is expressed as

A†A= AT(AAT)−1A. (A2)

This last expression illustrates that A†A is the orthogonal
projection matrix PR(AT) onto the column space or range of
AT (Strang, 2022) which equals the row space or range of

A, and as such I−AA† is the orthogonal projection matrix
PN (A) onto the null-space of A:

PR(AT) = A†A,

PN (A) = I−A†A.
(A3)

Using these orthogonal projection matrices, a solution to an
underdetermined system Ax = b can thus be expressed as

x = (A†A)x+ (I−A†A)x = A†b+ (I−A†A)x. (A4)

This illustrates that the right Penrose–Moore inverse pro-
vides the solution x = A†b that lies within the row space
of A.
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