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Abstract. Large-scale hydrologic modeling at the national
scale is an increasingly important effort worldwide to tackle
ecohydrologic issues induced by global water scarcity. In this
study, a surface water–groundwater integrated hydrologic
modeling platform was built using ParFlow, covering the en-
tirety of continental China with a resolution of 30 arcsec.
This model, CONCN 1.0, offers a full treatment of 3D vari-
ably saturated groundwater by solving Richards’ equation,
along with the shallow-water equation at the ground surface.
The performance of CONCN 1.0 was rigorously evaluated
using both global data products and observations. RSR val-
ues (the ratio of the root mean squared error to the standard
deviation of observations) show satisfying performance with
regard to streamflow, yet the streamflow is lower in the en-
dorheic, Hai, and Liao rivers due to uncertainties in potential
recharge. RSR values also indicate satisfying performance
in terms of the water table depth of the CONCN model.
This is an intermediate performance compared to two global
groundwater models, highlighting the uncertainties that per-
sist in current large-scale groundwater modeling. Our mod-

eling work is also a comprehensive evaluation of the cur-
rent workflow for continental-scale hydrologic modeling us-
ing ParFlow and could be a good starting point for mod-
eling in other regions worldwide, even when using differ-
ent modeling systems. More specifically, the vast arid and
semi-arid regions in China with substantial sinks (i.e., the
endpoints of endorheic rivers) and the large uncertainties in
potential recharge pose challenges for the numerical solu-
tion and model performance, respectively. Incompatibilities
between data and the model, such as the mismatch of spa-
tial resolutions between models and products and the shorter,
less frequent observation records, necessitate further refine-
ment of the workflow to enable fast modeling. This work not
only establishes the first integrated hydrologic modeling plat-
form in China for efficient water resources management but
will also benefit the improvement of next-generation models
worldwide.
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1 Introduction

China has been facing a persistent water crisis due to rapid
socio-economic development and population growth (Jiang,
2009), resulting in the second lowest per inhabitant water
supply among all countries worldwide (Pietz, 2017). The in-
creasing water demand in China has been further exacerbated
by more frequent hydrologic extremes, such as droughts and
floods, driven by climate change and human activities. Water
availability in China not only affects the nation’s develop-
ment trajectory but also influences the global food and sup-
ply chain (Collins and Reddy, 2022). Therefore, it is press-
ing to develop a consistent hydrologic modeling platform
at the national scale for water resources management, wa-
ter quality control, and decision-making. Some work has
begun in this regard. A national-scale groundwater model
with a 10 km resolution based on MODFLOW has been built
(Lancia et al., 2022), and nationwide natural streamflow was
reconstructed using the variable infiltration capacity (VIC)
model with a 0.25° resolution (Miao et al., 2022). Addition-
ally, regional groundwater models or hydrologic models with
a groundwater component have been developed for focus ar-
eas, such as the North China Plain (Cao et al., 2013; Yang
et al., 2020; Yang et al., 2023a), the Heihe River basin (Hu
et al., 2016; Tian et al., 2015), the Pearl River basin (Wang
et al., 2023; Yu et al., 2022), and the Jianghan Plain in the
central Yangtze River (Jiang et al., 2022). These advances
in China’s modeling community are valuable for quantifying
the fluxes, storage, and quality of streamflow and ground-
water, thereby supporting the sustainable development of the
country.

There is an increasing number of national and global mod-
eling platforms worldwide for surface water, groundwater,
or a combination of both. National-scale models include the
US NOAA National Water Model (NWM) (Cosgrove et al.,
2024); the USGS National Hydrologic Model (NHM) (Re-
gan et al., 2019); the ParFlow (Parallel Flow) CONUS mod-
eling platform (Maxwell et al., 2015; Yang et al., 2023b); the
Canada National Water Model (Canada1Water) (Chen et al.,
2020); the British Groundwater Model (BGWM) (Bianchi
et al., 2024); and the national-scale models from Germany
(Belleflamme et al., 2023; Hellwig et al., 2020), France
(Vergnes et al., 2023), Denmark (Henriksen et al., 2003),
the Netherlands (Delsman et al., 2023), and New Zealand
(Westerhoff et al., 2018). Global models include the hydro-
logic model WaterGap and its groundwater component G3M
(Reinecke et al., 2019; Müller Schmied et al., 2021), the hy-
drologic model PCR-GLOBWB and its associated ground-
water models (Sutanudjaja et al., 2018; Verkaik et al., 2024;
de Graaf et al., 2015, 2017; Hoch et al., 2023), and Fan’s
global groundwater model (Fan et al., 2013, 2017).

How to build a large-scale hydrologic model that balances
high performance with the trade-off between resolution and
computational efficiency is a critical issue in the hydrologic
modeling community, especially in groundwater modeling

or in modeling with a full treatment of groundwater. How-
ever, it remains an open question since the subsurface is
largely unseen. Reinecke et al. (2020) compared the perfor-
mance of several popular global groundwater models in New
Zealand, along with the New Zealand national groundwa-
ter model (Westerhoff et al., 2018). Reinecke et al. (2020)
attributed the departure of simulations from observations to
model resolution, but Yang et al. (2023b) suggested that the
model’s structure and parameters also play a role. Significant
progresses have been achieved in community discussions re-
garding model parameterization, evaluation, calibration, and
intercomparison (Gleeson et al., 2021; Condon et al., 2021;
O’neill et al., 2021; Tijerina et al., 2021). Yet, building a
large-scale, high-resolution hydrologic model with satisfy-
ing performance remains a challenging task (Reinecke et al.,
2024; Devitt et al., 2021).

The most recent ParFlow CONUS 2.0 (Yang et al.,
2023b) surface water–groundwater integrated hydrologic
model demonstrates excellent performances in terms of both
streamflow and water table depth when compared with sub-
stantial observations collected from the US Geological Sur-
vey (USGS) and other sources. However, the feasibility of
its modeling workflow in other regions in the world has not
yet been evaluated. Here, we use the CONUS 2.0 work-
flow as a starting point to build the modeling platform of
continental China (CONCN). China has contrasting climatic
conditions, including large arid and semi-arid areas in the
northwest, with annual potential evapotranspiration up to
∼ 1400 mm (Li et al., 2014), and extremely wet conditions in
the southeast, with annual precipitation exceeding 2000 mm
(Han et al., 2023). The landforms are diverse, encompassing
snowpacks, wetlands, deserts, and plains. The topographic
relief is dramatic, ranging from the world’s highest mountain
ranges in Tibet to the sea level in coastal plains. All these
factors make China a favorable test bed for the CONUS 2.0
workflow, yet they also introduce new challenges into the
modeling. Additionally, the US has databases of meteorol-
ogy, hydrology, topography, soil, and geology, along with
relatively mature systems of data management and sharing.
In contrast, the existence and accuracy of some necessary
data in China remain uncertain. These differences challenge
the transferability of the CONUS 2.0 workflow, necessitating
modifications during the CONCN modeling process. Hence,
building the CONCN model is not only essential for achiev-
ing national-scale consistent management of water resources
but also important for identifying the strengths and limita-
tions of the workflow. This will help improve the perfor-
mance of next-generation models at larger or global scales.

In the following sections, we first introduce the structure
and parameters of CONCN 1.0, including the construction
of hydrologically consistent topography, hydrostratigraphy,
and potential recharge, which are the key components of
the ParFlow model. We highlight the challenges in building
the CONCN 1.0 model and describe the strategies to over-
come these obstacles. We then evaluate the performances of

Hydrol. Earth Syst. Sci., 29, 2201–2218, 2025 https://doi.org/10.5194/hess-29-2201-2025



C. Yang et al.: CONCN: a ParFlow modeling platform of continental China 2203

the CONCN model in terms of streamflow and water table
depth compared to both global data products and observa-
tions. The comparisons of CONCN model with other model
products are intended not to determine which model is bet-
ter but rather to identify the common problems faced by the
modeling community. At the end of the paper, we also dis-
cuss the challenges and opportunities in integrated hydro-
logic modeling for communities in China.

Note that all performance evaluations in this paper are
based on the RSR value, which is the ratio of the root mean
squared error to the standard deviation of observations. In
this study, we expect a satisfying performance, with an RSR
value of less than 1.0, where 0.5 is preferable (O’neill et al.,
2021). However, the performances defined here are only for
the comparison in this study, indicating the capabilities of the
model relative to the benchmark we used (i.e., global prod-
ucts or observations). RSR values for different variables in
this study (i.e., drainage area, streamflow, water table depth)
are not comparable. RSR values are generally not compa-
rable to those in other case studies using different models.
Even for the same models used in this study, different obser-
vations and different simulation periods represent different
benchmarks and different system dynamics, respectively, so
it is hard to say if the same RSR value represents the same
performance of a model (Moriasi et al., 2007; Schaefli and
Gupta, 2007; Knoben et al., 2019).

2 Model parameterizations

The CONCN 1.0 model covers the entirety of continental
China (Fig. 1a) with a horizontal resolution of 30 arcsec
(∼ 1 km at the Equator). Vertically, the CONCN model is
composed of 10 layers with thicknesses of 300, 100, 50, 25,
10, 5, 1, 0.6, 0.3, and 0.1 m from bottom to top. This struc-
ture results in 4865 and 3927 grid cells in x and y directions,
respectively, and a total of 98.8 million active grid cells. Al-
though we used the CONUS 2.0 workflow as a starting point
for CONCN 1.0, modifications to the workflow are neces-
sary, as mentioned in the Introduction. One reason is primar-
ily due to the data availability in China. This does not mean
that the relevant data are completely missing but rather that
the data are not readily available for modeling purposes or
that the quality of the data is uncertain. Another reason is
due to the scientific progress that has occurred since the de-
velopment of the CONUS 2.0 model. For example, the total
model depth of CONCN 1.0 (492 m) is deeper than the depth
of CONUS 2.0 (392 m). The increased model depth better
closes the terrestrial hydrologic cycle as groundwater con-
tributes to global streamflow to a depth of∼ 500 m (Ferguson
et al., 2023). The details of these modifications are discussed
in the following sections.

2.1 Topographic processing

The two most important components of a ParFlow model
are the topographic inputs and the hydrostratigraphy, which
largely determine the model’s performances in terms of
streamflow and groundwater, respectively. Since this is a sur-
face water–groundwater integrated hydrologic model, topo-
graphic inputs may also influence the potential recharge to
groundwater, while hydrostratigraphy is crucial for accurate
simulations of baseflow. Topographic inputs refer to slopes
in the x and y directions, which are calculated using a digital
elevation model (DEM) (Fig. 1a). This DEM has been pro-
cessed to ensure the D4 connectivity of the drainage network;
D4 connectivity means that, within each grid cell, streamflow
is only allowed in east–west and north–south directions and
is not allowed in diagonal directions. The original DEM used
in this study is a data product with a resolution of 30 arcsec
(Eilander et al., 2021), which was upscaled from the MERIT
Hydro DEM with a resolution of 3 arcsec (∼ 90 m at the
Equator) (Yamazaki et al., 2019) using an iterative hydro-
graphic upscaling approach (hereafter abbreviated as IHU
DEM). The IHU DEM was processed using PriorityFlow,
which was developed during the CONUS 2.0 modeling (Con-
don and Maxwell, 2019). Note that the horizontal resolution
of the CONCN 1.0 model (i.e., 30 arcsec) is set to be consis-
tent with the resolution of this IHU DEM.

Reference stream networks are preferred as inputs in Pri-
orityFlow to improve the drainage performance. The chal-
lenge is that we do not have a consistent gridded stream
network at the national scale with a resolution close to that
of CONCN 1.0, whereas a network with 250 m resolution
from the National Water Model (NWM) is available for
CONUS 2.0 (Zhang et al., 2021). As a replacement, we gen-
erated stream networks from the IHU flow direction of D8
connectivity. Then we checked the generated networks with
the vector networks generated from the 3 arcsec MERIT Hy-
dro flow direction (Lin et al., 2019). The initial threshold of
the drainage area used to generate the input networks from
the IHU flow direction was set to 300 km2. During the pro-
cessing using PriorityFlow, we refined some input networks
locally by gradually decreasing the threshold. Such refine-
ments are necessary in areas with flat topographies (e.g., the
Huang–Huai–Hai plains and coastal plains in Fig. 1a), where
flow directions are difficult to identify without additional ref-
erence networks. Endorheic rivers are common in northern
and northwestern China. Sinks, the endpoints of these en-
dorheic rivers, are also important to constrain flow directions
and thus to generate accurate D4 stream networks. Manual
refinements of input networks, including the sinks, were iter-
ative processes until the networks generated by PriorityFlow
appeared to be consistent with the vector networks and there
were no obvious ponding cells in runoff simulations. A to-
tal of 924 sinks were identified in CONCN 1.0 compared to
only 131 sinks in CONUS 2.0, which increases the difficulty
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Figure 1. DEM processed by PriorityFlow and labeled with major basins, plains, and mountain ranges (a); major watersheds and streamflow
gauges (red points) (b); soil texture of the top soil layer (the first layer from top to bottom) (c); hydrolithologies of the top layer (the fifth layer
from top to bottom) (d); unconsolidated thickness (e); and annual potential recharge (f). The empty areas in (f) have potential recharge of zero
in the model. Indicators of soil texture: (1) sand, (2) loamy sand, (3) sandy loam, (4) silt loam, (5) silt, (6) loam, (7) sandy clay loam, (8) silty
clay loam, (9) clay loam, (10) sandy clay, (11) silty clay, (12) clay. Indicators of hydrolithologies: (19) bedrock 1, (20) bedrock 2, (21) f.g. sil.
sedimentary, (22) sil. sedimentary, (23) crystalline, (24) f.g. unconsolidated, (25) unconsolidated, (26) c.g. sil sedimentary, (27) carbonate,
(28) c.g. unconsolidated. Note that f.g., sil., and c.g. represent fine-grained, siliciclastic sedimentary, and coarse-grained, respectively.
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of the numerical solution as ParFlow currently does not han-
dle such waterbodies.

In addition to the qualitative evaluation described above,
we also compared the drainage areas generated by Priori-
tyFlow with those in IHU and with 294 observations col-
lected from the literature (Yin et al., 2024). Increasing per-
formance was observed during the iterative processing, and
the final performances are shown in Fig. 2. The PriorityFlow
and IHU drainage areas match well, with an RSR value of
less than 1, indicating a satisfying performance (Fig. 2a). An
additional interesting finding is the scaling relationship be-
tween drainage areas and frequencies. The comparison with
observations shows a much better performance as the RSR
value is less than 0.5 (Fig. 2b). Deviations from the 1 : 1 line
were observed for drainage areas smaller than 100 km2 as we
focused more on drainage areas larger than 100 km2 during
the processing.

2.2 Hydrostratigraphy

The general structure of the hydrostratigraphy is composed
of shallow soils and deeper hydrolithologies. The latter in-
clude both unconsolidated and consolidated sediments (Fan
et al., 2007; Huscroft et al., 2018). The details of the imple-
mentation are as follows: the top 2 m consists of four soil
layers (0.1, 0.3, 0.6, and 1.0 m from top to bottom). The rel-
ative percentages of sand, clay, and silt in each layer were
derived from a global dataset of soil hydraulic properties
(Dai et al., 2019) with a 30 arcsec resolution. A total of 12
soil textures (Fig. 1c) were then built from these percentages
based on the soil classification defined by the US Department
of Agriculture. Hydrolithologic categories (Fig. 1d) were re-
classified from the permeabilities of GLHYMPS 1.0 (Glee-
son et al., 2014), which was built by categorizing lithologies
in the global lithology map, GLiM. GLiM was compiled by
using the geologic map of China with a scale of 1 : 2.5 mil-
lion by the China Geological Survey in 2001 (Hartmann and
Moosdorf, 2012). Then e folding, representing variations in
hydraulic conductivity with depth and terrain slope, was ap-
plied to each of the six deep layers (Fan et al., 2007; Tijerina-
Kreuzer et al., 2023). Flow barriers (Fig. 1e) were imple-
mented at the interfaces between unconsolidated and consoli-
dated sediments via multiplying the hydraulic conductivities
by 0.001 to represent a potential confining layer (de Graaf
et al., 2020; Huscroft et al., 2018). This concept represents
the lumped effects of low-permeability sedimentary materi-
als in the unconsolidated layer. The dataset we used to repre-
sent the interface depths was specifically developed for China
(Yan et al., 2020) and is more accurate than the global version
used in CONUS 2.0 (Shangguan et al., 2017).

We adopted this hydrostratigraphy as it is the most con-
vincing scheme from CONUS 2.0, selected through rigor-
ous hydrologic modeling tests from hundreds of combina-
tions of different components, such as the distribution of hy-
drolithologic categories, anisotropy of some categories, im-

plementation of confining layers, e folding of the hydraulic
conductivities, total model depth, and constant or variable
depths of confining layers (i.e., flow barriers) (Swilley et al.,
2023; Tijerina-Kreuzer et al., 2023). The hydraulic parame-
ters for each soil texture and hydrolithologic category (e.g.,
hydraulic conductivity, porosity, specific yield, and parame-
ters of the van Genuchten model) were adopted from Schaap
and Leij (1998) and Gleeson et al. (2014), with slight cali-
brations in the CONUS models (Maxwell et al., 2015; Yang
et al., 2023b). The parameter configuration assumes that each
soil texture or hydrolithologic category has a set of represen-
tative, scale-independent hydraulic parameters.

2.3 Potential recharge

The construction of potential recharge used to drive the
model is the most challenging part in this modeling work.
Here, potential recharge refers to the multi-year aver-
aged precipitation (P ) minus evapotranspiration (ET), i.e.,
P −ET. The uncertainties of such hydrometeorological vari-
ables are always high. For example, the relative standard de-
viation (standard deviation relative to the mean) of the an-
nual mean ET from 12 global products using different ap-
proaches reaches 50 % (Jiménez et al., 2011). Given this is-
sue, the P and ET datasets selected for CONUS 2.0 were
generated from a VIC modeling framework (Livneh et al.,
2015), which adjusts P for orographic effects and ensures
closure of the land surface water budget. Therefore, the un-
certainties of all the hydrologic variables were constrained
within a consistent modeling system. However, datasets of P

and ET in China generated by various approaches have in-
consistent uncertainties, and a closed water balance for all
hydrologic components is absent. Uncertainties in P −ET
may further accumulate during data processing (e.g., resam-
pling, interpolations, and transforms) due to differences in
the spatiotemporal resolutions of the P and ET products and
the CONCN model. Additionally, the record lengths and data
quality of some datasets are hard to balance, also challeng-
ing the accurate representation of a long-term average state
of the pre-development condition. We collected four precip-
itation products and five ET products generated based on
(1) interpolation of the measurements (Han et al., 2023);
(2) models including the Penman–Monteith equation (Run-
ning et al., 2021), the complementary relationship model (Ma
et al., 2019), and the land surface model (Muñoz-Sabater
et al., 2021); and (3) model–data fusion (Huang et al., 2014;
Peng, 2020; Niu et al., 2020; Zhang et al., 2019).

An accurate evaluation of different products was not con-
ducted as it is beyond the scope of this study. More impor-
tantly, it will take time for the community to gradually im-
prove the quality of these datasets. We roughly evaluated the
products using prior knowledge of some focus areas. For ex-
ample, we randomly selected several locations and compared
the multi-year average levels of P or ET with the commonly
known levels. We used the same approach to evaluate the
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Figure 2. Evaluating the drainage performance of the topography processed by PriorityFlow using (a) IHU drainage areas and (b) observa-
tions collected from the literature.

P −ET generated by combining different P and ET datasets.
For example, P −ET showed negative values in some arid
and semi-arid regions in northwestern China where P −ET
should be a dominant source for known rivers. Although
ERA5-Land products also provide P and ET datasets under
a consistent modeling framework with a high enough res-
olution (∼ 9 km at the Equator), the precipitation dataset is
obviously lower than that constructed using interpolation of
substantial measurements in Han et al. (2023). The best com-
bination of P (Han et al., 2023) and ET (Niu et al., 2020) in
the evaluations was selected to create the average state of po-
tential recharge from 1981 to 2010 (Fig. 1f). However, errors
induced by uncertainties from P and ET – especially from
ET – are still evident in some regions, such as the Tarim
River basin, the Heihe River basin, and the Haihe River basin
(i.e., the North China Plain). The inaccuracy estimation of
potential recharge would affect the simulated groundwater
and streamflow as discussed in the following sections.

2.4 Manning’s roughness coefficients

The Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Cover Type (MCD12Q1) version 6.1 data
product with a 500 m resolution (Friedl and Sulla-Menashe,
2022) was used to build the distribution of Manning’s
roughness coefficients, which are necessary for calculating
streamflow and will also be required by the Common Land
Model (CLM) (Dai et al., 2003) in the future transient
ParFlow-CLM model (Kollet and Maxwell, 2008). The
land cover types in this product follow the International
Geosphere-Biosphere Programme (IGBP) classification,
which is consistent with the classification required by
ParFlow-CLM. In the modeling of CONUS 2.0, a land
cover map with a higher resolution of 30 m was reclassified

according to the IGBP classification. Some products with
resolutions higher than 500 m are also available in China
(Yang and Huang, 2021), but their coarse classifications
prevented us from reclassifying the types to subtypes.
Stream networks were generated using PriorityFlow with a
threshold drainage area of 50 km2, and stream orders were
calculated based on the Strahler stream order (Strahler,
1957). Manning’s roughness coefficients were set to vary
by land cover type and were further adjusted in stream
channels, decreasing in value with increasing stream order.
The values of Manning’s roughness coefficient for each land
cover type and each stream order were adapted from the
National Water Model (Gochis et al., 2015) and a previous
study (Foster et al., 2020).

3 ParFlow modeling platform

ParFlow simulates the movement of 3D variably saturated
groundwater and 2D surface water simultaneously by solving
Richards’ equation with the shallow-water equation as the
top boundary (Kollet and Maxwell, 2006). CONCN 1.0 uses
a terrain-following grid, which significantly reduces the com-
putational load compared to an orthogonal grid (Maxwell,
2013). The model was initialized with a uniform water table
depth (WTD) of 2 m and was driven by the average poten-
tial recharge of 1981–2010 to achieve a quasi-steady state
for evaluations in following sections. All faces of the model,
except the top boundary, are no-flow boundaries. We ran the
model using the seepage face boundary condition on top of
the model until the total storage change was less than 1 % of
the potential recharge. This is to form the topography-driven
patterns of the water table. Afterward, the overland kinematic
boundary condition was enabled to generate river systems.
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The spinup continued until the total storage change was less
than 3 % of the potential recharge. River systems quickly
reached a quasi-steady state in groundwater convergence ar-
eas, which had already been identified in the first stage.
This two-phase spinup process omitted unnecessary surface
water–groundwater interactions during the early stage to im-
prove computational efficiency. Although the dimension of
CONCN 1.0 is comparable to CONUS 2.0, CONCN 1.0 re-
quired more time for spinup because rivers in arid and semi-
arid regions take longer to reach a quasi-steady state as the
river water is limitedly recharged by local precipitation but is
sourced from the faraway upstream of the river.

The Newton–Krylov approach is employed to solve this
large nonlinear system, which is discretized on a finite-
difference grid in an implicit manner. Parallel scalability
of the model is ensured by using a multi-grid precondi-
tioner. Thresholds of nonlinear and linear iterations are 1e−5

and 1e−10, respectively, to ensure proper convergence. The
model was run on Princeton Della GPU cluster using four
80 GB NVIDIA A100 GPU cards or on the NCAR Derecho
supercomputer using 4096 processor cores across 32 nodes.
Each node on Derecho is equipped with 3rd Gen AMD
EPYC™ 7763 Milan CPUs.

4 Simulations and evaluations

The simulated streamflow and WTD are shown in Fig. 3.
Patterns of streamflow (Fig. 3a) reveal a contrast between
wet and dry regions, generally consistent with the monsoon
and non-monsoon regions. Large river systems in the mon-
soon region are well represented, such as the Yellow River
in northern China; the Yangtze River and the Pearl River in
southern China; and the Songhua, Nen, and Liao Rivers in
northeastern China. During the spinup, we observed that the
Yellow River is primarily recharged by water sourced from
the Bayan Har Mountain ranges and by a small amount of lo-
cal groundwater. The number of river segments recharged by
precipitation increases downstream of the Hetao Plain. River
systems in northwestern China are also visible, though future
work is needed to improve the accuracy by reducing uncer-
tainties in potential recharge. The WTD (Fig. 3b) presents
topography-driven patterns, showing shallow water tables in
the Huang–Huai–Hai Plain, the Jianghan Plain, the Liaohe
basin, and the Songnen Plain. The water table is also shal-
low inside the Tarim basin, where the terrain is flat, even
though annual precipitation there is lower than 50 mm. Deep
water tables are distributed along the Tianshan and Kunlun
mountain ranges and the Taihang–Greater Khingan mountain
ranges and along the transition area from the Tibet Plateau to
the Szechwan basin.

The performance of CONCN 1.0 was comprehensively
evaluated by both data products and observations. In the eval-
uation using measured observations, it is difficult to ensure
that the duration of the records is consistent with that of the

Figure 3. Simulated streamflow and water table depth by
CONCN 1.0, representing the average state from 1981 to 2010.

potential recharge (1981–2010) as streamflow or groundwa-
ter observations earlier than 2000 are hard to collect. This
mismatch between the simulation and observation periods
may cause discrepancies between simulated and observed
values due to the different drivers resulting from interannual
variations in P and ET. This highlights a new challenge rel-
ative to the CONUS 2.0 modeling as publicly accessible ob-
servations in the US date back to 1900 or even earlier.

4.1 Evaluation of streamflow

We compared the simulations of CONCN 1.0 with a global
streamflow dataset, GRADES-hydroDL (Yang et al., 2023c).
The daily streamflow from 1980 to present is estimated for
2.94 million river reaches by applying a long short-term
memory (LSTM) model on a 0.25° grid, developed follow-
ing Feng et al. (2020), and then coupling the LSTM model
with a river routing model (RAPID) (David et al., 2011).
River reaches with drainage areas larger than 1000 km2 were
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Figure 4. Scatterplot of simulated streamflow vs. GRADES-
hydroDL. Locations of the selected reaches for comparison are
shown in the upper-left corner.

selected, and those with drainage areas larger than 120 %
or smaller than 80 % of the PriorityFlow drainage areas
were further filtered out. For each of the selected 23 609
reaches, streamflow during the potential recharge period
(1981 to 2010) was averaged and compared with the sim-
ulation of CONCN 1.0. Locations of the selected reaches
and a scatterplot of simulations vs. GRADES-hydroDL are
shown in Fig. 4. Overall, we see comparable performances
of CONCN 1.0 and GRADES-hydroDL, with an RSR value
close to 1. Smaller streamflow values are more scattered
in the plot due to the uncertainties associated with smaller
drainage areas.

We collected streamflow observations at 95 gauges from
the annual River Sediment Bulletin of China, with 88 gauges
available for evaluation. Five gauges were removed because
we could not find their locations (i.e., latitude and longi-
tude) in the lookup table of national gauges, one of two very
close gauges was also removed, and one gauge in Hainan
Province was excluded as it is outside of the modeling do-
main. The locations of the 88 gauges are shown in Fig. 1b,
covering most of the modeling domain to ensure an impartial
evaluation. However, the number of gauges is obviously lim-
ited, and augmenting the database for this modeling platform
will take time. The observations include monthly records
spanning from 2002 to 2021. Although most gauges do not
have a complete 20-year record, each gauge has at least a 2-
year record. Scatterplots of simulations vs. observations are
shown in Fig. 5. Most basins show satisfying performances,
with RSR values close to 1.0 or smaller than 0.5. Simulated
streamflow of the endorheic and Haihe rivers and part of the
Liao River is much lower than observed. This is likely due to

uncertainties in potential recharge, as discussed in Sect. 2.3,
and the fact that simulations at these gauges are mainly base-
flow sourced from groundwater. Slight deviations are also
seen along the main stream of the Yangtze and Yellow rivers,
likely caused by hydraulic engineering, such as dam opera-
tions.

4.2 Evaluation of water table depth

WTDs generated by two global groundwater models were
collected (Fig. 6a and b). Both models have a horizontal res-
olution of 30 arcsec, but their formulations and vertical struc-
tures differ significantly from CONCN 1.0. The first model is
a horizontal, two-dimensional groundwater model of 40 lay-
ers. It describes 1D soil water movement within each column
using Richards’ equation and 2D lateral flow among columns
using Darcy’s law under the Dupuit–Forchheimer assump-
tion. It is an inverse modeling approach originally developed
by Fan et al. (2017) and later updated in 2020 (as with eLet-
ters in Fan et al., 2013). The water table in Fig. 6a is the
average of hourly dynamics from 2004 to 2014. The sec-
ond model, GLOBGM v1.0, is a three-dimensional ground-
water model with two layers, driven by outputs from PCR-
GLOBWB (Verkaik et al., 2024). GLOBGM v1.0 here is
a steady-state model representing the average state for the
period 1958–2015. It is a refined version of the 5 arcmin
PCR-GLOBWB-MODFLOW model (de Graaf et al., 2015,
2017). Though GLOBGM v1.0 is not calibrated, its prede-
cessor (de Graaf et al., 2017) was calibrated.

We collected monthly observations of the hydraulic heads
in 8563 wells in 2018. After removing wells located outside
of the model domain, in confined aquifers, and on ParFlow
river channels, 2436 wells remained for evaluation (Fig. 7a).
The annual means of WTD were calculated by subtracting
hydraulic heads from well elevations measured at the land
surface. These wells are part of the national groundwater
monitoring network maintained by the Ministry of Land and
Resources. We collected the data by digitizing the China
Geological Environmental Monitoring Groundwater Level
Yearbook of 2018 and then double-checked the data to avoid
errors. The yearbook, which started from 2005, has cur-
rently been updated to 2021. We fully understand that 1-year
monthly observations cannot represent the long-term average
state of the water table. An ongoing effort is being made to
digitize all data in the yearbook and to apply QA/QC (quality
assurance and quality control) to the digitized data, although
this will take a few years to finish.

We compared WTDs simulated by the three models with
observations (Fig. 8). RSR values show generally satisfying
performances for all three models. CONCN 1.0 has RSR val-
ues that fall between the two global models (0.88 compared
to 0.80 and 1.41), with a bias towards shallow water tables.
The residuals of WTD for each model are shown in Fig. 7b–
d. Each subplot also shows the decrease in groundwater stor-
age based on GRACE data (Zhao et al., 2023), which is
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Figure 5. Scatterplots of simulated vs. observed streamflow for basins in Fig. 1b and the entire CONCN 1.0 domain.

Figure 6. Water table depths from two global models in CONCN 1.0 domain: (a) Fan’s model and (b) GLOBGM v1.0.

classified into three levels: moderate, rapid, and dramatic.
The decrease in groundwater storage is mainly observed in
northern China, such as in the Song–Liao plains, the North
China Plain, and the Hetao Plain and at the northern edge
of the Tarim basin. Agriculture, with intensive groundwa-
ter pumping for irrigation, is well-developed in these areas.
While model simulations represent natural conditions with-
out groundwater pumping, simulated water tables might be

expected to be shallower than observed, i.e., negative WTD
residuals, given anthropogenic impacts. However, the resid-
uals from the Fan et al. (2013, 2017) model show positive
residuals in these areas (Fig. 7c). Similarly, positive residu-
als of GLOBGM v1.0 are found in Tibet and the Song–Liao
plains, where the decrease in groundwater storage is likely to
be significant. Given the uncertainty in groundwater pump-
ing and the lack of extraction data, it is challenging to rep-
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Figure 7. Well locations (a) and residuals of water table depth for each model (b–d). Here, residuals refer to the differences between
simulations and observations. The background shows the average decrease in groundwater storage from 2003 to 2020 based on GRACE data
(Zhao et al., 2023). The decrease is classified into three levels: moderate, rapid, and dramatic.

Figure 8. Scatterplots of simulations vs. observations of water table depth. The simulations are long-term average water table depths of
1981–2010 in the current work, of 2004–2014 in Fan’s model, and of 1958–2015 in GLOBGM v1.0. The observations are the averages of
2018.
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resent these processes in large-scale models. It is important
to note that Fan’s model is an inverse model and that the
predecessor of GLOBGM v1.0 is a calibrated model, while
the ParFlow CONCN 1.0 model is uncalibrated. Groundwa-
ter observations are sparse; many uncertainties exist, particu-
larly in the subsurface architecture; and extraction from wells
is unknown, creating a substantial modeling challenge. Cal-
ibration of large-scale groundwater models to observations
becomes particularly challenging given that both extraction
and hydraulic conductivity will lower water tables and can
have an equal impact on RSR values.

5 Discussion

All three models show deep simulated water tables located
just below the Szechwan basin, at the boundaries of the
Yangtze River and the Pearl River basins (Fig. 7). This find-
ing may suggest a higher potential recharge in 2018 com-
pared to the historic period (1981–2010), which was used
to drive the model. Notably, these areas are part of the exten-
sive karst regions (Wang et al., 2019), where unique potential
recharge and groundwater movement may occur along pref-
erential flow pathways (e.g., fractures and conduits) (Hart-
mann et al., 2017). Given that ParFlow modeling has demon-
strated acceptable performance in karst regions in previous
studies (Srivastava et al., 2014; Yang et al., 2023b), we did
not apply specific adjustments to model inputs for these re-
gions. However, we assigned higher hydraulic conductivities
in karst regions, assuming that karst aquifers behave simi-
larly to porous media at a scale of approximately 1 km (i.e.,
the model resolution). This assumption may simplify the
karst geology, and we acknowledge its limitations as the sim-
ulated deep water tables could also result from the under-
lying karst geology. More specifically, wells are easily cre-
ated in places lacking prominent karst features, where local
hydraulic conductivities are relatively lower. However, the
higher effective hydraulic conductivity of a grid cell may
generate deep water tables without representing such subgrid
heterogeneities.

In southern China, where it is wet, CONCN 1.0 shows
shallow water tables, whereas Fan’s model and GLOBGW
v1.0 predict relatively deeper water tables (Fig. 7b–d). These
differences are likely to arise from the distinct model for-
mulations. ParFlow integrates overland flow and groundwa-
ter movement by simultaneously solving Richards’ equation
and the shallow-water equation via shared nodes in the top
layer. As a result, WTDs in wells near rivers are likely to be
underestimated due to the widened rivers in the model, re-
sulting from the model’s resolution of approximately 1 km.
WTDs in some wells located too close to rivers, e.g., tens or
hundreds of meters, which is smaller than the model resolu-
tion, cannot be captured at all as the grid cell has been fully
saturated. However, monitoring wells are typically located
near rivers, which explains the shallow WTDs generated by

CONCN 1.0 in southern China (Fig. 7b). Fan’s model and
GLOBGW v1.0, which account for river–groundwater inter-
actions, use the difference between groundwater head and
river level (Fan et al., 2017; de Graaf et al., 2017). In these
two models, rivers and the top subsurface layer are loosely
coupled without shared pressure heads. In other words, rivers
can flexibly carve the topography, and groundwater with lev-
els lower than the land surface can discharge to rivers. Ad-
ditionally, WTDs, even in grid cells with rivers, can be cali-
brated, which is not possible in ParFlow due to the integrated
formulation. Though Fan’s model and GLOBGW v1.0 use
similar formulations for groundwater–river interactions, the
WTDs of Fan’s model are shallower than those of GLOBGW
v1.0 in southern China, which highlights other uncertainties
of the two models (Reinecke et al., 2024).

To avoid the bias in evaluation caused by well locations
due to the fact that they are concentrated near rivers, we plot-
ted the differences in terms of WTDs between CONCN 1.0
and the two global models in Fig. 9a and b. Results indi-
cate that Fan’s model generally produces shallower WTDs,
whereas GLOBGW v1.0 simulates deeper WTDs, i.e., an
intermediate performance by CONCN 1.0, which expands
the understanding applicable to riparian areas to the entire
modeling domain. The significant discrepancies in terms of
WTDs across the three models highlight substantial uncer-
tainties in WTDs simulated by current large-scale ground-
water models, which cannot be fully revealed using the lim-
ited available observations. This underscores the need for
further efforts in parameterizations and formulations of the
models in this modeling community. Reinecke et al. (2024)
found that WTDs generated by global models are strongly
correlated with topography (i.e., slope) yet exhibit minimal
climatic influences. In contrast, WTDs of Fan’s model and
observations show weaker correlations with topography and
can be further differentiated in water-limited and energy-
limited regions. We show generally similar results in Fig. 10,
where red and blue are used to differentiate the Spearman
rank correlations and boxplots in wet and arid regions based
on potential recharge in Fig. 2f.

In Fig. 10, WTDs of CONCN 1.0 and GLOBGM v1.0
show strong correlations with topography, whereas obser-
vations and WTDs of Fan’s model exhibit weaker correla-
tions. The shallower WTDs simulated by ParFlow in wet
regions, as discussed earlier, may decrease the correlation
with topography, yet it is interesting to find that the terrain-
following grid of ParFlow results in slightly lower correla-
tions than GLOBGM v1.0. Unlike the findings in Reinecke
et al. (2024), correlations of observations with topography
in different climate regions appear to be similar. This differ-
ent finding could be attributed to the predominance of agri-
cultural areas in the observation dataset, where groundwa-
ter pumping likely exerts a significant influence. The limited
number of observations in this study is another potential lim-
itation. In addition to the general explanation for the differ-
ent correlations among models in Reinecke et al. (2024), the
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Figure 9. Differences in terms of water table depth between CONCN 1.0 and two global models: (a) the difference between CONCN 1.0
and Fan’s model and (b) the difference between CONCN 1.0 and GLOBGM v1.0.

Figure 10. Variations in water table depth with topographic slope for observations (a) and simulations of three models (b–c). Spearman
rank correlations shown in each subplot are based on the point cloud. Boxplots (without outliers) for better visualization of the point cloud
are created by evenly separating slopes into 10 bins. Boxplots and Spearman rank correlations in each subplot are distinguished by poten-
tial recharge. Red and blue are for points located in regions with and without long-term average potential recharge (i.e., P −ET > 0 and
P −ET= 0).
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formulation of Fan’s model may play an important role. By
incorporating the plant use of groundwater and dynamic root
uptake depth in an inverse modeling based on inferred ET
from remote sensing, Fan’s model may introduce stronger
regulations in relation to water tables via recharge, thereby
diminishing the controls from (or the sensitivity to) topogra-
phy. Additionally, Fan’s model relies on remote sensing ET
that has occurred under irrigation conditions, which includes
the ET induced by irrigation. This additional ET is likely to
be derived from groundwater, amplifying the effects of plant
water use compared to natural conditions. This phenomenon
may also explain the deeper water tables predicted by Fan’s
model in agricultural areas, as shown in Fig. 7. These find-
ings suggest that groundwater models should account for
plant water use from deep soil or groundwater. Recharge es-
timated by hydrological or land surface models with limited
soil depths and/or without lateral groundwater convergence
may be insufficient. Furthermore, uncertainties arising from
human disturbances, such as groundwater pumping, should
also be quantified.

6 Summary and future outlook

In this study, we built the first surface water–groundwater
integrated hydrologic modeling platform for the entirety of
continental China with a high resolution using ParFlow.
This CONCN 1.0 model was rigorously evaluated by both
data products and observations based on RSR values. Com-
parisons with observations show satisfying performances in
terms of streamflow and water table depth. Comparisons with
global data products show comparable performance in terms
of streamflow in relation to the global models and an inter-
mediate performance in terms of water table depth among
global models. These results also demonstrate the transfer-
ability of the modeling workflow using ParFlow. However,
we also recognize the challenges inherent in large-scale hy-
drologic modeling. Data quality and availability (e.g., for di-
rect use or quick access) present a significant challenge dur-
ing modeling. The vast arid and semi-arid regions of China
further increase uncertainties in input data, such as poten-
tial recharge. As a result, lower simulated streamflow is ob-
served in northwestern China and in the Haihe River and Liao
River basins. Significant uncertainties in simulated water ta-
ble depth are identified in current large-scale groundwater
models, which might be attributed to the different parameter-
izations and formulations of the models, necessitating con-
tinuous efforts from the community.

We hope that our work can catalyze conversations and col-
laborations between various communities involved in hydro-
logic modeling, geological surveys, model development, data
products, and data monitoring and/or sharing. Clearly, all ef-
forts are aimed at improving the efficiencies and capabili-
ties of large-scale hydrologic modeling, which is powerful
in addressing diverse ecohydrologic issues and accelerating

scientific discoveries across multiple disciplines. Below, we
summarize both the challenges and opportunities that require
the attention and collaborative efforts of the hydrology com-
munity and beyond.

1. Human activities related to water resources are inten-
sive in China, such as the long-term groundwater pump-
ing in the Huang–Huai–Hai plains, the South-North Wa-
ter Transfer projects, the operation of the Three Gorges
Dam, and the revegetation in the Loess Plateau. Flash
extremes are also becoming more frequent, such as
the Yangtze drought (August 2022) and the storms in
Zhengzhou (July 2022) and Beijing (July 2023). These
factors make China one of the world’s most significant
ecohydrologic hotspots. Integrated hydrologic model-
ing systems are essential to address these issues. While
local and regional models have been developed in re-
cent years, modeling platforms with a high resolution at
larger or national scales are still lacking, hindering effi-
cient water resources management and timely decision-
making across multiple scales.

2. Hydrologic processes, especially groundwater at the
hillslope or catchment scales, play important roles in
terrestrial water and energy cycles, yet they are often
oversimplified or poorly represented in Earth system
models. Many studies conducted in China on critical hy-
drologic questions have focused on limited components
of the hydrologic cycle. Therefore, it is urgent to build
large-scale hydrologic models and couple them with re-
gional weather or climatic models to better understand
the terrestrial hydrologic cycle in China. More impor-
tantly, the modeling should go beyond water balance to
include flow paths or water quality to gain a deeper un-
derstanding of the food–energy–water nexus and to con-
duct risk assessments in the changing world.

3. Large-scale hydrologic modeling relies on massive
amounts of data for various input variables. Discrete
observations are often not user-friendly when it comes
to direct use by modelers. Data products help fill spa-
tial and temporal gaps and are necessary for effective
modeling. Many of the products currently used only
emerged in recent years, making large-scale hydrologic
modeling inefficient in China and other parts of the
world in earlier times. The rapid development of global
data products suggests that now is the ideal time to build
large-scale, consistent hydrologic modeling platforms.
However, high-quality data products within a consis-
tent framework are still lacking, and inter-evaluations
between different products could help constrain uncer-
tainties from various sources (see Sect. 2.3).

4. We also need to leverage the strengths of local docu-
ments in China. The hydrolithologies of GLHYMPS 1.0
were built using the global lithology map GLiM, which
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relies on the geological map with a scale of 1 : 2.5 mil-
lion published by the China Geological Survey in 2001.
Currently, national geological maps with a scale of 1 :
500000 are available, while some local maps have a
scale of 1 : 50 000. We need to fully consider such re-
sources to improve the permeability and/or hydrolithol-
ogy products in China in terms of both horizontal reso-
lution and available depth. This is critical for building a
more reliable hydrostratigraphy, which could substan-
tially improve model performance. In addition, much
useful information is probably hidden in system con-
ceptualizations done for previous modeling studies. We
should consciously investigate, accumulate, and utilize
this information. Particularly in the context of ground-
water systems, hydrogeologists may have previously in-
terpreted available data in many places, holding valu-
able information due to the regional combination of ex-
pertise and data.

5. Building large-scale hydrologic models using differ-
ent formulations is encouraged. Model comparisons are
necessary to identify the strengths and limitations of dif-
ferent modeling systems with regard to the issues in fo-
cus (Bailey et al., 2016; Zafarmomen et al., 2024; Kim
et al., 2008). Such community activities are also help-
ful in reaching consensus on critical questions, such as
conceptual models or model parameterizations, calibra-
tions, evaluations, and opportunities incorporating new
techniques and concepts. All of these factors are essen-
tial for improving the performance of next-generation
models in China and can provide valuable insights for
modeling efforts in other parts of the world.
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