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Abstract. Land surface temperature (LST) plays an essential
role in water and energy exchanges between the Earth’s sur-
face and atmosphere. Recent advancements in high-quality
satellite-derived LST data and land data assimilation sys-
tems present a unique opportunity to bridge the gap between
global observational data and land surface models (LSMs)
to better constrain the water and energy budgets in a chang-
ing climate. In this vein, this study focuses on the assimila-
tion of the ESA CCI-LST product into the ORCHIDEE LSM
(the continental part of the Institut Pierre-Simon Laplace
Earth system model) with the aim of optimizing key param-
eters to improve the simulation of LST and surface energy
fluxes. We use the land data assimilation system for the OR-
CHIDEE model (ORCHIDAS) to conduct a series of syn-
thetic twin data assimilation experiments accounting for ac-
tual data availability and uncertainty from ESA CCI-LST
to find an optimal strategy for assimilating LST. Here, we
test different strategies of assimilation, notably investigating
(i) two optimization methods (a random search technique and
a gradient-based technique) and (ii) different ways to assim-
ilate LST using the only raw data and/or different character-
istics of the LST diurnal cycle (e.g. mean daily, daily am-
plitude, maximum and minimum temperatures, and morn-
ing and afternoon gradients). Upon identifying the optimal
approach, we use ORCHIDAS to assimilate ESA CCI-LST
data across 34 European sites provided by the Warm Win-
ter database. Our results demonstrate the effectiveness of as-
similating 3 h CCI-LST data in ORCHIDEE over a single

year in 2018, thereby improving the accuracy of simulated
LST and fluxes. This improvement, assessed against CCI-
LST and in situ observations, reaches up to a 60 % reduction
in the root-mean-square deviation, with a median decrease of
20 % over the entire validation period (2009–2020). Further-
more, we evaluate the effectiveness of optimized parameters
for application at larger scales using the median of optimized
parameters per vegetation type across sites. Notably, the per-
formance for both LST and fluxes exhibits consistent stabil-
ity over the years, comparable to using site-specific parame-
ters, and indicates a significant improvement in the modelled
fluxes. Future work will be focused on refining the utiliza-
tion of the observation uncertainties provided by the ESA
CCI-LST product (e.g. decomposed uncertainties and spatio-
temporal variability) in the assimilation process.

1 Introduction

Surface heat fluxes, particularly sensible and latent heat
fluxes, exchanged between the land surface and the atmo-
sphere, play an essential role in the climate system as well
as in numerous hydrological, meteorological, and agricul-
tural applications (Bateni et al., 2013; Caparrini et al., 2004;
Olioso et al., 1999). Land surface models (LSMs) have been
developed to simulate the complex interactions between the
land surface and the atmosphere, offering valuable insights
into the quantification and comprehension of energy and wa-
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ter fluxes within the system. While simulations from LSMs
may accurately represent ecosystem state variables and ob-
served fluxes under certain conditions, significant temporal
and spatial biases still occur. These biases are attributed to
simplifications in the representation of the processes govern-
ing energy and mass transfers, errors in the input data (atmo-
spheric forcing, vegetation, and soil spatial information), and
errors in the model parameterization.

In recent decades, efforts to address these discrepancies
have explored the potential of using land surface tempera-
ture (LST) observations through optimization or assimila-
tion procedures in land surface monitoring (Boni et al., 2001;
Coudert et al., 2008; Crow et al., 2003; Demarty et al., 2005;
Ghent et al., 2010; Margulis and Entekhabi, 2003; Olioso
et al., 1999; Ridler et al., 2012). In fact, LST is a key vari-
able in LSMs because it reflects the coupled energy and wa-
ter budgets, which are linked by evapotranspiration (Bena-
vides Pinjosovsky et al., 2017; Coudert et al., 2008; Ridler
et al., 2012). Therefore, LST observations have proven to be
of great value not only for assessing water and energy fluxes
but also for refining their estimation.

Recent advances in remote sensing technology and derived
LST products provide a valuable benchmark for the evalua-
tion and optimization of LSMs. Particularly noteworthy is
the progress in high-quality satellite-derived LST informa-
tion that integrates measurements from diverse satellite sen-
sors, including both geostationary and polar orbit platforms,
such as the ESA CCI-LST product (Hollmann et al., 2013;
Veal et al., 2022). These advancements have yielded global
LST products with enhanced spatial and temporal resolu-
tions, thus expanding their potential utility and compatibility
with LSMs.

A number of studies have been previously conducted to
parameterize LSMs using LST data (e.g. Boni et al., 2001;
Coudert et al., 2008; Crow et al., 2003; Demarty et al., 2005;
Ghent et al., 2010; Margulis and Entekhabi, 2003; Olioso et
al., 1999; Ridler et al., 2012). Coudert et al. (2008) high-
lighted the advantages of incorporating the dynamics of the
LST diurnal cycle into model parameter calibration com-
pared with the direct use of raw LST observations. This is
explained by the fact that the use of raw LST values, which
are prone to inaccuracies in their estimation, can introduce
errors in the optimization process (Coudert et al., 2006; De-
marty et al., 2005). This issue can be especially exacerbated
when comparing different satellite products (Coudert et al.,
2008). In this respect, the merged ESA CCI-LST product de-
rived from various satellite thermal infrared sensors allows
one to assess the diurnal cycle characteristics, given its har-
monization between LST satellite products, while providing
a global product with associated uncertainties. The availabil-
ity of a global LST product with its corresponding uncer-
tainties is an important asset for the data assimilation (DA)
processes in LSMs, as knowledge of observations and model
uncertainties is crucial to obtain realistic model–data fits in
DA.

DA offers a valuable framework for integrating measure-
ments and models, weighting the sources of error in both,
to generate a statistically optimal and dynamically consis-
tent estimation of the evolving system state (Margulis and
Entekhabi, 2003). Some studies have focused on the assim-
ilation of LST into LSMs with the aim of enhancing sim-
ulations of LST and water and energy fluxes (Bateni et al.,
2013; Benavides Pinjosovsky et al., 2017; Caparrini et al.,
2003; Ghent et al., 2010; Lu et al., 2017; Meng et al., 2009;
Sini et al., 2008). DA approaches can also be used to estimate
model parameters (Rayner et al., 2019), either independently
or together with the model state (Bateni and Entekhabi, 2012;
Moradkhani et al., 2005). Therefore, DA techniques have
been widely used to control LSM state variables and/or for
parameters optimization (e.g. Bacour et al., 2023; Morad-
khani et al., 2005; Peng et al., 2011; Raoult et al., 2016;
Rayner et al., 2005; Santaren et al., 2007). DA techniques
allow us to calibrate LSMs against observational data, pro-
viding best-fit internal parameters and associated uncertainty
ranges compared with default parameters.

Recent advancements in both high-quality satellite-
derived LST data and land DA systems offer a promis-
ing opportunity to bridge the gap between observations and
LSMs and, thus, to better constrain the land surface water
and energy budgets. In this vein, this study focuses on as-
similating the merged LST data from the ESA CCI prod-
uct into the ORganizing Carbon and Hydrology In Dynamic
EcosystEms (ORCHIDEE) LSM, the continental component
of the IPSL (Institut Pierre-Simon Laplace) Earth system
model. Concurrently, there is a growing availability of in situ
measurement sites providing estimates of sensible and la-
tent heat fluxes at high temporal resolution, primarily from
FLUXNET observations (FLUXNET, 2016). Recognizing
the value of both data sources, this study aims to leverage
the complementary information from the CCI-LST product
(see Sect. 2.1.1) and the Warm Winter database (Warm Win-
ter 2020 Team and ICOS Ecosystem Thematic Centre, 2022).
We achieve this by assimilating CCI-LST data at selected
sites from the Warm Winter database and utilizing flux ob-
servations as independent validation data. Our primary ob-
jective is to investigate whether LST observations from the
ESA CCI product have the potential to improve ORCHIDEE
simulations of water and energy fluxes, accounting for their
frequency and measurement uncertainties. To this end, we
seek to identify an optimal assimilation strategy by testing
different approaches, including assimilating raw LST obser-
vations and specific characteristics of the LST diurnal cy-
cle (e.g. daily maximum, amplitude, and morning and af-
ternoon gradients). We investigate whether assimilating ob-
served characteristics of the LST diurnal cycle can provide
additional constraints compared with assimilating raw LST
data alone. We initially conducted a series of synthetic twin
DA experiments to select the optimal assimilation strategy.
We then implemented the selected DA strategy across 34 Eu-
ropean sites provided by the Warm Winter database using
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ESA CCI-LST data extracted at each site, assessing the effec-
tiveness of the assimilation process with respect to improving
LST and surface energy flux simulations.

2 Materials and methods

2.1 Data

2.1.1 LST observations from the ESA CCI product

In this study, we use the merged infrared (IR) Climate
Data Records (CDRs) from the LST Climate Change Ini-
tiative (CCI) project by the European Space Agency (ESA)
(Hollmann et al., 2013; Veal et al., 2022), referred to as CCI-
LST. The merged IR CDRs include all available IR geo-
stationary sensor data and IR low-Earth-orbit (LEO) sensor
data over the period from 2009 to 2020, delivered with a 3 h
temporal resolution and a global spatial resolution of 0.05°.
The IR geostationary sensor includes the Imager on the
Geostationary Operational Environmental Satellite (GOES)
platforms, the Spinning Enhanced Visible and Infrared Im-
ager (SEVIRI) aboard the Meteosat Second Generation
platforms, and the Japanese Advanced Meteorological Im-
ager (JAMI) on the Multi-functional Transport Satellite (MT-
SAT) platform. The LEO data come from the Advanced
Along-Track Scanning Radiometer (AATSR), the MODer-
ate resolution Imaging Spectroradiometer (MODIS) aboard
Terra and Aqua, and the Sea and Land Surface Temperature
Radiometer (SLSTR) aboard Sentinel-3A and Sentinel-3B.

The CCI-LST observations have an associated total un-
certainty estimate derived from different error components.
These error components correlate on various spatial and tem-
poral scales and include the following: (i) random uncer-
tainties weakly correlated (like random noise in the satel-
lite data), (ii) locally correlated atmospheric uncertainties
(related to atmospheric conditions), (iii) locally correlated
biome or surface uncertainties, (iv) large-scale systematic
uncertainties (related to calibration of the satellite sensor),
and (v) locally correlated LST correction uncertainties (for
intercalibration or time corrections). The total uncertainty
is obtained from the sum of each uncertainty component in
quadrature (i.e. the square root of the sum of squares), which
is used in this study to prescribe observation errors in the as-
similation process (Sect. 2.3).

Figure 1 illustrates the median of 3 h CCI-LST uncertain-
ties during the optimization year (2018) at the correspond-
ing 0.05° CCI-LST pixel over each of the 34 selected sites
(detailed below). These uncertainties are used in the assimi-
lation process as the observation error. The median LST un-
certainties are, on average, 1.05 K across the 34 sites eval-
uated, ranging from 0.76 to 1.89 K for the DE-Kli and IT-
BCi sites, respectively. It should be noted that the Mediter-
ranean sites present larger uncertainties which ranged be-
tween 1.50 and 1.89 K. These larger values are mainly ex-

plained by the LST correction component, i.e. the (v) uncer-
tainty component mentioned in the list above, which could be
attributed to more complex surface conditions, such as het-
erogeneous land cover types.

2.1.2 In situ observations

We use meteorological data and measurements of surface
energy fluxes for the stations available in Europe from the
Warm Winter database (Warm Winter 2020 Team and ICOS
Ecosystem Thematic Centre, 2022). The sites used in this
study are depicted in Fig. 1 and detailed in Table A1 (e.g.
their location, data period, and vegetation and climate types).
The Warm Winter network is chosen for its coverage of re-
cent periods, which aligns with the CCI-LST period, and it
represents the latest freely available dataset for the European
Union. The meteorological data (air temperature, humidity,
pressure, wind speed, rainfall and snowfall rates, and short-
wave and longwave incoming radiation) at a 30 min time step
are used as forcing for the ORCHIDEE model. The eddy-
covariance measurements of latent heat (LE) flux and sensi-
ble heat (H ) flux and measurements of net radiation (Rn) are
also used to evaluate the performance of ORCHIDEE simu-
lations, using default parameters and after optimization. We
selected these 34 sites based on two criteria: (i) the dominant
vegetation type accounting for more than 50 % of the corre-
sponding ORCHIDEE grid cell and (ii) full data availability
for the optimization year (2018) across all sites. We chose the
year 2018 for two main reasons: (i) all sites have recorded ob-
servations during this year and (ii) there are drought events
in Europe throughout certain periods. This selection enables
the consideration of parameters associated with droughts in
both the sensitivity analysis and potentially in the optimiza-
tion process. The selected sites collectively represent 7 of
the 15 plant functional types (PFTs) of ORCHIDEE, and the
length of each observation record varies from 4 to 11 years
(considering only the available period of CCI-LST data).
Thus, the selection of 34 sites ensures a comprehensive rep-
resentation of diverse land vegetation types, being as homo-
geneous as possible at the 0.05° resolution of the CCI-LST
product.

2.2 The ORCHIDEE land surface model

The ORCHIDEE land surface model is designed to simulate
exchanges of carbon, water, and energy between the land sur-
face and the atmosphere, as detailed by Krinner et al. (2005).
In this study, we use version 2.2, which has been developed
at the IPSL (Institut Pierre-Simon Laplace, France) and con-
tributed to Phase 6 of the Climate Model Intercomparison
Project (CMIP6) in a coupled configuration with an atmo-
spheric circulation model (Boucher et al., 2020). The OR-
CHIDEE model allows an implementation across a broad
range of spatial scales – including grid point, regional, or
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Figure 1. Location of the eddy-covariance flux tower sites from the Warm Winter network. The median of the 3 h LST uncertainty from the
ESA CCI product during the optimization year (2018) is represented at the corresponding CCI-LST pixel.

global levels – and spans timescales ranging from 30 min to
thousands of years.

The study employs a temporal resolution of 30 min inter-
vals to model hydrological and photosynthetic processes and
the energy balance. In contrast, slower components related to
carbon allocation within plants, autotrophic respiration, leaf
onset and senescence, plant mortality, and soil organic mat-
ter decomposition are treated at a daily time step. The hydro-
logical model in ORCHIDEE discretizes the first 2 m of the
soil column into 11 layers, each with increasing grid spacing
progressing geometrically with a ratio of 2 (De Rosnay et
al., 2002). The soil moisture at various levels is determined
by solving the Richards equation, which models vertical wa-
ter transfer in the unsaturated zone. The land surface in OR-
CHIDEE is characterized by 15 PFTs, including bare soil,
which can coexist within a given grid cell. The yearly vary-
ing PFT maps are derived from the ESA CCI land cover prod-
ucts (Lurton et al., 2020; Poulter et al., 2015). In this study,
the soil type is characterized by soil texture, for which OR-
CHIDEE uses the global soil map based on the Zobler soil
classification (Zobler, 1999) reduced to three different tex-
tures. Except for phenology, the processes are described by
generic equations for the different vegetation and soil types
but with different parameters that are PFT-specific or soil
texture-specific, respectively.

We implement ORCHIDEE at the site level using 30 min
meteorological data measured at each of the 34 sites evalu-
ated. A prior spin-up simulation was performed at each site
to bring soil carbon pools, the vegetation state, and the soil
moisture content to equilibrium. This procedure is applied by

running ORCHIDEE for several hundred years and recycling
the available forcing data with the present-day CO2 concen-
tration. A transient simulation (starting from the first year of
measurement for each data stream) was then performed after
each spin-up simulation, accounting for the secular increase
in atmospheric CO2 concentrations.

2.3 Parameter optimization methodology

2.3.1 Data assimilation framework

The ORCHIDEE Data Assimilation System (ORCHIDAS)
has been extensively discussed in previous studies (Bacour et
al., 2015; Bastrikov et al., 2018; Kuppel et al., 2012; Peylin
et al., 2016; Santaren et al., 2014). This assimilation frame-
work is built upon a variational Bayesian approach, optimiz-
ing ORCHIDEE parameters represented by a vector x. The
optimization process involves iteratively minimizing a global
cost function J (x) (Tarantola, 2005), assuming Gaussian er-
rors for both observations and model parameters:

J (x)=
1
2

[
(H(x)− y)TR−1(H(x)− y)

+(x− xb)
TB−1 (x− xb)

]
, (1)

where x is the vector of parameters to optimize and y is
the vector of observations. The first part of the cost func-
tion measures the mismatch between the observations (y)
and the corresponding model outputs (H(x)), whereas the
second part represents the mismatch between the prior pa-
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rameter values (xb) and the optimized parameters x. T rep-
resents the transpose of the matrix. Both terms of the cost
function are weighted by their prior covariance matrices: R
and B for the observation and parameter errors, respectively.
As the error covariance matrices are difficult to assess, they
are neglected in this study; thus, R and B are diagonal, as
in most studies. The observation errors for each site are pre-
scribed as the median of CCI-LST uncertainty over the op-
timization year (2018) for the corresponding pixel and are
illustrated in Fig. 1.

Two methods to minimize the cost function are tested in
this study: a gradient-based algorithm and a random search
algorithm (described below).

Gradient-based minimization algorithm: L-BFGS-B

We use the gradient-based L-BFGS-B (limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm with bound
constraints; Byrd et al., 1995), referred to as BFGS, to it-
eratively minimize J (x). BFGS offers the advantage of con-
sidering bounds in parameter variations, enabling compara-
bility with the genetic algorithm, and leveraging our existing
knowledge of parameters. The algorithm requires the evalu-
ation of J (x) and its gradient with respect to each parameter
to explore the parameter space. In this study, the gradient is
calculated with a finite-difference approximation, where we
quantify the ratio between the alteration in model output and
the adjustment in model parameter. The search ceases once
the relative change in J (x) falls below 10−4 for five consecu-
tive iterations. As gradient-based algorithms have the poten-
tial drawback of converging to local minima rather than to the
global one (more likely in non-linear models), we run a set
of independent assimilations initiated with 16 distinct ran-
dom initial guesses for the parameter vector, as in Bastrikov
et al. (2018). Although some issues may arise when using
Gaussian assumptions in gradient-based minimization algo-
rithms (MacBean et al., 2016), most parameter errors follow
Gaussian distributions in the cases of ORCHIDEE (Santaren
et al., 2007).

Random search minimization algorithm: genetic
algorithm

The genetic algorithm (GA) method is derived from the prin-
ciples of genetics and natural selection (Goldberg, 1989;
Haupt and Haupt, 2004) and performs a stochastic search
over the entire parameter space. Parameter vectors are con-
sidered to be chromosomes, with each gene corresponding
to a given parameter. The algorithm works iteratively, fill-
ing a pool of a given number of chromosomes at each it-
eration. The initial pool is created with randomly perturbed
parameters. A sequence of operations (selection, crossover,
and mutation) then simulates population evolution, which is
described for ORCHIDAS in Santaren et al. (2014) and Bas-
trikov et al. (2018). We adopt a GA configuration identical

to that in Santaren et al. (2014), who experimented with var-
ious GA set-ups to identify the set-up yielding the smallest
optimal cost function and requiring the fewest iterations. The
configuration consists of a population of 30 chromosomes, a
maximal number of iterations of 40, a crossover :mutation
ratio of 4 : 1, a number of gene blocks exchanged during
crossover of 2, and a number of genes perturbed during mu-
tation of 1.

2.3.2 Sensitivity analysis and parameters to be
optimized

We perform sensitivity analysis at each of the 34 sites as-
sessed to determine which ORCHIDEE parameters have the
most influence on the simulated LST and characteristics of
the diurnal cycle. The selection of crucial parameters for op-
timization serves a dual purpose: it enhances computational
efficiency in the optimization process and mitigates the risk
of overfitting.

We use the Morris method (Morris, 1991) to assess the
sensitivity of 19 parameters linked to ORCHIDEE LST sim-
ulations (detailed in Table 1). We implement this method
because it is effective with relatively few model runs com-
pared with other methods like the Sobol’ sensitivity analy-
sis (Sobol, 2001). Furthermore, the Morris method has been
frequently utilized for parameter selection in ORCHIDEE
(e.g. Abadie et al., 2022; Bastrikov et al., 2018; Raoult et
al., 2021, 2023). The Morris method is a one-factor-at-a-
time (OAT) method of sensitivity analysis that evaluates the
relative importance of the parameters from the elementary ef-
fects (EE) of each parameter on model outputs. Basic statis-
tics from multiple EEs in the parameter space allow us to
build a ranking, which approximates well to a global sensi-
tivity measure. This qualitative method requires only a small
number of simulations, (p+1)×n, where p is the number of
parameters and n is the number of random trajectories gener-
ated. As the sampling strategy significantly impacts the Mor-
ris method, we apply the improved sampling strategy pro-
posed by Campolongo et al. (2007) that is suited for models
with a large number of parameters like ORCHIDEE. This
strategy maximizes the dispersion of trajectories in the pa-
rameter space. In addition, the number of trajectories and
levels (i.e. the sampling of the parameter space) can consid-
erably impact the method and the selection of parameters to
be optimized (Ruano et al., 2012). Therefore, we conducted
a preliminary test to select the optimal n trajectories for the
ORCHIDEE model by evaluating the Morris results by in-
creasing n from 5 to 100 according to the position factor of
the rankings proposed by Ruano et al. (2012). Based on this
test, we use 20 trajectories and 10 levels for an optimal sam-
pling of the parameter space. The Morris method applied to
each site allows one to identify the most sensitive parameters
for each site; these parameters are subsequently retained for
the single-site optimization in the DA experiments (described
in Sect. 2.4). An example of these outcomes is presented in
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Table 1. ORCHIDEE parameters evaluated in the sensitivity analysis at the 34 sites: the model parameter name, descriptions, and default
values are shown. The 11 sensitive parameters to be optimized over the selected site (ES-Abr) for the twin DA experiments are indicated in
bold. For the twin experiments, absolute values for soil hydrology parameters are used, whereas scaling factors are applied to the 34 sites
(values in parentheses) because they depend on soil type.

Parameter Description Prior Minimum Maximum

Energy balance

Albedo∗ Scaling factor for surface albedo 1 0.75 1.25
STC∗ Scaling factor for soil thermal conductivity 1 0.7 1.3
HC∗ Scaling factor for soil heat capacity 1 0.7 1.3
r∗soil Scaling factor for soil resistance to evaporation 1 0.5 1.5
z0 Bare soil roughness length 0.01 0.001 0.015

Soil hydrology

θ∗res Scaling factor for residual soil moisture 0.078 (1) 0.062 (0.7) 0.083 (1.3)
θ∗sat Scaling factor for soil moisture at saturation 0.43 (1) 0.34 (0.8) 0.52 (1.2)
A∗ Scaling factor for van Genuchten coefficient a 0.0036 (1) 0.0022 (0.6) 0.0050 (1.4)
n∗ Scaling factor for van Genuchten coefficient n 1.56 (1) 1.10 (0.7) 2.20 (1.3)
Slr Slope coefficient for re-infiltration 0.5 0.1 2

Soil water availability

θcrit,rel Relative soil moisture above which transpiration is maximal 0.8 0.3 0.9
z Root profile 4 1 10
α Controls water stress curve 1 0.05 10

Photosynthesis

B1 Factor for calculation of leaf-to-air vapour pressure difference 0.22 0.11 0.44
VCmax25 Maximal rate of Rubisco carboxylation at 25 °C 50 30 80

Phenology

hveget Prescribed vegetation height 1 0.5 1.5
LAImax Maximum leaf area index 5 3 8
Lage,crit Critical leaf age (days) 120 30 150
SLA Specific leaf area (m2 g−1) 26 13 0.05

∗ Scaling factor applied to an ORCHIDEE parameterization. Note that the scaling factor may involve more than a unique parameter in the model.

Fig. B1 over a selected site in Spain (ES-Abr) for the twin DA
experiments, whose identified parameters to be optimized are
highlighted in bold in Table 1. The sensitivity analysis at
the ES-Abr site required 400 simulations, (19+1)×20. The
mean (µ) and standard deviation (σ ) for all of the trajecto-
ries are calculated to assess the overall importance of each
parameter. We select the parameters with a normalized µ or
normalized σ value higher than 0.2 in the twin experiment
and at the rest of the sites. For the 34 sites, the same 19 pa-
rameters are evaluated in the sensitivity analysis, from which
the number of selected parameters to be optimized ranges be-
tween 5 and 17, with one-third of the sites presenting 12 pa-
rameters to be optimized.

2.3.3 Selection of the DA experiment set-up

A series of synthetic twin DA experiments are tested over
a selected site in Spain (ES-Abr) to understand the respec-
tive constraint brought by LST pseudo-observations as well

as several characteristics of the diurnal cycle of LST and
to evaluate their capability to improve ORCHIDEE simu-
lations. The characteristics of the diurnal cycle of LST are
estimated based on 3 h interval model outputs to be consis-
tent with the 3 h frequency of CCI-LST data. The characteris-
tics evaluated are daily LST amplitude, maximum LST, min-
imum LST, morning gradient (the slope between 10:00 and
13:00 LT, where LT denotes local time), and afternoon gradi-
ent (the slope between 16:00 and 19:00 LT). Additionally, we
evaluate assimilating the LST at 13:00 LT, as the early after-
noon is well-suited for detecting water stress (Lagouarde et
al., 2019; Koetz et al., 2018). This is particularly relevant be-
cause the upcoming TRISHNA (Thermal infraRed Imaging
Satellite for High-resolution Natural resource Assessment)
mission will provide LST at 13:00 LT, a few hours later than
other thermal missions widely used in recent decades for
stress detection (e.g. Landsat, ASTER, and MODIS). Conse-
quently, we aim to assess the potential impact of assimilating
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Table 2. Example of typical ORCHIDEE variables optimized in
the DA experiments performed and used to determine the optimum
strategy.

Experiment name Selected observational constraint

LST13 LST at 13:00 LT (local time; 12:00 UTC)
Tmax Maximum daily LST over 3 h interval
Ampl Daily amplitude LST over 3 h interval
slope13 Temporal gradient between 10:00 and 13:00 LT
3 h-LST 3 h LST series
3 h-LST+ Tmax LST+ Tmax

a single LST observation per day at this particular time. LST
pseudo-observations and each derived characteristic of the
diurnal cycle are assimilated separately, and different com-
binations are then considered, some of which are detailed in
Table 2. All of the combinations tested are presented in Ta-
ble S1 in the Supplement.

In each DA experiment, we optimize the 11 parameters
selected from the sensitivity analysis carried out over the
ES-Abr site for 3 h LST and each characteristic (parameters
in bold in Table 1). The LST pseudo-observations for the
DA experiments are generated by running the ORCHIDEE
model using its default parameter values. A set of random
values for the 11 parameters to be optimized is then used
as the prior parameters in the optimizations. No uncertain-
ties or model discrepancies are considered in these first LST
pseudo-observations (unbiased by observational uncertain-
ties) to allow us to directly assess the performance and con-
vergence properties of the optimization schemes. In these
DA experiments, the second term of the cost function (Eq. 1)
was excluded to evaluate the role of observations. There-
fore, we can conduct a direct comparison between the op-
timized parameters and the “true” parameters – set as the
ORCHIDEE parameters by default – enabling the optimiza-
tion process to freely recover these parameters and assess the
accuracy of the optimizations.

We perform 16 independent runs for each DA experi-
ment with 16 different first guesses randomly selected within
the range of variation in the parameters, as in Bastrikov et
al. (2018). The choice of 16 sets is a trade-off between com-
putational cost and minimizing the risk of not converging
toward a stable cost function minimum, as verified by Bas-
trikov et al. (2018). The DA experiments are tested using the
BFGS and GA methods starting from the 16 sets of different
first guesses. The 16 different first guesses are kept identical
for all of the DA experiments (including between the BFGS
and GA methods) to ensure the same first-guess values and
to be consistent between DA experiments.

The prior uncertainty on the ORCHIDEE parameters is set
to 15 % of the range of variation for each parameter. This er-
ror is set following preliminary DA tests over the ES-Abr
site, where we explored different percentages of the range of
variation as parameter errors. We found that a prior parameter

error ranging between 10 % and 20 % of the range of varia-
tion emerges as optimal, exhibiting further improvements in
fluxes after assimilating LST. Unlike the assimilation of ac-
tual CCI-LST data, where we used the errors provided with
the LST product (see Sect. 2.3.4), the observation errors are
defined as the mean-squared difference between the observa-
tions and the prior model simulations in the twin DA experi-
ments, following Bastrikov et al. (2018).

The performance of the DA experiments is assessed in
terms of their ability to (i) retrieve true parameter values and
(ii) simulate the 30 min LST and turbulent fluxes from the
posterior parameters. The performance is evaluated using the
reduction in the root-mean-square difference (RMSD) be-
tween the prior and the posterior, as defined in Eq. (2). In
addition, the performance is evaluated by comparing the pos-
terior parameter values and against the true values, as esti-
mated through the pseudo-observation tests.

RMSDreduction =

(
1−

RMSDpost

RMSDprior

)
100 (2)

For each DA experiment, independent of the observational
constraint assimilated, the RMSDreduction is estimated for the
30 min LST and turbulent flux (LE andH ) simulations. This
evaluation involves calculating the model–data fit between
each posterior simulation using 16 different first guesses and
the prior simulations (from an ORCHIDEE run with a unique
set of prior parameters).

Based on the outcomes of the DA pseudo-data experi-
ments, we select those showing the best results fitting the
LST and turbulent fluxes. To evaluate the feasibility of as-
similating the CCI-LST product, we consider its actual avail-
ability and uncertainties within the chosen optimal strate-
gies. Thus, we implement a second set of twin DA exper-
iments introducing some modifications. The LST pseudo-
observations are filtered out with the actual availability of
CCI-LST, thereby accounting for gaps in the time series re-
sulting, for example, from cloudy conditions. Subsequently,
these pseudo-observations are perturbed with Gaussian er-
rors derived from their respective 3 h CCI-LST uncertainties.
This refined approach ensures a more realistic representation
of the assimilation process, considering both the real-world
constraints and uncertainties associated with the CCI-LST
data.

2.3.4 Assimilation experiments based on ESA
CCI-LST data

Once the optimal DA strategy is selected (from the twin
experiments at one site), it is implemented across the 34
European sites of the Warm Winter 2020 network for the
year 2018. The parameters to be optimized are identi-
fied for each site from the sensitivity analysis described in
Sect. 2.3.2. The performance is mainly evaluated via the
RMSD reduction between the prior and the posterior OR-
CHIDEE simulations against CCI-LST and in situ energy

https://doi.org/10.5194/hess-29-261-2025 Hydrol. Earth Syst. Sci., 29, 261–290, 2025



268 L.-E. Olivera-Guerra et al.: Assimilation of ESA CCI-LST in ORCHIDEE at the site level

flux (Rn, LE, and H ) observations (described in Sect. 2.1).
Additionally, we employ the decomposition of the mean-
square error (MSE; Kobayashi and Salam, 2000) to gain
deeper insights into which specific error components are
improving or degrading. The MSE (i.e. the square of the
RMSD) is decomposed into three components: the squared
bias (SB), the lack of correlation weighted by the stan-
dard deviation (LCS), and the squared difference between
standard deviations (SDSD). The three components are ex-
pressed as follows:

SB= (ysim− yobs)
2 (3)

LCS=2

√√√√ 1
N

N∑
i=1

(
ysim,i − ysim

)2
,

√√√√ 1
N

N∑
i=1

(
yobs,i − yobs

)2
(1− r), (4)

SDSD=


√√√√ 1
N

N∑
i=1

(
ysim,i − ysim

)2

−

√√√√ 1
N

N∑
i=1

(
yobs,i − yobs

)22

. (5)

Here, ysim and yobs are the means of simulations (ysim,i) and
observations (yobs,i), respectively, and r is the correlation co-
efficient. The MSE decomposition provides valuable infor-
mation on areas of improvement and potential limitations in
the assimilation process.

The parameters optimized in 2018 are then used to eval-
uate ORCHIDEE simulations during the validation period
from 2009 to 2020 (i.e. the CCI-LST period), where in
situ observations are available. Additionally, we evaluate a
unique set of parameters for each PFT from the previous
site-specific optimized parameters in 2018. This is a key step
in scaling parameter optimization, as broader-scale simula-
tions (i.e. from regional up to global) require a unique set of
parameters for each PFT. Thus, we calculate the median of
optimized parameters across sites to evaluate the effective-
ness of optimized parameters at larger scales. The median of
generic parameters is computed across all sites, while PFT-
specific parameters are computed for each PFT. Finally, we
run ORCHIDEE with this unique parameter set for each PFT
over the 34 sites from 2009 to 2020. This assessment aims to
determine whether the performance at each site aligns with
that achieved using site-specific optimized parameters. Note
that we did not use the multi-site optimization approach, as
in Kuppel et al. (2012), given that several parameters con-
cerning the soil thermal and hydrological properties would
complicate the set-up of such a configuration (e.g. sites of a
given PFT have different soil properties).

3 Results

3.1 Using pseudo-data twin experiments to define the
optimization strategy

3.1.1 Model–data fit and flux improvement

To investigate the differences between the assimilated ob-
servational constraints (as detailed in Table 2), Fig. 2 com-
pares the overall optimization performance for the DA exper-
iments. It displays the distribution of the RMSD reduction in
30 min LST, LE, and H between the prior (ORCHIDEE run
with a unique set of parameters) and posterior model after as-
similation, with each DA experiment including 16 first-guess
tests conducted at the selected ES-Abr site in Spain. The
model improvement is represented by the spread of box plots
for different initial first guesses, with each box corresponding
to the assimilation of different characteristics of the diurnal
cycle and their combinations. As expected, assimilating LST
leads to improvements in the LE andH fluxes, affirming the
significance of LST data in constraining the turbulent fluxes.
Furthermore, it is highlighted that the improvement in H is
larger than that of LE in each DA experiment due to its more
direct dependence on LST.

Overall, it becomes evident that the BFGS method is more
reliant on initial first guesses, shown by the larger spread in
each DA experiment for the three analysed variables (LST,
LE, andH ). This confirms the higher likelihood of gradient-
based methods getting stuck in local minima. Notably, the
GA method consistently outperforms the BFGS method,
yielding more substantial improvements, with the RMSD re-
duction surpassing that achieved by BFGS in every exper-
iment and for each variable. Remarkably, the GA method
shows improvements across all three variables, and each of
the 16 runs achieves RMSD reductions greater than 0. Con-
versely, certain optimizations employing the BFGS method
result in deteriorated simulations after the assimilation, with
a negative RMSD reduction for the 30 min LST andLE. This
is obtained mainly when the amplitude (Ampl) and morning
slope (slope13) of the LST diurnal cycle are assimilated. This
underscores the superior reliability and performance consis-
tency of the GA method compared with the BFGS method
across the evaluated variables and experiments.

Concerning the improvements in 30 min LST simulations
through various DA experiments, superior performance is
observed when assimilating the full LST series alone or in-
corporating a characteristic of the diurnal cycle in the assim-
ilation (utilizing Tmin, Tmax, and/or Ampl; see Fig. S1 in the
Supplement). Nevertheless, incorporating Tmin, Tmax, and/or
Ampl into the full LST series results in only marginal addi-
tional improvement in 30 min LST simulations. In fact, the
median reductions in the RMSD remain consistently sim-
ilar, around 76 %–79 %, across all experiments using the
full LST series as a constraint. In contrast, the assimila-
tion of a single LST observation per day – such as LST
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Figure 2. Box plots obtained within 16 optimization tests with random first-guess parameter values for each DA experiment over the selected
site in Spain (ES-Abr) comparing the performance between the gradient-based (in blue) and genetic (in red) methods in terms of the model–
data RMSD reduction (%) obtained for 30 min LST, LE, and H . The x axis indicates the DA experiment assimilating a single characteristic
of the diurnal cycle (LST13, Tmax, Ampl, and slope13), the 3 h LST pseudo-observations (LST), and with the addition of Tmax (LST+ Tmax).
The RMSD reduction (%) is computed between the 16 posterior simulations per DA experiment and the prior simulations (generated from a
single set of prior parameters).

at 13:00 LT (LST13) or maximum daily LST (Tmax) only –
leads to significantly less improvement in the 30 min LST
simulation. Median reductions in the RMSD are 26 % for
LST13 and 45 % for Tmax, accompanied by notably larger
spreads, similar to those obtained with the BFGS method.

Regarding the improvements in the 30 min simulations of
the surface turbulent fluxes (LE andH ), the results are much
more stable than those obtained for LST across the differ-
ent DA experiments. This stability is observed in terms of
reductions in the RMSD (median and distributions) across
the 16 independent runs. While the median reductions in the
RMSD of LE range between 55 % and 72 % for the slope13
and 3 h-LST+ Tmax experiments, respectively, the improve-
ments inH range between 71 % and 87 % for the LST13 and
3 h-LST+ Tmax experiments, respectively. It should be noted
that jointly assimilating Tmax and LST (3 h-LST+ Tmax) con-
siderably improves the LE and H simulations compared
with assimilating LST only, with a 59 % and 81 % RMSD re-
duction for LE and H , respectively. The 3 h-LST+ Tmax ex-
periment not only offers superior performance with respect
to simulating H but also produces the least dispersion in
RMSD reduction. As can be seen, larger improvements using
the GA method are obtained in H simulations, with a higher
RMSD reduction and smaller spreads than those depicted for
LST and LE, as can be noticed from the interquartile ranges.

Summarizing the results focusing only on those from GA
and the three analysed variables, the most substantial en-
hancements are found when considering the entire 3 h LST
series, either independently (3 h-LST DA experiment) or
jointly with other attributes of the diurnal cycle such as
the 3 h-LST+ Tmax DA (or the 3 h-LST+Ampl and 3 h-
LST+Ampl+ Tmax experiments; not shown). These config-
urations yield an average RMSD reduction of between 72 %
and 78 % for the three variables (LST, LE, and H ). Con-
versely, assimilating a single characteristic of the diurnal

cycle (the LST13, Tmin, Tmax, Ampl, slope13, and slope19
DA experiments) results in comparatively smaller improve-
ments, with an average RMSD reduction of between 53 %
and 67 %. Furthermore, it is worth noting that assimilating a
single daytime observation independently of all other obser-
vations throughout the day, specifically to calculate diurnal
cycle characteristics (e.g. LST at 13:00 LT), yields the least
improvement in LST posterior simulations. When consider-
ing the potential assimilation of data from upcoming thermal
missions like TRISHNA or LSTM (Land Surface Temper-
ature Monitoring), which will provide LST at 13:00 LT to
primarily detect water stress (Lagouarde et al., 2019; Koetz
et al., 2018), our findings suggest that assimilating LST13 in
ORCHIDEE is less optimal to enhance the diurnal cycle of
LST and energy fluxes, compared with other constraints. It is
interesting to compare the performance obtained by assimi-
lating a single LST at 13:00 LT (LST13) with the daily max-
imum LST (Tmax), which typically occurs at 16:00 LT on a
3 h basis at the ES-Abr site. The LST13 experiment results in
lower improvements with respect to LST and H simulations
than when assimilating Tmax. Specifically, the median RMSD
reductions in LST simulations are 26 % for the Tmax experi-
ment and 45 % for the LST13 experiment. Conversely, both
experiments (Tmax and LST13) yield nearly identical median
RMSD reductions (63 % and 64 %, respectively) in LE sim-
ulations, slightly higher than assimilating the entire 3 h LST
time series (59 %). In any case, the fact that the errors in
the surface fluxes and LST simulations have been reduced
by assimilating a single observation at 13:00 LT confirms the
potential use of TRISHNA or LSTM for monitoring water
resources.

Nevertheless, through the combination of
different characteristics of the diurnal cycle,
such as in the LST13+ slope13+ slope19 and
Ampl+LST13+ slope13+ slope19 DA experiments
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(not shown), noteworthy improvements similar to those
achieved using the entire LST series can be attained, with an
average RMSD reduction of 74 % for both experiments.

3.1.2 Parameter and uncertainty estimates

The optimized parameters from the different DA experi-
ments are illustrated in Fig. 3. In general, when utilizing
the GA method, the averages of the optimized parameters
from the 16 independent runs per DA experiment closely
align with the true parameter values for a majority of the
parameters. This holds especially for n, Lage,crit, and z,
which are among the most LST-sensitive parameters ac-
cording to the sensitivity analysis (see Fig. B1). Further-
more, irrespective of the DA experiment, these three pa-
rameters exhibit the smallest standard deviation. This in-
dicates that the GA method consistently converges accu-
rately to the true parameter values across the 16 runs. It is
worth noting that the most sensitive parameter (Albedo∗)
does not show stable results across DA experiments using
the GA method. While Albedo* shows mean values in close
proximity to the true value, it exhibits larger spreads when
assimilating single characteristics of the diurnal cycle, such
as those observed with the BFGS method. This behaviour
can be attributed to the nature of this surface albedo param-
eter, which was defined as a multiplicative factor applied
to two albedo components associated with vegetation and
soil. This configuration may lead to error compensation ef-
fects between several parameters when assimilating a sin-
gle characteristic, preventing a unique solution for Albedo∗

in the optimization process. Nevertheless, when assimilat-
ing a combination of four or five characteristics of the di-
urnal cycle, such as the Ampl+LST13+ slope13+ slope19
and Ampl+ Tmax+LST13+ slope13+ slope19 DA experi-
ments (see Fig. S2), the obtained results are comparable to
assimilating the 3 h LST alone. In these cases, the mean opti-
mized values are very close to the true value, and the spreads
are smaller, indicating a more accurate and consistent assim-
ilation outcome.

Even though HC∗ (related to soil heat capacity) and STC∗

(related to soil thermal conductivity) are among the most sen-
sitive parameters to the selected characteristics of the diurnal
cycle (Fig. B1), their retrieval is not optimal for all DA exper-
iments, as indicated by large spreads in their optimized val-
ues. This is directly linked to the fact that they are highly an-
ticorrelated with other parameters, as evidenced by the pos-
terior covariance matrix (see Fig. S3).

In our efforts to evaluate the potential of assimilating the
CCI-LST product to constrain ORCHIDEE parameters us-
ing twin experiments, we also consider the actual availabil-
ity and uncertainties associated with CCI-LST over the pixel
corresponding to the ES-Abr site (Appendix C). We con-
duct two DA experiments with the GA method: assimilat-
ing the 3 h LST series alone (3 h-LST DA) and incorporating
the Tmax (3 h-LST+ Tmax DA). For both DA experiments, the

RMSD values are comparable to those obtained when con-
sidering the full pseudo-data series, although lower, particu-
larly for LE (Fig. C1). However, the availability of CCI-LST
data may significantly impact the estimation of daily maxi-
mum LST (Tmax) – as well as the other characteristics – es-
pecially at sites characterized by climates with higher cloud
occurrence compared with the ES-Abr site. Consequently,
when conducting the real DA experiments, we only consider
the entire 3 h CCI-LST series (LST DA).

3.2 DA based on actual LST observations

From the above twin experiments, we concluded that the op-
timal DA set-up to be used with the CCI-LST product is the
assimilation of the 3 h CCI-LST data with the GA method.
Thus, we run such an optimization for the year 2018 across
the 34 Warm Winter sites. Figure 4 illustrates the annual
and diurnal cycles of LST in June at two contrasting sites:
Chamau in Switzerland (CH-Cha; Fig. 4a, b), character-
ized by a humid and cool temperate climate (Cfb, according
to Köppen–Geiger), and Las Majadas South in Spain (ES-
LM2; Fig. 4c, d), characterized by a dry Mediterranean cli-
mate (Csa). LST simulations using default ORCHIDEE pa-
rameters (Prior) and optimized parameters after assimilat-
ing CCI-LST data (Optimized) are compared against in situ
fluxes. At both sites, the Prior LST simulations are clearly
overestimated with respect to both the annual and diurnal
cycles. The Optimized LST is improved at both sites, with
the RMSD being decreased from 3.6 to 2.2 K at CH-Cha
and from 2.8 to 2.2 K at ES-LM2 on a daily basis. The im-
provement is more noticeable at an hourly timescale dur-
ing daytime hours in June (Fig. 4b, d), particularly at the
CH-Cha site, where the assimilation of CCI-LST data sig-
nificantly corrects the Prior overestimation. At the CH-Cha
site, the RMSD is decreased from 5.2 to 1.8 K, while the
RMSD is decreased from 3.1 to 2.0 K at ES-LM2. Although
the bias in Prior LST on a monthly scale is substantially
corrected, the assimilation process encounters difficulties
in fully addressing the overestimation observed in winter
months (Fig. 4a, b, c). The latter is mainly attributed to a
reduced availability of data during colder months. It is note-
worthy that the number of observations in winter months can
be nearly a third of that in summer, contributing to the diffi-
culties observed. In addition, the issue is also influenced and
inherently connected to a weakened constraint of LST on the
surface energy balance under radiation-limited conditions.

Figures 5 and 6 illustrate the annual and diurnal (in June)
cycles of Prior and Optimized Rn, LE, and H compared
against in situ observations at the same contrasting sites (CH-
Cha and ES-LM2). At both sites, Prior Rn and LE are under-
estimated, whereas PriorH is overestimated, which is linked
to the overestimated Prior LST shown in Fig. 4. Similarly
to the improvements observed in LST simulations, the as-
similation of CCI-LST data effectively corrects much of the
underestimation in Rn and LE at both monthly (Fig. 4a, c)
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Figure 3. Parameter estimates for each DA experiment over the selected site in Spain (ES-Abr) comparing the 11 optimized parameters
between the gradient-based (in blue) and genetic (in red) methods. Parameter estimates are represented by the mean and standard deviation
across 16 optimization tests with random first-guess parameter values. The x axis indicates the DA experiment assimilating a single character-
istic of the diurnal cycle (LST13, Tmax, Ampl, and slope13), the 3 h LST pseudo-observations (LST), and including the Tmax (LST+ Tmax).
The true parameter (default ORCHIDEE value) and prior values (defined randomly) are represented by the solid and dashed horizontal lines,
respectively.

and hourly (Fig. 4b, d) scales. Notably, improvements are
evidenced during summer months and daylight hours (be-
tween 08:00 and 18:00 UTC). At both sites, the LE fluxes
exhibit more pronounced improvements compared with Rn
and H , in contrast to the twin DA experiments where the
improvement is more important for H . At the CH-Cha site
(Fig. 5), the RMSD values in LE fluxes are reduced from
43.8 to 18.5 W m−2 and from 122.2 to 47.3 W m−2 on a
daily and 30 min basis, respectively, both representing an
improvement of about 60 %. At the ES-LM2 site (Fig. 6),
the RMSD values are reduced from 20.1 to 8.8 W m−2 and
from 62.2 to 35.3 W m−2 on a daily and 30 min basis, respec-
tively. Regarding H , significant enhancements are observed
at CH-Cha, whereas improvements at ES-LM2 are slight and
mostly noticeable from March to May and during night-time
hours (between 19:00 and 06:00 UTC). In fact, the RMSD in
30 min H at CH-Cha is decreased from 63.5 to 29.4 W m−2,
while it is slightly increased from 60.3 to 63.5 W m−2 at
ES-LM2. The disparity in improvements between the two
sites can be attributed to the complexity of surface hetero-
geneity. Additionally, soil heat fluxes and water infiltration
capacity, both presenting significant uncertainties in mod-
elling and measurement, become particularly crucial at semi-

arid sites. For instance, at the ES-LM2 site, H is signifi-
cantly overestimated during daytime hours in summer, in-
dicating that the soil heat flux is correspondingly underesti-
mated. CH-Cha, characterized as a homogeneous grassland
site and well-classified in ORCHIDEE’s PFT maps, experi-
ences a significant improvement in all three surface energy
fluxes. Conversely, at ES-LM2, a more complex savanna site
predominantly covered by Quercus ilex and grass but classi-
fied as cropland when used in ORCHIDEE, shows a compar-
atively smaller improvement, particularly in terms of H .

Figure 7 illustrates the performance of assimilating 3 h
CCI-LST data for the year 2018 across the 34 sites, showcas-
ing the RMSD reduction in LST, Rn, LE, and H . Through-
out all of the sites, the assimilation of CCI-LST data leads
to improvements in LST simulations. The enhancements in
LST reach up to a 60 % RMSD reduction from Prior to Op-
timized simulations, with a median value of 24.6 % across
all sites. Furthermore, at the majority of the sites, the assim-
ilation also yields improvements in the three energy fluxes.
Specifically, Rn, LE, and H exhibit RMSD reduction im-
provements at 72.0 %, 79.4 %, and 70.6 % of the sites, re-
spectively. Remarkably, the most substantial enhancements
are observed in LE, with an RMSD reduction of up to 60 %
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Figure 4. Annual cycle (a, c) and diurnal cycle in June (b, d) of LST for 2018 over a grassland (CH-Cha; a, b) and a cropland (ES-
LM2; c, d) site. Observed LST represents the mean (black dot) and standard deviation (shaded area) of 3 h CCI-LST data. The mean and
standard deviation of Prior and Optimized LST are computed from the same CCI-LST availability. Coloured dots at the top of each plot
represent the number of CCI-LST observations per month or hour. The RMSD on a daily (RMSDday; a, c) and 30 min (RMSD3 h; b, d) basis
is shown for Prior (red) and Optimized (green) simulations. Note that the 30 min LST is evaluated at 3 h intervals when CCI-LST is available.

Figure 5. Annual cycle (a) and diurnal cycle in June (b) of Rn (left panels), LE (middle panels), and H (right panels) for 2018 over a
grassland (CH-Cha) site. The mean (dot) and standard deviation (shaded area) are represented for in situ observations (black) and for Prior
(red) and Optimized (green) ORCHIDEE simulations. The RMSD on a daily (RMSDday; a) and 30 min (RMSD30 min; b) basis is shown for
Prior (red) and Optimized (green) simulations.
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Figure 6. Annual cycle (a) and diurnal cycle in June (b) of Rn (left panels), LE (middle panels), and H (right panels) for 2018 over a
cropland site (ES-LM2). The mean (dot) and standard deviation (shaded area) are represented for in situ observations (black) and for Prior
(red) and Optimized (green) ORCHIDEE simulations. The RMSD on a daily (RMSDday; a) and 30 min (RMSD30 min; b) basis is shown for
Prior (red) and Optimized (green) simulations.

and median values of 19.9 %, followed by Rn and H , both
with medians of 9.5 %.

We observe that superior performance with respect to LST
and turbulent fluxes (LE andH ) is achieved at grassland and
cropland sites, whereas the worst results are observed at ever-
green needleleaf forest (ENF) sites. Particularly noteworthy
are the substantial improvements in LE for grassland sites,
with a median RMSD reduction for each PFT of between
21 % and 47 %. Meanwhile, H improvements in grasslands
and croplands are about 20 %. In contrast, the assimilation
outcomes for forest sites do not demonstrate comparable suc-
cess. It is important to highlight that the four ENF sites with
cool boreal climates show degradation in fluxes after assim-
ilation, with the exception of the CH-Aws site. This deteri-
oration is linked to the complex terrain of these four sites,
which are situated in mountainous regions with a cool bo-
real climate, including three in the Alps (CH-Aws, CH-Dav,
and IT-Ren) and one in the Carpathians (CZ-BK1). On the
other hand, ENF in other climates demonstrates varied per-
formance across sites, with no overall change in the RMSD
for LE (median RMSD reduction of 0.9 %). However, there
is an improvement in terms of the RMSD reduction for H ,
approximately 9.3 %. That can be explained by the fact that
evapotranspiration in these forests is less affected by water
stress, as their roots can extract water deeper, and therefore
the vegetation temperature is more stable and does not con-
tribute much to the optimization of LE.

Figure 8 depicts the breakdown of the MSE into the
bias (SB), difference in the standard deviations (SDSD), and
lack of correlation (LCS) across sites for LST and the three
simulated fluxes using the default ORCHIDEE parameters
(Prior) and the optimized parameters after assimilating CCI-
LST data (Optimized). The MSE in LST is significantly de-
creased from the Prior to Optimized ORCHIDEE simulations
in terms of both the median and spread values. In practice,
the median MSE decreases from 3.91 to 2.50 K, represent-
ing an MSE reduction of 36 % from Prior to Optimized LST
in the model–data fit. This MSE reduction comes mainly
from the reduction in the two major components of the Prior
MSE: SB and LCS. The bias component (SB) shows an im-
portant improvement that is decreased from 2.20 to 0.49 K
(i.e. decreased by 78 %) from the Prior to Optimized sim-
ulations. Although the SDSD component shows a degrada-
tion (increased) after assimilation, this error remains small
(i.e. with median values of 0.77 to 1.06 K). This degradation
is explained by a slight underestimation of the standard de-
viation of simulations compared with that of observations,
which are the first and second terms of Eq. (5), respectively.
Consequently, this leads to an augmentation in the disparity
between the standard deviations of simulations and observa-
tions.

The MSE components in Rn show similar and relatively
smaller values, ranging between 0 and 40 W m−2, whereas
they can exceed 80 W m−2 in LE and H . After assimila-
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Figure 7. Box plots showing the performance, in terms of model–data RMSD reduction (%), obtained for hourly Rn, LE, and H over sites
assimilating 3 h LST from the ESA CCI product in 2018. Note that, in 2018, Rn is only available for 25 of the 34 sites assessed.

Figure 8. Box plots showing the decomposition of the mean-square error (MSE) in terms of bias (SB), difference in the standard devia-
tions (SDSD), and lack of correlation (LCS) between the model and observations for 30 min LST (a), Rn (b), LE (c), and H (d) across sites
in 2018. For clarity, note that the square root of the error components is plotted.

tion, significant improvements are evident across all three
components (SB, SDSD, and LCS), as observed in the me-
dians of the Optimized simulations. With the exception of
LCS in LE, the medians are significantly reduced for the
three fluxes, reflecting a substantial reduction in the MSE
components after assimilating CCI-LST data. For LE, the
ORCHIDEE model using default parameters (Prior) mainly

struggles with respect to simulating the amplitude of the sea-
sonal cycle across a majority of sites, as evidenced by the
substantial Prior SDSD with a high median (35.5 W m−2)
and significant spread. The SDSD is significantly reduced by
70 % after assimilating LST data, along with a 40 % reduc-
tion in the bias component (SB). However, the fluctuation
pattern is compromised, as indicated by a larger LCS for Op-
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Figure 9. Box plots showing the decomposition of the MSE per season in terms of bias (SB), difference in the standard deviations (SDSD),
and lack of correlation (LCS) between the model and observations for 30 min LST across sites in 2018. For clarity, note that the square root
of the error components is plotted.

timized simulations, signifying a 33 % deterioration in the
temporal pattern. Regarding H , all three components show
improvement, with particular enhancements in the bias (SB)
(which is reduced by 40 %), as for LE. Even though the tem-
poral pattern (LCS) of H is reduced by 9 %, it remains the
most important component for a majority of sites, as seen
by a large median and spread in Optimized H . This can also
be observed in the MSE decomposition by site (illustrated
in Fig. D1). Therefore, the assimilation faces challenges pri-
marily with respect to enhancing the temporal pattern of tur-
bulent fluxes, where LCS is the major MSE component in
LST, LE, and H , constituting 47 %, 71 %, and 61 % of the
total MSE, respectively.

The challenge related to the temporal pattern of turbulent
fluxes, represented by the lack of correlation component, is
further highlighted when examining the correlation coeffi-
cient between simulations and observations, analysed sepa-
rately for each hour and month (not shown). During daytime
hours (between 08:00 and 16:00 UTC), median correlations
are equal to 0.81 for both LE andH . However, during night-
time hours (between 20:00 and 04:00 UTC), these correla-
tions drop to 0.15 for LE and to 0.46 for H , as could be ex-
pected given the much lower values of the fluxes encountered
during night-time. While the disparity is less pronounced on
a monthly scale, median correlations in December and Jan-
uary are notably lower (0.41–0.46 for LE and 0.53 for H )
compared with the rest of the year. The median correlation
values range between 0.64 (in November) and 0.90 (May–
June) for LE and between 0.75 (November) and 0.92 (Au-
gust) for H .

Figure 9 shows the breakdown of the MSE in LST per sea-
son, highlighting the periods when the assimilation of CCI-
LST data exerts a more pronounced impact throughout the
year. Similar to the overall MSE in LST shown in Fig. 8,
the MSE in spring (April–May–June, AMJ, in Fig. 9) and
summer (July–August–September, JAS) experiences a sub-
stantial reduction in terms of the median value, from 4.2 to
2.3 K and from 3.7 to 2.3 K, respectively. Conversely, the
MSE values in winter (January–February–March, JFM) and

autumn (October–November–December, OND) are slightly
reduced, from 3.0 to 2.8 K, for both seasons. In all seasons,
the bias component is the most reduced component after as-
similating the 3 h CCI-LST. For instance, during warmer sea-
sons (AMJ and JAS), the bias component experiences the
most significant reduction, with median values decreasing
by 72 % (from 3.0 to 0.8 K) and 86 % (from 2.2 to 0.3 K)
in AMJ and JAS, respectively. In addition, the spread of the
bias component is markedly diminished during these sea-
sons. However, in both seasons, the difference in standard de-
viations (SDSD) increases, indicating that the assimilation of
CCI-LST data encounters challenges with respect to improv-
ing the amplitude of the seasonal cycle, which is consistent
with observations for the rest of the year. As discussed above,
the smallest improvements in LST simulations in colder sea-
sons can mainly be linked to the reduced availability of data
(more cloudy conditions) during colder months, as observed
in Fig. 4 for two contrasting sites. It is worth noting that the
availability of data in winter is, on average, 63 (±30) ob-
servations per month across all sites, whereas the average is
increased to 118 (±35) observations per month in summer.

As observed in the case of LST (and closely associated
with it), similar seasonal enhancements are evidenced for the
surface energy fluxes (Rn, LE, and H ), indicating further
improvements during warmer seasons (see Fig. S4). During
spring (AMJ) and summer (JAS), significant reductions in
the MSE are observed for all three fluxes after optimization,
particularly for LE, where the MSE is reduced by 28 % and
22 % for AMJ and JAS, respectively. Notably, during these
seasons (AMJ and JAS), LE presents significant improve-
ment in both the bias and SDSD components. Similarly, the
bias component is significantly improved for H after as-
similating CCI-LST data. However, the three fluxes exhibit
slight enhancements in the MSE during winter (JFM) and
autumn (OND), with median values of their components be-
ing quite comparable between Prior and Optimized simula-
tions. Confirming the evidence presented in Fig. 8 across all
variables assessed (LST and fluxes) during 2018, the lack
of correlation component (LCS) in Optimized simulations
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emerges as the primary MSE component for all seasons, ex-
hibiting the least improvement following the assimilation of
CCI-LST data. Consequently, the LCS remains the dominant
MSE component for all variables and seasons, with the ex-
ception of Rn in spring (see Fig. S4).

3.2.1 Model performance for the evaluation period

The parameters optimized from the assimilation of CCI-LST
data in 2018 over each site are used to simulate LST and sur-
face energy fluxes during the evaluation period (2009–2020)
for stations with available in situ data. Figure 10 shows the
performance with respect to the RMSD reduction in LST,
Rn, LE, and H considering optimized parameters across the
34 sites from 2009 to 2020. In contrast to the optimization
year (2018), some deterioration is observed in LST for a cou-
ple of sites during the validation period. The results obtained
for the three fluxes for each year are very similar to those ob-
tained in the optimization year, with most of the sites present-
ing improvements using the optimized parameters in 2018. In
fact, the median RMSD reduction values per year are quite
stable across years for the three fluxes, which are equal to
7.2 %, 19.7 %, and 9.5 % forRn,LE, andH , respectively. As
found in 2018 for LE andH , better performance is observed
for grassland and cropland sites, whereas the worst perfor-
mance is found in ENF and boreal climates when compared
with the other vegetation and climate types. Specifically, the
ENF sites systematically exhibit less improvement or even
deterioration for LST andLE, with RMSD reductions falling
below their median values.

3.2.2 Improvement in fluxes from average parameters

We calculate the median of optimized parameters across sites
to account for a unique set of PFT-specific parameters. Thus,
we run ORCHIDEE with this unique parameter set for each
PFT over the 34 sites from 2009 to 2020 to evaluate the effec-
tiveness of optimized parameters at larger scales. This assess-
ment aims to determine whether the improved performance
at each site aligns with that achieved using site-specific pa-
rameters.

Although the performance over the years is inferior for
LST compared with that obtained using optimized parame-
ters for each site, the results obtained for the three fluxes re-
main quite similar (see Fig. 11). The averaged median RMSD
reduction across years for LST decreases to 13.8 % using
PFT-specific parameters, instead of 20.6 % using the param-
eters optimized for each site. In turn, the median RMSD re-
duction values per year for the three fluxes exhibit not only
consistent stability across the years, comparable to using
site-specific parameters (Fig. 10), but also a slight increase.
The average medians for Rn, LE, and H are notably higher,
reaching 13.1 %, 20.7 %, and 9.6 %, respectively, compared
with average medians of 7.3 %, 19.7 %, and 9.6 % using site-
specific parameters. It is noteworthy that Rn experiences ad-

ditional improvement when utilizing a unique set of param-
eters. This enhanced improvement is mainly visible at grass-
land and cropland sites, which show more significant im-
provement when using a unique set of parameters, as illus-
trated in Fig. 11. Particularly remarkable are the substantial
enhancements at grassland sites, with all sites experiencing
an improvement in Rn simulations using PFT-specific pa-
rameters compared with site-specific parameters. In fact, the
median RMSD reduction in Rn simulations is increased from
4 % using site-specific parameters to 17 % using PFT-specific
parameters. These improvements are particularly observed
at sites characterized by boreal climates, where the assim-
ilation of CCI-LST data struggles to enhance simulations.
However, certain sites experience a decline when employing
a unique set of parameters, notably the ENF sites. The LST
and Rn simulations over these sites deteriorate in compari-
son to both prior simulations and those utilizing site-specific
optimized parameters.

In contrast, improvements in RMSD reductions for LE
and H using a unique set of optimized parameters are com-
parable (or even superior) to using site-specific optimized
parameters across the four vegetation types. Notably, grass-
land sites exhibit significant additional enhancements for LE
and H when employing a unique set of parameters, with the
exception of sites under temperate cool climates for LE.

While multi-site optimization using only LE and H data
has been proven to further enhance model performance com-
pared with averaging site-specific parameter values (Kup-
pel et al., 2012), its implementation can become challenging
with LST data, given that we have numerous PFTs and soil
textures, resulting in a multitude of cases to consider. Our
findings suggest that using the median of site-specific param-
eters can offer a practical and effective alternative to calibra-
tion, particularly in cases where a multi-site set-up would be
overly complex.

4 Discussion

According to our results, we expect that using the PFT-
specific parameters derived from the 34 evaluated sites will
enhance ORCHIDEE simulations of LST and energy fluxes
at a regional scale. While improvements are anticipated for
croplands, grasslands, and deciduous broadleaf forests, they
are less likely for evergreen needleleaf forests, especially in
boreal climates. It is important to note that, in this study, only
7 of the 15 ORCHIDEE PFTs are represented by these sites,
with some, like boreal evergreen needleleaf forests, being un-
derrepresented. This study seeks to improve simulations of
LST and surface energy fluxes at a regional scale. However,
ongoing work aims to assimilate CCI-LST data across vari-
ous pixels for all PFTs, ensuring identical representation (i.e.
the same number of pixels per PFT).
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Figure 10. Box plots showing the performance, in terms of model–data RMSD reduction (%), obtained for 30 min LST, Rn, LE, and
H from 2009 to 2020 using optimized parameters per site in 2018. The number of sites with available data per year is shown above each box
plot. The dashed black line represents the average of the medians over the years. The colour represents the dominant vegetation type per site:
CRO (cropland) – red; GRA (grassland) – orange; DBF (deciduous broadleaf forest) – blue; and ENF (evergreen needleleaf forest) – green.
The symbols represent the climate: warm temperate – squares; cool temperate – circles; warm boreal – triangles; and cool boreal – diamond.

4.1 Impact of the optimization period

We acknowledge that the selection of a particular year for
optimization may impact the selection of parameters to opti-
mize and the performance of the assimilation. Regarding the
selection of parameters for optimization, we conducted two
sensitivity analyses at the 34 sites for both 2017 and 2018,
separately. The selected parameters for optimization were
generally consistent between the 2 years, with the exception
of the parameters controlling the water stress curve (α) and
the critical soil moisture above which transpiration is maxi-
mal (θcrit,rel). In 2017, α and θcrit,rel were selected for opti-
mization at 7 and 6 sites, respectively, whereas both param-
eters were selected at 13 sites in 2018. This difference is at-
tributed to the drought conditions in 2018, which increased

the relevance of these water-stress-related parameters. Prop-
erly representing these parameters is crucial for future pro-
jections of climate and water resources (Fu et al., 2022,
2024), highlighting the importance of considering the appro-
priate conditions for accurately optimizing the processes that
we aim to improve.

In the twin experiments at the ES-Abr site, we assessed
the impact of selecting a specific year (2018) versus the en-
tire available 6-year period (2015–2020) on the performance
of 30 min LST and turbulent fluxes during 2017 (see Fig. E1).
We chose 2017 to ensure a more independent evaluation
of both calibration periods (2018 and 2015–2020). The re-
sults showed no significant differences with respect to im-
proving the fluxes in 2017 between using the entire period
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Figure 11. Box plots showing the performance, in terms of model–data RMSD reduction (%), obtained for 30 min LST, Rn, LE, and
H across all sites from 2009 to 2020 using optimized parameters per site (blue) and a single set of parameters per PFT (orange). The
site-specific parameters are obtained from the assimilation of 3 h CCI-LST observations in 2018, whereas the PFT-specific parameters are
obtained from the median of these site-specific parameters per vegetation type.

(2015–2020) and a single year (2018) for calibration. Al-
though using the entire period resulted in a slightly higher
RMSD reduction for the three variables with the GA method,
the BFGS method yielded superior performance when using
only 2018 for calibration. This may seem counterintuitive,
as additional information typically creates extra constraints,
helping to smooth the cost function and making local minima
less likely for BFGS. However, our findings can be explained
by the fact that drought periods in 2018 are less predominant
in a 6-year period, resulting in a less optimal solution for
the calibration of the water stress parameters with the BFGS
method.

4.2 Impact on vegetation phenology and soil water

We recognize that assimilating LST alone has its limitations
and cannot enhance the model–data fit of all variables con-
trolling water, energy, and carbon fluxes. To better under-
stand the performance of the LST assimilation procedure on
other variables less directly linked to energy fluxes, we as-
sessed the impact of LST optimization on soil water avail-
ability and gross primary productivity (GPP). As the number
of sites with available soil moisture data are limited and mea-
surement depths vary among sites, we evaluated the impact
on the top 10 cm of soil moisture in our twin experiments.
The soil moisture showed a clear improvement (positive me-
dian RMSD reduction) when assimilating the 3 h LST alone
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using the GA method. The median RMSD reduction for this
experiment (3 h-LST) represented a 10.4 % enhancement in
the soil moisture, although some runs among the 16 different
first guesses resulted in a deterioration of soil moisture. The
fact that the 3 h-LST DA showed an overall improvement in
soil moisture confirms the chosen strategy for the assimila-
tion of the CCI-LST data.

Regarding the GPP, we assess the impact by assimilating
the 3 h CCI-LST time series over the 34 Warm Winter sites
in 2018. Assimilating the 3 h LST data results in an overall
degradation in GPP, with a median RMSD increase of 7.4 %
across sites. Among the studied sites, 14 of 34 show im-
provements under diverse conditions, such as the grassland
CH-Cha and Mediterranean ES-LS2 sites (see Fig. F1). At
the other sites, larger errors were obtained, with RMSD in-
creases of up to 55.4 %. For instance, while the cropland CH-
Oe2 site exhibits a 36.1 % improvement in LE, the RMSD in
GPP is increased by 41.3 % (see Fig. F2). Despite the mixed
results obtained for GPP, the improvement observed at the
14 sites (i.e. 41 % of the sites) is a promising outcome, es-
pecially considering the challenge with respect to enhancing
model variables that are not closely linked to LST. In fact, as-
similating a single data stream may even degrade the model
simulations of other variables, as shown in Kato et al. (2013)
and Bacour et al. (2015, 2023). In our study, as we calibrated
only parameters impacting LST and kept the carbon-related
parameters previously optimized without LST observations,
a degradation of the carbon fluxes is not surprising. Nonethe-
less, the overall improvement in the energy fluxes, such as the
20.6 % enhancement in LE and 9.6 % enhancement in H , is
significantly more impactful than the observed degradation
in GPP.

Although improvements in soil moisture and phenology
were not expected when assimilating only LST data, the en-
hancements found in the twin experiments for soil moisture
and at some sites for GPP (in the DA experiments based on
actual data) are very encouraging. These results support on-
going efforts to jointly assimilate LST with satellite-derived
products such as the leaf area index, albedo, or soil mois-
ture into ORCHIDEE. Such an approach is expected to better
constrain a wider range of energy, water, and carbon param-
eters, enhancing the overall performance of the model.

5 Summary and conclusions

This study focuses on the assimilation of ESA CCI-LST data
into the ORCHIDEE land surface model with the aim of re-
fining LST and surface energy flux simulations. Through a
series of synthetic twin DA experiments, we explore different
optimization methods (BFGS and GA) and assimilated state
variables (individual LST observations and characteristics of
the LST diurnal cycle) to determine the most effective assim-
ilation strategy. The selected strategy is then implemented to
assimilate actual CCI-LST data across 34 European sites in

an optimization year (2018) and, finally, validated from 2009
to 2020.

The results from the twin DA experiments reveal that
the genetic algorithm (GA) consistently outperforms the
BFGS method, evidencing more substantial improvements
than those achieved by BFGS in all DA experiments for both
LST and turbulent fluxes. This superiority is underscored by
the reliability and consistency exhibited by the GA method.
This is exhibited not only in RMSD reductions from prior to
posterior simulations but also in the consistent convergence
to the true parameter values across the 16 runs with random
first guesses, particularly for the most LST-sensitive parame-
ters.

Concerning the performance of the model optimization,
our findings show that the most substantial enhancements are
evidenced when considering the entire 3 h LST series, either
individually (the LST DA experiment) or jointly with other
attributes of the diurnal cycle (the LST+ Tmax, LST+Ampl,
and LST+Ampl+ Tmax DA experiments). In contrast, as-
similating a single characteristic of the LST diurnal cycle
(e.g. LST at 13 h, daily minimum, maximum, amplitude,
and morning and afternoon gradients) yields comparatively
smaller improvements in both the LST and H simulations.
Conversely, for LE, assimilating a single characteristic such
as LST13, Tmax, Tmin, or Ampl, resulted in an improvement
very close to that obtained by the entire 3 h LST series. Our
findings suggest that assimilating LST at 13:00 LT, as will
be possible with the forthcoming TRISHNA and LSTM mis-
sions, can significantly enhance LE simulations. This high-
lights the valuable contribution that these missions can make
to the future modelling of the Earth’s surface and monitoring
of water resources. Nevertheless, through the combination of
different characteristics of the diurnal cycle, noteworthy im-
provements similar to those achieved using the entire 3 h LST
series can be reached for both LST and turbulent fluxes. It
should be noted that these outcomes are obtained consider-
ing the full availability of 3 h pseudo-observations, so they
might be considerably degraded with the actual availability
of CCI-LST (i.e. considering cloudy conditions).

Therefore, we proceed with the assimilation of actual CCI-
LST data over 34 European sites, focusing exclusively on
the complete 3 h CCI-LST series (LST DA). The limitation
stems from the scarcity of available LST observations per
day, especially at sites situated in boreal climates that are
more prone to the occurrence of cloudy conditions. Con-
sequently, this specific DA experiment is identified as the
most effective assimilation strategy, as introducing additional
characteristics to the LST series does not yield a substantial
further advantage in the assimilation process.

The optimization of key parameters for each site leads to a
remarkable enhancement in the surface energy fluxes at the in
situ level, with improvements observed across LST, Rn, LE,
and H . Notably, the optimization conducted over a single
year yields improved ORCHIDEE simulations over the en-
tire 11-year validation period. The benefits of this optimiza-
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tion are not uniform and vary depending on vegetation types
and climates. For instance, cropland and grassland sites ex-
hibit larger reductions in the RMSD compared with forested
sites, particularly for evergreen needleleaf forests, where de-
graded simulations are observed after assimilation. Similarly,
warmer climates show a greater RMSD reduction than boreal
climates, where the assimilation of LST struggles to enhance
LST and energy fluxes. The latter is explained by the fact that
water is not limiting at evergreen needleleaf forest sites or in
cold climates, leading to a weakened LST–evapotranspiration
relationship (i.e. energy-limited evapotranspiration regimes).

To evaluate the applicability and effectiveness of opti-
mized parameters at a broader scale, from regional to global
scales, we employ a unique set of parameters for each PFT
obtained from the optimization for each site. We evaluate
ORCHIDEE simulations using the median of parameters
specific to vegetation type (PFT-specific) across all 34 sites
from 2009 to 2020. Significantly, the performance for both
LST and fluxes exhibits not only consistent stability over the
years, comparable to using site-specific parameters, but also
indicates a slight improvement in energy fluxes. However, as-
similating LST alone has limitations and cannot improve all
variables controlling water, energy, and carbon fluxes. Never-
theless, our findings reveal promising outcomes, such as the
clear improvement in soil moisture in the twin experiment
and the enhancement of GPP at several studied sites. Despite
the challenges, these results indicate that LST data can posi-
tively influence variables less directly linked to energy fluxes.
This underscores the potential of combining LST with other
satellite-derived products, such as the leaf area index, albedo,
and soil moisture, to better constrain and improve the overall
performance of the ORCHIDEE model.

Furthermore, our findings underscore the notable impact
of the ESA CCI-LST product and its associated uncertainty
on effectively constraining water and energy fluxes within
the ORCHIDEE model. This suggests that integrating CCI-
LST data can substantially contribute to further improving
climate simulations with Earth system models and advancing
our comprehension of land–atmosphere interactions. How-
ever, future research is essential to refine the utilization of un-
certainties provided by the CCI-LST product. This involves
integrating time-varying observation errors derived from the
3 h LST uncertainty associated with each observation into
ORCHIDAS as well as exploiting the decomposed uncertain-
ties while considering their spatio-temporal variability.
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Appendix A: Sites and pseudo-observations assimilated

Table A1. Main characteristics of sites used in this study in terms of location, availability of data (years), and vegetation and climate types.

Site Latitude Longitude Years Vegetation Climate
type1 type2

BE-Dor 50.31 4.97 2011–2020 CRO temp_cool
BE-Lon 50.55 4.75 2004–2020 CRO temp_cool
BE-Maa 50.98 5.63 2016–2019 ENF temp_cool
CH-Aws 46.58 9.79 2006–2019 ENF boreal_cool
CH-Cha 47.21 8.41 2005–2019 GRA temp_cool
CH-Dav 46.82 9.86 1997–2019 ENF boreal_cool
CH-Lae 47.48 8.36 2004–2019 DBF temp_cool
CH-Oe2 47.29 7.73 2004–2019 GRA temp_cool
CZ-BK1 49.50 18.54 2004–2019 ENF boreal_warm
CZ-Lnz 48.68 16.95 2015–2019 DBF temp_cool
CZ-RAJ 49.44 16.70 2012–2019 ENF temp_cool
CZ-Stn 49.04 17.97 2010–2019 DBF temp_cool
CZ-wet 49.02 14.77 2006–2019 GRA temp_cool
DE-Geb 51.10 10.91 2001–2019 CRO temp_cool
DE-Gri 50.95 13.51 2004–2019 GRA temp_cool
DE-Hai 51.08 10.45 2000–2020 DBF temp_cool
DE-HoH 52.09 11.22 2015–2019 DBF temp_cool
DE-Hzd 50.96 13.49 2010–2019 ENF temp_cool
DE-Kli 50.89 13.52 2004–2019 CRO temp_cool
DE-Obe 50.79 13.72 2008–2019 ENF temp_cool
DE-RuR 50.62 6.30 2011–2020 GRA temp_cool
DE-RuS 50.87 6.45 2011–2020 CRO temp_cool
DE-RuW 50.50 6.33 2012–2020 ENF temp_cool
DE-Tha 50.96 13.57 1996–2019 ENF temp_cool
ES-Abr 38.70 −6.79 2015–2020 CRO temp_warm
ES-LM1 39.94 −5.78 2014–2020 CRO temp_warm
ES-LM2 39.93 −5.78 2014–2020 CRO temp_warm
FR-Lam 43.50 1.24 2005–2019 CRO temp_warm
IT-BCi 40.52 14.96 2004–2020 CRO temp_warm
IT-Lav 45.96 11.28 2003–2019 ENF temp_cool
IT-Lsn 45.74 12.75 2016–2020 CRO temp_warm
IT-MBo 46.01 11.05 2003–2019 GRA boreal_warm
IT-Ren 46.59 11.43 1999–2020 ENF boreal_cool
IT-Tor 45.84 7.58 2008–2019 GRA boreal_cool

1 Vegetation types are as follows: CRO – cropland; GRA – grassland; ENF – evergreen needleleaf forest;
and DBF – deciduous broadleaf forest. 2Climate types are as follows: temp_warm – warm temperate
climate; temp_cool – cool temperate climate; boreal_warm – cool boreal climate; and boreal_cool – cool
boreal climate.
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Appendix B: Sensitivity analysis and optimized
parameters in twin DA experiments

The Morris method determines incremental ratios (i.e. ele-
mentary effects, EE), from which the mean (µ) and standard
deviation (σ ) for all the trajectories are calculated to assess
the overall importance of each parameter. The µ values are
used to rank the parameters in order to systematically dis-
criminate between non-sensitive parameters (low µ values)
and sensitive ones (high µ). The σ values are used to exam-
ine the non-linear effects and/or interactions with other pa-
rameters. To assess the results, we look at the normalized µ
divided by the maximum µ corresponding to the most sensi-
tive parameter. Thus, this results in a ranking built with val-
ues between 0 and 1, with 1 representing the most sensitive
parameters and 0 representing parameters with no sensitiv-
ity (as shown in the colour bar of Fig. B1). Similarly, the
σ values are normalized by the maximum µ. We select the
parameters with an average (across LST constraints) normal-
ized µ or normalized σ higher than 0.2. Figure B1 illustrates
the 19 LST-related parameters of ORCHIDEE as a result of
preliminary sensitivity analyses in the ES-Abr site for 2018,
from which we identified 11 parameters (in bold in Table 1
in Sect. 2.3.2) to be optimized in the twin experiments.

Figure B1. Morris sensitivity scores obtained in the different sensitivity analysis experiments performed for the ES-Abr site. The plot
highlights the most influential key parameters, the various LST features studied, and their normalized importance. The LST features studied
are as follows: the 3 h LST (3 h-LST) series (3 h-LST), daily mean LST (3 h-LSTmean), daily amplitude LST (Ampl), maximum (Tmax) and
minimum (Tmin) LST, LST at 13:00 LT (LST13), and morning (slope13) and afternoon (slope19) gradients.
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Appendix C: Twin experiments using actual CCI-LST
availability and uncertainties

This approach allows us to conduct twin DA experiments
resembling a real observation case, building upon the find-
ings of the previous evaluation that utilized the full avail-
ability of pseudo-observations. For this purpose, the 3- LST
pseudo-observations, once filtered and perturbed with CCI-
LST availability and uncertainties, are used to conduct two
DA experiments with the GA method: assimilating the 3 h
LST series alone (LST DA) and incorporating the Tmax
(LST+ Tmax DA). These two scenarios were kept because
they showed the best results in the previous twin DA experi-
ments. For both DA experiments, the RMSD values are com-
parable to those obtained when considering the full pseudo-
data series, although larger, particularly for LE (Fig. C1).
The best performance across all three variables (LST, LE,
and H ) is observed in the 3 h-LST+ Tmax DA experiment,
with mean RMSD reductions of 65 %, 50 %, and 83 % for
LST, LE, andH , respectively. It is noteworthy that the avail-
ability and noise introduced from CCI data have a more
significant impact on LE compared with LST and H . Fur-
thermore, assimilating 3 h LST alone occasionally results in
some runs that increase errors for LE after the optimization.
In terms of the optimized parameters, they agree with the op-
timization using the full pseudo-observation series, i.e. the
most sensitive parameters align with the true parameter val-
ues with the exception of Albedo∗ (Fig. C2). Despite this, the
availability and uncertainties of CCI-LST data may signifi-
cantly impact the estimation of daily maximum LST (Tmax)
– as well as the other characteristics – especially at sites char-
acterized by climates with a lower occurrence of cloud-free
conditions, unlike the Mediterranean site used in the twin
experiment. Consequently, we will conduct the actual data
DA experiments by only considering the entire 3 h CCI-LST
series (LST DA).

Figure C1. Box plots of the model–data RMSD reduction (%) for 30 min LST, LE, andH obtained within 16 optimization tests with random
first-guess parameter values using the GA method in the twin experiments considering actual availability and uncertainties from CCI-LST
data. The x axis indicates the experiment assimilating 3 h LST pseudo-observations: 3 h-LST only and 3 h-LST+ Tmax.
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Figure C2. Parameter estimates for each twin experiment using the GA method considering actual availability and uncertainties of CCI data
represented by the mean and standard deviation across 16 optimization tests with random first-guess parameter values. The x axis indicates
the experiment assimilating 3 h LST pseudo-observations: 3 h-LST only and 3 h-LST+ Tmax. The true parameter (default ORCHIDEE value)
and prior values (defined randomly) are represented by the solid horizontal lines and the dashed horizontal lines, respectively.
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Appendix D: Decomposition of mean-square errors per
site

Figure D1. Decomposition of the MSE in terms of bias (SB), lack of correlation (LCS), and difference in the standard deviations (SDSD)
between the model and observations over sites for LST, Rn, LE, and H . The light and dark bars represent the decomposition for Prior
and Optimized simulations, respectively. LST observations are from 3 h CCI-LST data, whereas energy fluxes are from 30 min in situ
observations.
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Appendix E: Impact of the optimization period

Figure E1. Comparison of model performance in 2017 for 30 min LST, LE, and H when parameters are calibrated in 2018 only or for the
entire period (2015–2020) over the selected site in Spain (ES-Abr). Box plots obtained within 16 optimization tests with random first-guess
parameter values for the DA experiment using the gradient-based (in blue) and genetic (in red) methods in terms of the model–data RMSD.
The DA experiment assimilates the daily mean, amplitude, and maximum LST.

Appendix F: Impact of assimilating LST on phenology

Figure F1. Annual cycle of GPP modelled for 2018 over a grassland (CH-Cha; a) and cropland (ES-LM2; b) site. The mean (dot) and
standard deviation (shaded area) are represented for in situ observations (black) and for Prior (red) and Optimized (green) ORCHIDEE
simulations. The RMSD on a daily basis (RMSDday) against in situ observations is shown for Prior (red) and Optimized (green) simulations.

Figure F2. Annual cycle ofLE (a) and GPP (b) modelled for 2018 over a cropland site (CH-Oe2);LE is improved, whereas GPP is degraded
after assimilating CCI-LST data. The mean (dot) and standard deviation (shaded area) are represented for in situ observations (black) and for
Prior (red) and Optimized (green) ORCHIDEE simulations. The RMSD on a daily basis (RMSDday) against in situ observations is shown
for Prior (red) and Optimized (green) simulations.
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Code and data availability. The source code for the ORCHIDEE
model (version 2.2) used in this work is freely available online:
http://forge.ipsl.jussieu.fr/orchidee (ORCHIDEE, 2025). The OR-
CHIDEE model code is written in Fortran 90 and is maintained and
developed under a Subversion (SVN) version control system at the
Institute Pierre-Simon Laplace (IPSL) in France. The ORCHIDAS
data assimilation scheme (in Python) is available via a dedicated
website (https://orchidas.lsce.ipsl.fr, ORCHIDAS, 2025).

The ESA CCI-LST v1.1 product used in this
study is available at https://catalogue.ceda.ac.uk/uuid/
6775e27575124407afeebb4bb1dfaaf5 (Veal et al., 2022). The
Warm Winter database is available at https://www.icos-cp.eu/
data-products/2G60-ZHAK (Warm Winter 2020 Team and ICOS
Ecosystem Thematic Centre, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-29-261-2025-supplement.
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