
Hydrol. Earth Syst. Sci., 29, 2153–2165, 2025
https://doi.org/10.5194/hess-29-2153-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mapping groundwater-dependent ecosystems using a
high-resolution global groundwater model
Nicole Gyakowah Otoo1, Edwin H. Sutanudjaja1, Michelle T. H. van Vliet1, Aafke M. Schipper2,3, and
Marc F. P. Bierkens1,4

1Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
2Radboud University, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, the Netherlands
3PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
4Unit Subsurface & Groundwater Systems, Deltares, Utrecht, the Netherlands

Correspondence: Nicole Gyakowah Otoo (n.g.otoo@uu.nl)

Received: 19 April 2024 – Discussion started: 6 May 2024
Revised: 26 January 2025 – Accepted: 19 February 2025 – Published: 30 April 2025

Abstract. Global population growth, economic growth, and
climate change have led to a decline in groundwater re-
sources, which are essential for sustaining groundwater-
dependent ecosystems (GDEs). To understand their spatial
and temporal dependency on groundwater, we developed a
framework for mapping GDEs at a large scale, using results
from a high-resolution global groundwater model. To evalu-
ate the proposed framework, we focus on the Australian con-
tinent because of the abundance of groundwater depth ob-
servations and the presence of a GDE atlas. We first classify
GDEs into three categories: aquatic (focusing on rivers), wet-
land (inland wetlands), and terrestrial (phreatophyte) GDEs.
We then define a set of rules for identifying these differ-
ent ecosystems based on, among others, groundwater levels
and groundwater discharge. We run the groundwater model
in both steady-state and transient mode (period of 1979–
2019) and apply the set of rules to map the different types
of GDEs using model outputs. For the steady-state mode, we
map the presence and absence of GDEs, and we evaluate re-
sults against the Australian GDE atlas using a critical suc-
cess index derived from hit rate, false alarm rate, and missing
rate. Results show a hit rate and a critical success index (CSI)
above 80 % for each of the three GDE types. From transient
runs, we analyse the changes in groundwater dependency be-
tween two time periods, 1979–1999 and 1999–2019, and ob-
serve a decline in the average number of months that GDEs
receive groundwater, pointing at an increasing threat to these
ecosystems. The proposed framework and methodology pro-

vide a first step towards analysing how global climate change
and water use may affect GDE extent and health.

1 Introduction

Global water consumption has quadrupled in the last cen-
tury due to population growth and industrialization in areas
with limited precipitation and surface water resources, in-
creasing the dependency on groundwater resources (Kummu
et al., 2016). In addition, alterations in precipitation and
recharge rates due to a changing climate have major im-
pacts on groundwater resources (Cuthbert et al., 2019; Tay-
lor et al., 2013). An increase in groundwater pumping and
lower recharge rates have increased the rate of groundwa-
ter depletion in several regions globally (Bierkens and Wada,
2019). Overexploitation of groundwater resources by non-
renewable groundwater use in areas with low recharge rates
leads to a decline in groundwater levels and a reduction
of groundwater discharge to groundwater-dependent ecosys-
tems (GDEs) (Kløve et al., 2014).

GDEs are defined as ecosystems that are reliant on ground-
water to maintain their ecological function and structure
(Kløve et al., 2014; Murray et al., 2006). The ecological in-
tegrity of GDEs depends on shallow groundwater levels or
groundwater discharge all year round, seasonally, or period-
ically (Duran-Llacer et al., 2022; Foster et al., 2010). The
degree of dependency of GDEs on groundwater varies with
ecosystem type, geology, season, aquifer type, flow paths,
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and catchment land use (Tomlinson and Boulton, 2010). In
arid and semi-arid regions, groundwater is usually a major
source of water for most ecosystems. GDE types include
surface water systems (aquatic GDEs, which include rivers
and lakes) that rely on groundwater discharge (Kløve et al.,
2011) and groundwater dependent wetlands and terrestrial
ecosystems (e.g. vegetation like phreatophytes) that tap into
groundwater as a source of water (Robinson, 1958).

It is evident that GDEs and their biodiversity as well as
the ecosystem services they provide are at risk due to unsus-
tainable groundwater extractions (Bierkens and Wada, 2019;
Link et al., 2023). It is, therefore, necessary to implement
protection measures through groundwater management poli-
cies, such as the extension of buffer zones around ground-
water recharge zones and appropriate land management in
groundwater capture hotspots (Kløve et al., 2014; MacKay,
2006). A critical step towards the large-scale application of
these water management strategies is to better understand the
global distribution of GDEs and their response to environ-
mental change. This, in turn, requires delineating the global
spatial distribution and extent of GDEs, understanding tem-
poral variations of the dependency of these ecosystems on
groundwater, and assessing how they are impacted by sec-
toral groundwater withdrawals.

Until the past decade, mapping of GDEs was predom-
inantly done at local scales, through laborious and costly
methods that involved long hours of field surveys (Eamus
et al., 2006; Hatton and Evans, 1998). More recently, GDEs
have also been mapped based on satellite-imagery such as
MODIS (Castellazzi et al., 2019). Some large-scale satellite
imagery-based mapping studies ( > 50 km) have been done
in Chile (Duran-Llacer et al., 2022), Colorado and Nevada
(Werstak et al., 2012), California (Howard and Merrifield,
2010), the Netherlands (Bonte et al., 2013; Hoogland et al.,
2010), Ireland (Kilroy et al., 2009), South Africa (Münch and
Conrad, 2007), Spain (Martínez-Santos et al., 2021; Münch
and Conrad, 2007), and Australia (Barron et al., 2014; Brim
Box et al., 2022; Glanville et al., 2016). The first continental
mapping was done for Australia (Doody et al., 2017), com-
bining remote sensing, GIS, and expert knowledge to create
a GDE atlas for the continent.

All the studies mentioned above are static in the sense that
they map the spatial distributions of GDEs at a given point in
time. However, to understand the dynamics of these ecosys-
tems, it is essential to develop a method that can capture
changes over time. The use of machine learning to predict
groundwater dependency by ecosystems is a promising tool
for spatial simulations. However, little data and an insuffi-
cient understanding of catchment-scale dynamics limit the
use of machine learning for mapping spatio-temporal GDE
dynamics (Xu and Liang, 2021). Process-based groundwa-
ter flow models, preferably at high resolution, may be more
suitable for spatio-temporal mapping of GDEs, since they en-
able explicit linkages between GDE expression and ground-
water level and groundwater discharges. In addition, process-

based groundwater flow models facilitate scenario analyses;
that is, they can be applied under various assumptions of
future changes in climate, land use, and human water use,
which all may impact future changes in GDE extent (Fatichi
et al., 2016). This was first shown globally by de Graaf et
al. (2019), who used a global groundwater model to project
changes in groundwater discharge to streamflow. It is also
possible to couple a process-based dynamic GDE mapping
model to other model types such as a biodiversity or eco-
nomic models to determine the relationship between GDEs
and biodiversity or the values of ecosystem services (Bar-
barossa et al., 2021; van Emmerik et al., 2014).

The aim of this research is to explore the potential of
mapping the spatio-temporal dynamics of GDEs based on
a global groundwater model. This work expands on the ear-
lier work of de Graaf et al. (2019) in that it considers a wider
range of GDEs and uses a much higher-resolution groundwa-
ter model. We first classify GDEs into aquatic, wetland, and
terrestrial vegetation (phreatophytes) ecosystems (Sect. 2.1).
We then use a global coupled surface–groundwater model
run at 1 km resolution in steady-state and transient modes
(Sect. 2.2) to map the distribution of these three GDE classes
in Australia (Sect. 2.3). We also analyse the temporal vari-
ations in groundwater contributions for the three different
GDE types (Sect. 3). We choose to focus on Australia be-
cause of the availability of an existing GDE atlas (Doody
et al., 2017) and the abundance of groundwater monitoring
data, which enable us to evaluate our method and results.
Also, Australia has a large variation in hydro-climatology
and topography, which will enable us to understand the po-
tential of our developed framework and methodology in var-
ious landscape settings.

2 Data and methodology

This section is divided into subsections highlighting the en-
tire GDE mapping framework, which entails model setup
and evaluation, GDE classification, and temporal variation
analysis. The framework for mapping GDEs is presented
in Fig. 1. Using this framework, we firstly define the GDE
classes (step 1), and then we run the surface–groundwater
model and evaluate the groundwater levels against well ob-
servations (step 2). Finally, we use the model output to anal-
yse and evaluate the spatio-temporal mapping of the three
different classes of GDEs (step 3).

2.1 Defining GDE classes (step 1)

We categorize groundwater-dependent ecosystems into three
classes based on interaction with groundwater (see Fig. 2).
These include (1) ecosystems that depend on sufficient
groundwater discharge (aquatic GDEs such as streams and
rivers), (2) ecosystems that need shallow groundwater ta-
bles and soil saturation (wetland GDEs), and (3) ecosystems
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Figure 1. Groundwater-dependent ecosystem (GDE) mapping
framework using a high-resolution groundwater model.

that depend on groundwater for root water uptake (terrestrial
GDEs with phreatophyte vegetation). In the case of aquatic
ecosystems, we do not include lakes due to the complexities
in determining the contribution of groundwater in lentic sys-
tems, and we exclusively focus on lotic systems – in this case
rivers. Also note that we focus on inland ecosystems only. Fi-
nally, we do not consider subsurface ecosystems that rely on
groundwater, such as stygofauna communities (Huggins et
al., 2023), because of the complexity of mapping these com-
munities as previously done by Huggins et al. (2023) as well.

For aquatic GDEs, any stream pixel where the ratio of
groundwater discharge (Qgw) to total streamflow (Q) Qgw

Q
>

0 for more than a month is classified as being groundwa-
ter dependent. The rationale behind using groundwater dis-
charge as a metric is that it maintains streamflow during
dry spells and due to the relatively constant temperature of
groundwater, which modulates stream temperatures during
warm periods. For terrestrial GDEs (phreatophyte vegeta-
tion), we assume that any cell with a vegetation type with
maximum rooting depth (Drmax) less than the groundwater
depth of that cell is groundwater dependent, assuming that,
in this case, the vegetation is able to access groundwater with
its deepest roots during dry spells.

We define wetland GDEs based on the fraction of satu-
rated area (soil wetness) and groundwater level. Any cell

that has a saturated area fraction (Fsat) greater than 50 %
and a groundwater table depth less than 5 m is classified
as a wetland GDE. While groundwater levels closer to the
surface (0.5–3 m) support core wetland functions (Eamus et
al., 2006; Winter, 1999), wetlands in arid and semi-arid re-
gions can still exhibit groundwater dependence with water
table depths up to 5 m, particularly in peripheral or drought-
adapted areas (Stromberg et al., 2010). Hence, the threshold
of 5 m accommodates both core and peripheral groundwater-
supported zones across varied climates. We added the 50 %
soil saturation threshold to discern dry areas with shallow
groundwater levels from actual wetlands, which are typically
saturated at the surface. We performed a sensitivity analysis
for varying groundwater depth thresholds (1–5 m) and satu-
rated area fractions (0.1–1.0) with a total of 100 combina-
tions, showing that the threshold of 5 m produces the highest
critical success index when validating against the Australian
GDE atlas (see Fig. S1 in the Supplement). In the latter case,
we assessed the “degree of groundwater dependency” for
each GDE type identified on the basis of a monthly time step
(Fig. 1).

2.2 Model setup, sensitivity analysis, and output
evaluation (step 2)

For this research, we use an integrated hydrological model
that consists of two parts. The first part is a physically
based global hydrology and water resources model (PCR-
GLOBWB version 2.0; Sutanudjaja et al., 2018) that simu-
lates global terrestrial hydrology, including the human im-
pacts (dams and human water use). The second is a time-
dependent (transient) groundwater flow model (GLOBGM;
Verkaik et al., 2024). The two models are linked through a
one-way coupling; that is, the outputs of the PCR-GLOBWB
model are used as inputs to the groundwater flow model (Su-
tanudjaja et al., 2011). We first run PCR-GLOBWB 2 with
its own default groundwater parameterization and then use
the time series outputs for surface water levels, saturated area
fraction, and groundwater recharge as forcing for the ground-
water flow model. Model input parameters and data source
references as well as groundwater properties for the model
can be found in the Supplement (Figs. S2 and S3 and Ta-
ble S1).

2.2.1 PCR-GLOBWB

PCR-GLOBWB 2 is a gridded integrated hydrology and
water resources model with a latitude–longitude grid of
5 arcmin spatial resolution that simulates terrestrial hydrol-
ogy and human water use at a daily time step. A detailed
model description can be found in Sutanudjaja et al. (2018).
PCR-GLOBWB 2 is forced with precipitation, temperature,
and reference evaporation based on the W5E5 meteorolog-
ical data set (Cucchi et al., 2020; Lange et al., 2021). Soil
parameters are based on the SoilGrids dataset (Hengl et al.,
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Figure 2. Criteria for defining groundwater-dependent ecosystems, with Qgw representing local groundwater discharge, Q representing accu-
mulated streamflow, Gwt representing groundwater table depth, Fsat representing saturated area fraction, and dRmax representing maximum
rooting depth.

2017). We use the default model settings with four land-cover
types, aggregating land cover classes into tall natural vegeta-
tion, short natural vegetation, non-paddy irrigated crops, and
paddy irrigated crops (Sutanudjaja et al., 2018). To simulate
variations in the saturated area fraction, we use the improved
ARNO scheme (Todini, 1996; Hagemann and Gates, 2003),
which is an integral part of PCR-GLOBWB 2, to assess the
area subject to surface runoff. PCR-GLOBWB 2 also has an
irrigation and water use model that calculates water demand
(Wada et al., 2014) and water withdrawal, water consump-
tion, and return flows for irrigation, domestic, livestock, and
industrial sectors.

2.2.2 Groundwater model

We use the two-layer groundwater model GLOBGM run at
30 arcsec (16 million active cells) to simulate groundwater
depths, groundwater heads, and groundwater discharge. The
model code that is used is MODFLOW 2005, and the aquifer
properties are taken directly from de Graaf et al. (2017). The
groundwater model is forced with surface water levels and
net groundwater recharge (percolation minus capillary rise)
over the period 1979–2019 at monthly time steps as obtained
from runs with PCR-GLOBWB 2. For net recharge, sim-
ple resampling is used, while water levels are computed at
30 arcsec based on a simple routing method of characteris-
tics (for details, see Sutanudjaja et al., 2018) of the 5 arcmin
specific discharge over a 30 arcsec drainage network based
on HydroSHEDS (Lehner et al., 2008). The steady-state
groundwater model is run with average net groundwater
recharge and surface water levels over 1979–2019. Subse-
quently, the transient run follows with the heads from the
steady-state run as the initial condition and after a sufficient
spinup period of 20 years.

2.2.3 Sensitivity analysis and calibration of
groundwater model parameters

With groundwater recharge and boundary conditions as de-
scribed above, the groundwater model results are possibly
sensitive to aquifer transmissivity and storage coefficient,
riverbed conductance, and the thickness of the confining
layer, while these properties are often very uncertain at larger
scales (Brunner et al., 2017). We perform a sensitivity analy-
sis using 216 steady-state simulations by varying the follow-
ing three parameters: riverbed conductance, vertical conduc-
tivity of the confining layer (if present), and transmissivity of
the confined and unconfined aquifers. We change these pa-
rameters independently using a single prefactor k applied to
the log-transformed parameter of concern, with k = 1 being
the initial value of the parameter taken from de Graaf et al.
(2017). See Eq. (1) for an example of the transmissivity:

T ′ = exp(k · ln(T )), (1)

with T ′ the perturbed transmissivity (m2 d−1), T the original
transmissivity according to de Graaf et al. (2017), and k the
prefactor applied.

For each unique parameter combination, we evaluate the
biases between the simulated steady-state groundwater depth
(surface elevation minus hydraulic head in the top layer) and
time-averaged observed groundwater depths using data from
15 345 wells recorded from 1970 to 2019 at a monthly time
step. If there were multiple wells within a 1 km cell, we cal-
culate the average of these considering the same year. We
then select the best parameter set with the least bias against
observed well data and vary the storage coefficient and con-
duct six transient runs to select the best parameter set for
simulating transient groundwater levels. Based on this, we
finally select the best parameter set for the GDE mapping.

2.2.4 Evaluation of simulated groundwater depths

We evaluate the transient simulated groundwater depths
against observed groundwater well-depth time series data

Hydrol. Earth Syst. Sci., 29, 2153–2165, 2025 https://doi.org/10.5194/hess-29-2153-2025



N. G. Otoo et al.: Mapping GDEs using a high-resolution model 2157

(Bureau of Meteorology, 2023). We compare 5 million cells
with simulated groundwater depths with the observed data
from 1979 to 2019 in the Australian continent. The metrics
used for evaluation are bias (Baker, 1987), Pearson corre-
lation coefficient (Cohen et al., 2009), and relative variance
(Grömping, 2007).

2.3 GDE mapping (step 3)

2.3.1 Steady-state GDE mapping

After running the model in steady-state mode (average forc-
ing groundwater dependent), we map the three different
classes of GDEs according to the classification rules de-
scribed above (Fig. 2). For aquatic GDEs, we derive an
aquatic ecosystem dependency ratio to groundwater that is
defined as Qgw

Q
, where Qgw is the local groundwater dis-

charge and where Q is the total streamflow.
Wetland GDEs are mapped using the groundwater depth

from the groundwater model and the average saturated area
(1979–2019) from PCR-GLOBWB 2. Terrestrial vegetation
GDEs are mapped using the groundwater depth and a rooting
depth map (Fan et al., 2017).

After mapping these GDEs in steady-state mode, we eval-
uate the results by comparing these with the GDEs mapped
by the Australian GDE atlas using similarity index metrics.
These metrics are the hit rate h (a class is present that is
also mapped), false alarm rate f (a class is mapped that is
not present), and miss rate m (a class is present that is not
mapped). From these metrics, we also calculate the critical
success index (CSI) for the mapping of each GDE type, de-
fined as Eq. (2):

CSI=
h

h+ f +m
. (2)

Note that the Australian GDE atlas distinguished between
actually observed GDEs and likely GDEs (Doody et al.,
2017), where the latter are mapped based on land-cover type.
When evaluating the mapping, we did not distinguish be-
tween known and likely GDEs, because of the overall good
performance in our mapping approach and similarity in the
hit rates between the known and likely GDEs (see Fig. S4 in
the Supplement).

2.3.2 Transient GDE mapping

For the transient analysis of the GDEs, we use monthly
time series of groundwater depth, groundwater discharge and
saturated area fraction from the transient simulation over the
period 1979–2019. We use the same criteria for mapping
GDEs as used for mapping in steady-state mode and use the
extent of the steady-state-mapped GDEs as a given. Within
these areas, we consider the temporal variability in the con-
tribution of groundwater. For aquatic GDEs, we use monthly
values of Qgw

Q
to classify each month as having a low de-

pendence (ratio < 0.25) moderate dependence (ratio between

0.25 and 0.75), or high dependence (ratio > 0.75) on ground-
water. For terrestrial and wetland GDEs, we record the aver-
age number of months per year that the system is classified
as groundwater dependent. We separately identify these tran-
sient GDE measures for two 20-year periods (1 January 1979
to 31 December 1999 and 1 January 2000 to 1 January 2019)
to assess potential changes in the contribution of groundwa-
ter between these two time periods.

3 Results

We first present the evaluation of the groundwater model
simulations, as a first performance indicator of the proposed
GDE mapping methodology (Sect. 3.1). We then evaluate
the coincidence of GDE types mapped with the steady-state
groundwater model with GDEs mapped by the Australian
GDE atlas (Doody et al., 2017) (Sect. 3.2). Finally, we show
the temporal change in the degree of groundwater depen-
dency of the different GDE classes based on the transient
simulations over the period that is groundwater dependent
(Sect. 3.3).

3.1 Performance of the groundwater model in
simulating groundwater heads

From the sensitivity analysis and calibration, it turned out
that the performance metrics calculated from the groundwa-
ter head observations were rather insensitive to the prefactors
(see Fig. S5 in the Supplement). We therefore decided to use
the default parameters for further analyses. In general, the
cumulative frequency distributions show a good agreement
in timing (∼ 75 % shows r > 0.25). The dissimilarities be-
tween the observed and the simulated heads are due to the
bias. Our simulated heads are deeper than the observed ones,
with∼ 70 % having a bias ranging 0–5 m. Plotting the biases
per depth category of the observation data (wells) (Fig. S6
in the Supplement), we observe a smaller bias for shallower
depths compared to the deeper depths. This shows that where
it matters for GDEs (i.e. shallower depths), the biases are also
smaller. The relative variance shows an underestimation of
groundwater level variation of ∼ 80 % with a relative vari-
ance < 0.6.

The groundwater head of the first layer as simulated with
the steady-state groundwater model and the best parame-
ter set from the sensitivity analyses is shown in Fig. S7
in the Supplement, presenting a wide range in groundwa-
ter heads over Australia (0.25 to > 320 m). Figure S8 in
the Supplement shows the differences in simulated (steady-
state) groundwater heads for areas where a confining layer is
present. The red areas are those where there is a confining
layer and the heads in the aquifer underlying the confining
layer are larger than those in the confining layer itself. In
these areas, it is possible that deep incising surface waters
could receive groundwater discharge from the lower aquifer.
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Figure 3 shows maps as well as cumulative frequency dis-
tributions of the bias (in m; difference in temporal mean
heads: simulated minus observed), Pearson correlation co-
efficient (between the observed and simulated groundwater
heads over time), and the relative variance (temporal variance
of simulated time series divided by the temporal variance of
the observed time series). Note that we compared the simu-
lated groundwater depths from layer 1 with all available ob-
servation wells. Due to a lack of data on the well filter depths,
we were not able to exclude the wells with filters in confined
aquifers. This will likely have a negative effect on model per-
formance. Results show that the evaluation metrics perform
better in Tasmania and areas where the wells are likely not in
a confined aquifer, i.e. the red areas in Fig. S8 (with r > 0.6,
bias ≤ 3 m).

3.2 Steady-state mapping and evaluation of GDEs

To map the locations of GDEs, we use the steady-state out-
puts from our groundwater model. For the aquatic GDEs, we
observe that most streams of well-known river basins such as
the Darling River depend on groundwater. Some vegetation
located in dry areas tap into groundwater levels, while wet-
lands, showing large ranges in size, depend on groundwater
predominantly when located close to rivers, likely being wet-
lands in or nearby floodplains.

Evaluating our mapped GDEs against the Australian GDE
atlas by Doody et al. (2017), we observed high hit rates of
87 %, 92 %, and 95 % for aquatic, terrestrial, and wetland
GDEs, respectively (Fig. 4). Despite the overall bias ob-
served in the groundwater model (Fig. 3), the impact on rep-
resenting GDEs is limited since this bias is smaller for shal-
lower groundwater levels than for deeper groundwater levels
(Fig. S6). For the aquatic GDEs, most of the false alarms are
in the near-coastal areas and in the Great Artesian Basin. We
miss some terrestrial GDEs in western Australia due to a lack
of good rooting depth data. We also wrongly identify a large
area of wetlands in New South Wales.

3.3 Transient GDE mapping

To understand how the contribution of groundwater to the
different ecosystems varied in the past, we divided the sim-
ulated periods into two time intervals (period 1: 1979–2000;
period 2: 2001–2019) and estimated for each time interval the
average number of months per year that each GDE type relies
on groundwater. Next, we calculated the changes in number
of months of groundwater dependency: period 2 minus pe-
riod 1 (Figs. 5 and 6). We used the mapped steady-state ex-
tent as a given for the evaluation of the degree of groundwater
influence on GDEs for the transient runs. In other words, we
did not look into extent dynamics.

For aquatic GDEs, we assessed temporal changes in the
different dependency ratio (Qgw

Q
) categories. We observe that

there is a decline in the average number of months in all de-

pendency classes (Fig. 5) and that the decline in groundwater
contribution is mostly observed in streams in the Murray–
Darling Basin. This is in accordance with the decline in
groundwater levels between the two periods in both the sim-
ulations and the observations (Fig. S9 in the Supplement).
It is important to realize that the dependency ratio depends
on both the groundwater depth and related groundwater dis-
charge (Qgw) as well as the streamflow itself. This is illus-
trated in Fig. 6 that shows simulated time series of Qgw

Q
,

groundwater depth, and total streamflow. The figure shows
that the groundwater levels are constrained at the top by the
drainage system and also shows the intermittent character of
the Australian climate, with wet periods alternating with dry
periods where groundwater levels decline and streamflow be-
comes almost zero. The top figure shows a negative trend in
groundwater levels. However, streamflow is also declining,
offsetting the decline in groundwater discharge, resulting in
a smaller negative trend in groundwater dependency (Qgw

Q
).

The zoomed-in view at the bottom shows the importance of
discharge variability. November 2005 and July 2006 show
almost the same shallow water table. However, streamflow
peaks in November 2005, which makes for a low dependency
ratio, while the 2006 streamflow is low in July, making the
dependency on groundwater discharge large.

Figure 7 shows the change in the number of months that
the terrestrial GDEs and wetland GDEs are groundwater de-
pendent. For wetland GDEs, we observe a decline in ground-
water contribution of on average 4 months per year in most
regions, with an exception in some wetland areas in New
South Wales and South Australia where an average increase
of 8 months of groundwater dependency is observed. For
wetland GDEs, this decline can also be caused by a decline
of the saturated area fraction, which is a driving factor for
the decrease in wetland GDE dependency in central Australia
since these areas show only limited declines in groundwater
levels. Terrestrial GDEs (phreatophytes) show a limited de-
cline in groundwater dependency of 1 month on average for
most locations. These changes are exclusively due to a de-
cline in groundwater levels since the rooting depth is kept
constant (see Fig. S7).

We have performed some additional analyses to provide
insight into the drivers of groundwater level changes between
both periods. Figure S10 in the Supplement shows the differ-
ence in simulated groundwater recharge between the periods
2001–2019 relative to 1979–2000 and the simulated ground-
water withdrawal over the 2001–2019 period. The changes in
groundwater recharge reflect the impact of climate variabil-
ity and/or change on the groundwater system, while the loca-
tions with groundwater withdrawal reflect the direct human
impacts. A thorough factor analysis is beyond the scope of
this study, but a comparison of Figs. 7 with S9 suggests that
climate variability mainly explains the changes in groundwa-
ter depth in north, central, and western Australia, while both
factors play a role in eastern Australia. Note that the vari-
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Figure 3. Evaluation statistics of observed groundwater depths against simulated groundwater head; (a–c) maps with values per observed
location; (d–f) associated cumulative frequency distributions; (a, d) bias (m); (b, e) Pearson correlation coefficient; (c, f) relative variance.
The white areas on the maps are locations without observation data.

Figure 4. Mapped GDEs based on steady-state groundwater model results evaluated against the Australian GDE atlas showing hit rate, false
alarm rate, miss rate, and the CSI for the three GDE classes. Blue colour represents missed ecosystems, dark red represents false alarm, and
green represents hit rate.

ability of the simulated groundwater levels is half of that of
the observed ones. This reflects the underestimation of the
variability in groundwater depth as shown in Fig. 3. Possible
explanations for this are an underestimation of recharge and
recharge variability in drylands (Quichimbo et al., 2021), an

overestimation of storage coefficients, and an underestima-
tion of groundwater withdrawals.

https://doi.org/10.5194/hess-29-2153-2025 Hydrol. Earth Syst. Sci., 29, 2153–2165, 2025



2160 N. G. Otoo et al.: Mapping GDEs using a high-resolution model

Figure 5. Change in groundwater dependency of aquatic GDEs between 1979–2000 and 2001–2019; (a) maps of the direction of change in
the average number of months that aquatic GDEs depend on groundwater; the left panel shows the change in the number of months Qgw

Q
> 0

(low to high dependency), the middle panel Qgw
Q

> 0.5 (moderate to high dependency), and the right panel Qgw
Q

> 0.75 (high dependency);
red areas indicate a decrease in the average number of months with groundwater dependency and blue indicates an increase; (b) associated
frequency distributions of change in number of months.

4 Discussions and conclusions

In this research, we developed and evaluated a framework
using a surface–groundwater model at 30 arcsec resolu-
tion to map aquatic, wetland, and terrestrial groundwater-
dependent ecosystems. We evaluated the simulated ground-
water heads with observed groundwater level observations
and the mapped GDE occurrence with the GDE atlas of Aus-
tralia. Groundwater resources are crucial for GDEs as they
partially or fully contribute to their water budget. Analysing
the spatial and temporal changes in groundwater dependency
is required for understanding threats to GDEs. In the con-
text of global population growth, industrialization, economic
growth, and climate change driving global groundwater de-
pletion, this will inform relevant stakeholders on threatened
ecosystems and direct groundwater allocation. This study in-
troduces a method for GDE mapping that offers the possi-
bility to improve understanding of the spatial distribution
and temporal dynamics of GDEs in relation to the spatio-
temporal dynamics of groundwater systems.

Our research complements previous work on mapping
GDEs combining expert knowledge, GIS and field visits
by Doody et al. (2017); previous global groundwater mod-
elling efforts (de Graaf et al., 2019); and work by Eamus
et al. (2015), who investigated GDE responses to changes
in groundwater depth using satellite images and field stud-

ies for selected locations. In comparison, our research pro-
poses a methodology to understand the long-term temporal
responses of different GDE types to changes in groundwa-
ter levels at a large spatial extent and at high resolution.
Our method relies on outputs from a process-based high-
resolution large-scale groundwater model and has potential
for identifying hotspots of ecosystems threatened by ground-
water extractions on a large scale. It proved to be effective for
identifying GDEs in Australia with a hit rate over 87 % and
CSI over 80 %. GDEs occur in areas with a shallow water
table, and, notably, our framework was well able to simulate
groundwater depths at these locations. The transient compo-
nent of this methodology also facilitates in-depth understand-
ing of the temporal dynamics of the reliance on groundwater
resources by GDEs. At a monthly timescale, we were able to
simulate the different levels of dependency by aquatic GDEs
as well as the levels of reliance or non-reliance on ground-
water resources by wetlands and phreatophyte communities.

It is important to note that the dependency ratio of aquatic
GDEs is dependent on both total streamflow and ground-
water depth. Thus, increased groundwater discharge coupled
with a decrease in streamflow may shift a river section to
be more dependent and vice versa. Although streamflow and
groundwater levels are likely positively correlated at larger
timescales, they may not be in phase at shorter timescales due
to the different response times of surface water and ground-
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Figure 6. Example time series of Qgw
Q

for a downstream river reach location in the Darling River (location indicated in the aquatic GDE

map on top). Top: time series of simulated Qgw
Q

, total streamflow (Q), and groundwater depth, including trend lines. Right panels: zoomed-in

view into a selected time frame (green bar in the left panels) to show how the variability of dependence of Qgw
Q

depends on groundwater
level and streamflow.

water systems. This makes the degree of groundwater depen-
dency of aquatic GDEs more intermittent when compared to
GDEs that rely on groundwater depth and soil wetness (wet-
lands) or groundwater depth only (phreatophyte communi-
ties). Phreatophytes may be even more resilient to change as
they are able to adapt to groundwater level declines through
deeper rooting (Naumburg et al., 2005), although there are
limitations to this adaptive capacity between species, im-
plying that a decline in groundwater level may result in
changes in phreatophyte community composition (Sommer
and Froend, 2014).

The model performance evaluation in the transient analy-
sis revealed a fair overall agreement between simulated and
observed groundwater head data yet also an overall overesti-
mation in simulated groundwater depth. However, since bi-
ases for shallow groundwater levels were limited, the per-
formance in identifying the GDEs was very good, as indi-
cated by the different performance metrics. The calibration
results show that the groundwater model was not very sensi-

tive to global changes in parameter sets (Fig. S5). This calls
for more sophisticated groundwater calibration methods that
allow for regional differentiation in model parameters. Also,
further improvements can be expected if the recharge sim-
ulated with PCR-GLOBWB 2 could be better constrained.
Therefore, a calibration approach more sophisticated than
prefactor parameter change must be implemented to improve
the groundwater model simulations and derived mapping of
GDEs.

One of the limitations of the current groundwater model
setup is its relatively simple hydrogeologic schematization
obtained from de Graaf et al. (2017). Although this makes
the framework globally applicable, it may suffer from a lack
of geological detail needed for representing groundwater dis-
charge and springs over, for example, the Great Artesian
Basin. Another limitation is the assumption that the rooting
depth of phreatophytes is constant, due to a lack of temporal
rooting depth data. This assumption contrasts with studies
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Figure 7. Change in average number of months of groundwater the dependency of terrestrial GDEs (phreatophytes) and wetland GDEs;
(a) direction of change in terrestrial GDEs (phreatophytes); (b) direction of change in wetland GDEs. Red areas indicate a decrease in the
average number of months with groundwater dependency, green indicates no change between the periods, and blue indicates an increase;
(c, d) associated cumulative frequency distributions of change in number of months.

that have shown the ability of plants to adapt to changes in
groundwater levels (Fan et al., 2017; Robinson, 1958).

Although we noted a decline in groundwater contribution
to Australian GDEs over the past decades, we have not ex-
plicitly factored in potential impacts from climate change or
unsustainable groundwater extraction on GDE extent. Also,
we cannot conclude on GDE loss solely from our findings,
as we have not observed a consistent lack of groundwater
contribution throughout the year. The potential underestima-
tion of groundwater level changes (Fig. S9) and withdrawals
at a high resolution (Fig. S10) in our simulations could be a
contributing factor.

In future work, we intend to apply our framework to
the global scale and better assess the individual impacts of
groundwater withdrawals and climate change on the extent
of GDEs under different scenarios. This would also require
us to translate the change in degree of groundwater contribu-
tion to a change in GDE extent. This work will be accompa-
nied by improved hydrogeological schematization and bet-
ter calibration methods, with the aim to provide a good basis
for ecological assessments, where changes in GDE extent are
linked to changes in species richness.

In summary, the framework introduced in this study rep-
resents a GDE mapping approach that allows for the as-
sessment of spatio-temporal dynamics associated with the
dependency of ecosystems on groundwater resources. This

generic methodological framework not only enhances our
understanding of the spatial distribution of GDEs but also es-
tablishes a foundation for interdisciplinary research between
ecology and hydrology. By offering a global perspective on
hotspot areas of GDEs under various hydroclimatic condi-
tions, this methodology can inform decision-making pro-
cesses regarding groundwater allocation and species conser-
vation efforts. Such initiatives are crucial for advancing the
objectives outlined in, for example, the Kunming-Montreal
Global Biodiversity Framework and Sustainable Develop-
ment Goal 15, which aims to halt biodiversity loss.

Code and data availability. Code for mapping and evaluating
GDEs can be found at https://doi.org/10.5281/zenodo.15295151
(Otoo, 2025).
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