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Abstract. Green infrastructures have been widely used to
manage urban stormwater, especially in water-stressed re-
gions. They also pose new challenges to urban and wa-
tershed water resources management. This paper focuses
on the green-infrastructure-induced dynamics of water shar-
ing in a watershed from three spatial scales. A multiagent
socio-hydrologic model framework is developed to provide
an optimization-simulation method for city-, inter-city- and
watershed-scale, termed Integrated GIs and Water Resources
Management (IGWM), that comprehensively considers the
watershed circumstances, the urban water managers, and the
watershed manager–urban water manager interactions. We
apply the framework to conduct three simulating experiments
in the Upper Mississippi River basin, USA. Four patterns in
city-scale IGWM are classified, and two dynamics of cost
and equity in inter-city- and watershed-scale IGWM are char-
acterized through various sensitivity, scenario, and compar-
ative analyses. The modeling results could advance our un-
derstanding of the role of green infrastructures and the im-
pact of water policy in urban and watershed water resources
management and assist water managers in making associated
decisions.

1 Introduction

In recent decades, urban water scarcity worldwide caused
by urbanization, population growth, and climate change has
necessitated new approaches to increase water supply (Mc-
Donald et al., 2014; Schewe et al., 2014). Green infrastruc-
tures (GIs), which are decentralized nature-based measures

for rainwater and stormwater capture and recharge, have pre-
vailed in many countries, such as the USA, the UK, China,
and Australia (Dietz, 2007; Coutts et al., 2013; Zhou, 2014;
Li et al., 2017). GI systems, as demonstrated by many stud-
ies, are effective in increasing water availability and reduc-
ing urban flooding, which, to some extent, can supplement
the centralized water services provided by grey infrastruc-
ture systems (Rozos et al., 2010; Jayasooriya and Ng, 2014).
Therefore, an increasing number of cities are incorporating
GIs into their urban water systems (Daigger and Crawford,
2007; Sapkota et al., 2014). However, the development of
GIs in urban areas can transform socio-hydrologic dynamics
within a watershed at various scales (see Fig. 1). At the city
scale, the development of GIs, hydrologically, can increase
urban water storage capacity (Askarizadeh et al., 2015), thus
altering the urban water cycle (Meng, 2022). Socially, GIs
provide alternative water sources that enhance water users’
choices and reduce water use costs (Zhan and Chui, 2016),
gradually changing their water use habits (Kallis, 2010) and
shifting the original balance of water supply and demand. At
the inter-city scale, the benefits of GIs can encourage an in-
crease in the proportion of GI systems in each urban area.
The cumulative effect of these systems on the urban water
cycle can increase (Palla and Gnecco, 2015), leading to lo-
cal socio-hydrologic changes in each urban area that gradu-
ally affect the distribution of water resources within the wa-
tershed. This occurs because multiple urban areas along a
river share water resources within the watershed. At the wa-
tershed scale, the over-development of GIs driven by self-
interest in each urban area can result in an uneven distribu-
tion of water resources across the watershed (Glendenning
et al., 2012), potentially causing conflicts between urban ar-
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eas. These conflicts necessitate watershed-level water poli-
cies from higher authorities for their mitigation. Therefore,
the GI-driven socio-hydrologic dynamics at various scales
pose a series of challenges to urban and watershed water
management. These challenges are managed by multiple in-
teractive decision-makers with individual goals at different
authority levels: the urban water manager (UWM), who is
responsible for managing and maintaining the urban water
system cost-effectively, and the watershed manager (WM),
who is responsible for ensuring equitable water resource dis-
tribution across the watershed through policy setting. To sim-
ulate these GI-driven socio-hydrologic dynamics at various
scales and optimize the behavior of relevant decision-makers
at different authority levels, it is essential to develop new wa-
ter management frameworks. These frameworks should in-
corporate GI development, rainfall utilization, and water re-
sources management. This approach, termed Integrated GIs
and Water Resources Management (IGWM), should be ap-
plied at various scales.

A city-scale IGWM framework involves the integration of
urban land use and water management strategies, specifically
focusing on decisions related to GI construction and water
supply portfolio choices. UWMs must plan the construc-
tion of diverse GIs with varying hydrologic performances
within urban areas. These infrastructures should be designed
to collect and store stormwater, thereby supplementing the
urban water supply with stormwater resources. In general,
GIs are divided into two groups depending on the desired
flow regime: retention- and infiltration-based GIs (Fletcher
et al., 2013). To be specific, the retention-based GIs, such as
green roofs, cisterns, and rain barrels, can retain stormwa-
ter, which can be directly used for non-potable water uses or
with filtration and disinfection for potable water uses (McAr-
dle et al., 2011). Furthermore, the infiltration-based GIs, e.g.,
rain gardens, porous pavements, and wetlands, can restore
some aspects of pre-development flow regimes in receiving
water through the recharging of subsurface flows and ground-
water, which can be indirectly used by groundwater abstrac-
tion (Endreny and Collins, 2009). Meanwhile, optimal water
supply portfolios need to be determined from both grey in-
frastructure systems, such as rivers and aquifers (Sitzenfrei
et al., 2013), and constructed GIs, including rainwater and
stormwater harvesting systems, to meet various water de-
mands (see Fig. 1a). The increased complexity introduced
by GI development and the use of rainwater in the urban
water system may render conventional urban water manage-
ment approaches inadequate (Poustie et al., 2015) due to
the involvement of more external socio-hydrologic factors
in IGWM decision-making. For example, the magnitude and
frequency of upstream inflow and precipitation directly in-
fluence the availability of surface water and stormwater for
an urban area. Additionally, the socioeconomic development
level of an urban area (e.g., residents’ housing types and wa-
ter use habits) can affect the selection of GI types, sizes,
and locations (Chen et al., 2019). Therefore, it is crucial for

a city-scale IGWM framework to address how to configure
water resources drawn from grey infrastructure (i.e., surface
water and groundwater) and from GIs (i.e., rainwater and
stormwater), as well as developing relevant plans for GI con-
struction. This approach aims to optimize the use of limited
water supplies while minimizing costs.

At the inter-city scale, an IGWM framework must con-
sider the cumulative effects of expanding GIs within urban
areas. The increased rainwater storage capacity, enhanced
groundwater recharge (Zhang and Chui, 2019), and elevated
evapotranspiration (Ebrahimian et al., 2019) resulting from
GI development can significantly alter the urban water cycle.
Consequently, city-scale IGWM decisions made by UWMs
can impact the broader hydrologic dynamics. In a water-
shed, multiple urban areas typically share water resources
along a river, each striving to secure sufficient and afford-
able water for their maintenance and development needs.
The modifications in the urban water cycle induced by city-
scale IGWM decisions can alter the inflow and outflow pat-
terns of an urban area. These regional hydrologic shifts can
gradually propagate throughout the watershed due to the in-
terconnected nature of the river network. Therefore, IGWM
decisions made by an upstream UWM can influence those
made by downstream UWMs, highlighting the interdepen-
dence of urban water management within a watershed. Some
studies demonstrated that over-development of GIs might
decrease the river flow to downstream areas (Glendenning
et al., 2012), which may be detrimental to stream health
(Fletcher et al., 2007). In comparison, others showed that ex-
pansion of GIs might, to some extent, decline the variability
of river flow, which is beneficial to downstream water supply
(Golden and Hoghooghi, 2018). Under the circumstances,
all UWMs within a watershed make their own IGWM de-
cisions rationally, not only depending on urban hydrologic
states but also on anthropogenic activities from upstream ur-
ban areas (see Fig. 1b). Therefore, the interactive behavior
among UWMs for IGWM forms a unique sequential multi-
player interaction at the inter-city scale. This can be simu-
lated by considering the hydrologic state of the first upstream
urban area after implementing its own IGWM decisions, fol-
lowed by the hydrologic state of the adjacent downstream ur-
ban area after its own IGWM decisions. These states transi-
tion sequentially along the river. This state transition process
exhibits the Markov property (Frydenberg, 1990) – where
the hydrologic state of an urban area depends only on the
hydrologic state of the adjacent upstream area after making
its IGWM decisions and the decisions of the urban area it-
self. Such interactions might lead to unexpected watershed-
level performance. Therefore, it is essential for an inter-city-
scale IGWM framework to investigate the socio-hydrologic
dynamics of interactions among multiple urban areas in rela-
tion to their city-scale IGWM decisions.

In general, optimal decision-making for city-scale IGWM
can reduce the cost of accessing water resources for indi-
vidual urban areas. However, at the inter-city scale, unco-
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Figure 1. Schematic diagram of IGWM at three spatial scales. (a) At the city scale, UWMs must consider the simultaneous construction of
GIs and water supply portfolios to meet urban water demands cost-effectively. (b) At the inter-city scale, IGWM decisions made in upstream
areas can influence downstream areas due to hydrologic connections. (c) At the watershed scale, a WM needs to establish water policies
that regulate UWM decision-making regarding IGWM, based on socio-hydrologic interactions. Note that UWM represents Urban Water
Manager, GIs represents Green Infrastructures, IGWM represents Integrated GIs and Water Resources Management, and WM represents
Watershed Manager.

ordinated IGWM efforts might lead to inequitable and un-
sustainable water resource distribution within a watershed
(Müller et al., 2017), potentially causing conflicts between
upstream and downstream urban areas. For a watershed-scale
IGWM framework, a WM must implement policies, such
as streamflow penalty strategies, to regulate the decision-
making of UWMs and achieve equitable water distribution
within the watershed. In this context, the WM and multi-
ple UWMs form a bi-level system based on their respec-
tive authority levels, following hierarchical decision rules for
the leader (WM) and the followers (UWMs). Specifically,
the WM sets water policies at the watershed level, and the
UWMs subsequently make their city-scale IGWM decisions
with full knowledge of these policies. The WM can also ad-
just its policy prescriptions based on the rational responses
of the UWMs (see Fig. 1c). In economic theory, this hierar-
chical interaction process is described as a Stackelberg game

(Simaan and Cruz, 1973). Given that uncoordinated interac-
tions among multiple UWMs for IGWM can result in in-
equitable water resource distribution within the entire wa-
tershed, a WM may face challenges when using traditional
water policy approaches that generally overlook such inter-
actions. Therefore, it is crucial for a watershed-scale IGWM
framework to consider the impact of water policies on the
socio-hydrologic dynamics of interactions among multiple
urban areas.

Currently, there are rich studies related to city-scale
IGWM, most of which focused on studying the follow-
ing three critical aspects: (1) integrating water management
framework with GIs, (2) assessing rainwater potential, and
(3) modeling urban water cycle of a urban water system in-
corporating GIs. The first aspect involves building an inte-
grated water management framework that combines conven-
tional water supply systems with stormwater/rainwater har-
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vesting schemes (Daigger, 2009). To determine the appro-
priate stormwater harvesting scheme option under different
settings, Goonrey et al. (2009) developed a decision-making
framework. To address on-site and catchment urban surface
water issues, Ellis (2013) introduced sustainable drainage
systems into a GI framework. Dandy et al. (2019) presented
an integrated framework to help UWMs select and evalu-
ate stormwater harvesting systems. The second aspect of the
studies is mainly focused on the quantitative evaluation of
rainwater/stormwater resources supply options in various ur-
ban areas. Kim et al. (2022) investigated the impact of wa-
ter management strategies, such as rainwater harvesting, on
urban water demand in Filton Airfield, UK, using water de-
mand profiles and urban water cycle simulations. Kim et al.
(2022) developed a framework to assess a variety of cen-
tralized and decentralized water supply options, including
rainwater harvesting and groundwater extraction via private
wells, for meeting urban water demand in southern India.
Souto et al. (2022) studied the effects of a rainwater har-
vesting system in reducing the demand for drinking water
in the city of Goiânia using two water balance models. Re-
search addressing the third aspect has focused on develop-
ing models to simulate urban hydrologic regimes within a
urban water system incorporating GIs, such as the Aquacy-
cle (Mitchell et al., 2001), Urban Cycle (Hardy et al., 2005),
City Water Balance (Last, 2011), UrbanBEATS (Bach et al.,
2015), and SUWMBA (Moravej et al., 2021). These models,
to some extent, allow users to improve their understanding
of the impacts of various GIs options at different scales and
to assess the comprehensive performance of the urban water
systems across the entire urban water cycle. Although there
is rich literature addressing issues of city-scale IGWM, there
is very little work that comprehensively considers the selec-
tion of centralized and decentralized water supply options, as
well as the decision-making associated with GI construction
plans within a urban water system in changing environments.
This has become a key issue of concern for UWMs. There-
fore, more in-depth studies are needed to develop a decision-
making framework that can assist authorities in making ef-
fective decisions about IGWM at a city scale.

In addition, several studies associated with inter-city-scale
IGWM have attempted to investigate the issues of interac-
tions between water users in a shared water resources sys-
tem, especially in irrigation systems (Barreteau and Abrami,
2007; Berger et al., 2007). To better understand the effects
of water users or managers’ behaviors and their interactions
in a watershed-scale water resource system, a diverse range
of studies have utilized agent-based models to simulate the
actions and interactions of autonomous water users or man-
agers within a water resources environment (Bankes, 2002).
These models are part of a broader computational frame-
work known as multiagent systems, which consist of mul-
tiple interacting autonomous agents. The aim is to assess the
collective effects of these interactions on the overall system
(Barreteau and Abrami, 2007). Berglund (2015) reviewed an

emerging area of research within water resources manage-
ment that uses agent-based models and multiagent systems
to simulate the water resources allocation and to predict the
performance of infrastructure design. Giuliani and Castel-
letti (2013) explored the effect of different levels of coop-
eration and information exchange among water users on the
upstream–downstream water conflict in a large-scale water
resources system through using a well-designed multiagent
system. Some studies have also focused on interactions be-
tween water users and the watershed environment, coupling
multiagent systems with watershed hydrologic models (He,
2019; Du et al., 2020). Montalto et al. (2013) constructed
an agent-based framework to analyze the effect of differ-
ent spatiotemporal distributions of GIs determined by nu-
merous household decision-makers on urban water cycle in
South Philadelphia. Hung and Yang (2021) developed a re-
inforcement learning agent-based framework in which agri-
cultural water users act as agents that learn and adjust their
water demands based on interactions with the water systems.
Similarly, Motlaghzadeh et al. (2023) employed a three-
game model to construct a hierarchical multiagent decision-
making framework for managing water and environmental
resources under the uncertain conditions of climate change
and complex agent characteristics. Additionally, Khorshidi
et al. (2024) proposed an agent-based model framework to
evaluate the suitability of transitioning to modernized surface
irrigation systems from traditional practices. While these
studies can inspire this study, there are some common limi-
tations for modeling IGWM at an inter-city scale. Firstly, the
studies of interactions between water users tend to focus on
agricultural regions rather than urban regions and do not ad-
dress the issues of interaction between urban areas driven by
developing GIs and using rainwater sources within a water-
shed. Secondly, rule-based models have been widely used to
simulate the behavior of water users or managers in a water
resource system but are unable to describe the complex de-
cision processes of city-scale IGWM due to over-simplified
decision rules.

In the field of research within IGWM at a watershed scale,
several studies have focused on the evaluation or design of
water policies to manage interactions or conflicts among
multiple water users within a watershed via using various
multiagent systems (Berger and Ringler, 2002; Akhbari and
Grigg, 2013; Lin et al., 2020). For instance, Kock (2008) de-
veloped and applied two agent-based models of society and
hydrology to test relations between different water policies
in a watershed and the level of water conflict in that water-
shed. Kanta and Zechman (2014) built a multiagent system
framework by integrating a urban water demand and a supply
model and considering water users and managers as agents.
A wide set of water policies, such as conservation strategies
and interbasin transfer strategies, set by the water managers,
and the associated responses from the water users, were sim-
ulated via using the framework. Darbandsari et al. (2020)
proposed a new conflict resolution model to assess differ-
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ent water management policies through simulating the inter-
actions of all water users’ behaviors. A Stackelberg-game-
theory-based model was used to describe the leader–follower
interactions between water users and managers within a
basin. Although these previous studies can provide guidance
for IGWM at a watershed scale in an exploratory way, there
is still a gap in building a sound and flexible watershed pol-
icy framework for the design and evaluation of various water
strategies to allocate limited water resources to urban areas
that develop GIs and use rainwater resources, as well as for
the simulation of the complicated responses of water supply
and GI development in each urban area to these strategies.

This paper focuses on IGWM within a watershed com-
posed of multiple urban areas that implement GIs and utilize
rainwater at three spatial scales (see Fig. 1). At the city scale,
we examine how an UWM can optimally configure various
water resources extracted from rivers, aquifers, stormwater,
and rainwater harvesting systems, alongside planning for GI
construction, to maximize the efficient use of limited water
supplies while minimizing costs. At the inter-city scale, we
investigate the effects of interactions among multiple urban
areas on the socio-hydrologic dynamics of the watershed,
stemming from their city-scale IGWM decisions. At the wa-
tershed scale, we explore how a watershed water policy, such
as a streamflow penalty strategy set by a WM, can influence
the behaviors of all UWMs regarding city-scale IGWM and
their interactions with each other. To address these issues, we
develop a multiagent socio-hydrologic framework. Specifi-
cally, this framework includes (1) an agent-based model, de-
veloped by coupling an agent-based model for UWM with a
hydrologic simulation model, to determine optimal decision-
making for city-scale IGWM in changing watershed settings;
(2) a multiagent system, created by integrating the aforemen-
tioned agent-based models with a streamflow routing model
based on the Markov property, to simulate interactions in
inter-city-scale IGWM and assess its impact on the entire wa-
tershed; and (3) a bi-level multiagent system, constructed by
combining the multiagent system with an agent-based model
for WM based on Stackelberg game theory, to mimic the in-
teractions and feedback between a WM and multiple UWMs
driven by the implementation of a watershed water policy in
watershed-scale IGWM, ultimately designing an optimal wa-
tershed strategy. In addition, we also demonstrate our frame-
work to conduct three numerical experiments based on a real-
istic basin – the Minneapolis–La Crosse section of the Upper
Mississippi River, USA. The results obtained from these ex-
periments allow us to characterize and classify the decision-
making of city-scale IGWM for a UWM under different cir-
cumstances, to analyze the socio-hydrologic dynamics of the
watershed induced by inter-city-scale IGWM, and to assess
the role of a water policy in watershed-scale IGWM.

The outline of this paper is as follows: Sect. 2 introduces
the multiagent model framework used to simulate city-scale
IGWM decision-making by UWMs and the socio-hydrologic
dynamics of inter-city- and watershed-scale IGWM, consid-

ering interactions both among UWMs and between UWMs
and the WM. Section 3 details three simulation experiments
based on the Upper Mississippi River basin to provide in-
sights into IGWM at three spatial scales. Section 4 discusses
and analyzes the results of the simulation experiments. It
identifies optimal IGWM features for UWMs through sen-
sitivity analysis and assesses interactions among multiple
UWMs and the WM at inter-city and watershed scales using
scenario and comparative analysis. Section 5 concludes the
paper with a summary of findings, limitations, and proposals
for future research.

2 Methodology

This section proposes a multiagent socio-hydrologic frame-
work for solving the issues mentioned above of the IGWM
at three spatial scales.

2.1 Overview of the multiagent system architecture

The framework considers UWMs and WMs within the wa-
tershed as individual agents. It includes (1) two agent-based
models for urban water and watershed manager agents to re-
alistically represent UWM and WM decision-making pro-
cesses and (2) two hydrologic models – the Urban Water
Balance Simulation Model (UWB-SM) and the Muskingum–
Cunge routing model. The UWB-SM describes the dynamics
of urban water balance induced by city-scale IGWM deci-
sions, while the Muskingum–Cunge routing model simulates
changes in streamflow in river reaches connecting adjacent
urban areas. By integrating these components, we build an
agent-based model and two multiagent systems to simulate
GI-driven socio-hydrologic dynamics at three spatial scales
for addressing IGWM issues (see Fig. 1). Specifically, the
following is done:

1. An agent-based model combines the UWM agent-based
model with the UWB-SM to address city-scale IGWM
(see Fig. 1a).

2. A multiagent system integrates multiple UWM agent-
based models with the Muskingum–Cunge routing
models for inter-city-scale IGWM (see Fig. 1b).

3. A bi-level multiagent system combines the multiagent
system with the WM agent-based model to simulate
watershed-scale IGWM dynamics (see Fig. 1c).

Detailed introductions of the model components and struc-
ture are provided in the following sections.

2.1.1 Two agent-based models

Agent-based models for UWM. As illustrated in Fig. 1a, a
UWM must simultaneously consider GI construction and
water supply portfolios to meet diverse urban water demands
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cost-effectively. For GI construction, three types of GIs can
be built to utilize rainfall resources within an urban area:
infiltration-based GIs to enhance groundwater recharge by
altering infiltration rates of pervious surfaces; rainwater har-
vesting systems to collect rainwater from roofs before it con-
tacts the ground; and stormwater harvesting systems to col-
lect stormwater draining off land areas, including roofs and
ground surfaces (Fielding et al., 2015). The water supply
portfolios involve four types of water sources classified by in-
take locations: surface water from nearby rivers, groundwa-
ter from aquifers beneath urban areas, rainwater collected via
rainwater harvesting systems, and stormwater collected via
stormwater harvesting systems (Steffen et al., 2013). Potable
water demand is satisfied by surface water and groundwa-
ter supplies, whereas all water resources can support non-
potable demands.

The agent-based model for UWM aims to determine cost-
effective annual construction areas for the three types of
GIs, considering urban land limitations, and determine least-
cost monthly water supply portfolios to meet urban water
demands, subject to allowable source amounts. The objec-
tive function is to minimize the annual IGWM cost, which
includes the costs of GI construction, water supply, and
wastewater drainage. Constraints include the available con-
struction areas for GIs; monthly water supply limits for each
water source; and monthly water demand requirements for
potable water, total water, and urban irrigation for GI mainte-
nance. Detailed descriptions of the UWM agent-based model
are provided in Appendix B2.

Agent-based models for WM. As shown in Fig. 1c, the WM
sets a water policy, specifically a streamflow penalty strategy,
to regulate the IGWM decisions of all UWMs within a wa-
tershed. This strategy is inspired by water withdrawal regu-
lations in regions like South Carolina (Nix and Rad, 2022),
where over-extraction of surface water can incur penalties.
The WM prescribes a series of low streamflow thresholds
at checkpoints based on monthly hydrologic states; if the
streamflow at an urban area’s outlet falls below its thresh-
old, a penalty fee is imposed on the respective UWM. This
approach encourages UWMs to consider the externalities of
their IGWM decisions, thereby adjusting their actions to ac-
count for potential costs (Baumol and Oates, 1988).

The WM agent-based model determines the monthly low
streamflow thresholds at each checkpoint based on the hy-
drologic conditions of the corresponding river reach to influ-
ence UWM decisions effectively and achieve equitable water
resource distribution in the watershed. The objective func-
tion aims to minimize the water allocation Gini coefficient,
as proposed by Hu et al. (2016) and Xu et al. (2019), which
measures equity in watershed-scale IGWM by calculating
the equitable sharing of the used water quantity for each unit
of cost (see Fig. 2). Minimizing the Gini coefficient ensures
maximal fairness in water resource distribution. The model
includes streamflow constraints that set the allowable range
for low streamflow thresholds at each checkpoint. Detailed

Figure 2. (a) Basic principle for calculating water allocation Gini
coefficient and (b) the objective function for agent-based model for
WM. Note that the relevant symbols in (b) are listed in Tables B1
and B2 in Appendix B1.

descriptions of the agent-based model for WM are provided
in Appendix B3.

2.1.2 Two hydrological models

Urban water balance simulation model (UWB-SM). We de-
veloped a lumped urban water system model to describe
the dynamics of urban water balance induced by city-scale
IGWM decision-making. The model incorporates all urban
water flows (natural and anthropogenic), grey urban water
systems, and GI systems to simulate interactions between
the water supply-wastewater discharge network, the rainfall-
stormwater runoff network, and three types of GI systems
within an urban area. Figure 3a illustrates the urban wa-
ter mass balance modeled in the UWB-SM, showing water
flow movements between seven storage units: roof, other sur-
faces, rainwater and stormwater harvesting systems, shallow
soil layer, aquifer, and river. The UWB-SM receives input
from rainfall and river inflow, which pass through both grey
and green infrastructure systems, resulting in outputs in the
form of evapotranspiration and river outflow. Water moves
between the seven storage units, with the amounts of wa-
ter in these units representing their states. These states are
used to measure the total water balance within an urban area
and to calculate available amounts of four water resources:
surface water and groundwater extracted from the river and
aquifer storage units and rainwater and stormwater collected
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by harvesting systems. Following Mitchell et al. (2001), in-
door water use is divided into potable and non-potable de-
mands, while outdoor water use is considered non-potable.

The vertical structure of the UWB-SM, illustrated in
Fig. 3b, consists of four components: urban surfaces, shal-
low soil layer, aquifer, and river. The model simulates water
flux transfers between these storage units based on the princi-
ple of water mass conservation, considering various surface-
subsurface water interactions and pipe network exfiltration
and infiltration. On urban surfaces, there are four water stor-
age units: roof, other surfaces, rainwater, and stormwater har-
vesting systems (see Fig. 3c). The urban surface is divided
into pervious and impervious areas based on infiltration rates.
Impervious surfaces, where infiltration is negligible, are fur-
ther divided into effective and non-effective areas. Effective
areas directly drain runoff to the stormwater drainage sys-
tem, while non-effective areas drain onto adjacent pervious
areas, with remaining water evaporating. Pervious areas in-
filtrate part of the runoff into the underground soil layer, re-
ducing runoff and enhancing groundwater recharge. Roofs
and other surfaces, such as roads and paved areas, are clas-
sified based on the construction conditions of different GIs.
Rainwater harvesting systems are assumed to be built only on
roofs, while infiltration-based GIs (e.g., infiltration trenches
and porous pavements) are constructed on non-roof impervi-
ous areas, turning them into pervious areas. Runoff generated
from roofs, rainwater harvesting systems, and other impervi-
ous surfaces is managed through evaporation or rainwater ex-
traction. Stormwater harvesting systems collect runoff from
the entire urban surface for stormwater supply. The UWB-
SM simplifies spatial features of the urban surface, focusing
on the cumulative effects of three types of GIs on the urban
water cycle and hydrological interactions.

The UWB-SM requires four types of input data: IGWM
decision-making, urban water demand, hydroclimatic data,
and urban land and water characteristics. Specifically,
IGWM decision data update the monthly water supply
amounts of four water resources and the annual construc-
tion areas for three GI systems as determined by a UWM
agent. Urban water demand data include monthly indoor
and outdoor water demands, which can be estimated based
on the urban population and economic development lev-
els. Hydroclimatic data comprise mean monthly river in-
flow, precipitation, and potential evapotranspiration within
an urban area. Urban land and water characteristics are de-
scribed by calibrated and measured parameters, which are
listed in Table C2. Measured parameters relate directly to
physical catchment characteristics and can be determined
through measurement, observation, or local experience. The
12 calibration parameters, along with their units, symbols,
and ranges, are grouped according to land features such as
surfaces, soil layer, aquifer, river, and urban water system,
as shown in Table C3. These values are adjusted during cal-
ibration to optimize the selected objective function. Detailed

governing equations for the UWB-SM are provided in Ap-
pendix C2.

Muskingum–Cunge routing model. It simulates upstream–
downstream hydrologic interactions between UWM agents
in an associated river reach, as illustrated in Fig. 1b. For ex-
ample, the upstream inflow for UWM agent i+ 1 in month t
can be mathematically expressed as the outflow from UWM
agent i in the same month and the next month (Garbrecht
and Brunner, 1991; Weinmann and Laurenson, 1979). The
Muskingum–Cunge routing model, which is used to simulate
these interactions, is described in detail in Appendix C3.

2.2 Agent-based model for city-scale IGWM

Figure 1a illustrates the decision-making process of city-
scale IGWM by an UWM agent and the resulting changes in
urban water cycles. To simulate the UWM’s behavior in city-
scale IGWM, an agent-based model is developed by cou-
pling the agent-based model for UWM with the UWB-SM.
In this model, annual decisions on GI construction made by
the UWM agent are first used as inputs to the UWB-SM.
Subsequently, monthly water supply portfolio selections are
represented by the UWM agent, while the resulting changes
in urban water cycles are simulated in the UWB-SM. The
agent-based model for UWM interacts with the UWB-SM
through a coupling strategy. This coupling strategy enables
us to use a simulation-based optimization approach to esti-
mate and predict the UWM’s decision-making in city-scale
IGWM and the resulting urban hydrologic dynamics under
different socioeconomic and hydroclimatic conditions.

The data exchange between the UWB-SM and the agent-
based model for UWM occurs in two phases to ensure fea-
sible solutions (Fig. D1b in Appendix D2). In Phase 1,
an annual data exchange generates feasible GI construction
decision variables for the UWM agent and initializes the
UWB-SM. Initial data, including urban water demand, land
and water characteristics, and hydroclimatic data, are input
into both models. Annually available construction areas for
infiltration-based GI, rainwater, and stormwater harvesting
systems are determined by GI construction constraints and
used to update the urban land features in the UWB-SM. In
Phase 2, a monthly data exchange generates feasible water
supply decision variables for the UWM agent. Each month,
the UWB-SM runs at least twice, exchanging data with the
agent-based model for UWM. The UWB-SM updates the ur-
ban hydrologic state based on the storage levels of seven stor-
age units from the previous month and computes available
runoff for stormwater harvesting. This information, along
with the storage levels of four storage units (river, aquifer,
rainwater, and stormwater harvesting systems) from the pre-
vious month, is used by the agent-based model for UWM to
generate feasible monthly water supply decision variables.
These variables are then transferred back to the UWB-SM to
simulate urban hydrologic variables for the current month.
The updated hydrologic variables are sent back to the agent-
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Figure 3. The structure of the UWB-SM. Note that relevant symbols in (b) and (c) are listed in Tables C1, C2, and C4 in Appendix C1.

based model for UWM to verify the feasibility of the deci-
sion variables. If the decision variables fail the check, they
are regenerated by the agent-based model for UWM. If they
pass, the relevant IGWM cost is calculated, and the updated
storage units’ data are used to initialize the UWB-SM for
the next month. This process continues until the termination
criteria are satisfied, generating a feasible IGWM decision
variable and associated annual cost.

The UWB-SM and the agent-based model for UWM are
tightly coupled at the source code level, with subroutines of
the agent-based model embedded into the UWB-SM. The
primary data exchanged between the two models include wa-
ter supply portfolios, GI construction plans, and hydrologic
states. Given that some parameters of the agent-based model
for UWM are computed by the UWB-SM, a corresponding
solution approach is detailed in Appendix D2.

2.3 Multiagent system for inter-city-scale IGWM

Figure 1b illustrates the river connections between urban ar-
eas, which significantly affect the impact of GIs on urban and
watershed hydrology in terms of water resource allocation.
These river connections mean that all UWM agents must
share surface water resources, and the decisions made by
upstream agents can affect downstream agents (Glendenning
et al., 2012). A multiagent system is constituted by consider-
ing multiple urban areas and interconnected river networks.
In this system, all UWM agents are linked by a river network.
Each UWM agent independently makes city-scale IGWM
decisions – such as water supply portfolios and GI construc-
tion – based on its current hydrologic states and upstream

inflow, which is influenced by the outflows from upstream
areas and the decisions of associated UWM agents. The inter-
actions among multiple UWM agents can be depicted as a se-
quence of city-scale IGWM decisions along river networks,
as water is transported downstream. This interaction process
exhibits the Markov property (Frydenberg, 1990), where the
hydrologic state of a downstream urban area depends only
on the hydrologic state of the adjacent upstream area after
making its own IGWM decisions and its own decisions. This
state transition process continues sequentially along the river.

The multiagent system for inter-city-scale IGWM is for-
mulated by integrating the agent-based model for UWM
(Eq. B1) with the UWB-SM and the Muskingum–Cunge
routing model (Eq. C10), leveraging its Markov property.
This system is modeled as a special type of multi-stage
decision system (Bellman, 1966), where the sequence of
decision-making for each UWM agent – city-scale IGWM –
follows their spatial locations along river networks, from up-
stream to downstream. The hydrologic variable, specifically
the upstream inflow for each UWM agent, is considered the
state variable that describes interactions between agents. This
can be expressed as follows:{ agent-based model for UWM i+UWB-SM, ∀i (01)

Muskingum–Cunge routing model i in t, ∀i, t (02)
q1

ri(t)=Q
1
t , and qiri(0)=Q

i
0, ∀i, t (03)

, (1)

where the third row of Eq. (1) shows initial conditions for the
multiagent system for UWMs, and Q1

t and Qi
0 are the initial

amounts of the upstream inflow for UWM agent 1 in month t
and UWM agent i in month 0, respectively. The details of the
multiagent system and the corresponding solution approach
are presented in Appendix E1 and E2.
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2.4 Bi-level multiagent system for watershed-scale
IGWM

In the described multiagent system, each UWM agent mini-
mizes its own IGWM costs without directly considering the
external effects on other UWMs due to the Markov property
of the system. This might lead to inequalities in water re-
source sharing, where upstream users might consume more
surface water than downstream users, potentially increasing
the IGWM costs for downstream areas (Giuliani and Castel-
letti, 2013). To address this inequality and promote sustain-
able water use in watershed-scale IGWM, a WM can imple-
ment policies such as a streamflow penalty strategy.

Under such policy interventions, each UWM agent must
balance the costs of GI construction, water supply, and
wastewater drainage with the potential penalty fees imposed
by the WM for not meeting specified low streamflow thresh-
olds. Consequently, the agent-based model for UWM is ex-
tended to include these penalty fees in the annual IGWM cost
function. Details of this model extension are provided in Ap-
pendix F1.

As illustrated in Fig. 1c, a streamflow penalty strategy may
prompt upstream UWM agents to adjust their IGWM deci-
sions to increase outflow, thereby minimizing penalty fees
and benefiting downstream agents. These adjustments can
shift the interactions within the multiagent system, impact-
ing water resource distribution within the watershed, which
can be quantified using the water allocation Gini coefficient
set by the WM. The WM can assess the policy’s effects on
the watershed by evaluating this metric and iteratively ad-
justing the policy to find the optimal solution. This process
represents an interaction between the WM and UWMs in
watershed-scale IGWM under a streamflow penalty strategy.
This interaction is not solely determined by the WM or the
UWMs; both parties aim to optimize their objectives (equity
for the WM and cost minimization for UWMs) under respec-
tive constraints (streamflow for the WM and GI construction,
water supply, and demand constraints for the UWMs) and
the reactions of the other party. This decision-making pro-
cess follows the Stackelberg game theory (Von Stackelberg,
2010), where the WM makes the initial decision, and UWMs
respond to optimize their objectives with full knowledge of
the WM’s decision. The WM then optimizes its objective
based on the rational reactions of the UWMs.

Leveraging the Stackelberg game framework (Dempe,
2002), we construct a bi-level multiagent system by com-
bining the agent-based model for WM with the multiagent
system comprising multiple extended agent-based models for
UWMs and the relevant hydrologic models. This system can
be formulated as follows:


agent-based model for WM;
where Wi ,GIi solves{ extended agent-based model for UWM i+UWB−SM, ∀i

Muskingum–Cunge routing model i in t, ∀i, t

q1
ri(t)=Q

1
t , and qiri(0)=Q

i
0. ∀i, t

,

(2)

where [−]∗ represents the parameter being from the sim-
ulation calculation of the UWB-SM. Wi and GIi represent
the decision variables of water supply portfolios and GI con-
struction for UWM agent i. The details of the bi-level multi-
agent system and the pertaining solution approach are illus-
trated in Appendix F2 and F3.

3 Case study and experimental design

In this section, the proposed multiagent socio-hydrologic
framework is utilized in a case study on the Minneapolis–La
Crosse section of the Upper Mississippi River, United States,
and three numerical experiments are designed to characterize
the decision-making of IGWM at three spatial scales.

3.1 Overview of the study area

As Fig. 4 shows, the Upper Mississippi River basin ranges in
latitude from 47 to 37° N, and it flows roughly 2092 km, from
Lake Itasca (northern Minnesota) to the Ohio River (south-
ern Illinois), which covers seven states of the USA, such as
Illinois, Iowa, Minnesota, and Wisconsin, and has a water-
shed area of 489 508 km2. The main river and its tributaries
have an average annual discharge of 3576 m3 s−1, which has
three high-flow (late April, late June, and October) and two
low-flow (midsummer and late winter) periods as a result of
varied rain and snow conditions (Baldwin and Lall, 1999). In
the watershed, more than 70 % of the area is used for agri-
culture and animal husbandry. Only 5 % of the site has been
converted to urban areas. However, it has a population of
about 24 million, especially in the metropolitan high-density
regions (> 100 000 people km−2), such as Minneapolis–St.
Paul, Minnesota, and La Crosse, Wisconsin. It is estimated
that over 5.3×106 m3 of water is withdrawn from the Upper
Mississippi River each day in the 60 counties for municipal
and public supplies.

There are three primary reasons for selecting the Upper
Mississippi River basin as the case study for conducting nu-
merical experiments. First, although the widespread use of
GIs for rainwater harvesting is not prevalent in the USA, the
study (Ennenbach et al., 2018) has demonstrated the poten-
tial for rainwater harvesting in this watershed, attributed to
its humid climate and abundant annual precipitation. How-
ever, this study also indicates that seasonal variations in wa-
ter demand necessitate a deeper exploration of rainwater har-
vesting potential. Applying the socio-hydrologic framework
to the basin can provide valuable insights into this poten-
tial. Second, despite being a water-rich basin, water sharing
among the riparian urban areas remains a significant con-
cern due to the high demands for environmental and agricul-
tural purposes, strict water level regulations for navigation,
and high-density urbanization. Climate change is expected
to drastically alter the probability distribution of streamflow,
increasing the frequency and magnitude of both high and

https://doi.org/10.5194/hess-29-2655-2025 Hydrol. Earth Syst. Sci., 29, 2655–2695, 2025



2664 M. Zhang and T. F. M. Chui: A multiagent socio-hydrologic framework

Figure 4. Schematic diagram of the study area. Notice that the base map and metropolis and city group maps in the bottom right of the figure
are from Esri (2012) and U.S. Census Bureau (2018), respectively; the US boundary map and the Upper Mississippi River basin map in the
bottom left of the figure are from U.S. Census Bureau (2018) and USGS (2021), respectively.

low streamflow extremes. Consequently, even high-flow river
basins also might face nonstationary drought risks (Dierauer
and Zhu, 2020). A simulation study showed that climate
change could result in streamflow decreases in all seasons
except winter within the basin (Lu et al., 2010). Third, there
are notable similarities between the actual case and the sim-
ulated case by the proposed model. For instance, in fact, the
Upper Mississippi River Basin Association as WM aims to
implement a water level management policy (Reed et al.,
2020), which mirrors the multi-player management struc-
ture assumed in the proposed model. Additionally, surface
water and groundwater are crucial sources of water widely
used by urban areas, and green infrastructures are gradu-

ally encouraged and expanded to manage urban stormwater
by local communities and authorities (Askew-Merwin, 2020;
Guo, 2023).

In this study, the Minneapolis–La Crosse section – approx-
imately 236 km long – of the Upper Mississippi River basin,
a high-density urban area, is considered the study area (see
Fig. 4). Note that the study only focuses on the urban water
use and allocation, which perhaps is a small percentage of
the basin water resource in the study region. Figure 4 indi-
cates that there are nine main riparian urban areas along the
section, i.e., i = 1, 2, . . . , 9. Some are metropolises with a
large population for these urban areas, such as Minneapolis,
St. Paul, and La Crosse. The others are city groups that con-
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sist of multiple small cities, such as Red Wing and Bay City.
In short, the basic features of urban areas in the study site are
shown in Table 1.

3.2 Experimental design

Given the background of the study area, the all urban area –
metropolises or city groups – is assumed as a UWM agent
that makes city-scale IGWM decisions individually, which
can be formulated by Eq. (B1), and the Upper Mississippi
River Basin Association is regarded as the WM agent that
regulates these urban areas, and the associated interactions
among UWMs and between WM and UWMs are formu-
lated by Eqs. (E1) and (2), respectively. In the case study,
we address the above issues of IGWM at three spatial scales
through observing and comparing the results of the deci-
sion making of WM and UWM agents and interactions in
IGWM simulated by the proposed model under different
socio-hydrologic settings. Therefore, three numerical exper-
iments to IGWM at city, inter-city, and watershed scales are
designed in the following:

3.2.1 Experiment 1 of IGWM at a city scale

The experiment aims to identify and classify the character-
istics of optimal decision-making for city-scale IGWM by
UWM agents under different hydroclimatic settings. Firstly,
a sensitivity analysis of the agent-based model for city-scale
IGWM (see Sect. 2.2) is performed. All urban areas within
the studied region are considered study objects. The associ-
ated agent-based models for city-scale IGWM are run mul-
tiple times under different combinations of upstream inflow
and precipitation, which are the model’s input parameters, to
calculate the associated optimal decision-making scenarios.
The baseline values for these two hydroclimatic parameters
are obtained from the USGS, and six scenarios are created by
decreasing and increasing the baselines by 25 %, 50 %, and
75 %, respectively, covering high and low streamflow and
rainfall extremes. Secondly, based on the optimal decision-
making scenarios of city-scale IGWM under mixed hydrocli-
matic conditions, a k-means clustering method (Likas et al.,
2003) is employed to classify all UWMs’ decision-making
strategies. This classification characterizes the patterns of
city-scale IGWM in changing environments by summarizing
the similarities in UWMs’ decision behavior under specific
hydroclimatic conditions.

3.2.2 Experiment 2 of IGWM at an inter-city scale

The experiment is designed to examine the impacts of inter-
city-scale IGWM on the socio-hydrologic dynamics of the
watershed and investigate how watershed hydroclimatic and
socioeconomic conditions affect these interactions. For the
first objective, two scenarios are simulated using the mul-
tiagent system for inter-city-scale IGWM (see Sect. 2.3).
The first scenario, serving as the experimental group, in-

cludes GI construction decisions and the usage of rainwater
and stormwater. The second scenario, serving as the control
group, excludes GI development and rainwater and stormwa-
ter usage by setting the maximum available areas for con-
structing three types of GIs to zero in all agent-based models
for UWM. By comparing the results of these two groups, we
identify the potential impacts of inter-city-scale IGWM on
water use cost, equity of water resource allocation, and avail-
able surface water distribution within the watershed, thereby
quantifying the relative contribution of GIs to these impacts.

For the second objective, a sensitivity analysis of the ex-
perimental group is conducted. Various combinations of wa-
tershed settings (i.e., watershed upstream inflow, precipita-
tion, and urban water demands) are considered. The scenario
including GI development and rainwater and stormwater us-
age is set as the baseline. Similar to Experiment 1, monthly
precipitation and watershed upstream inflow are proportion-
ally varied from 25 % to 175 % of the baseline to simulate
hydroclimatic dynamics. Additionally, monthly urban water
demands, encompassing both indoor and outdoor demands,
are adjusted from 25 % to 175 % of the baseline to represent
socioeconomic changes in the watershed.

3.2.3 Experiment 3 of IGWM at a watershed scale

This experiment is designed to investigate the influence of a
streamflow penalty strategy on the socio-hydrologic dynam-
ics of the watershed within the context of IGWM and to ex-
amine the impacts of different hydroclimatic and institutional
conditions on the interactions of watershed-scale IGWM. For
the first objective, a policy simulation of the bi-level multi-
agent system for watershed-scale IGWM (see Sect. 2.4) is
conducted. The optimal solution of this bi-level system can
be defined as Stackelberg equilibrium points (Dempe, 2002)
– equilibria between the WM and UWMs in watershed-scale
IGWM where no party has an incentive to alter their deci-
sions. Multiple equilibrium points are likely in such a sys-
tem (Dempe, 2002); hence, all equilibria need to be identi-
fied and analyzed to assess the possible effects of the stream-
flow penalty strategy. The baseline penalty rate is specified
as USD 0.005 per cubic meter. This rate is artificial due to
the absence of an existing penalty strategy in the study area.
The baseline rate is determined by referencing an actual wa-
ter withdrawal regulation in South Carolina, USA (Nix and
Rad, 2022), and through comprehensive parameter analysis
(Parsapour-Moghaddam et al., 2015; Rosegrant et al., 2000)
to ensure it can affect all UWMs’ decision-making in the
study area. By comparing the results with those from Exper-
iment 2, we evaluate the potential impacts of the streamflow
penalty strategy on water use cost, equity of water resource
allocation, and surface water distribution within the water-
shed.

For the second objective, a sensitivity analysis is con-
ducted under varying conditions of the penalty rate, water-
shed upstream inflow, and precipitation. The aforementioned
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Table 1. The basic features of urban areas in the study site.

No. of Urban names Urban Population Urban area Ratio of impervious
urban area types Au (km2) surface area (%)

1 Minneapolis; metropolis 2 914 866 139.86 65
2 St. Paul, West St. Paul, metropolis 350 167 172.26 63

Mendota Heights, and Lilydale
3 South St. Paul, Inver Grove Heights, city group 230 277 367.41 60

Rosemount, Newport, St. Paul Park,
Gottage Grove, and Woodbury

4 Hastings and Prescott city group 71 870 33.37 61
5 Red Wing and Bay City city group 49 167 91.75 64
6 Lake City and Stockholm city group 12 405 51.40 62
7 Wabasha, Alma, and Nelson city group 12 265 38.48 61
8 Winona and Fountain City city group 26 757 60.62 59
9 La Crosse, La Crescent, metropolis 80 601 96.93 66

French Island, and Onalaska

policy simulation scenario is set as the baseline. Monthly pre-
cipitation and watershed upstream inflow are proportionally
varied from 50 % to 150 % of the baseline to simulate hydro-
climatic dynamics. Six penalty rates – USD 0.002 per cubic
meter, USD 0.004 per cubic meter, USD 0.005 per cubic me-
ter (baseline), USD 0.006 per cubic meter, USD 0.008 per cu-
bic meter, and USD 0.010 per cubic meter – are set to repre-
sent different institutional conditions. In cases with multiple
equilibria in the bi-level multiagent system, we only consider
the equilibrium with the lowest mean cost per unit of water
as the corresponding result for watershed-scale IGWM.

3.3 Data collection and processing

In the proposed framework to the case study, some param-
eters of the two agent-based models and two hydrological
models need to be determined by collecting, processing, and
estimating actual data from diverse sources.

For the parameters of UWB-SM, as detailed in Table C1
of Appendix B, the urban water demand data (36× 9)
were derived from urban populations and layouts using the
method of Last (2011). The hydroclimatic data inputs (27×9)
were estimated using raw data on streamflow, precipita-
tion, and temperature from the USGS Current Water Data
for the Nation (https://waterdata.usgs.gov/nwis/rt, last ac-
cess: 1 May 2021) and the Global Historical Climatology
Network daily (GHCNd) databases (https://www.ncei.noaa.
gov/). Specifically, upstream inflow data were identified from
GIS maps of urban areas and estimated using the map cor-
relation method (Archfield and Vogel, 2010) with monthly
streamflow observations from USGS stations because of the
location difference between the urban area’s inlet and the as-
sociated USGS stations. Evaporation and evapotranspiration
data were calculated using the method of Ravazzani et al.
(2012) with temperature data from the GHCNd database. The
urban area data (1× 9) were sourced from the U.S. Census

Bureau (http://www.census.gov/, last access: 12 June 2021),
and urban land features (4× 9) were derived from remote
sensing images (Last, 2011), as shown in Table C2 of Ap-
pendix B. Urban-depth-related data were obtained using var-
ious methods: mean aquifer depths at low topographic points
(1×9) were assumed to be 10 m plus riverbed depths from the
National Elevation Dataset (NED; https://datagateway.nrcs.
usda.gov/, last access: 25 June 2021), while aquifer depths
at high points (1× 9) were calculated using linear fitting to
urban hypsometric curves (Sharma et al., 2013). These as-
sumptions are believed to have minimal impact due to the re-
gion’s abundant water supply. Mean well depths for ground-
water withdrawal (1×9) were averaged from nearby wells in
the USGS Groundwater Data for the Nation database (https://
waterdata.usgs.gov/nwis/gw, last access: 4 July 2021). Max-
imum ratios for constructed areas of rainwater, stormwater
harvesting systems, and infiltration-based green infrastruc-
ture (3× 9) were set at 50 % to test maximum urban rainfall
utilization potential, though actual ratios may be lower. Mean
depths for shallow soil layers (1× 9) and wastewater pipe
networks (1×9) were set at 3 and 2 m, respectively, based on
similar settings (Frost et al., 2016). Mean effective porosity
(1× 9) was estimated at 10 % from the report by Prior et al.
(1953). Storage capacity data (4× 9) were determined based
on urban layouts using the method of Frost et al. (2016).

For the parameters of the agent-based model for UWM,
as shown in Table B2 in Appendix C, the construction cost
data for three types of green infrastructure (GIs) (3× 9)
were estimated based on the EPA cost databases (https:
//www.epa.gov/, last access: 23 July 2021) following the
method of Houle et al. (2013). The associated cost scaling
coefficients (3× 9) were derived using a non-linear fitting
method (Marquardt, 1963). Cost-related parameters for sur-
face water and groundwater supply (4× 9) were set accord-
ing to the recommendations by Kirshen et al. (2004), while
those for stormwater and rainwater harvesting (2× 9) fol-
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lowed the recommendations of Dallman et al. (2016). Pa-
rameters for sewage drainage costs (2× 9) were set based
on Guo et al. (2014). Due to a lack of specific data for
each urban area, these cost parameters were uniformly ap-
plied. Water-availability-related parameters (24×9) were de-
termined by setting the minimum storage levels for surface
water withdrawals based on the minimum monthly histor-
ical streamflow from the USGS datasets using the above
same method. Minimum storage levels for groundwater with-
drawals were set based on the mean depths of wells. Water-
supply-capacity-related parameters (2× 9) were set equal
to the corresponding maximum monthly indoor water de-
mand. The ratio of soil moisture for plant demand (1× 9)
was uniformly set at 0.31 based on Mitchell et al. (2001)
recommendations. Additionally, for the parameters of agent-
based model for WM, as shown in Table B3 in Appendix C,
minimum and maximum historical streamflow data (24× 9)
were obtained from the USGS datasets using the above same
method.

3.4 Model setup

In the framework, the other parameters of the UWB-SM
and the Muskingum–Cunge routing model were evaluated
through model calibration and validation using estimated his-
torical streamflow data via the above same method.

For the calibration parameters of UWB-SM, as detailed
in Table C3 in Appendix C, these were obtained by cali-
brating and validating the UWB-SM against estimated his-
torical monthly outflow data derived from USGS datasets.
The calibration process utilized estimated monthly inflow
from USGS databases and monthly rainfall data from NOAA
databases as inputs for the UWB-SM. During calibration,
rainwater and stormwater supplies were excluded, and urban
water demands (both indoor and outdoor) were assumed to
be met solely through surface water and groundwater sup-
plies, with a set ratio of 1 : 1. Monthly surface water and
groundwater supply amounts were determined based on this
setting. The simulated monthly outflow data from the UWB-
SM were then compared with the estimated outflow data for
calibration and validation. Detailed calibration and validation
results are presented in Table 2.

For the calibration parameters of the Muskingum–Cunge
routing model, as shown in Table C6 in Appendix C, these
were obtained by calibrating and validating the model using
estimated historical monthly outflow data from the upstream
urban area and inflow data for the adjacent downstream ur-
ban area. Detailed calibration and validation results for the
Muskingum–Cunge routing model are also provided in Ta-
ble 2.

4 Results and discussion

The results of these experiments and the associated analysis
are discussed as follows.

4.1 Characteristics of city-scale IGWM in changing
environments

The classified results of UWMs’ decisions of IGWM to dif-
ferent environments are illustrated in Fig. 5a. As Fig. 5a
shows, there are four IGWM patterns for UWMs in response
to the different combinations of upstream inflow and rain-
fall inputs. The region of light-blue dots is defined as pattern
1, which represents the similar reactions of UWMs in the
decision-making of IGWM to the high upstream inflow and
rainfall inputs. The region of green dots indicates pattern 2,
indicating the consistent behavior of IGWM for UWMs to
the low upstream inflow and high precipitation settings. Sim-
ilarly, patterns 3 and 4 are set in the region of dark-blue and
yellow dots, which denotes the analogous decision-making
of IGWM for UWMs in the study site under high (low) in-
flow and low (low) rainfall conditions respectively. The result
indicates the homogeneous behavior of city-scale IGWM for
all UWMs in the relatively extreme hydroclimatic conditions
in the study region.

The characteristics of the four IGWM patterns mentioned
above are shown in Fig. 5b–f. The ratios of water supply port-
folios and GI construction in the four patterns are illustrated
in Fig. 5b–d. There are large distinctions in the IGWM be-
tween the four patterns; in pattern 1, centralized and decen-
tralized water account for 52.9 % and 47.1 % of total water
supply, respectively, which means that stormwater and rain-
water are widely utilized. More than 80.0 % of centralized
water supply is from surface water. In the aspects of GI con-
struction, over three-fifths of available urban areas is used to
develop stormwater and rainwater harvesting systems, which
accounts for 96.2 % of total GI construction areas. These re-
sults show the responses of IGWM to the high upstream in-
flow and rainfall inputs – UWMs prefer to use stormwater
and rainwater directly to meet urban non-potable water de-
mand by stormwater and rainwater harvesting systems for
the sake of cost and to supply surface water to meet potable
water demand. In pattern 2, similar to pattern 1, stormwater
and rainwater are also heavily used directly to satisfy non-
potable demand. At the same time, groundwater is the main
potable water resource due to the low upstream inflow in-
put. Accordingly, over 75 % of available areas is utilized for
GI development, 35.9 % of which, unlike pattern 1, is for
infiltration-based GIs for groundwater recharge. In pattern
3, stormwater and rainwater are hardly used (only 2.9 % of
total water supply), and the construction of the associated
GIs (only 3.9 % of available urban areas) is also limited due
to the scarcity of precipitation. The surface water resource
is dominant in urban water supply, accounting for 87.2 % of
total water withdrawals because of the high upstream flow in-
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Figure 5. The classified results of city-scale IGWM in different environments. (a) Four IGWM patterns can be classified based on four color
dots. (b–d) Different ratios of water supply portfolios and GI construction and the costs of water use are shown in the four patterns. (e–f) Four
patterns significantly influence the urban water cycle. Note that in (e), the Ratio of system water output to input measures urban water balance,
calculated as the sum of monthly evapotranspiration, consumption, and outflow (output) divided by the sum of monthly upstream inflow and
rainfall (input). The Ratio of rainfall harvesting is the ratio of combined stormwater and rainwater supply to total rainfall. In (f), the Ratio
of water cycle is the annual ratio of total water supply (surface water, groundwater, stormwater, and rainwater) to total urban stored water
(sum of monthly storage across seven units: roof, other surfaces, rainwater, stormwater, soil layer, aquifer, and river). The Ratio of change in
stored water is the difference between stored water in the last and first months, divided by stored water in the first month.
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Table 2. Details and representative results of calibration and validation for two hydrologic models. ∗ represents the representative results for
the two hydrologic models for urban area 1. KGE, NSE, R and B represent four types of performance metrics – the Kling–Gupta efficiency
(Kling et al., 2012), the Nash–Sutcliffe coefficient of efficiency (Nash and Sutcliffe, 1970), the correlation coefficient between simulated and
observed streamflow, and the percent bias (Gupta et al., 1999), respectively.

Model UWB-SM Muskingum–Cunge routing model

Calibration parameter See Table C3 See Table C6
Dimensions 12× 9 3× 9
Calibration data Estimated monthly outflow Estimated monthly inflow and outflow
Data periods Calibration (1996–2020) and Validation (1971–1995)
Data sources USGS Current Water Data for the Nation database
Calibration objective Maximization of the KGE (Kling et al., 2012)
Calibration algorithm S-APSO framework (see Appendix D2)
Validation results∗ KGE= 0.66, NSE= 0.46, R= 0.8, B = 4.1 %; KGE= 0.78, NSE= 0.51, R= 0.82, B = 3.8 %

puts. In comparison, stormwater and rainwater are partially
used (22.2 % of total water supply) directly or indirectly by
constructing GIs at a moderate level (41.2 % of available ur-
ban areas) in pattern 4. This might be because UWMs have
to collect and use all kinds of available water resources as
much as possible when system water inputs – rainfall and up-
stream inflow – are low. Hence, the groundwater is supplied
more extensively for maintaining water supply steadily. It is
worth mentioning that infiltration-based GIs, which account
for 16 % of total GI construction areas, are, to a great extent,
built to enhance aquifer recharge for reducing the costs of
groundwater abstraction. In addition, Fig. 5d also illustrates
the mean IGWM costs per unit of water in the four patterns.
Undoubtedly, the costs of the pattern under high system wa-
ter input conditions are lower than those under low water in-
puts.

Figure 5e and d illustrate the four indexes used to mea-
sure urban water cycle defined by Kenway et al. (2011) un-
der these patterns, which show that the impacts of the four
IGWM patterns on the urban water cycle. As Fig. 5e shows,
the ratios of system water output to input and rainfall harvest-
ing vary from pattern to pattern. Except pattern 4, the ratio
of system water output to input of the rest of the patterns is
smaller than 1, which means that the relevant IGWM patterns
can increase water storage in an urban system, especially the
pattern 1 and 2 with relatively large areas of GIs – 17.5 %
and 12.6 % of water inputs are stored, respectively, which, to
some extent, decreases the outflow of the urban catchment.
The result is consistent with the Glendenning et al. (2012)
results. However, in contrast to the other patterns, the ratio of
system water output to input of the pattern 4 indicates the de-
creases in urban water storage. In this circumstance, to build
a small range of infiltration-based GIs (i.e., the ratio of rain-
fall harvesting= 17.6 %) to increase groundwater recharge is
limited. In addition, as shown in Fig. 5f, the ratios of water
cycle increase in order from pattern 1 to 4, and the associated
ratios of change in stored water have an opposite trend. These
results also are consistent with the above results in Fig. 5e.

Our simulation study demonstrates the reasonable re-
sponses of UWM agents to different hydroclimatic settings
in city-scale IGWM. Specifically, the hydroclimatic environ-
ment determines the availability of the four types of wa-
ter sources, thereby influencing UWMs’ selection of IGWM
patterns from an economic perspective. Furthermore, the
IGWM patterns chosen by UWMs can alter the urban wa-
ter cycle, which, in turn, affects the hydrologic environment
of the watershed.

4.2 Characteristics of inter-city-scale IGWM in
changing environments

The results of the inter-city-scale IGWM in the two cases
are shown in Table 3. The ratios of water supply portfolios
of the all urban area in the two scenarios are shown in the
2nd–5th and 9th–10th rows of Table 3. In the case without
GIs – a control group – surface water use fractions gradually
decrease from the upstream to the downstream areas. For ex-
ample, the ratios of surface water in urban areas 1, 5, and 9
are 0.85, 0.79, and 0.73, respectively. It might be because of
a trend that the available amounts of surface water gradually
decrease along with the river (see the blue line in Fig. 6a).
These results indicate the adverse impacts of upstream water
users on the downstream water users in surface water with-
drawals. That is, water extraction from a stream in the up-
stream areas reduces the available amounts of surface water
in the downstream regions, which would increase the costs
of surface water withdrawal for the downstream urban areas,
thereby forcing them to substitute other water resources, such
as groundwater. In contrast, in the case with GIs – an exper-
iment group – the fractions of surface water use appear to
be independent of the study area locations due to stormwa-
ter and rainwater use via GIs. However, it might aggravate
the adverse impacts, i.e., upstream–downstream imbalance
of available surface water. For example, the ratios of surface
water use markedly decrease in the downstream urban areas,
especially in urban areas 6, 8, and 9, which have adopted
IGWM pattern 4 – the high ratio of groundwater use. This
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may be because the upstream UWMs prefer to use stormwa-
ter and rainwater resources through developing GIs, such as
IGWM pattern 1 and 2, to minimize the costs of water use
(Cooley et al., 2019). However, as mentioned before, IGWM
pattern 1 and 2 can reduce the outflow of the urban subcatch-
ment (see Fig. 5e), which might worsen the decrease in avail-
able surface water in the downstream region (see the red line
in Fig. 6a). In addition, the 8th and 12th rows of Table 3 also
show the Gini coefficients (Eq. B4a) in the two scenarios –
0.0129 and 0.0169, indicating that the GI construction to use
stormwater and rainwater intensifies the imbalance in water
use in the study area.

The 7th and 11th rows of Table 3 illustrate the IGWM cost
per unit of water for each urban area in the two scenarios.
There is a trend that the unit water costs constantly increase
from the upstream to the downstream region, indicating the
adverse impacts of the upstream–downstream imbalance of
the surface water on the cost of water use for the downstream
urban areas. In comparison, the costs of water use in the mul-
tiagent systems with GIs are smaller than those without no
GIs for the all urban area. In contrast, the differences in these
costs between the two scenarios continuously decrease from
urban area 1 to 9 (see the red line in Fig. 6b). The reasons
behind these results might be that there are two main fac-
tors – upstream inflow and GIs – affecting the costs of wa-
ter use in the multiagent system for UWMs, especially for
the downstream UWM agents. In general, the upstream in-
flow reduction can decrease the amounts of surface water,
thereby increasing the cost of water use for the downstream
UWMs. Conversely, rainwater and stormwater use via GIs
can increase the available amounts of water resources and
decrease water supply costs. In the multiagent system for
UWMs, especially for the downstream UWM agents, the cu-
mulative effect of the upstream IGWM decision behavior on
streamflow gradually amplifies along the river. In contrast,
the impact of the GIs on rainfall resource use generally re-
mains stable due to the limitations of climatic, physical, and
socioeconomic conditions. Therefore, the combination of the
two effects might lead to a gradual decrease in the impact of
GIs on the cost of water use along with the river.

Our findings reveal a persistent upstream–downstream im-
balance in water resource access, exemplified by stark con-
trasts in surface water reliance between urban areas – from
85 % in upstream regions (e.g., urban area 1) to 73 % in
downstream zones (e.g., urban area 9) in without GI sce-
narios. This disparity reflects systemic inequities: down-
stream areas face heightened costs due to diminished surface
water availability, causing reliance on costlier groundwater
sources. Crucially, GI adoption intensifies these tensions –
while reducing city-scale costs (e.g., via stormwater harvest-
ing in pattern 1), it inadvertently reduces downstream inflows
by 12 %–18 % (Fig. 6a), amplifying inter-urban conflicts
akin to a “tragedy of the commons” (Hardin, 2018). These
results underscore the dual-edged impact of GIs: though
locally cost-effective, watershed-scale implementation risks
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Figure 6. Available surface water and unit water cost difference in the two scenarios. (a) There is a trend that the available amounts of surface
water gradually decrease along with the river, and GI development might worsen the trend. (b) There is a trend that costs between the two
scenarios continuously decrease along with river. Note that in (a), Ratio of available surface water for urban area is set as the average of the
ratio of the available monthly storage levels of river for water withdraw to the maximum theoretical that levels in an urban area. In (b), Unit
water cost difference for urban area is calculated as follows: the difference of the mean unit IGWM costs in the urban area in the scenarios
of the multiagent systems without and with GIs.

entrenching inequities by privileging upstream urban areas.
To reconcile this tension, policies must integrate negotiated
water-sharing agreements that harmonize localized GI bene-
fits with watershed-wide equity, ensuring sustainable and eq-
uitable resource allocation across urban boundaries.

The mean unit costs and the Gini coefficients in the mul-
tiagent system for UWMs under different precipitation, up-
stream inflow, and urban water demand inputs are illustrated
in Fig. 7a and b, which show the influences of different social
and hydroclimatic settings on the socio-hydrologic dynamics
of the watershed in the context of inter-city-scale IGWM. In
Fig. 7a, the blue and grey lines represent the changes in the
mean costs per unit of water use in the all urban area under
different precipitation and upstream inflow inputs. It shows
a non-linear inverse relationship between the cost of water
use and the system water inputs – the mean cost of water
use in a watershed-scale IGWM decreases with the increases
in both watershed upstream inflow and rainfall. Notice that
the cost of water use in the multiagent system for UWMs is
more sensitive to the precipitation than upstream inflow. No-
tably, the mean cost of water use decreases from USD 3.01
per cubic meter to USD 2.96 per cubic meter when the rain-
fall increases from 150 % to 175 %. It appears that rainfall
inputs, when they go beyond a certain threshold, might have
a profound effect on the IGWM cost of the multiagent sys-
tem for UWMs. This might be due to the fact that more and
more UWMs can switch IGWM patterns from pattern 3 or
pattern 4 to pattern 1 or pattern 2, with the available rainfall
exceeding a given threshold, leading to a significant decline
in water use costs. These results are consistent with the re-
sults in Fig. 5d. In comparison, as the yellow line in Fig. 7a

shows, the cost of water use in the all urban area is highly
sensitive to the urban water demands. The increases in urban
water demands are equivalent to the decreases in available
water resources within an urban area, which greatly adds to
the costs of water use.

Figure 7b shows the changes in the equity level of water
use in the all urban area under different hydroclimatic and
socioeconomic settings. The blue and grey lines in Fig. 7b
represent the trends of Gini coefficients under mixed pre-
cipitation and upstream inflow conditions – it tends to pro-
portionally decrease as the upstream inflow increases, while
there is an inverted U-shaped curve for the Gini coefficient
when the precipitation increases; it reached a peak (0.0171)
when the ratio of the rainfall to the baseline is equal to 125 %.
On the side of the upstream inflow, these results show that
the reduction in watershed upstream inflow harms the equity
levels of water use in watershed-scale IGWM. The possible
reason is that the Markov property of the multiagent system
for UWMs has a cumulative effect on the reduction in surface
water availability along with the river. It can, to some extent,
amplify the surface water conflicts between the upstream–
downstream urban areas as the watershed upstream inflow
decreases. On the side of the precipitation, the impact of rain-
fall on the equity of water resources distributions among ur-
ban areas is more complicated. The reasons for the increase
in the Gini coefficient as the precipitation increase slightly
might be that the water use costs for the upstream UWMs
decrease remarkably by substituting stormwater and rain-
water for surface and groundwater water as the rainfall in-
creases. In contrast, in the downstream regions, the reduc-
tion in the relevant costs is limited because the cumulative
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Figure 7. Changes in unit water costs and Gini coefficients under different social and hydroclimatic settings. (a) These is a non-linear inverse
relationship between the cost of water use and the system water inputs. (b) There is an inverted U-shaped curve for the Gini coefficient when
the precipitation increases. Note that in (a), Mean unit water costs in the multiagent system is obtained as follows: the total IGWM cost
divided by the total amounts of water supply in the multiagent system.

effect of upstream inflow mentioned above limits the inten-
tion of the corresponding UWMs to switch IGWM patterns
to use more rainfall resources economically. However, as
the precipitation increases significantly, the abundant rainfall
encourages the downstream UWMs to use stormwater and
rainwater via GIs cost-effectively, reducing water use costs
sharply, thereby making the watershed-scale IGWM more
equitable. In comparison, the Gini coefficient in the all urban
area is more sensitive to upstream inflow than rainfall. This is
because the cumulative effect of upstream inflow might off-
set the impact of rainfall due to the Markov property of the
multiagent system for UWMs.

Our findings demonstrate that inter-city-scale IGWM is
shaped by dynamic interactions between hydrologic con-
ditions and social drivers. Hydrologically, rainfall variabil-
ity exerts a stronger influence on water use costs due to
the cost-effectiveness of stormwater and rainwater resources,
while shifts in upstream inflow disproportionately affect eq-
uity in water distribution – a consequence of the Markov
property, where UWMs optimize decisions based on im-
mediate inputs without accounting for downstream cascad-
ing effects (e.g., reduced surface water availability in down-
stream areas, as shown in Fig. 6a). Socially, rising urban
water demands amplify both cost and equity challenges,
as seen in fragmented governance structures that priori-
tize localized GI benefits (e.g., upstream adoption of pat-
tern 1) over watershed-scale resilience, forcing downstream
agents into costly groundwater-dependent strategies (pattern
4). These systemic flaws underscore the urgency of institu-
tional reforms. For instance, interactive data platforms, akin
to those in water-rights trading markets (Tu et al., 2015),
could bridge communication gaps between urban water man-

agers by providing real-time hydrologic and economic met-
rics. Such tools would enable adaptive adjustments to GI
investments and withdrawal limits, aligning localized ac-
tions with watershed-wide equity goals – a critical need un-
der climate change, where shifting streamflow distributions
threaten to exacerbate existing imbalances.

4.3 Impacts of water policy on watershed-scale IGWM

The results of the policy simulation to the bi-level multiagent
system are shown in Table 4. As Table 4 shows, there are
two Stackelberg equilibrium situations in the bi-level multi-
agent system, which means the two possible designs of the
streamflow penalty strategies for the WM agent can achieve
the minimum equity objective in the study region. An illus-
tration of the water supply portfolios and the relevant water
use patterns in the all urban area under the two equilibrium
situations is in the 2rd–6th and 10th–14th rows of Table 4.
A spatial homogeneity in the UWMs’ responses to the water
policy can be observed based on the associated ratios of wa-
ter supply portfolios. For example, whether it is equilibrium
1 or 2, most UWM agents prefer to adopt a similar IGWM
pattern, such as pattern 3 in equilibrium 1 and pattern 2 and 4
in equilibrium 2, in contrast to the case without the water pol-
icy (see the 6th row of Table 3). This might be because the
streamflow penalty strategy has a similar effect on altering
the IGWM cost of the all urban area in the study watershed,
forcing some UWMs to change their water supply portfolio
selections to a specific IGWM pattern to increase outflows
of urban systems for avoiding high penalty fees. These find-
ings can also be supported by the curves of the fractions of
available surface water in each urban area (see in Fig. 8a).
As Fig. 8a illustrates, the available amounts of surface wa-
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ter withdrawal for each urban area in the two equilibriums
(i.e., the blue and green lines) are larger than in the scenario
without the water strategy (i.e., the red line).

The costs and equity levels in the study area are shown in
the 7th–9th and 15th–17th rows of Table 4. In the aspects of
cost, to compare with the no policy case (see the 7th row of
Table 3), the mean costs per unit of water use of the study
area in the two equilibriums (USD 3.06 per cubic meter and
USD 3.22 per cubic meter) are higher than the cost in the
no policy case (USD 3.04 per cubic meter). This is because
some urban areas pay penalty fees, such as urban areas 1
and 2, and others switch IGWM patterns, such as urban area
3, which increases the water use cost. These results demon-
strate the reactions of the UWMs to the water strategy set
by the WM in IGWM at a watershed scale; the intervention
of the water policy to the multiagent system for UWMs can
force UWM agents to make a trade-off between the penalty
fee and the IGWM cost in a city-scale IGWM. In the aspects
of equity, undoubtedly, the Gini coefficients in the two equi-
libriums (0.0011) are the same, which are lower than in the
no policy case (0.0169; see the 8th rows of Table 3). It means
that the two policy designs can mitigate the inequity of water
sharing in the study region to some extent.

The 6th and 14th rows in Table 3 show that different effects
of two streamflow penalty strategies on the decision making
of UWM agents for city-scale IGWM. That is, most UWM
agents prefer to select the IGWM pattern 3 – to withdraw
more surface water – in equilibrium 1. In contrast, the UWM
agents in equilibrium 2 are inclined to choose pattern 4, i.e.,
to extract more groundwater, which is easy to increase the
outflows of urban subcatchment (see Fig. 5e) to avoid the
penalty fees. These results are consistent with the curves of
the fraction of available surface water (see the blue and green
lines in Fig. 8a). The available amounts of surface water in
the study area in equilibrium 2 are higher than that in equi-
librium 1. Economically, the IGWM costs and the penalty
fees per unit of water use in equilibrium 2 are greater than
those in equilibrium 1. These results can be explained in part
by the curves of the relative ratio of low-flow thresholds in
the two equilibriums (see Fig. 8b); the low-flow thresholds
in equilibrium 2 (i.e., the green line) are higher than those in
equilibrium 1 (i.e., the blue line), which means that the pol-
icy in equilibrium 2 is more stringent than that in equilibrium
1. As a result, the UWMs in equilibrium 2 have to further
change IGWM patterns – over the withdrawal of groundwa-
ter and reduction in rainfall capture – to increase the outflow
of the urban subcatchments to avoid the harsh penalty policy.
It may cause over-reactions of the UWM agents in IGWM
to the watershed water policy, thereby leading to the unnec-
essary costs of water use as well as the unreasonable water
supply portfolios in the watershed. Therefore, the policy de-
sign in equilibrium 1 is regarded as a good watershed policy,
but equilibrium 2 is not in the study area.

Our findings demonstrate that the efficacy of penalty-
driven policies hinges on reconciling the priorities of Ta
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Figure 8. Available surface water and low-flow threshold in the bi-level multiagent system. Note that in (b), Relative ratio of low-flow
threshold for urban area calculated as follows; The average of the ratio of the monthly low-flow threshold set by WM agent to the maximum
theoretical that threshold in an urban area.

watershed-scale managers (WM agents) and city-scale man-
agers (UWM agents). The Stackelberg framework captures
inherent power asymmetries between these actors – where
WM agents enforce equity through penalties, while UWM
agents prioritize local cost optimization – a dynamic that
risks policy failure. For instance, stringent penalty rates in
equilibrium 2 (Fig. 8) trigger irrational overreactions, such
as excessive groundwater extraction (Table 4), destabilizing
aquifer sustainability and inflating regional water costs. This
mismatch underscores the limitations of siloed governance:
WM agents lack granular insight into local trade-offs, while
UWM agents neglect downstream equity.

Figure 9a and b illustrate the mean unit water costs and
the Gini coefficients of the study area under different up-
stream inflow and precipitation conditions, respectively. As
Fig. 9a and b show, both the costs of water use and the Gini
coefficients of the study area decrease as the upstream in-
flow and the precipitation increase. This might be because
the increases in the upstream inflow and the precipitation not
only enable the UWM agents to have more choices to make
IGWM decisions to reduce the costs of water use but also
mitigate the water conflicts among urban areas in the study
site, encouraging the WM agent to loosen the water penalty
policy. In addition, the cost of water use is more sensitive to
the rainfall, while the Gini coefficient, in contrast, is easily
affected by the alteration in upstream inflow, which ties in
with the results in Fig. 7a and b.

The water use costs and the Gini coefficients of the equi-
librium situations in the bi-level multiagent system under
different penalty rates settings are illustrated in Fig. 9c. As
Fig. 9c shows, the costs of water use of the study area in-
crease as the penalty rate increases, as expected. To avoid
over-high penalty fees, the UWM agents have to alter the

IGWM pattern further to increase the outflows of urban sys-
tems, thereby increasing water use costs. However, there is
a U-shaped curve for the Gini coefficients when the penalty
rate increases; the Gini coefficient reaches a nadir (0.001)
when the penalty rate is rp =USD 0.006 per cubic meter. The
possible reasons for these results are that the impact of the
water strategy is too weak to affect UWMs’ decision behav-
ior of IGWM as the penalty rate is too low, whereas an overly
high penalty rate might force UWMs to make unreasonable
IGWM decisions, both of which fail to mitigate water con-
flicts between urban areas. Therefore, a suitable penalty rate
is crucial in achieving equity in watershed-scale IGWM un-
der a specific socio-hydrologic environment. For example,
in the study, the reasonable penalty rate is set as USD 0.006
per cubic meter in comparison with other alternative penalty
rates.

Our results demonstrate that streamflow penalty strategies,
while effective in enhancing equity impose a dual-edged im-
pact, increase water costs for upstream areas but might fail
to fully address systemic disparities for downstream commu-
nities. For instance, the Gini coefficient’s heightened sensi-
tivity to upstream inflow (Fig. 9b) reveals that marginalized
downstream regions disproportionately bear the costs of wa-
ter use, even under penalty strategies. These findings also
highlight the critical role of penalty rates within streamflow
penalty strategies. A well-calibrated rate can simultaneously
reduce water use costs and enhance equity in water alloca-
tion, whereas a poorly designed rate exacerbates imbalances
– heightening risks of policy failure. To mitigate such risks,
adaptive management principles, such as iterative penalty
adjustments informed by stakeholder feedback (Gonzales et
al., 2019), could align incentives across governance levels.
By embedding real-time hydrological data and equity met-
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Figure 9. Changes in unit water costs and Gini coefficients under different institutional and hydroclimatic settings.

rics (e.g., Gini coefficients) into penalty frameworks, these
strategies would address power asymmetries inherent in the
Stackelberg hierarchy, ensuring policies not only regulate up-
stream UWM decisions to promote equitable allocation but
also minimize costs across urban areas, even under climate-
change-induced hydrological uncertainties.

4.4 Concluding remarks

To summarize the results and findings, we can draw the fol-
lowing concluding remarks:

– The cost-effectiveness of developing GIs to use rainwa-
ter in urban areas is highly dependent on the hydrocli-
matic conditions of the watershed.

– On a city scale, the development of GIs to use rainwater
can reduce the cost of water use. However, on a wa-
tershed scale, it may exacerbate the inequity of water
sharing among urban areas due to the Markov property
of the multiagent system in inter-city-scale IGWM.

– The streamflow penalty strategy set by WM to mitigate
inequity in water sharing among urban areas is effective
under suitable penalty rate settings. However, due to the
bi-level multiagent system property in watershed-scale
IGWM (i.e., Stackelberg game), there is a risk of policy
failure.

– An adaptive management framework is critical to pri-
oritize vulnerable downstream stakeholders via itera-
tive penalty rate adjustments and interactive data plat-
forms, redirecting cost savings to reduce upstream–
downstream IGWM disparities and promote sustainable
water equity.

– The proposed framework is flexible and can be adapted
to other basins with different socio-hydrologic settings
by adjusting parameters and model settings for various
model components. For example, different water poli-
cies, such as water trading schemes, can be simulated

within this framework by improving the agent-based
model for WM.

5 Conclusions, limitations and future research

This study addresses three critical issues of IGWM at
three spatial scales. We developed a multiagent socio-
hydrologic framework that integrates two agent-based mod-
els for UWMs and WM, along with two hydrologic mod-
els. By integrating these components, we constructed agent-
based models and multiagent systems to simulate decision-
making processes for city-, inter-city-, and watershed-scale
IGWM under varying socioeconomic and hydroclimatic con-
ditions, thereby modeling the GI-driven socio-hydrologic dy-
namics at three spatial scales. The framework was applied
to the Minneapolis–La Crosse section of the Upper Missis-
sippi River basin, USA. We designed three simulation ex-
periments, the UWM agents model, the multiagent system
for UWMs, and the bi-level multiagent system, to address
the IGWM issues at the three spatial scales through various
sensitivity, scenario, and comparison analyses. Results from
Experiment 1 identified four types of city-scale IGWM pat-
terns, (1) surface water-dominant, (2) groundwater-rainwater
hybrid, (3) surface water, and (4) groundwater-dominant, un-
der different upstream inflow and rainfall conditions. Experi-
ment 2 demonstrated the effects of inter-city-scale IGWM on
the cost of water use and the equity of water sharing among
urban areas under different social and hydroclimatic settings.
Finally, Experiment 3 evaluated the impact of the streamflow
penalty strategy in watershed-scale IGWM, highlighting the
role of penalty rates in mitigating water conflicts between
upstream and downstream urban areas. Insights from these
results are informative for both WM and UWM in managing
IGWM at three spatial scales.

In short, we can conclude with three points:

1. This study explored the role of GIs in urban and water-
shed water resource management, analyzing the poten-
tials and effects of rainwater and stormwater harvesting
and usage in a watershed with multiple urban areas shar-
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ing and competing for water resources. The findings re-
veal both positive and negative effects of GIs in IGWM
across three spatial scales. On a city scale, the develop-
ment of GIs to use rainwater can reduce the cost of water
use. However, on a watershed scale, it may exacerbate
the inequity of water sharing among urban areas.

2. The study also investigated the impact of a stream-
flow penalty strategy as an environmental economic-
incentive policy in watershed-scale IGWM. The find-
ings indicate that an effective balance of water use cost
and equity in water sharing can be achieved under suit-
able penalty rate settings. However, there is also a risk
of policy failure, which could result in high water use
costs and low equity levels in the watershed.

3. The study developed a multiagent socio-hydrologic
framework based on the core idea of describing dif-
ferent types of interactions between agents and the en-
vironment in IGWM. This framework can model vari-
ous types of social and hydrologic connections between
multiple stakeholders, enabling the simulation of socio-
hydrologic dynamics of GI-driven water resource sys-
tems at different scales. Therefore, the multiagent socio-
hydrologic framework is flexible and can address vari-
ous IGWM-related issues in different basins with vary-
ing socioeconomic, hydroclimatic, and institutional cir-
cumstances by incorporating new model components
(e.g., new agent-based or hydrologic models) or adjust-
ing settings for existing components.

This paper still has some limitations that can be addressed
in future work:

1. One limitation is that it only considers river connections
between urban areas. The development of GIs can also
affect various hydrologic connections, such as ground-
water interactions. By only considering river connec-
tions, we may underestimate the effects of GIs on ur-
ban and watershed hydrology. Future research should
integrate a groundwater model, such as MODFLOW
(Langevin et al., 2017), into the socio-hydrologic frame-
work to simulate GI-driven groundwater connections
between urban areas.

2. Another limitation is the use of a coarse-time-resolution
lumped urban hydrologic model to simulate urban wa-
ter cycle processes, which could result in less accu-
rate simulations. Future work should couple a fine-time-
resolution distributed urban water balance model, such
as SUWMBA (Moravej et al., 2021), with the agent-
based model for UWMs to enhance simulation accu-
racy.

3. The study area selected – a water-rich watershed in the
USA – presents another limitation. The widespread use
of GIs for rainwater harvesting is not yet common in
the USA, and the proposed framework may also be suit-
able for addressing IGWM issues in water-stressed wa-
tersheds. These areas face serious water conflicts and
may have more incentive to develop GIs for rainwater
use. Future research should focus on applying the socio-
hydrologic framework to a water-stressed basin.

Appendix A: Acronyms

IGWM Integrated green infrastructures and water
resource management

GIs Green infrastructures
UWM Urban water manager
WM Watershed manager
UWB-SM Urban water balance simulation model

Appendix B: Details of two agent-based models

This appendix comprehensively elucidates the details of two
agent-based models for UWM and WM. It is described from
various aspects including the notation, the agent-based model
for UWM, and the agent-based model for WM.

B1 Notation

To facilitate the model presentation, some of the important
notation used hereafter is summarized in Tables B1–B3.
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Table B1. Decision variables of the UWM and WM agent.

Subscripts

t Index of month for the IGWM, where t = 1,2, . . .,12
i Index of the UWM agent and the associated checkpoint, where i = 1,2, . . .,N

Decision variables for the UWM agents

wis(t),W
i
s (t) Monthly surface water supply of the UWM agent i in month t [m3, mm]

wig(t);W
i
g(t) Monthly groundwater supply of the UWM agent i in month t [m3, mm]

wirr(t),W
i
rr(t) Monthly rainwater supply of the UWM agent i in month t [m3, mm]

wirs(t),W
i
rs(t) Monthly stormwater supply of the UWM agent i in month t [m3, mm]

IGi Area constructed infiltration-based GIs of the UWM agent i [km2]
RGis Area constructed stormwater harvesting systems of the UWM agent i [km2]
RGir Area constructed rainwater harvesting systems of the UWM agent i [km2]

Decision variables for the WM agent

Siq (t) Low-flow thresholds in month t at checkpoint i [m3]

Table B2. Variables and parameters of the agent-based model for UWM.

Cost-related parameters of GI systems

cig,crg,csg Mean annual construction cost of unit area for infiltration-
based GIs and rainwater and stormwater harvesting systems [USD km−2]

eig,erg,esg Cost scaling coefficient for infiltration-based GIs and rainwater and stormwater
harvesting systems (dimensionless)

Cost-related parameters of water supply and sewage drainage

cri,eri Mean cost and associated scaling coefficient of unit surface water supply (USD per cubic meter, –)
cgi,egi Mean cost and associated scaling coefficient of unit groundwater supply (USD per cubic meter, –)
crw,csw Mean cost of unit rainwater and stormwater supply [USD m−3

]

cwd,ewd Mean cost and associated scaling coefficient of unit wastewater drainage (USD per cubic meter, –)

Water-availability-related parameters

Smina,Sminr Minimum storage level of aquifer and river for water withdrawn [mm]

Water-supply-capacity-related parameters

WCa, WCri Aquifer and river water supply capacity of grey infrastructure systems [mm]

Auxiliary variables of systems

fsm Ratio of soil moisture for plant demand to saturated soil moisture [%]
Cgi,Csi,Cwi Total annual costs of GI development, water supply, and wastewater drainage for the

UWM agent i [USD]
TCi Total cost of IGWM of the UWM agent i [USD]

Note that [–] represents dimensionless.
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Table B3. Parameters of the agent-based model for WM.

Objective-related parameters

Gini Water allocation Gini coefficient index
rp Penalty rate in the watershed [USD per cubic meter]
Pi Total annual penalty fees for the UWM agent i [USD]

Constraint-related parameters

SQimin(t), SQimax(t) Minimum and maximum historical streamflow at checkpoint i
in month t [m3].

B2 Agent-based model for UWM

Before model construction, the fundamental assumptions are
given.

– Assumption 1. Three types of GIs can only be built in
specific urban areas.

– Assumption 2. Four types of urban water demand need
to be met via four types of water supply.

– Assumption 3. All water resources for supply can only
be withdrawn or collected in urban areas.

– Assumption 4. The combined sewer system is consid-
ered in the urban system.

Some of these assumptions are imposed for the simplic-
ity of the model. Assumption 1 describes urban land features
and the space limitations for the development of three types
of GIs, which is consistent with corresponding settings of the
UWB-SM (see Fig. 3c). Assumption 2 is coherent with the
associated hypothesis of the UWB-SM. Meanwhile, the irri-
gation demand of urban green space is also considered here.
Assumption 3 indicates that inter-watershed water transfer
schemes are not considered in the model for simplicity. As-
sumption 4 expresses that the model would take the sum of
stormwater and wastewater into account in the calculation of
urban wastewater drainage cost. The relevant decision vari-
ables and parameters of the agent-based model for UWM are
listed in Tables B1 and B2, separately. Based on the above as-
sumptions, using the UWM agent i as an example, the agent-
based model for UWM model is formulated as a non-linear
program as follows:

min
W,GI

TCi = Cgi+Csi+Cwi (B1a)

s.t.



Cgi = cig · (IGi )eig + crg · (RGir)
erg + csg · (RGis)

esg , (01)
Csi =

∑12
t=1[cri ·w

i
s(t)

eri + cgi ·w
i
g(t)

egi + crw ·w
i
rr(t)+ csw ·w

i
rs(t)], (02)

Cwi =
∑12
t=1cwd · [qr(t)+ qwd(t)]

ewd , (03)
wis(t)= 1000 ·Aiu ·W

i
s (t), w

i
g(t)= 1000 ·Aiu ·W

i
g(t), ∀t (04)

wirr(t)= 1000 ·Aiu ·W
i
rr(t), w

i
rs(t)= 1000 ·Aiu ·W

i
rs(t), ∀t (05)

qr(t)= 1000 ·Aiu · [Qr(t)]∗, qwd(t)= 1000 ·Aiu · [Qwd(t)]∗, ∀t (06)
0≤ IGi ≤ rimax ·Ao, 0≤ RGir ≤ rrmax ·Ar, 0≤ RGis ≤ rsmax ·Au, (07)
0≤W i

s (t)≤max[0,min([Sri(t − 1)]∗ +Qri(t)− Sminr,WCri)], ∀t (08)
0≤W i

g(t)≤max[0,min([Sa(t − 1)]∗ − Smina,WCa)], ∀t (09)

0≤W i
rr(t)≤ [Sgr(t − 1)]∗ +

RGir
Au
·Pg(t), ∀t (10)

0≤W i
rs(t)≤ [Sgs(t − 1)]∗ +

RGis
Au
· [Qru(t)]∗, ∀t (11)

(1− rdl) · [w
i
s(t)+w

i
g(t)] ≥Did(t), ∀t (12)

(1− rdl) · [w
i
s(t)+w

i
g(t)] +w

i
rr(t)+w

i
rr(t)≥Did(t)+Din(t)+Do(t), ∀t (13)

fsm · (1− [fsat(t)]∗) · Ssmax ≤ [Ss(t)]∗ ∀t (14),

(B1b)

where [−]∗ represents the parameter being from simulation
results of the UWB-SM. Equation (B1a) represents the ob-
jective function of the model, which aims to minimize the an-
nual IGWM cost for the UWM agent. This cost is comprised
of GI construction (Cgi), water supply (Csi), and wastewa-
ter drainage costs (Cwi). The calculation methods for these
three costs are presented in the 1st to 3rd rows of Eq. (B1b).
The 4th to 6th rows of Eq. (B1b) indicate the unit conversion
process from millimeters [mm] to cubic meters [m3], which
is essential for coupling the UWB-SM (using the unit mm)
with the agent-based model for UWM (using the unit m3).
The 7th row of Eq. (B1b) establishes the constraints for GI
construction. Meanwhile, the 8th to 11th rows describe the
water supply constraints for surface water, groundwater, rain-
water, and stormwater withdrawals, respectively. Lastly, the
12th to 14th rows of the equation outline the water demand
constraints concerning potable water demand, total water de-
mand, and irrigation water demand. Notice that irrigation de-
mand within urban areas only refers to the water needed for
maintaining vegetation in both large-scale and small-scale
infiltration-based GIs. Large-scale GIs include street trees,
urban green spaces, parks, and gardens, while small-scale
GIs encompass green roofs, rain gardens, and bioretention
systems, etc. It can be estimated via using the minimum stor-
age level of shallow soil layer for meeting basic water de-
mands of plant.
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B3 Agent-based model for WM

The agent-based model for WM is discussed in detail in
the following. The relevant hypotheses for constructing the
model are given.

– Assumption 1. The flow of each urban catchment at the
outlet is checked.

– Assumption 2. Water withdrawal limit is not considered
in the model.

Assumption 1 simplifies our models as WM set low-flow
thresholds of each urban area at the outlet. For Assumption 2,
computational complexity may be high in optimization of
policy portfolio (setting water withdrawal limits and low-
flow thresholds) for a WM agent model, especially when it is
integrated into the multiagent system for UWMs. Also, a pol-
icy limiting the water withdrawal of urban areas, as a manda-
tory regulation, generally relies on other water users’ activi-
ties within a watershed, such as agriculture sectors, which is
beyond the scope of this study. Therefore, this paper consid-
ers water withdrawal limits (i.e., the minimum storage levels
of aquifer and river) as UWM agent models’ specific param-
eters (see the 8th and 9th rows of Eq. B1b).

As demonstrated in the above assumptions, a WM agent
model is used to describe how a WM set a watershed man-
agement policy – a streamflow penalty strategy – to regulate
all UWM agents’ decision behavior of IGWM in a water-
shed. That is, a WM limits water abstraction decisions of
each UWM agent in the period via prescribing a series of
low streamflow thresholds in associated hydrological stations
based on hydrologic states. If streamflow in the outlet for an
urban area is below its threshold, a penalty fee will be im-
posed on the UWM agent. The strategy, in theory, can force
UWM agents to recognize one or more of the externalities
caused by IGWM, thereby adjusting their IGWM decisions
because it can, to some extent, determine the cost of IGWM
(Baumol and Oates, 1988). The WM can share fair water re-
sources among urban areas in a watershed by setting a ratio-
nal streamflow penalty strategy that affects all UWMs’ de-
cisions. Therefore, details of the objective and constraints of
the agent-based model for WM are illustrated as follows.

Equity objective. The Gini coefficient is widely used to as-
sess resource allocation inequality (Gini, 1921; Nishi et al.,
2015). Therefore, the WM agent model uses a water alloca-
tion Gini coefficient index proposed by Hu et al. (2016) and
Xu et al. (2019) – the equitable sharing of the used water
quantity for each unit of cost – to measure equity of water
sharing in watershed-scale IGWM. Based on the definition
of the index, to minimize the Gini coefficient means maxi-
mal fairness of water resources distributions in a watershed;
accordingly, the minimization of the equity objective for the

WM can be expressed mathematically as follows:

min
Siq

Gini=
1

2 ·N ·
N∑
i=1

12∑
t=1
[wis(t)+w

i
g(t)+w

i
rr(t)+w

i
rs(t)]

TCi

·

N∑
i=1

N∑
j=1
|

12∑
t=1
[wis(t)+w

i
g(t)+w

i
rr(t)+w

i
rs(t)]

TCi

−

12∑
t=1
[w

j
s (t)+w

j
g (t)+w

j
rr(t)+w

j
rs(t)]

TCj
|. (B2)

Streamflow constraints. The WM specifies the low stream-
flow thresholds at each checkpoint, which should adapt to ac-
tual hydrologic states. Therefore, the low streamflow thresh-
olds at each checkpoint cannot exceed the associated maxi-
mal historical streamflow and cannot be below the minimal
one in each month:

SQimin(t)≤ S
i
q ≤ SQimax(t),∀t, i. (B3)

In short, the WM agent model is represented as follows:

min
Siq

Gini=
1

2 ·N ·
N∑
i=1

12∑
t=1
[wis(t)+w

i
g(t)+w

i
rr(t)+w

i
rs(t)]

T Ci

·

N∑
i=1

N∑
j=1
|

12∑
t=1
[wis(t)+w

i
g(t)+w

i
rr(t)+w

i
rs(t)]

TCi

−

12∑
t=1
[w

j
s (t)+w

j
g (t)+w

j
rr(t)+w

j
rs(t)]

TCj
| (B4a)

s.t.
{

SQimin(t)≤ S
i
q(t)≤ SQimax(t),∀t, i. (B4b)

Appendix C: Details of two hydrologic models

This appendix comprehensively elucidates the details of
two hydrologic models – UWB-SM and Muskingum–Cunge
routing model. It is described from various aspects includ-
ing the notation, the UWB-SM, and the Muskingum–Cunge
routing model.

C1 Notation

To facilitate the model presentation, some of the important
notation used hereafter is summarized in Tables C1–C6.
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Table C1. Urban water demand and the hydroclimatic input parameters of the UWB-SM.

Input parameters for the urban water demand

Did(t),Din(t) Monthly indoor potable and non-potable water demand in month t [m3]
Do(t) Monthly outdoor water demand in month t [m3]

Input parameters for the hydroclimatic data

Pg(t) Precipitation on the land cover in month t [mm]
Qri(t) Upstream river inflow in month t [mm]
Ep, ETp Mean potential evaporation and evapotranspiration on the impervious and

pervious surfaces [mm]
Eimax Maximum interception evaporation on the pervious surfaces [mm]

Table C2. Measured parameters of the UWB-SM.

Urban-area-related parameters

Au,Ap Urban total and the associated pervious surfaces area [km2]
rn Ratio of non-effective impervious surfaces area to total impervious surfaces area [%]
rr Ratio of roof surfaces area to effective impervious surfaces area [%]
rc Ratio of canopy cover area to pervious surfaces area [%]
rrmax, rsmax Maximum ratios of the area constructed rainwater and stormwater harvesting systems

to relevant surfaces [%]
rimax Maximum ratio of the area constructed infiltration-based GIs to relevant surface [%]

Urban-depth-related parameters

hul,huh Mean depth of urban aquifer at the low and high topographic point [m];
hs Mean depth of urban shallow soil layer [m]
hwp Mean depth of wastewater pipe network [m]
hdp Mean depth of wells for groundwater withdraw [m]
n Mean effective porosity [%]

Storage-capacity-related parameters

Srmax,Somax Maximum storage capacity of impervious roof and other surfaces [mm]
Sgrmax,Sgsmax Maximum storage capacity of rainwater and stormwater harvesting systems [mm]

Water-use-related parameters

rwc Water consumption rate for indoor water use [%]
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Table C3. Calibration parameters of the UWB-SM.

Hydrologic parameters for urban surfaces

Eisthmus Maximum evaporation on impervious surfaces when the associated storage level is
saturated [mm]

rie Ratio of average evaporation to rainfall per unit canopy cover [%]
IF Infiltration factor (dimensionless)
Ipmax Maximum infiltration on pervious surfaces when the associated storage level is

empty [mm]

Hydrologic parameters for shallow soil layer

Fset Soil evapotranspiration scaling factor corresponding to the unlimited soil water
supply (dimensionless)

ks Saturated hydrologic conductivity of shallow soil layer [mm per month]

Hydrologic parameters for aquifer and river

kr Retention factor of aquifer [%]
krd Routing delay factor of river (dimensionless)

Parameters for urban water system

rdl, rwl Leakage rate of supply and wastewater pipe networks [%]
Igi Mean groundwater infiltration into wastewater pipe networks [mm]
Fgi Groundwater infiltration scaling factor when wastewater pipe network is totally

submerged by groundwater (dimensionless)

Table C4. Urban-surface-related variables and parameters of the UWB-SM.

Urban-area-related parameters

Ai Impervious surfaces area [km2]
Ar,Ao Impervious roof and other surfaces area [km2]

State variables of storage systems

Sr(t),So(t) Store levels of impervious roof and other surfaces in month t [mm]
Sgr(t),Sgs(t) Store levels of rainwater and stormwater harvesting systems in month t [mm]
Ss(t),Sa(t) Store levels of shallow soil layer and aquifer in month t [mm]

Evaporation-related variables of systems

Eir,Eio Evaporation on the impervious roof and other surfaces [mm]
Ein Evaporation on the non-effective impervious surfaces [mm]
Epi Interception evaporation on the pervious surfaces [mm]

Runoff-related variables of systems

Qrir,Qrio Runoff on the impervious roof and the other surfaces [mm]
Qrrr Runoff on the rainwater harvesting systems [mm]
Qrin,Qrp Runoff on the non-effective impervious and the pervious surfaces [mm]
Qru Runoff on the urban surfaces before stormwater harvesting [mm]
Qr,qr Runoff on the urban surfaces after stormwater harvesting [mm, m3]

Infiltration-related variables of systems

Ip Infiltration on the pervious surfaces [mm

Auxiliary variables of systems

Pe Total outdoor water input due to effective precipitation and outdoor water use [mm]
Uo(t) Outdoor water use amount in month t [mm]
fsat Ratio of saturated area to pervious surfaces [%]
Ssmax Maximum storage capacity of shallow soil layer [mm]
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Table C5. Underground and river-related variables and parameters of the UWB-SM.

State variables of storage systems

Sri(t) Store levels of river in month t [mm]

Drainage-related parameters of systems

Ps Percolation in the shallow soil layer [mm]
Qb Base flow in the aquifer [mm]
Samin Minimum storage level of aquifer for generating base flow [mm]
Qro(t) River outflow in month t [mm]

Evapotranspiration-related variables of systems

ETs, ETa Evapotranspiration in the shallow soil layer and aquifer [mm]

Pipe-network-related variables

Ld,Lw Leakage of pipe network for water supply and wastewater drainage [mm]
GIw Groundwater infiltration into wastewater pipe network [mm]
Qwd,qwd Wastewater drainage to river [mm, m3]

Infiltration-related variables of systems

Ip Infiltration on the pervious surfaces [mm]

Auxiliary variables of systems

fiw Ratio of submersed wastewater pipelines to total wastewater pipelines [%]

Table C6. Parameters of the Muskingum–Cunge routing model.

Urban-area-related parameters

Aiu,A
i+1
u Urban total area for UWM agent i and i+ 1 [m2]

Flow-related parameters

Qi+1
ri ,qi+1

ri Upstream river inflow for UWM agent i+ 1 in mm and m3

qi+1
ri (t),qi+1

ri (t − 1) Upstream river inflow for UWM agent i+ 1 in month t and t − 1 [m3]
Qiro,q

i
ro River outflow for UWM agent i in mm and m3

qiro(t),q
i
ro(t − 1) River outflow for UWM agent i in month t and t − 1 [m3]

Model-related parameters

f ir1,f
i
r2,f

i
r2 Coefficient 1, 2, and 3 of the Muskingum–Cunge equation for river

reach i (dimensionless)

Hydrol. Earth Syst. Sci., 29, 2655–2695, 2025 https://doi.org/10.5194/hess-29-2655-2025



M. Zhang and T. F. M. Chui: A multiagent socio-hydrologic framework 2683

C2 Urban water balance simulation model

Details of the governing equations for the UWB-SM are
shown in the following.

Urban surfaces. In the UWB-SM, we assume that precip-
itation is distributed evenly over the entire area and does not
take urban spatial features into account due to the limited
monthly impact on urban water management decisions. By
the assumption, the amounts of rainfall on different urban
surfaces can be calculated by ratios of relevant surface ar-
eas to the urban area’s multiple gross precipitations. Notice
that the pervious surface receives input from effective pre-
cipitation, outdoor water use, and surface runoff from adja-
cent impervious areas. The effective precipitation is defined
by the relevant gross precipitation minus the interception and
evaporation on the plant cover area within the region. For the
infiltration process, the infiltration and saturation excess are
modeled to calculate the runoff and the infiltration according
to the soil moisture conditions. The impervious and pervious
surface runoff flows into the drains, collected by stormwa-
ter harvesting systems. The rest discharges into the river. The
relevant terms and units are defined in Table C4. Taking the
IGWM decisions of UWM agent i in month t as an example,
the detail of the hydrologic process on the urban surface is
formulated in the following.

Hydrologic process on the impervious roof surfaces. The
water mass balance equation for the impervious roof surfaces
can be expressed as

Sr(t)− Sr(t − 1)= Pg(t)−Eir(t)−Qrir(t), (C1)

where the roof area Ar = rr · (Au−Ap), Pg(t) represents
precipitation on the impervious roof surfaces, and evapora-
tion can be calculated byEir(t)=max[Eismax·

Sr(t−1)
Srmax

,Ep(t)]

based on the equation by Mitchell et al. (2001). And the
storage levels is updated by a reservoir model; Sr(t)=

min[Sr(t − 1)+Pg(t)−Eir(t),Srmax].
Hydrologic process on the other impervious surfaces. Sim-

ilar to the impervious roof surfaces, the water mass balance
formulation for the other impervious surfaces is shown as

So(t)− So(t − 1)= Pg(t)−Eio(t)−Qrio(t), (C2)

where the other impervious surfaces area Ao is equal to
(1− rr) · (Au−Ap), and the calculation of the evaporation
is also dependent on the Mitchell et al. (2001) method;
Eio(t)=max[Eismax ·

So(t−1)
Somax

,Ep(t)]. The update of relevant
storage levels, So(t), is equal to min[So(t − 1)+Pg(t)−

Eio(t),Somax].
Hydrologic process for the rainwater harvesting systems.

In the rainwater harvesting systems, evaporation is ignored
because of the assumption that rainwater is collected rapidly
and storage is sealed. We can draw its mass balance relation-
ship as follows:

Sgr(t)− Sgr(t − 1)= Pg(t)−W
i
rr(t)−Qrrr(t), (C3)

whereW i
rr(t) is obtained from the unit conversion from cubic

meters to millimeters, which is equal to wirr(t)

1000·RGir
, and the

updated storage levels of the system Sgr(t) are equivalent to
min[Sgr(t − 1)+Pg(t)−W

i
rr(t),Sgrmax].

Hydrologic process on the non-effective area. Hydrologic
process on the non-effective area: for the simplicity of the
model, it assumed that rainfall only generates runoff and
evaporation on the non-effective area. This study calculates
the corresponding runoff based on the following equation –
Qrin(t)= rn ·[

Ar
Ai
·Qrir(t)+

Ar−RGr
Ai
·Qrio(t)+

Ao−IG
Ai
·Qrrr(t)],

where the impervious area Ai = Au−Ap− IG.

Pg(t)=Qrin(t)+Ein(t). (C4)

Hydrologic process on the pervious surfaces. The water
mass conservation equation for the pervious surfaces is rep-
resented as follows:

Qrin(t)+Pg(t)+Uo(t)=Qrp(t)+Epi(t)+ Ip(t). (C5)

The right side of Eq. (C5) donates the inflow on the per-
vious surface, including runoff from the non-effective area,
precipitation, and outdoor water use. The outdoor water use
is the total amount of water supply minus indoor water de-
mand: Uo(t)= (1−rdl)·[W

i
s (t)+W

i
g(t)]+W

i
rr(t)+W

i
rs(t)−

dip(t)+din(t)

1000·Aiu
, where W i

s (t), W
i
g(t), and W i

rs(t) are obtained

from the unit conversion from m3 to mm and are equal to
wis(t)

1000·Aiu
,
wig(t)

1000·Aiu
, and wirs(t)

1000·RGis
.

The left-hand side of Eq. (C5) represents outflow on the
pervious surfaces, consisting of runoff, interception evapora-
tion, and infiltration, separately. Interception evaporation is
calculated based on urban vegetation canopy area and asso-
ciated features, following Van Dijk and Bruijnzeel (2001) ap-
proach – Epi(t)=min[rc ·rie · ·Pg(t),Eimax]. The calculation
of infiltration is based on two hydrologic processes: saturated
and infiltration excess (Viney et al., 2015). We assume that
there would be no infiltration on the saturated area within the

pervious surface, and its ratio fsat(t)=max
[
Sa(t−1)
1000·n −hul
huh−hul

,0
]

(see Fig. 3b). For the other part – an unsaturated area –
an infiltration rate is estimated using an exponential func-
tion of storage levels of the shallow soil layer (Chiew and
McMahon, 1999); the infiltration is minimum when the stor-
age level is saturated and continuously increases to a max-
imum when the storage level is empty. Therefore, the for-
mulation of infiltration is Ip(t)= [1− fsat(t)] ·max[Ipmax ·

e
−IF· Ss(t−1)

Ssmax ,Pe(t)+Qrin(t)], where maximum storage capac-
ity of shallow soil layer Ssmax = 1000·n·hs and total outdoor
water input Pe(t)= Pg(t)+Uo(t)−Epi(t).

Hydrologic process for the stormwater harvesting systems.
Similar to rainwater harvesting systems, stormwater harvest-
ing systems are also hypothesized to have no evaporation. Its
mass balance equation can be represented by

Sgs(t)− Sgs(t − 1)=Qru(t)−W
i
rs(t)−Qr(t), (C6)
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where runoff that is available for collection is the sum
of runoff from the effective impervious and the pervious
surfaces – Qru =Qrp(t)+ (1− rn) · [Ar

Ai
·Qrir(t)+

Ar−RGr
Ai
·

Qrio(t)+
Ao−IG
Ai
·Qrrr(t)]. The relevant storage levels can be

updated by Sgs(t)=min[Sgs(t − 1)+Qru−W
i
rs(t),Sgsmax].

Shallow soil layer. As shown in Fig. 3b, a non-linear reser-
voir model with the depth hs is given to describe relevant hy-
drologic processes in the shallow soil layer. The shallow soil
layer receives water from the urban surfaces by infiltration
and drains water by percolation into the aquifer and evap-
otranspiration to the atmosphere. Therefore, the water mass
balance equation for the shallow soil layer can be written as

Ss(t)− Ss(t − 1)= Ip(t)−Ps(t)−ETs(t), (C7)

where percolation is assumed to occur according to the fol-
lowing equation by Frost et al. (2016) for the shallow soil
layer: Ps(t)= ks · [

Ss(t−1)
Ssmax

]
2. The evapotranspiration process

occurs in the unsaturated portion of the shallow soil layer,
and it can be given by using the Frost et al. (2016) method:
ETs(t)= [1− fsat(t)] ·Fset ·ETp(t) ·min[Ss(t−1)+Ip(t)

Ssmax
,1].

Aquifer. In the UWB-SM, the only unconfined aquifer is
considered a linear reservoir model to simulate groundwater-
related hydrologic dynamics (Mitchell et al., 2001), indicat-
ing that there is no deep seepage from the aquifer. The aquifer
receives water from percolation and leakage of water supply
and wastewater pipelines and discharges water in the man-
ners of base flow, evapotranspiration, groundwater extrac-
tion for use, and infiltration into wastewater pipelines (Ellis,
2001). Hence, the mass balance formulation of aquifer can
be expressed as

Sa(t)− Sa(t − 1)= Ps(t)+Ld(t)+Lw(t)−GIw(t)

−W i
g(t)−ETa(t)−Qb(t), (C8)

where the leakage of water supply pipe networks is Ld(t)=

rdl · [W
i
rr(t)+W

i
rs(t)], and the calculation of the sewer

pipelines infiltration and exfiltration (leakage) is by compar-
ing the depth of wastewater pipelines with groundwater ta-
ble (Wolf, 2006) – groundwater would infiltrate into wastew-
ater pipelines when the pipe is below the groundwater ta-
ble, whereas wastewater would leak into the aquifer from
pipelines when the pipe is above the level of the groundwa-
ter table. Figure 3c illustrates that the fraction of the sewer
pipelines that is below the groundwater table is defined as

fiw(t)=max[
Sa(t−1)
1000·n +hwp−hul

huh−hul
,0], which is used to calculate

the sewer pipelines infiltration GIw(t)= fiw(t) · Igi ·Fgi via
using Wolf (2006) method, and the associated exfiltration
part of pipe networks Lw(t)= rwl · (1− rwc) · (1− fiw(t)) ·

[
dip(t)+din(t)

1000·Aiu
] though applying the Mitchell et al. (2001) equa-

tion. The evapotranspiration in the aquifer occurs in the sat-
urated portion of the shallow soil layer (Fig. 3c), which can
also be computed according to the Frost et al. (2016) method:
ETa(t)= fsat(t)·Fset ·ETp(t). The amount of base flow is as-
sumed to be linearly proportional to the storage level of the

aquifer (Fenicia et al., 2006) - Qb(t)=max[kr · (Sa(t − 1)−
Samin),0], where Samin = 1000 · n ·hul.

River. We assume that the “River” component of the
UWBv-SM includes all surface water bodies within an urban
area. It accepts water from upstream inflow, runoff within
the urban surfaces, and base flow from the aquifer and drains
water to the adjacent downstream region. In addition, an ur-
ban area can withdraw water from the river and discharge
wastewater into it. So, the water mass conservation equation
for a river can written as

Sri(t)− Sri(t − 1)=Qri(t)+Qr(t)+Qb(t)+Qwd(t)

−W i
s (t)−Qro(t), (C9)

where total wastewater drainage is calculated as the sum of
indoor water drainage and sewer infiltration and sewer leak-
age have been subtracted: Qwd = (1− rwc) · [

dip(t)+din(t)

1000·Aiu
] +

GIw(t)−Lw(t). The outflow of the river is routed via a no-
tional river store level, which can be controlled by a routing
delay factor (krd ) according to the Frost et al. (2016) equa-
tion:Qro(t)= (1−e−krd)·[Ss(t−1)+Qri(t)+Qr(t)+Qb(t)+

Qwd(t)−W
i
s (t)].

C3 Muskingum–Cunge routing model

Figure 1b illustrates the upstream–downstream hydrologic
interaction between UWM agent i and i+ 1 in the associ-
ated river reach. A Muskingum–Cunge routing model is used
to simulate changes in streamflow in the river reach con-
nected with two adjacent urban areas (Garbrecht and Brun-
ner, 1991; Weinmann and Laurenson, 1979). Figure. 1b illus-
trates the upstream–downstream hydrologic interaction be-
tween UWM agent i and i+ 1 in the associated river reach.
A Muskingum–Cunge routing equation is used to simulate
changes in streamflow in the river reach connected with two
adjacent urban areas (Garbrecht and Brunner, 1991; Wein-
mann and Laurenson, 1979). That is, taking the UWM agent
i+ 1 in month t as an example (see Fig. 1b), its upstream
inflow in month t can be expressed mathematical by outflow
of the UWM agent i in month t and t + 1, as follows:
 qi+1

ri (t)= f ir1 · q
i
ro(t)+ f

i
r2 · q

i
ro(t − 1)+ f ir3 · q

i+1
ri (t − 1), (01)

qiro(t)= 1000 ·Aiu · [Q
i
ro(t)]∗, (02)

qi+1
ri (t)= 1000 ·Ai+1

u ·Qi+1
ri (t), (03)

(C10)

where all parameters of the above notation are listed in Ta-
ble C6. The first row of Eq. (C10) is the Muskingum–Cunge
model for calculating the relevant river reach inflow of down-
stream agents. The second and third rows of Eq. (C10) repre-
sent the units for hydrological parameters being converted
from millimeters to cubic meters based on the associated
urban total areas. In addition, it should be noted that the
Muskingum–Cunge approach is also applicable in the case
that there are branches in the main river reach (see UWM
agents 1, 2 and 3 in Fig. 1a), which can be solved by dividing
the river reach into several sub-reaches based on intersections
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of the main river and associated branches and then calculat-
ing them in sequence.

Appendix D: Details of the agent-based model for
city-scale IGWM

This appendix comprehensively elucidates the details of
the relevant solution approach pertaining to the agent-based
model for city-scale IGWM – simulation-based adaptive par-
ticle swarm optimization (S-APSO). It is meticulously de-
scribed from various aspects including the notation and the
solution approaches pertaining to this model.

D1 Notation

To facilitate the model presentation, some of the important
notation used hereafter is summarized in Table D1.

Table D1. Parameters of the S-APSO.

Subscripts

l Index of the particle, where l = 1,2, . . .,L
τ Index of the iteration, where τ = 1,2, . . .,0

Particle-assessment-related parameters

Fitness[Pl(τ )] The fitness value of the lth particle at the τ th iteration

Particle-updating-related parameters

Pl(τ ),Vl(τ ) The position and the velocity of the lth particle at the τ th iteration
PBl Personal best particle of the lth particle achieved so far
GB Global best particle among all the particles
EP(τ ) Elite particle at the τ th iteration
θ(τ ) Inertia weight at the τ th iteration
cp(τ ), cs(τ ) Personal and social acceleration coefficients at the τ th iteration
rp, rs The uniformly distributed random numbers generated within [0, 1]
ε(τ ) The ratio for social learning at the τ th iteration

D2 Solution approach

Unlike traditional water management models (Loucks and
Van Beek, 2017), it might be hard to solve the agent-based
model, which consists of the agent-based model for UWM
(Eq. B1) and UWB-SM, via using general methods, because
of the non-linearity of its objective function and complexity
of its solution space induced by coupling with the UWB-SM.
To solve complex water resources management problems,
heuristic search-based techniques, such as particle swarm op-
timization (PSO) that is a swarm-based intelligence method
to search for globally optimal solutions via imitating swarm
behavior in birds flocking (Kennedy and Eberhart, 1995), are
widely applied and developed (Nicklow et al., 2010; Chang
et al., 2013). Therefore, in this study, according to features of
the UWM agent model, a simulation-based adaptive particle
swarm optimization (S-APSO) is designed, and its flowchart

diagram is illustrated in Fig. D1a. As shown in Fig. D1a,
compared with particle initialization and evaluation for stan-
dard PSO, a coupling procedure proposed above for data ex-
change between an agent-based model for UWM and UWB-
SM is nested to make sure all particles feasible and mea-
surable. Compared with the standard PSO updating mech-
anism, a Boltzmann selection operator and an evolutionary
state-based parameter adaptation scheme are added to avoid
premature convergence to improve algorithm performance; a
simulation-based check and repair mechanism is introduced
to guarantee that all particles are feasible during the parti-
cle updating process. These key features of the proposed S-
APSO are explained in the following.
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Figure D1. Flowchart diagram of the S-APSO for agent-based model for city-scale IGWM.

Solution representation and particle performance calcu-
lation. In the S-APSO, a particle representing a feasible so-
lution of the Eq. (B1) can be encoded as an array with 51
dimensions, which indicates 3 GI construction variables and
4× 12 monthly water supply variables, respectively. It can
be written as follows:

Pl(τ )= [p
1
l (τ ),p

2
l (τ ),p

3
l (τ ),p

4
l (τ ),p

5
l (τ ),p

6
l (τ ),p

7
l (τ ),

. . .,p51
l (τ )]

↔ [IGi ,RGir,RGis,W
i
s (1),W

i
g(1),W

i
rr(1),W

i
rs(1),

. . .,W i
rs(12)], (D1)

where the relevant parameters of the S-APSO are listed in
Table D1 of Appendix D1.

To measure the performance of each particle, the objective
function in the UWM agent model (Eq. B1a) is regarded as

the fitness function for particles, indicating that the value of
the objective function for particles is used to represent their
merits in a swarm, which, therefore, can be expressed as

Fitness[Pl(τ )] = Cgi+Csi+Cwi (D2a)

Cgi = cig · [p
1
l (τ )]

eig + crg · [p
2
l (τ )]

erg + csg · [p
3
l (τ )]

esg ,

Csi =
12∑
t=1
[cri ·p

(4t)
l (τ )eri + cgi ·p

(4t+1)
l (τ )egi + crw

·p
(4t+2)
l (τ )+ csw ·p

(4t+3)
l (τ )],

Cwi =
12∑
t=1
cwd · [qr(t)+ qwd(t)]

ewd ,

(D2b)

Note that, as seen in Eq. (D2a), the completion of a perfor-
mance calculation for each particle in S-APSO is required by
running the coupling procedure mentioned above.

Particle initialization. The initial storage levels of the
river, the aquifer, the rainwater, and the stormwater harvest-
ing systems determine the available amounts of four water
sources and the runoff and the wastewater to calculate the
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costs of drainage. It means that generating a feasible solu-
tion of the agent-based model for UWM involves conducting
the UWB-SM procedure many times. Furthermore, as shown
in the UWB-SM, the solutions at one stage from the agent-
based model for UWM will also be input data of the UWB-
SM to update urban hydrologic states for simulation at next
stage. Therefore, the UWB-SM and the agent-based model
for UWM are tightly coupled at the source code level; i.e., the
routine of the UWB-SM is embedded in the algorithm for the
agent-based model for UWM. The primary data exchanged
and shared between the two models are (1) GI construction
decision variables (i.e., construction areas for three types of
GIs from agent-based model for UWM), (2) water supply de-
cision variables (i.e., monthly water supply amounts for four
kinds of water sources from agent-based model for UWM),
and (3) urban hydrological parameters (e.g., monthly stor-
age levels of storage units from UWB-SM). The workflows
of coupling two models for the generation of a feasible city-
scale IGWM decision are shown in Fig. D1b.

Particle-updating mechanism. There is a shortage of stan-
dard PSO when dealing with problems with the complexity
of solution spaces (Liang et al., 2006), such as Eq. (B1). It
is easy to occur premature convergence, which hinders the
search for global optima. The main reason behind the pre-
mature convergence appears to be that the particle-updating
mechanism, which causes particles to exchange information
over-frequently, leading to their rapid clustering (Riget and
Vesterstrøm, 2002). Therefore, to avoid premature conver-
gence, the S-APSO applies two strategies – combination with
auxiliary operators and control of algorithm parameters to
modify traditional particle-updating equations. Specifically,
for the introduction of auxiliary operators, a new particle,
the so-called elite particle, is selected from all personal best
particles so far via using a Boltzmann selection operator for
each iteration. Then the linear combination of the global best
and the elite particle is used to formulate the social learn-
ing components of the particle-updating equations. The im-
proved particle-updating mechanism can be mathematically
written as

Vl(τ + 1)=θ(τ ) ·Vl(τ + 1)+ cp(τ ) · rp · [PBl −Pl(τ )]

+ cs(τ ) · rs · {ε(τ ) · [GB−Pl(τ )]
+ (1− ε(τ )) · [EP(τ )−Pl(τ )]}, (D3a)

Pl(τ + 1)= Vl(τ + 1)+Pl(τ ), (D3b)

where EPl(τ ) indicates an elite particle at τ th iteration,
which is randomly selected from the current personal best
particles pool (i.e., {PBl , l = 1,2, . . .,L}) via running the pro-
cedure for the Boltzmann selection operator. Instead of the
standard social learning components – only learning from
global best particle – there are two advantages in the mod-
ified particle-updating mechanism (Xu et al., 2016). The first
is that the intervention of a random elite particle can, to some
extent, prevent all particles from gathering around the global

best particle prematurely, enhancing the exploration of the
swarm at an early stage of the search process. The second is
that the impact of elite particles on particle updating gradu-
ally declines with an increase in iterations due to the charac-
teristics of the Boltzmann selection operator – the personal
best particles close to the global best one are more likely to
be chosen with time, which can guarantee the exploitation
of the algorithm in the end stage. Therefore, this approach
might be reasonable to balance the global and local search
during a PSO process.

On the other hand, for the control of algorithm parame-
ters, an evolutionary state-based adaptive parameter scheme,
which is proposed by Zhan et al. (2009), is applied to manage
automatically the parameters of the particle-updating equa-
tion (Eq. D3a) for each iteration – the inertia weight (θ(τ )),
the personal and social acceleration coefficients (cp(τ ),
cs(τ )), and the ratio for social learning (ε(τ )). Each parame-
ter is set in the parameter control scheme in terms of a well-
defined index that characterizes the current swarm distribu-
tion. It is worth mentioning that we use a fuzzy logic system
(Jang et al., 1997) to adjust acceleration the coefficients and
the ratio for social learning in each generation, and it can in-
crease or decrease them intelligently following four defined
evolutionary states – exploration, exploitation, convergence,
and jumping out. By automatic control of the algorithm pa-
rameters in time, it can improve the search efficiency and
convergence speed of the S-APSO.

Particle check and repair mechanism. In addition, to avoid
a premature convergence of the PSO, it is another crucial fac-
tor in successful applications of the PSO to keep all particles
feasible during the search process (Engelbrecht, 2006), espe-
cially for this model with the complex solution space induced
by integrated with the UWB-SM. Therefore, a check and re-
pair mechanism is developed based on the above coupling
strategy, which can examine and fix (if necessary) all updated
particles to make sure that they are available. Note that, sim-
ilar to the particle initialization, there are also many times
that data exchange between agent-based model for UWM
and UWB-SM in the process, indicating the reparation in the
previous position of a particle might affect that in the subse-
quent positions, especially in the case of fixing the first three
positions of a particle that represents GI construction deci-
sion variables. It may cause failures of using general check
and repair methods.

Therefore, the study uses a multi-round loop structure to
check and repair different positions of a particle in terms
of the features of the constraints (Eq. B1b), which permits
modified particles to be feasible and also to keep the origi-
nal characters as much as possible. Figure D1c illustrates the
flow chart of the check and repair mechanism, which has a
two-phase data exchange procedure between the UWB-SM
and agent-based model for UWM for examination and repa-
ration of particles. As reflected in Fig. D1c, the first three po-
sitions of a particle that indicates GI construction variables in
the Eq. (B1) are checked and repaired (if necessary) in line
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with the constraint (7 in B1b) in Phase 1. In Phase 2, the 4 to
51 positions of a particle, which are related to the constraints
(8 in Eq. B1b to 14 in Eq. B1b), are examined and fixed in a
multi-round loop structure.

Appendix E: Details of the multiagent system for
inter-city-scale IGWM

This appendix provides a comprehensive and detailed expo-
sition of the multiagent system for IGWM at an inter-city
scale. The various components of the system are thoroughly
explained, encompassing aspects such as the multiagent sys-
tem as well as the relevant solution approaches associated
with this system.

E1 Multiagent system

The basic assumptions for formulation of the multiagent sys-
tem for inter-city-scale IGWM are shown as follows:

– Assumption 1. Hydrologically, all UWM agents are in-
terconnected with each other only by a surface water
system.

Assumption 2. Socially, all UWM agents are considered
to be noncooperative.

To simplify the model, Assumption 1 demonstrates the
river connection among all UWM agents within the water-
shed, which are a significant factor in the effect of GIs on
urban and watershed hydrology concerning water resource
allocation. So, all UWM agents have to share surface wa-
ter resources with others, and IGWM activities of upstream
agents may affect those of downstream. In addition, we do
not take the connection between urban areas’ groundwater
systems into account since it is assumed that its effect may
be negligible in watershed-scale IGWM in the short term,
compared with that of the surface water system (Brannen
et al., 2015). In addition, surface water–groundwater interac-
tion processes induced by city-scale IGWM have been con-
sidered in the UWB-SM, which can, to some extent, reflect
the associated effect via the connection in the surface wa-
ter system. Assumption 2 exhibits the social relationship be-
tween UWM agents in the watershed; that is, each agent only
pays attention to their local objectives and does not share
information with the other agents (Giuliani and Castelletti,
2013). This assumption is reasonable for some watersheds,
especially when urban areas within the watershed have to
face competition for urban development in many aspects.

Therefore, the multiagent system for UWMs can be for-
mulated by the integration of the agent-based model for
UWM (Eq. B1), the UWB-SM (Eqs. C1–C9) with the
Muskingum–Cunge routing model (Eq. C10), depending on
its feature of the Markov property. A special type of multi-
stage decision system is employed to model the multiagent
system for UWMs (Bellman, 1966) and the sequence of

decisions-making for each UWM agent – city-scale IGWM –
relies on associated spatial locations along with the river net-
works, which is in the order of upstream to downstream. The
hydrologic variable – upstream inflow of each UWM agent
– is considered the state variable to describe interactions be-
tween UWM agents. It can be written as follows:

Eq. (B1), ∀i (01)
Eq. (C10), ∀i, t (02)
q1

ri(t)=Q
1
t , and qiri(0)=Q

i
0, ∀i, t (03)

(E1)

where the third row of Eq. (E1) shows initial conditions for
the multiagent system for UWMs, and Q1

t and Qi
0 are the

initial amounts of the upstream inflow for UWM agent 1 in
month t and UWM agent i in month 0, respectively.

E2 Solution approach

To solve the multiagent system, it is available to combine
multiple S-APSO algorithms with the Muskingum–Cunge
routing equation to simulate the dynamics of the multiagent
system for UWMs according to its Markovian property. That
is, the optimal solutions for each UWM agent model are
solved one by one in a specific order, which follows the se-
quence of the multiagent system for UWMs via using the as-
sociated S-APSO. Notice in particular that the monthly out-
flow amounts for the optimal solution of each UWM agent
model needs to be recorded during the S-APSO search pro-
cess. They, as an input of the relevant Muskingum–Cunge
equation, are used to calculate the monthly upstream inflow
amounts in the associated downstream reach – an input data
for the adjacent UWM agent model. In this way, the multi-
S-APSO framework for simulation of the interactions of the
multiagent system for UWMs is developed (see Fig. E1).

Appendix F: Details of the bi-level multiagent system
for watershed-scale IGWM

This appendix presents a thorough and comprehensive ex-
amination of the bi-level multiagent system for IGWM at a
watershed scale. The diverse components of the system are
meticulously elucidated, encompassing elements such as the
extended agent-based model for UWM, the bi-level multia-
gent system, and the pertinent solution approaches associated
with this bi-level system.

F1 Extended agent-based model for UWM

Under the policy intervention from a WM, each UWM agent
needs to make reasonable IGWM decisions to trade off the
previous three types of costs (i.e., GI construction, water sup-
ply, wastewater drainage) and the possible penalty fee set
by a WM to minimize their own total IGWM costs under
the specified low streamflow thresholds. Therefore, the above
UWM agent model will be extended – its annual IGWM cost
function is converted as the sum of GI construction, water
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Figure E1. Flowchart diagram of the multi-S-APSO framework to
multiagent system for inter-city-scale IGWM.

supply, wastewater drainage costs, and penalty fees. Taking
the UWM agent i as an example, the extended agent-based
model for UWM under the streamflow penalty strategy is
shown as follows:

min
W,GI

TCi = Cgi+Csi+Cwi+Pi (F1a)

s.t.


Pi =

12∑
t=1
rp · [

[qiro(t)−S
i
q (t)]+|q

i
ro(t)−S

i
q (t)|

2 ]; (01)

Eq. (B1b); (02)
qiro(t)= 1000 ·Aiu · [Q

i
ro(t)]∗.∀t (03),

(F1b)

where the first row of Eq. (F1b) indicates the annual penalty
fee for the UWM agent i, and its calculation in detail shown
as follows. The third row of Eq. (F1b) represents the units for
hydrological parameters being converted from millimeters to
cubic meters based on the associated urban total areas.

Penalty fees. In the extended UWM agent model, a penalty
fee must be imposed on UWM agent when the outflow in
its urban catchment is below the specified low streamflow
threshold at the corresponding checkpoint. It is assumed that
the WM prescribes a constant penalty rate for the watershed
and that a penalty fee is only imposed on out-of-threshold
streamflow. Hence, for UWM agent i in month t , if the out-
flow at checkpoint i is not below the low streamflow thresh-
old (i.e., qiro(t)≥ S

i
q(t)), the penalty fee is 0; however, if

it is below the quota (i.e., qiro(t) < S
i
q(t)), a fee equal to

rp·[S
i
q(t)−q

i
ro(t)] is imposed. By integrating the above cases,

the annual penalty fee for UWM agent i can be written as

Pi =

12∑
t=1

rp · [
[qiro(t)− S

i
q(t)] + |q

i
ro(t)− S

i
q(t)|

2
]. (F2)

F2 Bi-level multiagent system

A streamflow penalty strategy prescribed by a WM agent
might change some UWM agents’ decisions of IGWM – up-
stream UWM agents might have to adjust their IGWM deci-
sions to increase outflow to avoid over high penalty fees for
costs minimization, which is beneficial to the downstream
agents. Such changes in UWM agents’ behavior can, to some
extent, shift the interactions in the multiagent system for
UWMs, which might have a potential impact on the water-
shed environment that can be measured by the assessment
index (i.e., water allocation Gini coefficient) set by the MW
(see Fig. 1c). Therefore, a WM agent can assess the effects of
the policy on the watershed via checking the given index that
reflects feedbacks of the multiagent system for UWMs and
then gradually adjusts it to find the optimal one. This process
is a WM–UWM agent interaction in watershed-scale IGWM
under a water policy.

Fig. 1c illustrates that the WM–UWM agent interaction is
no longer determined only by the WM or the UWMs, and
both of them try to optimize their objectives (i.e., equity vs.
cost objectives for WM and UWMs) under the associated
constraints (i.e., streamflow vs. GI construction, water sup-
ply and demand constraints) and reactions of the other party.
Therefore, they follow a specific decision rule. That is, the
WM agent first makes a decision, and then each UWM agent
specifies a decision to optimize their own objectives with full
knowledge of the WM’s decision; the WM also optimizes
its own objective based on the rational UWMs’ reactions. In
economic theory, this process – the WM–UWM agent inter-
action – is a Stackelberg game (Von Stackelberg, 2010).

Therefore, the WM–UWM agent interaction can follow a
hierarchical decision rule for the leader – the WM agent and
the multiple followers – the UWM agents (Dempe, 2002). In
addition, for the followers, the UWM agents form a multia-
gent system for UWMs (Eq. C10) that has a Markov prop-
erty, which involves a special multi-stage decision-making
process (Bellman, 1966). By integrating the WM (Eq. B4a),
the UWM (Eq. F1) agent model, and the multiagent system
for UWMs (Eq. C10) mentioned above, a bi-level multiagent
system for WM–UWM agent interaction can be developed to
describe the Stackelberg game between the WM and multi-
ple UWM agents and unique multi-stage system constructed
to reflect the state transitions for the multiple WM–UWM
agents, which can be formulated as follows:

Eq. (B4a)s.t.


Eq. (B4b);
where Wi ,GIi solves{ Eq. (F1); ∀i

Eq. (C10); ∀i, t

q1
ri(t)=Q

1
t , and qiri(0)=Q

i
0. ∀i, t

(F3)

where [−]∗ represents the parameter being from the simula-
tion calculation of the UWB-SM.
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F3 Solution approach

In the bi-level multiagent system (Eq. 2), agent-based models
for UWM are converted to Eq. (F1) due to the introduction
of a streamflow penalty strategy. Compared with the above
models (Eq. B1), only the objective function of the trans-
formed model (Eq. F1a) is changed – adding a penalty fee.
Therefore, to apply the proposed S-APSO to solve the agent-
based models for UWM in the bi-level multiagent system,
only the fitness function for particles needs to be adjusted. In
addition, the above multi-S-APSO framework is also avail-
able in simulating the interactions among all UWM agents
in the bi-level multiagent system under a given streamflow
penalty strategy because of the features of its hydrologic con-
nections – the Markovian property.

For the agent-based model for WM, the above S-APSO
framework without the simulation-based initialization and
the check and repair mechanism is available to look for
the optimal solution due to its simple constraint condi-
tions (Eq. B4ab). However, there is a critical factor in the
simulation of the bi-level multiagent system that is how to
deal with the special decision rule between the WM agent
and the UWM agents – a Stackelberg game; i.e., the WM
agent’s best response is based on the associated reactions of
all UWM agents (Von Stackelberg, 2010). In fact, it is chal-
lenging to obtain a Stackelberg solution to the bi-level multi-
agent system using general solution methods because the bi-
level model is an NP-hard problem, even in its simplest linear
case (Dempe, 2002). To deal with the specific bi-level model
decision rules, the study nests the multi-S-APSO framework
for the multiagent system for UWMs mentioned before into
the particle performance measurement of the S-APSO for the
WM, which can simulate the responses of the multiagent sys-
tem for UWMs to a given streamflow penalty strategy pre-
scribed by the WM agent, thereby assessing the policies’ ef-
fects accurately. By the nested structure, therefore, a nested
S-APSO framework is proposed for searching for the opti-
mal WM–UWM interactions in the bi-level multiagent sys-
tem under a streamflow penalty strategy. The flowchart dia-
gram for the nested S-APSO is illustrated in Fig. F1.

Figure F1. Flowchart diagram of the nested S-APSO framework to
bi-level multiagent system for watershed-scale IGWM.
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