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Abstract. Soil properties and their associated hydrophysi-
cal parameters represent a significant source of uncertainty
in land surface models (LSMs), with consequent effects on
simulated sub-surface thermal and moisture characteristics,
surface energy exchanges, and turbulent fluxes. These ef-
fects can result in large model differences, particularly dur-
ing extreme events. As is typical of many model-based ap-
proaches, spatial soil information such as the location, ex-
tent, and depth of soil textural classes is derived from coarse-
scale soil information and employed largely due to its be-
ing readily availability rather than its suitability. However,
the use of a particular spatial soil dataset can have im-
portant consequences for many of the processes simulated
within an LSM. This study investigates model uncertainty
in the Noah-MP model in simulating soil moisture (ex-
pressed as a ratio of water to soil volume, m3 m−3) and
soil temperature changes, associated with two widely used
global soil databases (STATSGO and SoilGrids). Both soil
datasets produced significant dry biases in loam soils of
0.15 and 0.10 m3 m−3 during a wet and dry period, respec-
tively. The spatial disparities between STATSGO and Soil-
Grids also influenced the simulated regional soil hydrother-
mal changes and extremes. SoilGrids was found to intensify
drought characteristics – shifting low and moderate drought
areas into the extreme and exceptional classifications – rel-
ative to STATSGO. Our results demonstrate that the coarse

STATSGO performs as well as the fine-scale SoilGrids soil
database, though the latter represents the soil moisture dy-
namics better. However, the results underscore the need for
greater collaborative efforts to develop more detailed region-
ally derived soil texture characteristics and to improve pe-
dotransfer function (PTF) parameterizations for better repre-
sentations of soil properties in LSMs. Enhancing these soil
property representations in LSMs is essential for improving
operational modeling and forecasting of hydrological pro-
cesses and extremes.

1 Introduction

The pedosphere (or soil) is an important component of the
Earth system and plays a critical role in energy, water, and
biogeochemical exchanges that occur at the land–atmosphere
interface (Dai et al., 2019a, b). The accurate description
and representation of soil textural categories and/or soil hy-
drophysical properties are fundamental in developing and
enhancing the capacity of Earth system models (ESMs) in
predicting land surface exchanges at different scales (Luo
et al., 2016; Dai et al., 2019a, b). This information is in-
corporated via the respective land surface model (LSM), the
only physical boundary in an ESM and a key component of
any ESM framework (Fisher and Koven, 2020; Blyth et al.,
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2021). However, accurate descriptions of soil properties in
LSMs are difficult to obtain due to the limited availability
of high-resolution global-scale soil texture measurements or
the lack of regionally specific measured soil properties (e.g.,
Kishné et al., 2017; Dennis and Berbery, 2021, 2022). This
represents a key limitation and is a source of model uncer-
tainty in current LSMs (Li et al., 2018; Zhang et al., 2023)
and, consequently, in weather and climate models.

In many LSMs, soil hydrothermal properties such as soil
thermal and hydraulic conductivity and diffusivity, poros-
ity, field capacity, wilting point, and saturated-soil matric
potential are linked to soil textural classes and/or composi-
tions in one of two ways. Typically, models employ a model-
prescribed look-up table, with values that are derived from
often limited (e.g., geographically limited and data-limited)
in situ soil surveys, to associate mean or typical soil proper-
ties with each soil category. The soil categories are identified
by grouping soil samples with similar properties using par-
ticle size analysis (e.g., Gee and Bauder, 2018). While this
option is computationally efficient, it relies on the assump-
tion that the derived values are transferable; this is not likely
to be realistic as soil properties vary depending on parent ma-
terials, climate, age, management, etc. This approach is also
dependent on having access to soil texture maps, the accu-
racy, scale, and extent of which vary between different soil
databases (Zhao et al., 2018; Dai et al., 2019a, b; Dennis and
Berbery, 2022). In spite of this, the use of readily available
global soil texture maps, in combination with model look-up
tables, is a standard practice in ESM research.

As an alternative, new state-of-the-art global soil informa-
tion datasets are being explored to constrain and potentially
improve the representation of soil processes within LSMs
(e.g., de Lannoy et al., 2014; Shangguan et al., 2014; Hengl et
al., 2017; Looy et al., 2017; Dennis and Berbery, 2021, 2022;
Xu et al., 2023). For example, soil hydrothermal properties
can be estimated from a set of equations known as pedotrans-
fer functions (PTFs) that require information on soil such as
sand, silt, and clay composition and organic matter content
(Looy et al., 2017; Dai et al., 2019a, b). PTFs have been de-
rived based on a variety of different approaches (Looy et al.,
2017), including physically based relationships or advanced
statistical approaches using machine learning, random for-
est, and neural networks (Lehmann et al., 2018; Zhang et al.,
2018; Or and Lehmann, 2019; Szabó et al., 2019), and vary in
complexity. While the choice of PTFs partly depends on the
availability of inputs (Weihermüller et al., 2021), they have
been reported to impact soil moisture simulations, with con-
sequent effects on the surface energy and water fluxes, land–
atmosphere coupling, atmospheric moisture budget, bound-
ary layer evolution, and simulation of regional climates (e.g.,
Dennis and Berbery, 2021, 2022; Weihermüller et al., 2021;
Xu et al., 2023; Zhang et al., 2023).

Moreover, as soil moisture affects land–atmosphere in-
teractions, largely through its control over the evaporative
fraction (e.g., Seneviratne et al., 2010; Ishola et al., 2022),

soil hydrophysical properties play an important role in deter-
mining the land surface response to climate extremes (e.g.,
droughts) (He et al., 2023; Zhang et al., 2023). Weiher-
müller et al. (2021), using the Hydrus-1D model, reported
that soil hydraulic properties estimated from different PTFs
resulted in substantial variability in model-estimated water
fluxes. In this context, Dennis and Berbery (2021) and Den-
nis and Berbery (2022) employed soil properties derived
from STATSGO and the Global Soil Dataset for Earth Sys-
tem Modeling (GSDE) as used in both the Weather and Re-
search Forecasting (WRF) model and the Community Land
Model (CLM). They found soil-texture-related differences in
the surface fluxes that could lead to differences in the evo-
lution of the boundary layer thermodynamic structure and
in the development of precipitation, findings consistent with
those of Zhang et al. (2023). The use of new soil information,
such as from POLARIS and the 250 m SoilGrids database,
has been found to improve the performance of LSMs (Xu et
al., 2023), but this is based on a limited number of studies.

Zhang et al. (2023) were among the first to implement
SoilGrids in the coupled WRF Hydrological Modeling Sys-
tem (WRF-Hydro), of which Noah-MP is the land sur-
face model, to evaluate the role of four different global
soil datasets in land–atmosphere interactions over southern
Africa. While Zhang et al. (2023) found that the ensemble
of model simulations, based on the different soil data in-
puts, was able to reasonably reproduce the spatial and spatio-
temporal patterns of the surface hydrometeorological fields
investigated, soil texture differences, specifically those asso-
ciated with differences in soil properties, were found to di-
rectly impact model-estimated soil moisture, with associated
impacts on skin and air temperature and sensible heat fluxes.
Importantly, for the study and domain outlined here, the ef-
fects of different soil texture datasets on soil moisture were
found to decrease with increasing aridity (Zheng and Yang,
2016; Zhang et al., 2023). Consequently, the authors high-
lighted the need to consider study location and background
climate in addition to the different schemes for estimating
soil hydrothermal processes. While it is widely recognized
that LSMs will respond to changes in other drivers, such as
vegetation (e.g., albedo, surface roughness length) and me-
teorological forcing (Arsenault et al., 2018; Hosseini et al.,
2022), it is critical to understand the role of soil properties in
model sensitivity.

Here, we focus on the response of the Noah-MP LSM
specifically, without an atmospheric model component (i.e.,
WRF), to two different types of soil data and to schemes for
calculating soil parameters with the objective of evaluating
the model estimation of the land surface fields. Our study,
while complementary to Zhang et al. (2023), seeks to ex-
pand the discussion by focusing on a region that is typically
energy, rather than water, limited; has intensively managed
landscapes; and is under a very contrasting climate regime.
Additionally, we employ an alternative approach to derive
model-relevant soil parameters using pedotransfer functions
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and incorporate additional data sources for evaluation of the
model responses. Critically, we focus on 2 contrasting years
during which model differences are likely to be largest.

Due to its maritime climate, Ireland lies in a temperate
region with cool temperatures year-round and no marked
seasonality with regard to precipitation. As a consequence,
growing conditions are near optimal, particularly for agri-
cultural or managed grasslands, which account for almost
60 % of the total land area. The country has relatively young
(<12–15 kyr) and heavily managed soils that are very het-
erogeneous over small spatial scales. In spite of the maritime
climate, variations in the dominant soil categories across the
country mean that some locations experience periodic or sea-
sonal soil moisture deficits, particularly in the sandy soils lo-
cated to the southeast of the island, which experience typi-
cally drier and sunnier summer periods relative to the rest of
the country. To the north and west, soils tend to have higher
clay contents, which can act as a buffer to prolonged peri-
ods of reduced precipitation or become waterlogged during
wet periods. The complexity of Ireland’s soil landscapes and
climatological regime provides new impetus to test the im-
pact of different soil data representations on LSM simula-
tions, particularly within the context of understanding how
projected future changes in the frequency and intensity of
drought events may spatially impact maritime temperate lo-
cations, such as Ireland.

2 Data and methods

2.1 Background context of Ireland

The climate in Ireland is predominantly influenced by the
moist mid-latitude westerlies that blow off the North Atlantic
Ocean and occasional incursions of cold air masses during
winter (Peel et al., 2007). The long-term (1981–2010) av-
erage daily maximum temperature is between 18 and 20 °C
in summer and 8 °C in winter. Occasionally, the daily mean
temperature drops below 0 °C in autumn and winter. Rain-
fall is distributed throughout the year, with a mean annual
value of 1200 mm. The west of Ireland typically experiences
higher rainfall amounts (1000–1400 mm), and this can ex-
ceed 2000 mm in upland areas. Conversely, the east expe-
riences lower rainfall amounts, between 750 and 1000 mm.
More detailed information on the background climate of Ire-
land is provided in Walsh (2012). Although these are typical
climatic conditions in Ireland, the country is also prone to
extreme weather events. For instance, the summer of 2018
was an exceptionally warm and dry period, associated with a
weakened jet stream and a persistent region of high pressure
over northwestern Europe; this was followed by a return to
normal conditions in 2019.

In relation to the general soil information (Fig. 1a), the
southeast is characterized as having relatively free-draining
sandy soils; peat soils dominate the mountains, hills, and

western edge of the country, while limestone-rich soils dom-
inate the midlands and the south (Creamer et al., 2014).
Among the land use types (Fig. 1b), agricultural grassland
dominates the total land area in Ireland, accounting for an
estimated 59 % of the total land use. The temperate climate,
in combination with fertile soils, provides conditions that are
favorable for nearly year-round grass growth, particularly
in the coastal margins and along the southern coast. How-
ever, cooler temperatures and heavy clay (wet) soils limit
the grass-growing season (early to middle March) in the up-
lands, midlands, and north of the country (Keane and Collins,
2004).

2.2 Model description

Here, we employ the advanced community Noah-MP land
surface model, with improved representation of physical pro-
cesses (Chen et al., 1996; Niu et al., 2011). The model can
be run in uncoupled mode, with the capacity to simulate land
state variables (e.g., soil moisture) and land energy, water,
and carbon fluxes. It also represents an LSM that is cou-
pled with numerous atmospheric and hydrological models,
including the community-based Weather Research and Fore-
casting (WRF) model (Barlage et al., 2015). Due to the po-
tential for selecting and combining multi-physics options,
the model has been widely used for a range of different re-
search applications, including natural hazards, drought and
wildfire monitoring, land–atmosphere interactions, sensitiv-
ity and uncertainty quantification, biogeochemical processes,
water dynamics, dynamic crop growth modeling, and soil hy-
drothermal processes (e.g., Zhuo et al., 2019; Kumar et al.,
2020; Chang et al., 2022; Hosseini et al., 2022; Nie et al.,
2022; Warrach-Sagi et al., 2022; Hu et al., 2023).

In Noah-MP, the major improvements in terms of the
mechanisms relevant to soil processes are (1) the ability to
distinguish the low- and high-permeability frozen soil frac-
tions, (2) the introduction of an alternative lower boundary
soil temperature that is based on zero heat flux from the deep
soil bottom, (3) the addition of TOPMODEL and SIMGM for
runoff and groundwater physics options (Niu et al., 2007),
and (4) the inclusion of an unconfined aquifer beneath the
2 m bottom of the soil layer to account for water transport
between the soil and aquifer. Similarly to other LSMs, the
Noah-MP model framework is typical in terms of its abil-
ity to define soil properties either by using the dominant soil
texture class (e.g., USDA), linked to laboratory-derived or
empirically derived soil parameter values, or by using soil
texture (proportions) in combination with PTFs (e.g., Saxton
and Rawls, 2006). Of these, the former is most commonly
employed, in combination with readily available global soil
information.

The prognostic equations from Mahrt and Pan (1984) are
used to describe soil moisture and soil temperature in the
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Figure 1. (a) Geographical locations of the selected in situ grassland sites overlaid onto Ireland’s map of soil drainage categories. (b) Refined
map of 2018 CORINE and MODIS land cover classes for the study domain.

model (Chen et al., 1996):
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where θ is the soil moisture; C is the volumetric heat capac-
ity; T is the soil temperature; andK andKt are the hydraulic
and thermal conductivities, respectively. D is the soil diffu-
sivity, and Fθ denotes the sinks and sources of soil water,
that is, evaporation and precipitation. C, D, K , and Kt are
functions of soil texture and soil moisture.

2.3 Gridded data

Meteorological variables required as initial and forcing con-
ditions were obtained from the European Centre for Medium-
Range Weather Forecasting (ECMWF) database. We employ
the state-of-the-art ECMWF ERA5-Land global reanalysis

product that provides data at 0.1° (∼ 9 km) spatial and hourly
temporal resolution (Muñoz-Sabater et al., 2021). The re-
quired forcing variables include total precipitation, incident
shortwave and longwave radiation, 2 m air temperature, 10 m
zonal and meridional wind components, surface pressure,
and specific humidity. For initialization, the model also re-
quires initial values of soil temperature, surface skin temper-
ature, canopy water, and snow water equivalent to be speci-
fied for the first time step. The hourly data for all variables
were obtained for the period of 2009–2022.

The Noah-MP model also requires geographical data (e.g.,
soil texture and land use) and time-varying vegetation prod-
ucts (e.g., leaf area index (LAI) and fraction of green veg-
etation (FVEG)). We use the STATSGO gridded soil cate-
gory map provided at 5 arcmin resolution (∼ 6 km at 52° N)
(FAO, 2003) and the International Soil Reference and Infor-
mation Centre (ISRIC) global SoilGrids data (Hengl et al.,
2017; Poggio et al., 2021). The latter is available at 250 m

Hydrol. Earth Syst. Sci., 29, 2551–2582, 2025 https://doi.org/10.5194/hess-29-2551-2025



K. A. Ishola et al.: Extreme soil hydrothermal changes in Noah-MP 2555

resolution and six standard soil depths; however, sand and
clay proportions are currently available at four depth layers
as part of the WRF geographical data fields. Preprocessing of
the data was undertaken in the WRF Preprocessing System
(WPS) (Skamarock et al., 2021).

2.4 Model simulations

We employed the offline version of the Noah-MP model (ver-
sion 4.3) within the framework of the High-Resolution Land
Data Assimilation System (HRLDAS) (Chen et al., 2007).
Using the WPS system, the model domain is set up with a
1 km grid covering the island of Ireland and including the
western coast of the United Kingdom (Fig. 1). We incorpo-
rated a high-resolution land use dataset based on the 100 m
raster CORINE Land Cover dataset for 2018 (CLC 2018).
The 44 CORINE land cover classes were initially reclassi-
fied into 20 categories to match the default modified IGBP
MODIS 20-category land use dataset (Fig. 1b). The data
were then resampled to 250 m using a majority rule. To gen-
erate the required geographic files for input into Noah-MP,
the CLC 2018 was converted into binary format, which was
then used as input into the WPS, which generates the grid-
ded geographic format required to run the Noah-MP model.
Other geographical data used in this study, such as topog-
raphy, green-vegetation fraction, and surface albedo, are de-
rived from the model’s default datasets as provided by the
Research Application Laboratory of the National Center for
Atmospheric Research (RAL/NCAR).

To investigate the effect of soil hydrophysical properties
on model-estimated soil moisture and soil temperature, we
configure two experiments that are based on different soil
data options, namely, (1) dominant soil texture categories
used as the default in WRF/Noah-MP and (2) soil texture
properties (e.g., sand, silt, clay) in combination with PTFs
(PTFs based on Saxton and Rawls, 2006). The dominant
soil texture option uses the baseline FAO/STATSGO dataset,
with the empirically derived soil properties obtained from the
model look-up table, while the PTF-derived soil properties
use the fine-scale SoilGrids sand and clay proportions as in-
put into the PTF equations. The dominant topsoils across the
domain are broadly classified into four and two categories
based on STATSGO and SoilGrids, respectively (Fig. 2).
While loam and sandy loam soil textures cover the largest
area in both data sources (Table 2), the extent to which the
differences in the soil data (e.g., spatial extent of textural
classes, soil hydrophysical parameters) contribute to model
uncertainty in the Noah-MP model is evaluated. Other Noah-
MP physics options used are outlined in Table 3.

For the numerical experiments, soil layer thicknesses of
0.07, 0.21, 0.72, and 1.55 m are used, with a cumulative soil
depth of 2.55 m. The thicknesses are selected to match the
layers of initial soil input fields from ERA5-Land to min-
imize the effects of interpolation of the boundary data in-
puts on the model simulation. The model is spun up over

10 years for each experiment using the climatology of the
hourly ERA5-Land for the period of 2009–2022 to bring the
soils to thermal and hydrologic equilibrium with the atmo-
sphere. We employ a climatology, rather than preceding me-
teorology (e.g., 2000–2009), to limit the impacts of unusual
or extreme weather events on the estimation of the model
stores. After spin-up, the model stores are assumed to be sta-
ble and are used as input to initialize the simulations which
are reported on here using the hourly meteorological forcing
from 2009 to 2022.

2.5 Station data

Profile measurements of soil temperature and volumetric wa-
ter content (VWC) are obtained from two established eddy
covariance flux sites located over grass land cover at John-
stown Castle and Dripsey (Kiely et al., 2018; Murphy et al.,
2022), located in the south of the island. In addition, we em-
ployed five new sites (deployed as part of a new national net-
work of monitoring sites – Terrain-AI) which are co-located
with existing national meteorological sites, namely Athenry,
Ballyhaise, Claremorris, Dunsany, and Valentia, and which
are distributed across the island (Fig. 1a).

The selected sites are characterized as having either loam
or sandy loam soils (Table 1), representative of the top two
dominant soil texture categories in STATSGO and SoilGrids
(Table 2), and have contrasting soil water regimes (Fig. 1a).
For example, Johnstown Castle is characterized as having
imperfectly drained sandy loam soils and a measured field
capacity of 0.32, while Dripsey is classified as having loam
soil and a measured field capacity of 0.42 (e.g., Peichl et al.,
2012; Kiely et al., 2018; Ishola et al., 2020; Murphy et al.,
2022) and is classed as being poorly drained as it is domi-
nated by heavy soils that retain water throughout the year.

Note that the flux sites’ VWC values are measured in the
top 20 cm soil layer, while the Terrain-AI sites are mea-
sured at fixed depths down the soil profile (e.g., 5, 10, 20,
30, 40, 50, 60, 75, and 100 cm). The Terrain-AI network is
part of a wider recent national initiative to establish a long-
term network of soil moisture monitoring sites across Ire-
land. It measures in situ soil moisture content using a time
domain reflectometry (TDR) profile sensor (Campbell Sci-
entific CS615/CS616). Given that the Terrain-AI sites are
relatively new, starting from 2022, the VWC measurements
used here are limited to a year and may be prone to outliers
as the TDR probes require some time for the soil to settle
around the sensor. However, there is no evidence of TDR
sensor decay in the measured VWC when the 2022 values
are compared with the patterns found in the more recent data
(2023–present) at the 5 and 20 cm soil depths (Fig. A1 in
the Appendix). Soil temperature measurements recorded at
5, 10, and 20 cm depths were obtained from Met Éireann, the
national meteorological agency, for the same sites as the soil
moisture measurements.
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Figure 2. (a–b) Soil textural classes for the study domain based on global soil databases, namely FAO/STATSGO and SoilGrids. (c) Spatial
differences in the soil texture categories between STATSGO and SoilGrids, indicating increasing or decreasing soil grain size.

Half-hourly or hourly measurements are available for the
period from 2009 to 2012 for Dripsey; for 2018 (measure-
ments available from the second half of the year), 2019, and
2021 for Johnstown Castle; and for the year 2022 for the
Terrain-AI and meteorological sites, representing different
measurement periods and, hence, different data availabilities
at the sites. Metadata for each station, outlining soil type,
land cover, and altitude, are provided in Table 1.

2.6 Satellite products

Global satellite soil moisture datasets (e.g., ESA-CCI,
SMAP, SMOS, and ASCAT) are often used to evaluate LSMs
at large spatial scales. Many of these products differ in terms
of the satellite sensors and start of operations and are subject
to data gaps, cloud coverage, coarse resolutions, and limited
time coverage (Beck et al., 2021). We employ the Soil Water
Index (SWI) product (soil moisture expressed in percentage
degree of saturation), derived from the fusion of Sentinel-1
C-SAR (1 km) and Metop ASCAT (25 km) sensors, to evalu-
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Table 1. Summary of locations of in situ measurements. The station elevation data are obtained from Met Éireann. The station soil texture
data for Johnstown Castle and Dripsey are obtained from previous work (Kiely et al., 2018; Murphy et al., 2022), and soil texture maps from
the Irish Soil Information System (Creamer et al., 2014) are used for the in situ Terrain-AI sites. The soil drainage classes are also obtained
from the Irish Soil Information System.

Lat/long Elevation Field Soil texture category Drainage Definition

Sites (°) (m) capacity In situ STATSGO SoilGrids class

Athenry 53.2892/
−8.786

40.0 – Loam Loam Loam Well Brown-earth soil group, allowing water
movement through the soil at a moderate
rate

Ballyhaise 54.0513/
−7.309

78.0 – Loam Clay loam Loam Poor Surface water gley soils, retaining more wa-
ter at or near the surface

Claremorris 53.7108/
−8.992

68.0 – Sandy loam Loam Loam Well Brown-earth soil group, allowing water
movement through the soil at a moderate
rate

Dunsany 53.5158/
−6.660

83.0 – Loam Loam Loam Moderate Luvisol soils, often well-drained in the
upper layers and with slower movement
deeper down

Valentia 51.9397/
−10.244

25.0 – Sandy loam Sandy loam Loam Well Brown podzolic soils, draining relatively
well in the upper layers

Johnstown
Castle

52.2981/
−6.505

52.0 0.32 Sandy loam Loam Loam Imperfect Luvisol soils, often well-drained in the
upper layers and with slower movement
deeper down

Dripsey 51.9867/
−8.752

190.0 0.42 Loam Loam Loam Poor Surface water gley soils, retaining more wa-
ter at or near the surface

Table 2. Percentage proportion of grids covered by soil texture cat-
egories from the STATSGO and SoilGrids databases used.

Soil texture STATSGO SoilGrids
(%) (%)

Sandy loam 16.4 27.0
Loam 57.8 71.5
Sandy clay loam 0 1.4
Clay loam 19.5 0.1
Clay 6.3 0

ate the Noah-MP model at grid scales (Bauer-Marschallinger
et al., 2018). The product is derived from the ASCAT sur-
face soil moisture (SSM) data using a two-layer water bal-
ance model that estimates the surface and profile soil mois-
ture as a function of time (Wagner et al., 1999; Albergel et
al., 2008). The operational ASCAT SWI data are provided
for eight different time characteristics (taken as soil depths),
at 1 km resolution, and with daily mean values from 2015 to
2022. The product is archived by the Copernicus Land Ser-
vice and has been validated in previous studies (e.g., Albergel
et al., 2012; Paulik et al., 2014; Beck et al., 2021).

To evaluate our model at grid scales, we employ the
characteristic time lengths of T2, representative of the near-
surface soil layer (0–10 cm), and T10, representative of the
sub-surface soil layer (10–30 cm). We choose the ASCAT
1 km SWI as the reference satellite product as it provides data

at different depth layers; matches the Noah-MP model grid
resolution (e.g., 1 km); and has been found to out-perform
other similar products, such as the ESA-CCI SSM and
the physics-informed machine learning GSSM 1 km product
(Han et al., 2023), when evaluated against available ground
measurements (Figs. A2–A3).

2.7 Analysis

2.7.1 Model evaluation using in situ data

The half-hourly or hourly station data and model outputs for
each grid cell are aggregated to daily averages for consis-
tency. For each validation site, variable, and available time
period, the daily mean values from the respective model grid
cell are extracted at the model resolution (1 km). The daily
values of topsoil (0–7 cm) temperature and of topsoil and
sub-surface (7–28 cm) volumetric water content are com-
pared against the available in situ measurements. The model-
estimated values are then evaluated using the root mean
square deviation (RMSD), the percent bias (PBIAS), and
Pearson’s Correlation Coefficient (R).

2.7.2 Model evaluation using satellite data

Given the limited number of in situ sites and the scale differ-
ences between point observations and the model grid resolu-
tion, the general interpretation of model performance across
landscapes should be treated with care. However, the use of
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Table 3. Summary of Noah-MP physical options used in this study.

Physical processes Options

Vegetation (4) Prescribed LAI+ prescribed max FVEG

Canopy stomatal resistance (2) Jarvis

Soil moisture factor (1) Noah

Runoff and groundwater (3) Noah (free drainage)

Surface layer drag (1) Monin–Obukhov

Radiation transfer (3) Gap= 1−FVEG

Snow surface albedo (2) CLASS

Precipitation partition (1) Jordan (1991)

Lower boundary soil temperature (2) Soil temperature at 8 m depth

Snow–soil temperature time (1) Semi-implicit

Surface resistance (1) Sakaguchi and Zeng (2009)

Soil data (1) Dominant soil texture
(3) Soil composition and pedotransfers

Pedotransfers (1) Saxton and Rawls (2006)

satellite data is a standard and pragmatic way of evaluat-
ing model outputs of soil moisture over large spatial scales
(He et al., 2023), notwithstanding the inherent uncertainty
(e.g., coarse resolution and data gaps) of the satellite prod-
ucts. We evaluate Noah-MP estimated soil moisture against
the ASCAT SWI (Figs. A2–A3) for the surface and sub-
surface layers. To ensure that the Noah-MP soil moisture is
comparable with the ASCAT SWI at the grid scale, we de-
rive a standardized relative soil moisture (RSM) index, which
varies between 0 for wilting point and 1 for saturation (e.g.,
Samaniego et al., 2018), as follows:

RSMi,j,k =

(
θi,j,k − θwilti,j

θsati,j − θwilti,j

)
× 100, (3)

where θi,j,k is the simulated volumetric water content, and
θsat and θwilt are the soil moisture at saturation and wilting
point, respectively (Fig. 3). We obtain RSM values for both
the surface and sub-surface soil layers. For the surface layer,
ASCAT SWI-002 data, which imply surface soil moisture
conditions, are compared against the model-derived RSM
values for the topmost model soil layer (0–7 cm). For the
sub-surface, RSM values are taken as the mean aggregated
values over the three topmost model soil layers and are eval-
uated against the ASCAT SWI-100. Similar metrics are used
for the point-scale evaluation (see Sect. 2.7.1) and are also
calculated at the grid scale based on the reference datasets
and model outputs for selected dry (2018) and normal (2019)
years.

Additionally, differences between the near-surface soil
moisture simulations are quantified for each grid (i,j ) us-

ing the standard deviation difference (1σ ) as a measure of
spread between the two soil datasets.

1σi,j = σSTATSGO

− σSoilGrids =


√√√√√ n∑

k=1

(
θi,j,k − θ i,j,k

)2
n


STATSGO

−


√√√√√ n∑

k=1

(
θi,j,k − θ i,j,k

)2
n


SoilGrids

(4)

In the above, θ is the VWC value at time k, and n is the total
number of daily soil moisture values from 2009 to 2022.

2.7.3 Transition from energy-limited to water-limited
regime

We also analyze the potential of Noah-MP for simulating
the evolution of an agricultural drought across the domain.
Since the west-central European summer drought of 2018
was an exceptional event in terms of hydrological extremes
across Ireland (Met Éireann Report, 2018; Falzoi et al., 2019;
Moore, 2020; Ishola et al., 2022), we evaluated the model
over this period. We apply grid-scale cumulative RSM val-
ues integrated over the three topmost soil layers (0–100 cm)
(Sect. 2.7.2) due to their simplicity and ease of use in quan-
tifying and interpreting available soil water data. Addition-
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Figure 3. Spatial characteristics of difference in absolute values between STATSGO and SoilGrids for (a–c) soil porosity, (d–f) field capacity,
and (g–i) wilting point.

ally, the RSM metric reduces the impact of systematic bi-
ases in absolute values and/or the impact of transient er-
rors associated with short-term fluctuations in absolute VWC
values. In principle, RSM is an important drought indica-
tor, particularly at short timescales, and is analogous to the
widely used Soil Moisture Index (SMI) for drought moni-
toring (Samaniego et al., 2018; Grillakis, 2019). To charac-
terize decreasing soil moisture during a drought period, per-
centiles of RSM values per grid cell are calculated based on
7 d moving windows from June to August for the climato-
logical period of 2009–2022. This amounts to 98 samples
(7 d× 14 years) as inputs per window. For individual model
experiments with STATSGO and SoilGrids, the derived spa-
tial RSM percentiles per day in each window are then classi-
fied into different drought categories ranging from least to
most severe (Table 4), following Xia et al. (2014). These
categories are currently employed by the US Drought Mon-
itor (USDM) for operational and regionally specific drought
monitoring (Svoboda et al., 2002).

Table 4. Definitions of drought categories based on relative soil
moisture (RSM) percentiles.

ID RSM percentile Descriptions

Dryness
D0 ≤ 30 Abnormal
D1 ≤ 20 Moderate
D2 ≤ 10 Severe
D3 ≤ 5 Extreme
D4 ≤ 2 Exceptional

Wetness
W0 ≥ 70 Abnormal
W1 ≥ 80 Moderate
W2 ≥ 90 Severe
W3 ≥ 95 Extreme
W4 ≥ 98 Exceptional
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Table 5. Performance statistics of relative soil moisture (RSM) for various soil texture categories in the topsoil (0–10 cm) and sub-surface
(0–100 cm) layers in STATSGO and SoilGrids for the year 2018. The errors are the median grid values. SL denotes sandy loam, L denotes
loam, SCL denotes sandy clay loam, CL denotes clay loam, and C denotes clay.

Soil texture RMSD PBIAS R

STATSGO SoilGrids STATSGO SoilGrids STATSGO SoilGrids

Surface
SL 0.016 0.016 −3.0 5.3 0.82 0.80
L 0.018 0.018 −7.8 −4.5 0.84 0.84
SCL – 0.017 – −6.0 – 0.84
CL 0.016 0.016 11.0 4.6 0.79 0.86
C 0.017 – 9.7 – 0.82 –

Sub-surface
SL 0.016 0.015 2.9 3.6 0.56 0.61
L 0.016 0.015 −1.9 −0.5 0.57 0.59
SCL – 0.015 – 2.0 – 0.62
CL 0.014 0.015 4.5 −3.3 0.62 0.58
C 0.014 – −1.3 – 0.61 –

3 Results

First, we present a comparison of the ERA5-Land total an-
nual precipitation against station data to identify any sig-
nificant differences between the observed and input meteo-
rology during the respective measurement periods. Figure 4
shows that the total cumulative precipitation over the periods
of interest are well replicated in the ERA5-Land precipita-
tion data across the selected stations, including during the
extended period of no rainfall during the summer months of
2018 (Fig. 4f).

3.1 Model evaluation: soil moisture

3.1.1 Station observations

The results of model simulations of near-surface and sub-
surface volumetric water content (VWC, in m3 m−3) for both
STATSGO and SoilGrids are presented for the periods when
measurements are available at the selected sites. Figures 5
and A4 illustrate the comparisons and error statistics of near-
surface VWC between the measured (0–5 cm) and modeled
(0–7 cm) layers, while the sub-surface VWC is illustrated in
Fig. A5. It is important to note that we are comparing a 1 km
model grid (areal) and a measurement point, which are as-
sumed to be equivalent. Also, we are evaluating the model
simulations of the top 20 cm VWC values at Johnstown Cas-
tle and Dripsey, the two flux sites, in the absence of near-
surface (0–5 cm) VWC data for these locations.

Based on the analysis, the near-surface simulations are
in closer agreement with the observed VWC at Athenry,
Claremorris, and Johnstown Castle, with the lowest error
statistics (RMSD ≈ 0.1 m3 m−3 and PBIAS <∼ 25 %) rel-
ative to other stations (Fig. A4). While the model outputs
appear to more closely match the observations during the

summer months at Valentia (Fig. 5e), the model signifi-
cantly underestimates the measured VWC outside of these
months, impacting the overall model performance at the sta-
tion (Fig. A4). The Pearson’s correlation is generally high,
above 0.8, across the measurement sites, with the exception
of Ballyhaise (>0.71) and Claremorris (>0.63). The lowest
model performance in terms of RMSD and PBIAS occurs at
Dunsany, Valentia, and Dripsey, with RMSD>0.15 m3 m−3

and PBIAS >30 % (Fig. A4).
Model simulations with both soil datasets broadly under-

estimate the observed VWC values in the autumn and winter
months, but the model bias is lower in the STATSGO exper-
iment compared to the SoilGrids experiments, a finding that
is broadly consistent across the stations (Fig. A4). Dry biases
(0.15–0.4 m3 m−3) are evident in autumn and winter, during
which time the measured VWC values are higher (Fig. 5a–
e), except at Dripsey, where a systematic dry bias is evident
throughout the entire simulation period (Fig. 5g). Conversely,
during summer, when soil moisture conditions tend to dry
in response to atmospheric forcing (e.g., higher global solar
radiation and evaporation), VWC temporal patterns are rea-
sonably captured by both model experiments (biases are less
than 0.1 m3 m−3), including during 2018, which experienced
exceptionally dry soil moisture contents during the sum-
mer months (Fig. 5f). The differences between STATSGO
and SoilGrids are relatively small (<0.05 m3 m−3) across the
year(s); however, seasonal differences are evident at some
sites, likely due to the generally higher soil porosity and FC
values in STATSGO relative to SoilGrids (Fig. 3a–f).

Interestingly, both model experiments are capable of
broadly replicating the measured near-surface VWC val-
ues at Athenry (well-drained), Claremorris (well-drained),
and Johnstown Castle (imperfectly drained), where the soils
are classified as either well-drained or imperfectly drained
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Figure 4. Temporal comparisons of observed total annual cumulative precipitation at the selected reference stations against the ERA5-Land
colocated grids.

(Fig. 1a; Table 1), but the simulations underestimate the vari-
ability (Fig. 5a, c, and f). In contrast, for locations clas-
sified as poorly drained, namely Ballyhaise, Dunsany, and
Dripsey (Fig. 5b, d, and g), the model does not perform
well. The model appears to be able to replicate measured
VWC during the summer months at Valentia, which is clas-
sified as well-drained, but performs poorly for the remaining
months (Fig. 5e). Figure 5 (boxplot) further illustrates the
summary statistics of and spread in the model-simulated and
observed VWC. The mean observed VWC (≈ 0.3 m3 m−3),
calculated over the available measurement periods, is bet-
ter captured in STATSGO than in SoilGrids, particularly
at Athenry, Ballyhaise, Claremorris, and Johnstown Castle.
However, where the mean observed VWC exceeds this value
(e.g., >≈ 0.3 m3 m−3), both experiments lead to a signif-
icant underestimation of VWC, as is evident at Dunsany,
Valentia, and Dripsey.

3.1.2 Model comparison with reference ASCAT
satellite SWI data

While the selected measurement stations are well distributed
and represent different soil moisture regimes across Ireland
(Fig. 1a), given the relatively small number of stations, gen-
eralizing the results to the entire domain may not be justified.

To address this, we evaluated all model grid cells individu-
ally against the reference ASCAT satellite data. Prior to un-
dertaking the grid-based analysis, we compared the ASCAT
SWI, rescaled to match the mean and standard deviation of
the measured values at the site of interest, to the available
measured data at the sites. The ESA-CCI SM is also included
in the figures; however, the ESA-CCI SM product reports ab-
solute values of VWC (m−3 m−3) for the top layer at 0.25°
resolution. On the basis of the rescaled values, the ASCAT
SWI is shown to largely reproduce the temporal variabil-
ity of the measured values, indicating its suitability for use
across the domain (Figs. A2–A3). Figure 6 shows the results
of the whole-island grid-scale evaluation (n= 131000 grid
values), which compares daily RSM values, derived from the
STATSGO and SoilGrids simulations, against the reference
ASCAT SWI at the surface and sub-surface for the 2018 dry
year and the 2019 normal year. Median metrics for each soil
texture category in STATSGO and SoilGrids are presented in
Tables 5 and 6.

As shown in Fig. 6 (top) for the 2018 dry year, the median
statistics indicate that STATSGO has lower RMSD values
compared to SoilGrids for both the surface and sub-surface
layers and PBIAS values that lie closer to 0. While the Pear-
son’s R statistics (median around 0.85) for STATSGO and
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Figure 5. (a–g) Temporal comparisons of near-surface volumetric water content and boxplots of data distribution between observations at
5 cm and simulated values at 0–7 cm for the selected reference stations. For Johnstown Castle and Dripsey (f–g), the model simulations are
evaluated against the available observations in the top 20 cm. The black dots in the boxes represent the mean values.

SoilGrids are comparable for the surface layer, the SoilGrids
experiment produces a higher R value in the sub-surface
layer during the dry year. For the 2019 normal year (Fig. 6,
bottom), SoilGrids displays equivalent or lower error statis-
tics for the surface layer, with a median RMSD of 0.016 %,
PBIAS of around 1 % (6 % for STATSGO), and R of 0.73.
For the sub-surface layer, SoilGrids produces better results

than STATSGO, with lower RMSD (0.01 %) and PBIAS
(6%) and a higher R value (median of approximately 0.76).

The extended tails (positive or negative in PBIAS and
lower or higher in RMSD and R) in the density distribution
indicate the spread in RMSD, PBIAS, and R values. Given
the fact that the loam (L) and sandy loam (SL) soils repre-
sent the largest proportion of grid cells across the study do-
main and are relatively comparable in terms of spatial cov-
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Figure 6. Performance statistics for STATSGO and SoilGrids relative soil moisture (RSM) values in the topsoil layer (0–7 cm) and sub-
surface soil layer (0–100 cm) compared to satellite-based ASCAT Soil Water Index (SWI) for 2018 (a–c) and 2019 (d–f). N = 131 000 cells.
The black crossbars are the median values.

Table 6. Performance statistics of relative soil moisture (RSM) for various soil texture categories in the topsoil (0–10 cm) and sub-surface
soil (0–100 cm) in STATSGO and SoilGrids for the year 2019. The errors are the median grid values. SL denotes sandy loam, L denotes
loam, SCL denotes sandy clay loam, CL denotes clay loam, and C denotes clay.

Soil texture RMSD PBIAS R

STATSGO SoilGrids STATSGO SoilGrids STATSGO SoilGrids

Surface
SL 0.015 0.016 3.6 9.8 0.68 0.66
L 0.016 0.016 1.2 5.2 0.72 0.71
SCL – 0.016 – 4.8 – 0.67
CL 0.019 0.018 21.2 18.0 0.61 0.81
C 0.019 – 20.1 – 0.79 –

Sub-surface
SL 0.013 0.012 17.8 16.7 0.61 0.63
L 0.011 0.012 13.8 16.4 0.68 0.71
SCL – 0.013 – 19.1 – 0.73
CL 0.013 0.011 20.5 16.1 0.73 0.76
C 0.012 – 16.1 – 0.77 –
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erage in STATSGO and SoilGrids (Table 2), the error statis-
tics for these soil texture categories are further explored here.
For 2018, results show that both experiments produce lower
RMSD error statistics for SL than for L at the surface layer,
while STATSGO has lower PBIAS for SL than for L (Ta-
ble 5). For the sub-surface layer, both soil datasets have sim-
ilar RMSDs and lower PBIAS for L compared to for SL.
For the 2019 normal year (Table 6), both STATSGO and
SoilGrids show improved PBIAS for L compared to for SL
in both the surface and sub-surface layers. STATSGO has
equivalent or lower RMSD and lower PBIAS error statis-
tics than SoilGrids at the surface layer. The RMSD and R
statistics are relatively comparable in both the surface and
the sub-surface layers for both the STATSGO and SoilGrids
simulations and for the L and SL soil categories. However,
STATSGO produces lower PBIAS statistics than SoilGrids
for SL in 2018 (surface and sub-surface) and for SL (surface)
and L (surface and sub-surface) in 2019. For 2019, these find-
ings are in contrast with those of the previous analysis based
on all grid cells and independent of soil texture class (Fig. 6).

The spatial characteristics of the ASCAT SWI and model-
derived surface RSM values are shown in Fig. 7a–j, along
with their differences, for the years 2018 and 2019. The long-
term seasonal differences in the surface VWC between both
experiments are also shown in Figs. A7–A8. For the sur-
face VWC, both simulations largely exhibit a dry bias, in-
creasing from the northwest to the southeast of the country;
higher biases are evident in the eastern and southern parts
of the country in SoilGrids relative to STATSGO (Fig. 7).
The higher (dry) biases in both STATSGO and SoilGrids oc-
cur in regions that are largely classified as the L soil tex-
ture class in both soil datasets. The dry bias is larger in 2019
compared in to 2018 (dry year) and is higher for SoilGrids
than for STATSGO. For the sub-surface values (Fig. A6),
wet biases are evident in the northwest, west, and southwest,
which are characterized as SL and clay loam in STATSGO
and SL in SoilGrids. Toward the south and southeast of the
domain, the results shift toward a dry bias, mostly in ar-
eas represented by L soils; more spatially extensive wet bi-
ases are evident in the normal year of 2019 compared to in
2018. While the spatial patterns in the wet and dry biases are
broadly consistent for both experiments and years, the dry
bias in both years is more pronounced in SoilGrids than in
STATSGO, consistently with the surface layer. Conversely,
the wet bias in the sub-surface layer is more widespread
in STATSGO than in SoilGrids. While both soil datasets
show the largest difference between the modeled and AS-
CAT SWI surface layers in the southeastern part of the coun-
try, this region displays the smallest between-model differ-
ences (<0.05 m−3 m−3) on a seasonal basis (Fig. A7). As ex-
pected, the largest differences between the model-estimated
VWC are located in regions where the soil datasets have dif-
ferent soil texture classes (Fig. 2c) and, hence, different asso-
ciated soil properties. For example, STATSGO has a region
of clay loam (CL) soils to the northwest and a region of clay

(C) soils on the west coast, which is in contrast to the Soil-
Grids L class, with different soil properties being associated
with these classes (Fig. 3); the largest differences between
the model runs (STATSGO−SoilGrids) are associated with
the STATSGO clay loam locations, with STATSGO indicat-
ing generally wetter soils associated with both the clay loam
and clay texture classes. While the wilting points are similar
between both datasets, STATSGO has higher field capacity
and soil porosity for these textural classes (C, CL) (Fig. 3).
Both soil datasets have SL classes located along the western
seaboard; however, STATSGO estimates lower VWC com-
pared to SoilGrids in these regions (Fig. A7).

3.2 Model evaluation: soil temperature

Figure 8a–g illustrate model comparisons against the refer-
ence station measurements of topsoil (0–5 cm) temperature,
while Fig. A9 shows the associated evaluation results. Gen-
erally, the error statistics (RMSD and PBIAS) for both the
STATSGO and SoilGrids experiments are low, and R values
are high (above 0.9 across all sites). The model is closer to
the observations for Athenry, Dunsany, Valentia, and John-
stown Castle (RMSD<3 K and PBIAS <1 %) compared to
those for Ballyhaise, Claremorris, and Dripsey, where the er-
rors exceeded these values. Comparatively, SoilGrids leads
to a slightly better model performance than STATSGO across
the sites.

The spread of the observed soil temperatures is reasonably
replicated in both experiments and for the selected year(s)
across locations (Fig. 8, bottom). On the other hand, the
mean of the observed soil temperature, which is approxi-
mately 285 K, is systematically underestimated by between
1 to 3 K across stations; however, the peak values in the
mid-summer months are well captured by both experiments
(Fig. 8a–g). Overall, both STATSGO and SoilGrids produce
co-varying soil temperature profiles, but the differences be-
tween the measured and simulated values are statistically sig-
nificant (p value<2.2× 10−16) for all sites.

Given the reasonable model performance across the se-
lected locations, the grid-scale model differences in soil tem-
perature between STATSGO and SoilGrids are examined fur-
ther (Fig. 9). The spatial differences in terms of surface soil
temperature are based on the seasonal climatology from 2009
to 2022. In response to seasonal variations in global so-
lar radiation and VWC, winter shows the lowest soil tem-
peratures (Fig. 9a and e), whereas summer is characterized
as having the highest soil temperatures (Fig. 9c and g),
widespread mostly over loam soil in the south and south-
east of the study domain. The south and east are season-
ally drier, experiencing lower rainfall and soil water deficits
during the summer months (Figs. 1a and A7). The spatio-
temporal evolution of the soil temperature characteristics
is consistent in both STATSGO and SoilGrids throughout
the year. Both soil datasets produce soil temperature dif-
ferences that are low or negligible in the south and south-
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Figure 7. Spatial characteristics of difference between satellite-based annual ASCAT Soil Water Index (SWI) and model-derived annual
mean relative soil moisture (RSM) at the surface for (a–e) 2018 and (f–j) 2019.

east, which are dominated by loam soils (Fig. 9i–l). How-
ever, STATSGO exhibits colder soil temperatures in clay and
clay loam soils and warmer sandy loam soils in the north
and southwest compared to SoilGrids. These areas, exhibit-
ing differences in terms of cold and warm soil temperatures
between STATSGO and SoilGrids, coincide with regions ex-
hibiting wet and dry VWC biases (Fig. A7).

3.3 Spatial and temporal evolution of soil moisture
drought

Figure 10 illustrates the spatial characteristics of the 0–
100 cm RSM percentiles for selected days during the summer
of 2018. The selected dates denote the start, peak, and end of
the summer water deficits (Fig. 4f) experienced during that
year. For the first 7 d window ending on 7 June, the south-
east and east of Ireland show low drought intensity (D0–D1,
abnormal to moderate) in STATSGO compared to in Soil-
Grids, which exhibits values in the severe drought category
(D2). During this build-up period, there are notable spatial
differences between STATSGO and SoilGrids, with the latter
exhibiting a more spatially extensive region for the D0 and
D1 categories.

By the middle of summer 2018 (sixth week, ending on
12 July), almost the entire island is dominated by the ex-
ceptional drought category (D4) in STATSGO, except for ar-
eas in the extreme northeast and southwest, which are classi-
fied as falling into the D2 and D3 categories. These patterns
are broadly consistent in SoilGrids, except for small areas
falling under higher-intensity drought classes. For example,
the drought category in the northeast of the island shifts from

D2 to D3–D4 (extreme and exceptional) in STATSGO, and,
in the southwest and east of Ireland, it shifts from D2–D3 (se-
vere and extreme) to D3–D4 in SoilGrids. It is notable that
these regions in the southwest and east are associated with
high topography.

Whereas the soil water deficits appear to have improved
by the end of summer (week 13, ending on 30 August), the
landscape experiences different levels of soil water deficits.
For example, in STATSGO, the moderate drought category
(D1) broadly dominates the loam areas in the midlands and
in the south and southeast of Ireland, while a mix of D1–
D4 categories dominates the west and southwest of the coun-
try. These patterns are consistent in SoilGrids, but D3–D4
drought categories remain more extensive in the north, west,
and southwest in SoilGrids compared to in STATSGO.

Figure 11 illustrates the time–areal coverage of the
drought categories over the domain during the summer pe-
riod of 2018 based on RSM percentiles. While the land-
scapes already experience soil water deficits by the start of
June, the largest areal coverage (about 70 % in STATSGO
and 80 % in SoilGrids) is dominated by low drought inten-
sities (D0–D2). Approximately 10 % of the domain is char-
acterized by extreme and exceptional drought (D3–D4) up to
the end of June. The drought intensifies effectively from late
June, with higher areal coverage evident in the D4 category
(more than 80 %), extending over several days in STATSGO
(10–15 July). Over the same period, the D4 category in Soil-
Grids is less extensive and lasts for a shorter period than
in STATSGO, but the transition to less severe categories is
slower than in STATSGO. At the start of August, there is
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Figure 8. (a–g) Temporal comparisons of soil temperature and boxplots of data distribution between observations and simulated values for
the selected reference stations. The black dots in the boxes represent the mean values.

a brief interlude with a reduction in the areal extent of the
high-intensity drought (D3–D4) that is evident in both Soil-
Grids and STATSGO, transitioning to the less severe cate-
gories (D0–D2). By the last week of August, the peak of the
drought has passed, and the landscape begins to recover.

4 Discussion

4.1 Effects of soil hydrophysical properties on
simulated soil hydrothermal regimes

In this study, we investigated the differences between two
global soil texture datasets currently implemented in the
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Figure 9. Spatial and seasonal characteristics of simulated topsoil
(0–7 cm) temperature using STATSGO (a–d) and SoilGrids (e–h),
as well as the difference (i–l), for the period 2009–2022. Rows 1–4
represent the winter to autumn seasons, in that order.

Noah-MP land surface model for simulated soil hydrother-
mal properties. In addition to using the default look-up table
in combination with the STATSGO soil information, which
is perhaps the most widely used or typical approach, we em-
ployed pedotransfer functions (PTFs), in combination with
the SoilGrids soil information, to explore the impact of dif-
ferent soil datasets and, hence, their associated soil properties
(e.g., porosity, field capacity, wilting point, hydraulic con-
ductivity) on the simulated surface and sub-surface soil hy-
drothermal parameters during a normal (2019) and extremely
dry (2018) year. The roles of these properties, particularly
the field capacity (a measure of water retained in the soil at
a pressure of −0.33 bar after excess rainwater has drained
away), are critical in correctly simulating soil hydrophysical
processes and have consequent impacts on the subsequent in-
teractions between the land surface and the overlying atmo-
sphere (Dennis and Berbery, 2021, 2022; Zhang et al., 2023;
Zheng and Yang, 2016).

Initially, we compared the model-simulated values at grid
scale with available in situ data for a selection of sites dis-
tributed across the island and representative of the dom-

Figure 10. Spatial characteristics of soil moisture drought cate-
gories derived using 0–100 cm Relative Soil Moisture percentiles
for STATSGO (a–c) and SoilGrids (d–f) for 2018 summer. D0–D4
represents abnormally dry, moderate, severe, extreme and excep-
tional droughts, while W0–W4 is the corresponding wetness cate-
gories.

inant soil textural properties (Table 1). In general, both
the STATSGO and SoilGrids model simulations resulted
in an underestimation in the modeled variance at all sites
compared to the measured values. With the exception of
STATSGO at Ballyhaise, both model simulations underes-
timated the mean observed values, which was particularly
marked at three sites; seasonal differences were also evi-
dent (Fig. 5). With the exception of Valentia, SoilGrids esti-
mated lower mean values compared to STATSGO (Fig. 5h).
At two sites, Ballyhaise and Dunsany, both soil datasets re-
sulted in an overestimation of VWC during the drier sum-
mer months, for which time the measured values indicate that
the soils were close to or at wilting point. The largest differ-
ences between the modeled and measured VWC occurred at
sites where the soils appear to have a larger water-holding ca-
pacity, namely Dunsany, Valentia, and Dripsey (Fig. 5, box-
plot). Despite the misrepresentation of the soil texture class
and the difference in soil depths between the measured and
simulated VWC at Johnstown Castle (Table 1), the model
performs reasonably well at this site. However, for a rela-
tively wet site (e.g., Dripsey), where the soil textural class is
correctly represented in both soil databases, the model sim-
ulations systematically underestimate soil moisture content
(Figs. 5g and A4). This suggests that the soil-induced model
uncertainty, which is often linked to misrepresentation of soil
texture class (e.g., Zheng and Yang, 2016) and, hence, mis-
specification of hydrophysical parameters, can arise due to
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Figure 11. Time–areal coverage cross-section of drought evolution
based on daily 0–100 cm relative soil moisture (RSM) percentiles
during the summer of 2018 for STATSGO (a) and SoilGrids (b).
D0–D4 represent abnormally dry, moderate, severe, extreme, and
exceptional droughts. The vertical dashed lines represent the effec-
tive start of severe to exceptional droughts.

other factors (e.g., model physics, incorrect hydrophysical
parameters).

We also compared the ASCAT SWI with the measured
VWC at the selected sites and, subsequently, the RSM de-
rived from the model-simulated VWC. Based on the rescaled
SWI, derived using the mean and standard deviation of the
measured values, the ASCAT SWI is shown to largely repli-
cate the temporal variability of the measured values at the se-
lected sites, particularly the seasonal evolution of soil mois-
ture. With regard to the comparison between the ASCAT
SWI and the model-derived RSM, we found that, while the
median correlation between SWI and RSM was higher for
SoilGrids than for STATSGO for both the surface and sub-
surface layers, STATSGO performed better in terms of the
error statistics in the dry year (2018), while SoilGrids per-
formed better in the normal year (2019) (Fig. 6). While both
the SWI and RSM are based on relative rather than absolute
values, the calculated correlation coefficients (R values) indi-
cate that the model is able to capture at least some of the tem-
poral evolution (covariation) of soil moisture in both a dry
(2018) and normal year (2019) and, importantly, suggest that

the model soil physics are functioning correctly or, at least,
in a way that is temporally consistent with the independently
derived ASCAT SWI data. However, while both STATSGO
and SoilGrids produce similar estimates of VWC where tex-
tural classes are in common (Fig. A7), both STATSGO and
SoilGrids systematically underestimate VWC when com-
pared to the ASCAT SWI, particularly for the loam textural
class (Figs. 2 and 7); SoilGrids shows a larger underestima-
tion compared to STATSGO (Figs. 7 and A7), most markedly
in winter, spring, and autumn (Fig. A7). From Fig. 3, it is
clear that STATSGO has higher field capacity and wilting-
point values associated with loam soils compared to Soil-
Grids, which may explain the lower bias in STATSGO rel-
ative to SoilGrids.

The assessment of the model against the measured values
(Fig. 5) and the ASCAT SWI (Figs. 6 and 7) highlights the
potential impact of the prescribed soil hydrophysical param-
eters, specifically FC and WP, in limiting the model’s ability
to accurately simulate absolute values of soil moisture con-
tent within the model soil layers. To test this, we focus on
two sites for which measured FC is available, namely John-
stown Castle and Dripsey. The measured field capacity (FC)
in the top 20 cm at Johnstown Castle is 0.32 m3 m−3 (Ta-
ble 1) (Peichl et al., 2012), which lies close to the representa-
tive FC value employed in both STATSGO and SoilGrids for
this location. However, the measured FC in the top 20 cm at
Dripsey is 0.42 m3 m−3 (Table 1), higher than the respective
FC value of ∼ 0.31 m3 m−3 prescribed by STATSGO via the
look-up table and the value from SoilGrids using the PTFs
for this location (Figs. 3 and 5, boxplot). While the model-
estimated VWC at Johnstown Castle lies close to the mea-
sured values at this site, the model systematically underes-
timates VWC at Dripsey. Ultimately, a lower FC limits the
ability of the soil to increase the memory of the stores, result-
ing in a systematic bias in the simulated VWC. To illustrate
the role of the prescribed FC value at Dripsey, the simulated
VWC for a neighboring grid cell with an FC of 0.412 m3 m−3

and which experiences similar weather conditions is plotted
against the measured VWC at Dripsey (Fig. 12). A higher
FC clearly results in higher VWC values, significantly re-
ducing the systematic bias (RMSD and PBIAS) between ob-
servations and STATSGO by more than 50 % of the FC value
employed by the model at Dripsey. In contrast, the maximum
FC derived from SoilGrids across the domain is 0.34 m3 m−3

(Fig. 3), which lies around the default value and is not in a
proximal grid location in relation to the Dripsey site. Hence,
using the same grid cell as above, SoilGrids, with PTFs, falls
short of this and consequently fails to improve the simulated
VWC.

While the choice of PTFs is critical in model simulations
of soil water fluxes (Weihermüller et al., 2021), the default
Saxton and Rawls (2006) PTFs produce properties that lie
close to the look-up table in the Noah-MP model. One rea-
son for this similarity is that, in general, the SoilGrids sand
and clay compositions produce similar spatial distributions
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Figure 12. Temporal comparisons of observed volumetric water content (VWC) at Dripsey site against the simulated values for a nearby grid
location with field capacity of 0.412 m3 m−3.

in the loam and sandy loam soil texture classes that coincide
with the locations of the FAO/STATSGO classes (Fig. 2 and
Table 2). Another reason for similar soil properties between
the PTFs and the look-up table is that the default PTF co-
efficients are derived based on USDA soil samples (Saxton
and Rawls, 2006) and are therefore not likely to be repre-
sentative of soil processes and, consequently, properties in a
different study domain; the empirically derived look-up ta-
ble values are also based on soil samples from the US. The
net effect of similar but inaccurate soil properties is the sig-
nificant under-representation of soil hydrothermal regimes in
wet soils, as illustrated in Figs. 5 and 7. This aligns with the
findings of Vereecken et al. (2010), who demonstrated that
PTFs are highly accurate over the areas for which they have
been developed but have limited accuracy if transferred out-
side of these areas. Weber et al. (2024) also noted that the
divergence between the scale of derivation from laboratory
experimental data and the regional and/or global scale of ap-
plication is a fundamental shortcoming for PTFs.

In situations where the model systematically underesti-
mates or overestimates soil moisture, the impacts on the sur-
face exchanges with the atmosphere may be more limited
(e.g., Dripsey; see Fig. 5g); however, for locations with a
high water table and/or that are subject to seasonal drying
(e.g., Dunsany, Ballyhaise; see Fig. 5b and d), deficiencies
in the model-estimated timing and extent of soil moisture
deficits are likely to result in large seasonal biases in the sim-
ulated surface fluxes. However, further work is required to
understand the simulated soil moisture response at these lo-
cations, but this is likely to be due to a combination of the
hydrothermal parameters.

With regard to the model-simulated soil temperature, both
the STATSGO and SoilGrids inputs were able to reasonably
replicate the measured surface soil temperature at the se-
lected sites, albeit with a tendency to systematically under-

estimate the measured values (Fig. 8). Only minor, insignifi-
cant differences were evident between the two simulated soil
temperature series. In contrast, spatial differences between
the STATSGO and SoilGrids data were evident, particularly
in the north, west, and southwest of Ireland (Fig. 9), and are
largely coincident with the differences in the spatial distribu-
tion and extent of selected hydrothermal parameters between
both datasets (Fig. 3). Notably, the STATSGO data repre-
sent smaller soil grain sizes in most of these areas relative
to SoilGrids. This results in higher values of soil hydrophys-
ical properties in STATSGO, including porosity and field ca-
pacity, and lower saturated hydraulic conductivity (Figs. 3
and A9). The increasing grain size leads to wetter and colder
soils in STATSGO relative to SoilGrids in the top 30 cm layer
(Figs. 7, 9, and A6–A7). Similarly to our results, it has been
demonstrated that a reduction in soil grain size (e.g., loam to
sandy loam) leads to dry and hot soil differences (decrease
in latent heat flux and increase in sensible heat flux) between
two global soil datasets (Dennis and Berbery, 2021).

Overall, the results shown here support previous findings
that indicate that soil hydrophysical parameters directly im-
pact the model-simulated soil moisture, while the spatial dis-
tribution of soil textural classes impacts soil thermal prop-
erties. In contrast to our expectations, the model-estimated
VWC values were close to the measured values at John-
stown Castle, a site that experiences seasonal or periodic
soil moisture deficits and/or drought due to a combination
of meteorology and soil type (e.g., imperfectly drained). The
model performed poorly with respect to the measured VWC
at Valentia (southwestern coast – well drained), Ballyhaise
(north – poorly drained), and Dunsany (east – moderately
drained) but highlighted that impacts are likely to be more
pronounced at relatively wet sites and at sites that experience
a marked seasonal contrast in terms of soil moisture, which
represents a new contribution to the discussion.
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4.2 Sources of uncertainties

With regard to model uncertainty, the Noah-MP model’s re-
liance on default look-up tables for STATSGO and on more
sophisticated PTFs for SoilGrids introduces systematic bi-
ases, particularly when the respective parameterizations do
not represent the local soil conditions accurately. For in-
stance, a mismatch in FC values at Dripsey results in a signif-
icant underestimation of soil water retention capacity, which
directly affects soil moisture, with biases exceeding 50 % of
the employed FC value. In essence, the mismatch in terms of
spatial scale between the parameterization of soil properties
and their application in a global model introduces significant
uncertainties into soil moisture simulations, particularly in
regions with distinct soil properties (Vereecken et al., 2010;
Weber et al., 2024). As a consequence, the impact may di-
rectly affect the soil moisture coupling with the atmosphere
through surface energy fluxes, leading to uncertainties in sur-
face exchanges.

With regard to the soil dataset uncertainty, the magnitude
of the impact of soil dataset uncertainty is particularly pro-
nounced when it comes to the parameterization of critical
soil hydrophysical parameters like field capacity (FC) and
wilting point (WP). As shown in this study (Fig. 12), a small
difference in FC values (e.g., 0.31 m3 m−3 vs. 0.42 m3 m−3)
can significantly alter the simulated volumetric water content
(VWC), leading to a systematic bias in the model outputs. At
sites like Dripsey, where the field capacity was significantly
underestimated, the model consistently underestimated soil
moisture. This bias was reduced when using a higher FC
value for a neighboring grid cell, demonstrating that even
small changes in soil property inputs can have substantial
impacts on model outputs. Additionally, regional differences
in soil properties, linked to divergences in grain size repre-
sentation between STATSGO and SoilGrids (Figs. 2–3), af-
fect simulations by 10 %–30 %, depending on the soil textu-
ral class and climatic conditions. This is evident in regions
with high water tables or in areas subject to seasonal drying
(Fig. A7), where the model’s inability to accurately simulate
soil moisture deficits may potentially propagate through hy-
drological and thermal cycles, mischaracterizing droughts or
waterlogging events and affecting surface energy partition-
ing and land–atmosphere interactions (Dennis and Berbery,
2021, 2022; Zhang et al., 2023).

With regard to observation uncertainty, this also arises,
particularly in terms of the spatial variability and accuracy of
in situ measurements used for model evaluation. The preci-
sion and accuracy of the new Terrain-AI TDR measurements
used in this study depend on the sensor installation and per-
formance (Briciu-Burghina et al., 2022). The Terrain-AI net-
work has followed and used the standard, custom-designed
installation and calibration tools recommended by the man-
ufacturers; thus, we do not observe sensor decay or random
errors in the soil moisture measurements, given that the 2022
pattern is temporally consistent with more recent measure-

ments (Fig. A1). The observed standard error in the mea-
surements is generally less than 0.01 m3 m−3, which is con-
sistent with the recommended optimal accuracy for TDR sen-
sors (e.g., Blonquist et al., 2005). However, we acknowledge
that the presence of air gaps between the soil and sensor
contact during installation may introduce errors, particularly
at the start of sensor measurement. The time for the soil to
properly settle around the sensor depends on soil condition,
which constitutes a common error for newly installed soil
moisture sensors (Briciu-Burghina et al., 2022). Despite this,
we believe that the impacts on the overall uncertainties in our
model evaluation may be relatively small given the observed
sensor accuracy across sites.

The in situ soil moisture measurements, though accurate,
are point-based and may not represent grid-scale heterogene-
ity. For example, discrepancies between measured and sim-
ulated volumetric water content (VWC) at Johnstown Castle
and Dripsey highlight this limitation (Fig. 5). Differences be-
tween the measurement depth (e.g., 5 cm and top 20 cm) and
model representation (0–7 cm) exacerbate observational un-
certainty. For example, model biases at Valentia and Dripsey
partly stem from mismatches in vertical soil layering, with
the shallower model soil depth expected to be wetter between
rainfall events and drier in response to atmospheric condi-
tions. The point-to-grid biases and soil depth mismatches
contribute to about 5 %–20 % errors in validation results,
which can distort the interpretation of model accuracy and
reliability.

The use of ASCAT’s characteristic time length (e.g., T2)
to represent soil depths without accounting for soil textu-
ral class or properties may also influence the model results
as the optimal characteristic time lengths differ for different
soil texture categories (de Lange et al., 2008). The ASCAT
SWI replicates the covariation in the measured soil moisture
well (Figs. A2–A3) but struggles with accurately predicting
the absolute moisture content. The correlation between the
model RSM and the ASCAT SWI was generally higher for
SoilGrids compared to for STATSGO, particularly in a nor-
mal year (2019), whereas STATSGO performed better in the
dry year (2018) (Fig. 6). This indicates that, while the model
physics and soil properties function reasonably well in sim-
ulating temporal variations, issues remain with regard to ab-
solute soil moisture content.

Overall, global soil datasets may be relevant for weather
and climate modeling, assuming the soil water physics are
functioning correctly and that the model-simulated soil water
changes result in the correct partitioning of energy; however,
numerous authors (e.g., Dennis and Berbery, 2021, 2022;
Zhang et al., 2023) have found that flux partitioning is nega-
tively impacted by the simulated soil moisture. Also, for op-
erational purposes, for estimating soil moisture, more refined
national-level soil data should be considered. Such efforts, as
previously attempted in studies like Reidy et al. (2016), could
be expanded to generate more detailed and region-specific
soil property datasets.
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4.3 Implications for regional drought monitoring

Soil moisture content is an essential variable in many hydro-
logical applications and in understanding the evolution and
characteristics of extreme climate events such as droughts.
Instead of heatwaves, the study domain is subject to rain-
fall extremes (Noone et al., 2017), a precursor of soil water
deficits and droughts, the intensity and frequency of which
have been projected to increase globally and in the study
domain by the end of the century (Seneviratne et al., 2012;
Fealy et al., 2018).

In this study, the drought analysis is based on the cumula-
tive RSM percentiles aggregated over the three uppermost
soil layers (0–100 cm) for 2018 summer hydrological ex-
tremes for STATSGO and SoilGrids (Figs. 10–11). The 0–
100 cm depth is sufficient for drought assessment since the
root zone of many crops grown across the world does not
surpass 1.0 m in depth (Fan et al., 2016; Grillakis, 2019).

Both STATSGO and SoilGrids are largely consistent in
terms of the peak of soil moisture drought in space and time.
However, SoilGrids exhibits higher and wider drought inten-
sity in many areas during the build-up and recovery phases
relative to STATSGO. This suggests that there is sensitivity
during the build-up to the drought and to the rewetting of the
soils after peak droughts. Similar results were found in the
study of Zheng and Yang (2016), where, regardless of soil
type, soils tended to dry up with increasing aridity so that the
difference in soil moisture between two soil datasets tends
toward zero. The higher drought intensity of SoilGrids is as-
sociated with underrepresented soil hydrophysical properties
and simulated VWC, as previously highlighted (Figs. 3 and
A7).

During the summer of 2018, particularly from late May
to late July, Ireland was reported to have experienced dif-
ferent degrees of meteorological droughts (rainfall deficits)
(Fig. 4f), ranging from dry spells to absolute droughts (Met
Éireann Report, 2018; Falzoi et al., 2019; Moore, 2020). Me-
teorological droughts precede soil moisture and/or agricul-
tural droughts through a reduction in soil water storage and
in water available for plant uptake; our results indicate that
extreme to exceptional soil moisture droughts are only effec-
tive from the last week in June, covering the large part of the
domain by mid-July (Fig. 11). During August, rainfall im-
proved soil water stores (Fig. 4f) and weakened drought con-
ditions across much of the country, particularly in the north
and west (Met Éireann Report, 2018; Moore, 2020).

Overall, the discrepancies between STATSGO and Soil-
Grids impact drought characteristics, mostly in space, with
SoilGrids shifting the abnormal, moderate, and severe
droughts in STATSGO to extreme and exceptional droughts.
These discrepancies underscore the sensitivity of soil in-
formation to drought events, which is critical in improv-
ing our understanding of the consequences on ecosystems
with regard to predicting their responses and productivity as
drought stress has been highlighted as the primary factor lim-

iting ecosystem responses and productivity (De Boeck et al.,
2011).

5 Conclusions

In this study, the usability of two global soil datasets for rep-
resenting soil processes in the Noah-MP model and for sim-
ulating soil hydrothermal variations and associated extremes
has been evaluated across all of Ireland. Specifically, FAO/S-
TATSGO dominant soil texture categories linked to soil hy-
drophysical properties empirically derived from a look-up ta-
ble (default in WRF) are compared with pedotransfer func-
tions (PTFs) that take as input alternative SoilGrids sand and
clay compositions at four soil layers. Through temporal com-
parison with in situ soil moisture and soil temperature obser-
vations, it has been found that both soil datasets can fairly
replicate the general soil hydrothermal variations for stations
with moderate spikes. However, they under-represent the soil
properties (e.g., field capacity) in wet loam soil, leading to
systematic dry biases in soil moisture. The results have fur-
ther shown that there is no distinct difference between the
soil physics applied to the same soil texture category in both
STATSGO and SoilGrids. However, the disparities and sen-
sitivity to soil physics increase for different soil texture cate-
gories between the datasets.

Through spatial comparison with the satellite-based AS-
CAT SWI, the sub-surface dry bias is more pronounced
and widespread in the midlands, south, and east in Soil-
Grids, while a wet bias dominates the west and north. As
a consequence, 2018 summer soil moisture droughts are,
broadly, more intensified in SoilGrids, indicating higher sen-
sitivity during transitions to and from peak drought than in
STATSGO. This heightened sensitivity could suggest that
SoilGrids captures finer details in terms of soil moisture vari-
ability; however, the disparities could result in inconsisten-
cies in terms of drought response and increase the risk of
over-preparation due to overly sensitive model results. Cli-
mate change is expected to drive greater fluctuations in soil
wetting and drying in Ireland and other regions. This high-
lights the importance of addressing inconsistencies between
soil datasets, not only to better understand the sensitivity
of soil information to drought conditions but also to en-
sure careful interpretation of soil moisture data. Additionally,
adopting ensemble approaches could offer a more balanced
perspective.

Uncertainties in soil moisture simulations are found to be
largely linked to soil properties, particularly the field capac-
ity, wilting point, and saturation, derived from different soil
physics. Overall, the study highlights the shortcomings of
global soil databases in simulating soil hydrothermal changes
and underscores the need to optimize and improve global soil
hydrophysical properties that are input into LSMs for better
performance. Developing detailed regional soil texture prop-
erties may be more realistic and may enable more improve-
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ment in model simulations. Ultimately, this would advance
the understanding of the role of soil processes in the hydro-
logic cycle, ecosystem productivity, drought evolution, land–
atmosphere interactions, and regional climate.

A number of initiatives (e.g., Terrain-AI) have been devel-
oped to deploy soil-moisture-measuring networks across Ire-
land to address the lack of soil moisture observations. A sig-
nificant conclusion of this study is that the Noah-MP model
has shown an excellent capacity to use as input better alter-
native soil texture data to reduce the model biases relating to
soil hydrothermal changes and the evolution of soil moisture
drought. Therefore, it can be applied to augment the current
network of sites across the country for operational model-
ing and real-time forecasting of soil moisture conditions and
drought across the domain. This will support hydrometeo-
rological monitoring similarly to the Global Flood Aware-
ness System (GloFAS) and NASA’s Short-term Prediction
Research and Transition Center with the Land Information
System (SPoRT-LIS).

Appendix A

To evaluate the ASCAT SWI, we rescaled the units in percent
to match the observed VWC and other products (in m3 m−3)
used . To achieve this, we used the variance-matching ap-
proach (Eq. A1) so that the linearly transformed SWI∗ data
would have the same mean (µ) and standard deviation (σ ) as
the ground VWC measurements (Paulik et al., 2014; Bauer-
Marschallinger et al., 2018).

SWI∗ =
SWI(t) − µSWI

σSWI
σVWC +µVWC (A1)

As demonstrated in Figs. A2–A3 for near-surface and sub-
surface VWC, the ASCAT SWI∗ generally yields better per-
formance than the ESA-CCI 25 km SSM and GSSM 1 km
products, though the latter products show higher temporal
dynamics, as shown by the higher temporal correlations with
the ground observations. The rising and falling trends are
also better captured by ASCAT. Compared to ASCAT, the
ESA-CCI SSM and GSSM show fewer fluctuations in VWC,
appearing to be very close to the sub-surface VWC profiles
(e.g., Fig. A2f). While the uncertainty in GSSM products is
likely to be linked to the lack of training data from Ireland,
the biases in the ESA-CCI SSM may be attributed to its na-
tive grid resolution, which is too coarse to effectively repre-
sent the soil heterogeneity and/or differences in soil depths.
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Figure A1. Observed 5 and 20 cm depth TDR soil moisture from 2022 to present across the Terrain-AI stations.

Figure A2. Evaluation of satellite-derived 1 km ASCAT-T2 (0–10 cm), 1 km GSSM (0–5 cm), and 25 km ESA-CCI near-surface soil moisture
against the station observations. There are no available ESA-CCI SSM grid values for Valentia, and, due to ASCAT’s later year of operation,
in 2015, no ASCAT values are available for Dripsey.
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Figure A3. Evaluation of satellite-derived 1 km ASCAT-T10 (10–30 cm) sub-surface soil moisture against the station observations (20 cm).
No sub-surface values are available for ESA-CCI and GSSM products.

Figure A4. Error statistics of volumetric water contents between observations and model experiments for the selected reference stations.
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Figure A5. (a–g) Temporal comparisons of sub-surface volumetric water contents between observations at 20 cm depth and simulated values
at 7–21 cm layer for the selected reference stations.

Figure A6. Spatial characteristics of difference between satellite-based annual ASCAT Soil Water Index (SWI) and model-derived annual
mean relative soil moisture (RSM) at the sub-surface for (a–e) 2018 and (f–j) 2019.
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Figure A7. Spatial and seasonal characteristics of simulated topsoil (0–7 cm) volumetric water content (VWC) using STATSGO and (a–d)
SoilGrids (e–h), as well as the difference (i–l), for the period of 2009–2022. Rows 1–4 represent the winter to autumn seasons, in that order.
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Figure A8. Spatial and seasonal characteristics of simulated long-term variability in topsoil (0–7 cm) volumetric water content (VWC) using
STATSGO (a–d) and SoilGrids (e–h), as well as the difference (i–l), for the period of 2009–2022. Rows 1–4 represent the winter to autumn
seasons, in that order.
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Figure A9. Error statistics of soil temperature between observations and model experiments for the selected reference stations.

Code and data availability. The open-source HRLDAS/Noah-
MP model code (https://doi.org/10.5281/zenodo.7901868, He
et al., 2023) is available at https://github.com/NCAR/hrldas
(last access: 25 October 2021). The ECMWF ERA5-Land
hourly input meteorological forcing data (Muñoz-Sabater et
al., 2021) were downloaded from the Climate Data Store at
https://doi.org/10.24381/cds.e2161bac (Muñoz Sabater, 2019).
The WPS geographical data are freely provided by the NCAR
Mesoscale and Microscale Meteorology Lab, geographical static
data: https://www2.mmm.ucar.edu/wrf/users/download/get_
sources_wps_geog.html (WRF Users Page, 2022). The CORINE
Land Cover 2018 data are freely provided by the European
Union’s Copernicus Land Monitoring Service Information,
CORINE Land Cover 2018 (vector/raster 100 m), Europe, 6-yearly:
https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac
(EEA, 2020). ASCAT Soil Water Index data are freely available at
https://doi.org/10.2909/0929daf7-a0a3-4428-9bc1-cec6691e85d8
(EEA, 2019). Weather station data are freely pro-
vided by Met Éireann, Ireland, Historical Data: https:
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