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Abstract. Advances in satellite Earth observation have
opened up new opportunities for global monitoring of soil
moisture (SM) at fine to medium resolution, but satellite re-
mote sensing can only measure the near-surface soil mois-
ture (SSM). As such, it is critically important to examine
the potential of satellite SSM measurements to derive the
water resource variations in deeper subsurface. This study
compares the SSM variability captured by the Soil Mois-
ture Active and Passive (SMAP) satellite and the Soil Wa-
ter Index (SWI) derived from SMAP SSM with subsur-
face SM and groundwater (GW) dynamics simulated by a
high-resolution fully integrated surface water–groundwater
model over an agriculturally dominated watershed in east-
ern Canada across two spatial scales, namely SMAP prod-
uct grid (9 km) and watershed (∼ 4000 km2). SMAP mea-
surements compare well with the hydrologic simulations in
terms of SSM variability at both scales. Simulated subsurface
SM and GW storage show lagged and smoother characteris-
tics relative to SMAP SSM variability with an optimal de-
lay of ∼ 1 d for the 25–50 cm SM, ∼ 6 d for the 50–100 cm
SM, and ∼ 11 d for the GW storage for both scales. Mod-
eled subsurface SM dynamics agree well with the SWI de-
rived from SMAP SSM using the classic characteristic time
lengths (15 d for the 0–25 cm layer and 20 d for the 0–100 cm

layer). The simulated GW storage showed a slightly delayed
variation relative to the derived SWI. The quantified opti-
mal characteristic time length Topt for SWI estimation (by
matching the variations in SMAP-derived SWI and modeled
root zone SM) is comparable to Topt obtained in other agri-
cultural regions around the world. This work demonstrates
SMAP SM measurements as a potentially useful aid when
predicting root zone SM and GW dynamics and validating
fully integrated hydrologic models across different spatial
scales. This study also provides insights into the dynamics
of near-surface–subsurface water interaction and the capa-
bilities and approaches of satellite-based SM monitoring and
high-resolution fully integrated hydrologic modeling.

1 Introduction

Accurate information on soil moisture (SM) and groundwa-
ter (GW) storage is essential for assessing water resources
and making informed decisions for effective water resource
management. SM can be monitored and measured using
ground-based in situ sensor networks and remote sensing
methods (e.g., Dobriyal et al., 2012). The in situ SM mon-
itoring networks are able to provide continuous measure-
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ments for different soil depths or profiles; however, the mon-
itoring sites are typically sparse, especially at continental or
global scales, causing difficulty in large-scale spatially dis-
tributed SM estimation (e.g., Jonard et al., 2018; Singh et al.,
2019). Advances in satellite Earth observation have opened
up opportunities for the large-scale and global monitoring
of SM at fine to medium resolution (e.g., Bartalis et al.,
2007; Entekhabi et al., 2010; Kerr et al., 2010; Njoku et al.,
2003; Owe et al., 2008; Xu et al., 2014), but satellite remote
sensing only measures the near-surface soil layer (the top-
most few centimeters) and cannot directly observe the deeper
soils. Further, NASA’s Gravity Recovery and Climate Exper-
iment (GRACE) and GRACE-Follow On (GRACE-FO) have
made it possible to track changes in terrestrial water stor-
age (TWS) by detecting Earth’s gravitational changes (Tap-
ley et al., 2004). The TWS observations, in combination with
model outputs or reanalysis products, can be used to quantify
GW storage dynamics (Famiglietti et al., 2011; Rodell et al.,
2007, 2009, 2018; Syed et al., 2008; Thomas and Famiglietti,
2019; Zhu et al., 2022). However, the coarse-scale (a native
resolution of ∼ 3° in both latitude and longitude) monthly
TWS changes provided by the GRACE/GRACE-FO obser-
vations cannot fully meet the needs for monitoring the varia-
tions in GW across different temporal and spatial scales.

As such, the potential of satellite near-surface soil mois-
ture (SSM) measurements for estimating or predicting the
variations in root zone SM and GW has received consid-
erable attention over the past decades (e.g., Bouaziz et al.,
2020; Ceballos et al., 2005; Ford et al., 2014; Nayak et al.,
2021; Paulik et al., 2014; Sutanudjaja et al., 2013; Tian et
al., 2020; Wagner et al., 1999; Zhao et al., 2008). One of
the key steps for this important application is identification
of the coupling strength and the associated temporal differ-
ences in response to wetting–drying processes among dif-
ferent subsurface layers, which can vary remarkably across
different regions and different time windows depending on
a suite of factors, such as depths considered, soil hydraulic
properties, soil texture, climate conditions, and land cover
(e.g., Albergel et al., 2008; Bouaziz et al., 2020; Wang et al.,
2017).

The differences in responses to wetting–drying processes
in the soil profile can be examined using in situ measure-
ments (e.g., Mahmood et al., 2012; Wu et al., 2002) or hy-
drological models (e.g., Mahmood and Hubbard, 2007). The
time-lagged cross-correlation in SM variations identified be-
tween the surface and deeper soil layers (e.g., Mahmood and
Hubbard, 2007; Mahmood et al., 2012; Wu et al., 2002) may
indicate that the deeper subsurface SM variability could be
approximated by delaying the temporal variations in SSM.
On the other hand, the deeper subsurface soil water content
can be estimated by smoothing the SSM time series since
soil water in the deeper layers typically exhibit smaller vari-
ations and longer response times to critical precipitation and
drying events that occur at the surface (e.g., Albergel et al.,
2008; Manfreda et al., 2014; Ragab, 1995; Wagner et al.,

1999). A widely used smoothing method is the Soil Water
Index (SWI) that estimates the subsurface SM profiles from
the SSM time series using an exponential filter with the char-
acteristic time length T as the only control parameter (Wag-
ner et al., 1999). The optimal characteristic time length (Topt)
can be obtained by matching the SWI to reference root zone
SM (e.g., Bouaziz et al., 2020; Ceballos et al., 2005; Ford et
al., 2014; Paulik et al., 2014; Tian et al., 2020; Wagner et al.,
1999).

Over the past decades, land surface and hydrological mod-
els have played an important role in quantifying Topt for SWI
estimation. Albergel et al. (2008) investigated the effects of
various factors on Topt for SWI estimation by a combined
use of in situ and model data for soils in France. Wang et
al. (2017) demonstrated the capability of vadose zone model
simulations in quantifying the relationships between Topt and
its various influencing factors (precipitation, land cover, and
soil hydraulic properties) over the continental United States.
Bouaziz et al. (2020) utilized the root zone SM simulated by
a process-based lumped hydrological model as reference to
quantify Topt values for SWI estimation from different satel-
lite SM products across a number of watersheds in France.
In addition, the inter-comparisons between satellite SM and
modeled SM data have been central to intensive research ef-
forts (e.g., Al-Yaari et al., 2014; Dorigo et al., 2010; Draper
et al., 2013; Parrens et al., 2012).

Recent advances in high-resolution fully integrated sur-
face water–groundwater modeling for Canadian basins (Er-
ler et al., 2019; Frey et al., 2021; Xu et al., 2021; Aziz et al.,
2023) have provided new opportunities for simulating wa-
ter dynamics in the variably saturated subsurface domain.
Such models present a better ability to reproduce realistic
root zone SM and GW dynamics than surface water mod-
els used in previous studies. Hence, these models are well
suited to help expand our understanding of connections be-
tween satellite SM and the variably saturated subsurface flow
regime. Accordingly, this study aims to advance our under-
standing of (i) the coupling and response time differences
between satellite SM dynamics and transient soil water and
groundwater storage characteristics, (ii) the dependence of
coupling and response time differences on spatial scale, (iii)
the ability of state-of-the-art satellite SM monitoring to pre-
dict root zone SM and GW dynamics, and (iv) the ability
of satellite SM data to assist with validation of large-scale
integrated hydrologic models. To this end, the study herein
examines the linkages between the Soil Moisture Active Pas-
sive (SMAP) SM, which represents one of the state-of-the-art
satellite-based SM products, and the subsurface SM and GW
dynamics simulated by a high-resolution fully integrated sur-
face water–groundwater model of an agriculture-dominated
watershed across two spatial scales, namely SMAP 9 km grid
cell and watershed.
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2 Data and methods

2.1 Study watershed

The study domain is the South Nation Watershed (SNW)
in eastern Ontario, Canada (Fig. 1a). The SNW is an
agriculture-dominated, mixed-use watershed with an areal
coverage of about 3900 km2 (Fig. 1b).

The major crop types grown in the area are corn and soy-
beans. In the agricultural fields, natural soil water drainage
is typically slow on account of extensive clay loam soil
(Fig. 1c). The agricultural region generally has low topo-
graphic relief (Fig. 1d), with artificial subsurface drainage
(tile drains) to drain excess water from fields to facilitate crop
productivity (Fig. 1e). The tile drains tend to be spaced about
15 to 17 m apart (Sunohara et al., 2015), with a total tile-
drained area of 956 km2 (about 25 % of the watershed). The
watershed is characterized as having a humid temperate cli-
mate, a 20-year (1998–2017) average annual precipitation of
about 1000 mm, and an average annual evapotranspiration of
about 600 mm. The average water table is 1 to 3 m below
surface across much of the agricultural landscape.

2.2 Satellite SSM and SWI

For this study, satellite-based SM retrievals are taken from
the SMAP-enhanced L3 radiometer 9 km EASE-Grid SM
(SPL3SMP_E) version 5 product (O’Neill et al., 2021). The
SPL3SMP_E product provides daily composite estimates of
near-surface (∼ top 5 cm) SM at a resolution of 9 km, re-
trieved from the AM (descending half orbits) and PM (as-
cending half orbits) brightness temperatures observed by the
SMAP radiometer. In this study, only the SPL3SMP_E AM
retrievals are used since the AM product is superior to the
PM product over the study region, which is consistent with
the AM–PM product comparison over the Great Lakes re-
gion (Xu, 2020). The location of the SPL3SMP_E product
9 km grid cells over the SNW is illustrated in Fig. 1b. A fil-
tering step (using the SMAP product’s ancillary information)
was conducted to remove the SMAP SM estimates that were
affected by various adverse factors (e.g., open water, frozen
surfaces, snow, rain, or radio frequency interference). This
study uses the SMAP SM data between 31 March 2015 (the
date when SMAP started operation) and 31 December 2017,
which is the time span overlapping with the temporal cover-
age of model simulations used in this work (Sect. 2.3).

The SMAP SSM can be used to derive the moisture con-
tent in the deeper layers or entire unsaturated root zone with
the SWI approach, which estimates the subsurface SM as a
function of SSM utilizing an exponential filter (Wagner et al.,
1999). The SWI method considers a near-surface soil layer
and a subsurface layer. A water-balance approach is then ap-
plied to the two soil layers to compute the water fluxes across
them, which are assumed to be proportional to their SM dif-
ferences. In this study, we use the recursive exponential filter

(Albergel et al., 2008), which is suitable for SWI estimation
from the SSM observed at irregular time intervals. The SWI
at time ti is given by Eq. (1):

SWI(ti)= SWI(ti−1)+K (ti) (SSM(ti)−SWI(ti−1)) , (1)

where SWI(ti) and SWI(ti−1) denote the SWI values at time
ti and ti−1, respectively; SSM(ti) represents the SMAP near-
surface soil moisture at time ti ; and K(ti) is the gain at time
ti , which is given in a recursive form as in Eq. (2):

K (ti)=
K (ti−1)

K (ti−1)+ exp
(
−(ti−ti−1)

T

) , (2)

where K(ti−1) is the gain at time ti−1. The gain K ranges
from 0 to 1 with the initialization K(t0)= 1, while SWI is
initialized using the SSM series, i.e., SWI(t0)= SSM(t0).
The parameter T is the characteristic time length in days
and can be considered a surrogate for many factors (e.g., soil
depth, soil properties, evaporation, and runoff) that can influ-
ence SM changes due to drying and wetting processes (Al-
bergel et al., 2008; Wagner et al., 1999).

2.3 Fully integrated surface water–groundwater model

The high-resolution fully integrated surface water–
groundwater simulations are conducted using Hydro-
GeoSphere (HGS) (Aquanty, 2022; Hwang et al., 2014; Frey
et al., 2021). HGS uses the one-dimensional (1D) Manning’s
open channel flow equation to govern river/stream flow,
the diffusion wave equation to govern two-dimensional
(2D) overland flow, and Richards’ equation to govern
three-dimensional (3D) variably saturated subsurface flow.
The channel, surface, and subsurface regimes naturally
interact with each other through the exchange of water fluxes
in response to varying pressure gradients. Unlike loosely
or sequentially coupled groundwater–surface water models,
HGS is a fully integrated model, providing the simultaneous
solution of the channel, surface, and subsurface flow regimes
at each time step. Detailed information on HGS can be found
in the relevant documents (Aquanty, 2022; Hwang et al.,
2014; Frey et al., 2021).

Within the model there are seven subsurface layers that
are composed of 3D triangular prisms, formed by superim-
posing eight mesh layers of planar elements from the soil
surface downward to a depth of ∼ 35 m. In total, there are
171 609 planar elements per mesh layer, equating to a total
1 201 263 3D elements across the seven-layer subsurface do-
main. The 3D unstructured finite-element mesh that under-
pins the HGS model carries 125 m spatial resolution along
Strahler 2+ streams and rivers and up to 375 m resolution in
areas distal to the resolved surface water features. The 2D
overland flow domain (composed of planar elements) and
the 1D channel domain (composed of linear elements) are
both superimposed onto the subsurface 3D domain. In the
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Figure 1. (a) Location of the South Nation Watershed (SNW). (b) The SNW land cover map (source: Agriculture and Agri-Food Canada’s
Annual Crop Inventory 2015) overlaid with location of the 9 km grids (boxes for the pixels and black dots for the centers) for the SMAP SM
product used in this study. (c) Soil map for the SNW (source: Soil Landscapes of Canada version 3.2, Agriculture and Agri-Food Canada),
along with the in situ SM monitoring sites. (d) Surface elevation along with location of streamflow gauges. (e) Tile drains installed for the
SNW (provided by the South Nation Conservation Authority), along with location of groundwater level monitoring wells.

model subsurface domain, the three soil layers (0–25, 25–
50, and 50–100 cm depths) of 3D elements were constructed
by superimposing the four mesh layers of planar elements
at the soil surface, 25, 50, and 100 cm depths, respectively.
The four mesh soil layers of planar elements can provide the
simulated SM at the four specific depths (soil surface, 25,
50, and 100 cm), while the three soil layers of 3D elements
can provide the simulated SM for the depth intervals of 0–25,

25–50, and 50–100 cm. The simulated SM from the planar el-
ement mesh layer at the soil surface represents the simulated
SSM. Underlying the three soil layers are the four hydros-
tratigraphic layers (three Quaternary layers and one bedrock
layer), with geometry and lithology derived from Logan et
al. (2009). The tile drains installed in the SNW (Fig. 1e) are
not resolved in the model because of resolution constraints
associated with the size of the model domain and the neces-
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sity of carrying a practical number of finite elements. The
influence of tile drainage absence in the model will be dis-
cussed in this study (Sect. 6.3).

Appropriate spin-up is essential for integrated surface-
subsurface models (e.g., Ajami et al., 2014, 2015; Erdal et al.,
2019). Similar to Frey et al. (2021), the HGS model herein
was initialized following a three-step procedure. Firstly, the
model was forced by long-term (∼ 30-year) average annual
net precipitation until steady-state groundwater heads and
streamflow rates were established. Secondly, using a steady
state as an initial condition, the model was forced by monthly
normal liquid water flux and potential evapotranspiration for
a decadal cycle, yielding a year over year dynamic equilib-
rium condition. Thirdly, using a dynamic equilibrium as an
initial condition, the model was forced with daily transient
liquid water flux and potential evapotranspiration derived
from gridded daily climate data sets from Natural Resources
Canada (NRCan) (McKenney et al., 2011) in combination
with snow water equivalent data derived from the ERA5 land
surface reanalysis product (Muñoz-Sabater et al., 2021). The
daily transient simulations extended from 1 January 2008 to
31 December 2017 and were run multiple times, with model
performance only evaluated after the second set of simu-
lations. The model calibration primarily involved manually
tuning the soil hydraulic conductivity and Manning’s surface
roughness coefficient for the 1D river/stream channels. The
objective of calibration was to optimize surface water flow
rates at the hydrometric stations (Fig. 1d) and groundwater
levels at the monitoring wells (Fig. 1e). Subsequent analysis
is based on the 31 March 2015 (the date when SMAP started
operation) to 31 December 2017 time frame, using daily tran-
sient output data from the calibrated HGS model.

2.4 Comparison analysis and performance metrics

2.4.1 Evaluation of SMAP and modeled soil moisture

The SM estimates from the SMAP product and HGS model
simulations are evaluated against the SM measurements from
in situ monitoring sites (Fig. 1c). The specification of in situ
SM measuring is provided in Table 1. Since the in situ SM
sites are sparse, the evaluation is available only at point scale.
SMAP SSM and HGS-simulated SSM estimates are evalu-
ated using the 0–5 cm in situ SM measurements. The HGS-
simulated root zone SM is evaluated at two depth profiles:
0–25 and 0–100 cm. In the 0–25 cm layer, the simulated SM
in the model’s top soil layer (0–25 cm) is compared to a
depth-weighted average of in situ measurements in the top
25 cm soil (i.e., 5 and 25 cm depths at the Real-Time In-Situ
Soil Monitoring for Agriculture (RISMA) sites, 10 and 20 cm
depths at Metcalfe and Pleasant Valley, and 20 cm depth at
Winchester stations; see Table 1). In the 0–100 cm layer, a
depth-weighted average of simulated SM from the model’s
three soil layers (0–25, 25–50, and 50–100 cm depths) is
evaluated against a depth-weighted average of in situ mea-

surements in the top 100 cm soil (i.e., 5, 20, and 50 cm depths
at the RISMA sites; 10, 20, and 50 cm depths at Pleasant Val-
ley, and 15 and 45 cm depths at WEBs stations; see Table 1).
At each in situ site, the unbiased root mean squared error
(ubRMSE) and Pearson correlation coefficient (R) are com-
puted based upon the daily time series using the following
equations:

ubRMSE=
√
E[((θs−E[θs])− (θi −E[θi]))

2
], (3)

R = E[(θs−E [θs])(θi −E [θi])](σsσi)
−1, (4)

where E [·] is the expectation operator. θs and θi indicate
the daily time sequences of satellite (or model) soil moisture
and in situ data, respectively. σs and σi denote the standard
deviations of θs and θi , respectively.

2.4.2 Evaluation of HGS-simulated streamflow and
GW level

The simulated streamflow rates and GW levels in the fully
integrated modeling framework are physically linked to SM
and GW flow and are hence also a reflection of water dy-
namics in the variably saturated subsurface domain. The sim-
ulated streamflow is evaluated using streamflow measure-
ments from Water Survey of Canada (WSC) hydrometric
stream gauges (Fig. 1d), and performance is assessed with
the Nash–Sutcliffe efficiency (NSE) in Eq. (5):

NSE= 1−E[(Qobs−Qsim)
2
]/E[(Qobs−E [Qobs])2], (5)

where E [·] is the expectation operator. Qobs and Qsim in-
dicate the daily time sequences of observed and simulated
stream discharge values, respectively. NSE ranges from −∞
to 1, with 1 as the optimal value.

The simulated GW levels are compared to GW
level measurements provided by the Provincial Ground-
water Monitoring Network (PGMN; https://data.ontario.
ca/dataset/provincial-groundwater-monitoring-network, last
access: September 2021) wells (Fig. 1e). Since the temporal
variability information is of the most interest for the simu-
lated GW levels in this study, the Pearson correlation coef-
ficient (R) between the temporal variations of simulated and
observed GW level anomalies is calculated at each GW mon-
itoring well across the SNW. The GW level anomalies rep-
resent the departures from their respective average over the
evaluation period (31 March 2015 to 31 December 2017).

2.4.3 Comparison between SMAP and HGS model
simulations

The SMAP data (SSM and SWI) are compared to the HGS
model simulations (SSM, subsurface SM, and GW storage)
to quantify the vertical coupling and response time differ-
ences between satellite SM and the variably saturated sub-
surface water. The comparisons are made at both the 9 km
(SMAP product grid) resolution and the entire watershed and
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Table 1. Specification of in situ soil moisture stations.

Station ID Latitude Longitude Sampling Measuring depths Data period
(°) (°) intervals (cm)

aRISMA ON2 45.4016 −74.9479 15 min 0–5, 5, 20, 50 2015 to 2017
RISMA ON4 45.3140 −75.0193 15 min 0–5, 5, 20, 50 2015 to 2016
RISMA ON5 45.3769 −75.0031 15 min 0–5, 5, 20, 50, 100 2015 to 2017
RISMA ON6 45.3628 −74.9342 15 min 0–5, 5, 20, 50 2016 to 2017
Metcalfe 45.2626 −75.3439 Hourly 10, 20 2015 to 2017
Pleasant Valley 44.9726 −75.4237 Hourly 10, 20, 50 2017
bWEBs@11–14 45.2598 −75.1929 15 min 15, 45 2015 to 2017
WEBs@20 45.2639 −75.1607 15 min 15, 45 2015 to 2017
Winchester 45.0623 −75.3418 Hourly 20 2017

a Agriculture and Agri-Food Canada’s Ontario Real-Time In-Situ Soil Monitoring for Agriculture (RISMA) stations.
b Agriculture and Agri-Food Canada’s WEBs meteorological stations.

are measured using the unbiased root mean squared differ-
ence (ubRMSD), R, anomaly R, and Spearman’s rank cor-
relation (ρ), depending upon the variables under compari-
son. The ubRMSD and R are computed using the equations
similar to Eqs. (3) and (4) but with the two variables from
the SMAP and HGS simulation, respectively. The anomaly
R calculation is similar to the R calculation but uses the
anomaly time series of the variables, which are defined as
departures of raw values from their monthly normals over
the study period (2015–2017). For each variable, all 3-year
(2015 to 2017) monthly data must be valid for computing the
monthly normal of a calendar month. Spearman’s rank cor-
relation (ρ) is calculated as

ρ = 1−
6
∑
d2

n
(
n2− 1

) , (6)

where d represents the difference between the ranks of the
SMAP and HGS model variables, and n denotes the length
of data. In this study, ρ is used for timescale quantification
for water transport from the surface soil layer to deeper un-
saturated and saturated zones.

3 Evaluation of SMAP SSM and model simulations

The evaluation scores for the SMAP SSM and HGS SM
across the individual in situ sites are listed in Table 2. In this
study, the in situ SSM (0–5 cm) measurements are only avail-
able at Agriculture and Agri-Food Canada’s Ontario Real-
Time In-Situ Soil Monitoring for Agriculture (RISMA) sta-
tions (Table A1). Figure 2 shows the SSM time series from
SMAP, HGS model, and in situ measurements at the four
Ontario RISMA stations. Overall, both the SMAP and HGS
modeling captured the in situ-observed SSM temporal vari-
ability very well (Fig. 2). Both the SMAP SSM and simulated
SSM showed a mean ubRMSE of about 0.05–0.06 m3 m−3

and a mean R of about 0.7 with the in situ measurements
(Table 2). The performance of SMAP SSM over the SNW is

Figure 2. The SSM time series from SMAP, the HGS model sim-
ulation, and in situ measurements, respectively, at the four RISMA
stations: (a) ON2, (b) ON4, (c) ON5, and (d) ON6.

very similar to that over the Great Lakes region (Xu, 2020;
Xu and Frey, 2021), which is approximately adjacent to the
study region SNW.

Figures A1 and A2 show the root zone SM time series
comparison between HGS simulations and in situ measure-
ments for the 0–25 and 0–100 cm soil layers, respectively.

Hydrol. Earth Syst. Sci., 29, 215–244, 2025 https://doi.org/10.5194/hess-29-215-2025
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Table 2. Soil moisture (SM) performance metrics. Bold font denotes average values.

Metrics Station ID
SMAP HGS SM

SSM Near-surface 0–25 cm 0–100 cm

ubRMSE RISMA ON2 0.056 0.050 0.038 0.021
(m3 m−3) RISMA ON4 0.047 0.061 0.047 0.028

RISMA ON5 0.055 0.041 0.042 0.022
RISMA ON6 0.079 0.066 0.040 0.030
Metcalfe – – 0.053 –
Pleasant Valley – – 0.024 0.013
WEBs@11–14 – – – 0.023
WEBs@20 – – – 0.035
Winchester – – 0.033 –
Average 0.059 0.054 0.040 0.025

R RISMA ON2 0.67 0.76 0.74 0.76
RISMA ON4 0.72 0.56 0.67 0.73
RISMA ON5 0.66 0.82 0.75 0.86
RISMA ON6 0.71 0.80 0.82 0.76
Metcalfe – – 0.70 –
Pleasant Valley – – 0.81 0.77
WEBs@11–14 – – – 0.88
WEBs@20 – – – 0.70
Winchester – – 0.77 –
Average 0.69 0.74 0.75 0.78

Overall, the HGS simulations agree with the in situ measure-
ments very well in terms of the SM temporal variability in the
two soil profiles across all available validation sites (Figs. A1
and A2), with the mean R close to or exceeding 0.75 for both
soil profiles (Table 2). Unsurprisingly, the ubRMSE for the
HGS soil moisture decreases with the increasing soil depth
(Table 2), resulting from a smaller soil moisture temporal
variability in a deeper profile (e.g., Albergel et al., 2008; Xu,
2020).

Figure A3 presents the simulated and observed hydro-
graphs along with the calculated NSE values at the seven
WSC streamflow gauges across the study watershed (as
shown in Fig. 1d). The HGS simulations performed well in
capturing the timing of peak flows. The NSE values are typ-
ically high, exceeding 0.62 for all gauges, although the un-
derestimation of peak flows is also evident in the HGS hy-
drographs. A possible explanation for the flow underestima-
tion is that the tile drain flow, which was not resolved in the
present HGS model simulations, is also a source of discharge
for streams (due to a shallow water table) in the real-world
SNW. Further, the comparisons between the simulated and
observed GW level anomalies at the eight GW monitoring
wells were provided in Fig. A4. In general, the GW temporal
variability was well reproduced by the HGS modeling across
the monitoring wells, with R ranging from 0.4 to 0.86.

Overall, the SMAP SM product can capture the SSM vari-
ability well over the study region, while the HGS simula-
tions match the observed surface and subsurface water dy-
namics well. This supports the HGS model’s application

towards quantifying the dynamic behavior of surface/sub-
surface hydrologic conditions and testing linkages between
SMAP measurements and simulated water content in the
variably saturated subsurface.

4 Comparisons between SMAP SSM and HGS model
simulations

4.1 Comparison at the 9 km scale

In this section, we compare the SMAP SSM with the HGS-
simulated SM at the SMAP product grid (9 km) scale. Since
the HGS model has a higher resolution than the 9 km SMAP
grid (see Sect. 2.3), the model SM estimates are spatially ag-
gregated (i.e., averaged) within each SMAP grid cell. Fig-
ure 3a illustrates the ubRMSD values across all SMAP grids
for the SMAP SSM and HGS SSM comparison, with the
summarized ubRMSD provided in Fig. 4a. The SMAP grid-
scale ubRMSD values range from 0.04 to 0.06 m3 m−3 and
are typically lower in the forested areas than over the agri-
cultural fields (Fig. 3a with the land cover map provided
in Fig. 1b). The average ubRMSD between the SMAP and
HGS SSM estimates is about 0.047 m3 m−3 at the 9 km scale
(Fig. 4a).

Figure 3b shows the R values between the SMAP SSM
and the HGS-simulated SSM across all individual SMAP
grids, which are summarized using the box plot in Fig. 4b.
The simulated SSM can capture the SMAP-observed SSM
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Figure 3. (a) ubRMSD, (b) R, and (c) anomaly R between the SMAP SSM and HGS SSM across all SMAP grids.

Figure 4. Box plots of (a) ubRMSD, (b) R, and (c) anomaly R between the SMAP SSM and HGS SSM, summarized from all 9 km grids
within the study watershed. Within each box, the horizontal segment and the star denote the median and mean of the sample data, respectively;
the lower and upper edges of the box indicate the 25th and 75th percentiles, respectively; and the bottom and top ends of the whiskers denote
the 5th and 95th percentiles, respectively.

dynamics quite well at the 9 km grid scale, with an average
R exceeding 0.7 (Fig. 4b). In terms of the spatial variabil-
ity, the R values are typically higher over the forests than
their counterparts over the agricultural lands (Fig. 3b), which
may be in part due to tile drainage not fully captured by the
model (see Sect. 6.3). The anomaly R results (Figs. 3c and
4c) are similar to the R results, indicating that the obtained
correlations between SMAP and the HGS model are domi-
nated by the day-to-day variations (rather than the seasonal
trends) in the SM time series. Further, the linear regression
between SMAP SSM (independent variable) and HGS SSM
(dependent variable) suggests that modeled SSM is system-
atically wetter than SMAP SSM (intercept>0) but shows a
smaller change in response to every unit change in SMAP
SSM (slope<1) across the watershed (Figs. A5 and A6).

To examine the linkage between SMAP SSM and wa-
ter storage variability in the deeper subsurface, time-lagged
cross-correlations between the SMAP SSM and simulated
subsurface SM and GW storage were calculated for each

9 km grid. Here Spearman’s rank correlation (rather than
the Pearson correlation) is used for the time-lagged cross-
correlation analysis since the monotonic (rather than linear)
relationship is of the most interest for identifying the phase
difference between near-surface and deeper subsurface water
content variability. Figure 5 presents Spearman’s rank cor-
relations (the 5th to 95th percentiles from all SMAP grids
over the study watershed) between the time series of SMAP
SSM and the HGS-simulated subsurface SM (0–25, 25–50,
and 50–100 cm depths) and GW storage for a time lag rang-
ing from 0 to 60 d. The optimal time lags (in days) and cor-
responding highest Spearman’s rank correlations across all
SMAP grids are provided in Figs. A7 and A8, respectively.

Unsurprisingly, the simulated SM in the 0–25 cm depth
(Figs. 5a and A7a) showed simultaneous response (a time lag
of 0 d) to the SSM variability captured by SMAP across the
study watershed. By contrast, simulated water content vari-
ations in the deeper subsurface showed a delayed response
relative to the SMAP SSM variability. The optimal time lag
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Figure 5. Spearman’s rank correlation coefficients between the time
series of SMAP SSM and HGS-simulated SM from (a) 0–25 cm
depth, (b) 25–50 cm depth, and (c) 50–100 cm depth, respectively,
as well as (d) GW storage for time lags ranging from 0 to 60 d.
Positive lags indicate that the SMAP data are leading the HGS sim-
ulations. In each plot, the shaded band represents the 5th to 95th
percentiles of the results from all SMAP grids within the study wa-
tershed. For each SMAP grid, the optimal time lag is defined as
the one with the maximum Spearman’s rank correlation between
SMAP SSM and HGS-simulated variable. The vertical dashed line
indicates the median of the optimal time lags from all SMAP grids.

increased with depth, with a median delay of about 1–2 d for
the 25–50 cm SM (Fig. 5b), about 6 d for the 50–100 cm SM
(Fig. 5c), and about 11–12 d for the GW storage (Fig. 5d).

By comparing the spatial distribution of time lags on
a SMAP grid cell basis (Fig. A7) to the soil distribution
(Fig. 1c), the time delay for deeper zones is typically shorter
in regions with well-drained soils (e.g., the southwestern
portion of SNW) than in areas with poorly or imperfectly
drained soils (e.g., the northern SNW), reasonably reflect-
ing the impact of soil properties on deeper subsurface hydro-
logic response. Table A1 provides the average optimal time
lags for the six major soils over the study watershed. For
each soil, the averaged optimal time lag is calculated using
the 9 km SMAP grids dominated by the soil texture (the Or-
ganic and Morrisburg soils are not calculated and included
in the table due to their insufficient sample grids). Clearly,
the soil drainage has a key impact on the spatial variability
of the time lags for deeper layers. The optimal time lag for
the 25–50 cm depth is statistically shorter (longer) than 1 d
in regions with well-drained (imperfectly or poorly drained)
soils. Moving to the 50–100 cm depth, on average, the soils
of Achigan-dominated (imperfectly drained) and Bearbrook-
dominated (poorly drained) regions experienced the longest
optimal time delay (close to or higher than 10 d). Further,
the optimal time delay is statistically less (more) than 10 d
for the GW system in the areas with good (poor or imper-
fect) soil drainage. It should also be noted that the quanti-
fied time delay in deep subsurface water dynamics did not
explicitly account for the impact of tile drainage due to the
absence of tile drains in the model. The maximum correla-
tions (corresponding to the optimal time lags) between the
SMAP SSM and simulated subsurface water also showed
a clear spatial pattern, with higher values in the southwest-
ern SNW (Fig. A8), which corresponds to the regions with
well-drained soil (Grenville and Farmington soils in Fig. 1c).
Overall, the soil texture showed an important impact on the
vertical coupling length (correlations) and response time dif-
ferences between satellite SSM and the variably saturated
subsurface water.

4.2 Comparison at the watershed scale

Figure 6 compares the SMAP and HGS-simulated time se-
ries for the watershed-averaged SSM. Although the simu-
lated SSM is systematically wetter than SMAP SSM, the
simulated results match the SMAP measurements very well
in terms of SSM variations, with both the R and anomaly R
between them exceeding 0.8 and an ubRMSD of less than
0.04 m3 m−3. The observed mean biases between the SMAP
and modeled SSM may in part be related to the calibration
of the SMAP SM retrieval algorithm. Although the SMAP
SM retrievals can capture the SSM variability very well, they
typically show an underestimation of SSM (i.e., drier surface
soils) over Canadian agricultural regions due to issues with
correcting the effects of growing vegetation (e.g., Collian-
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der et al., 2017). In addition, the absence of tile drainage in
the HGS model could cause a wet bias over the tile drained
landscape (∼ 25 % of the entire watershed) and therefore
moderately increase the wetness of the simulated watershed-
averaged SSM. Given the scarcity of in situ SM measure-
ments, this study is unable to investigate whether the SMAP
retrieval algorithm or the modeling should be blamed for the
bias. However, such bias has a negligible effect on this study
since the SM temporal variations from the SMAP and HGS
model are of primary interest herein.

The relationships between variations of SMAP SSM and
HGS-simulated water content in deeper unsaturated/satu-
rated zones at the watershed scale are quantified in Fig. 7.
Figure 7a shows the time series of the simulated watershed-
averaged SM in the 0–25, 25–50, and 50–100 cm depths
and watershed-integrated GW storage, in comparison with
the watershed-averaged SMAP SSM. Spearman’s rank cor-
relations between the SMAP SSM and the HGS-simulated
subsurface water for time lags ranging from 0 to 60 d are
provided in Fig. 7b. Variations in simulated subsurface wa-
ter are highly correlated across the different depth intervals.
The surface soil layer (0–25 cm) is directly impacted by in-
fluxes and effluxes of water and therefore shows the largest
day-to-day water content variability, while the 50–100 cm
SM and GW storage show comparably smoother day-to-day
fluctuations (Fig. 7a). Accordingly, in Fig. 7b, variations in
time-lagged correlation between SMAP SSM and simulated
subsurface water become smoother as the subsurface depth
increases, which also reflects the gradual filtering of high-
frequency signals in subsurface water content with the in-
creasing depth.

Very good agreement is observed between the variations
of the watershed-averaged SMAP SSM and HGS-simulated
watershed-averaged surface layer (0–25 cm) SM, with their
highest Spearman’s rank correlation coefficient reaching
around 0.8, which occurs at a time lag of 0 d (i.e., the delay
is less than 1 d and cannot be resolved at daily time steps).
With the time lag increasing, the correlation between SMAP
SSM and the simulated 0–25 cm SM drops rapidly (green in
Fig. 7b). The variations of deeper subsurface SM and GW
storage are also in relation to the SMAP SSM variability
but show a delayed response. At the watershed scale, the
25–50 cm SM, 50–100 cm SM, and GW storage showed the
highest Spearman’s rank correlation with the SMAP SSM
variability at a temporal delay of ∼ 1, ∼ 6, and ∼ 11 d, re-
spectively (Fig. 7b), which is very similar to the analysis at
the 9 km scale (Fig. 5).

In Fig. 7a, the SMAP SSM (top 5 cm) indicated a slightly
earlier thaw onset than the model-simulated SM in deeper
layers. This reflects a downward heat transfer and migra-
tion of thawing front. During a thawing/warming period, the
soils typically have a downward temperature gradient (i.e.,
soil temperature decreases with increased soil depth), which
causes a downward heat transfer and migration of thawing
front. The thaw onset difference between different depths is

consistent with the response time differences between satel-
lite SSM and the subsurface water.

5 Comparisons between SMAP-derived SWI and HGS
model simulations

5.1 SMAP SWI estimation based upon classic time
length T

The linkage between SMAP SSM-derived SWI and HGS
simulations is investigated here. Firstly, SWI based upon the
model-independent characteristic time length T (so that the
calculated SWI is entirely independent of the model simu-
lations) is compared to simulated subsurface SM. It must
be acknowledged that ideally, the time length T (model-
independent) should be estimated using in situ SM measure-
ments (e.g., Wagner et al., 1999, Tian et al., 2020). How-
ever, given the scarcity of in situ SM data and the relatively
large spatial scale of the analysis herein, it is not possible
to determine the time length T (model-independent) based
upon evaluation with in situ data. To this end, T = 15 d
and T = 20 d (taken from Wagner et al., 1999), which rep-
resent the classic T values for SWI estimation in the sur-
face soil layer (0–20 cm) and the root zone soil layer (0–
100 cm), respectively, were used for calculating the model-
independent SWI across the 9 km grids. The calculated SWI
using T = 15 d is compared to the HGS 0–25 cm SM, while
the calculated SWI using T = 20 d is compared to the HGS
0–100 cm SM. Figure A9 presents the ubRMSD, R, and
anomalyR between SWI and HGS-simulated subsurface SM
across all 9 km grids. The 9 km grid-scale evaluation met-
rics are summarized in Fig. 8. Across the SNW, the 9 km
scale ubRMSD between SWI and HGS SM typically ranges
from 0.03 to 0.05 m3 m−3 (with an average of 0.035 m3 m−3)
for the top 25 cm layer (Figs. 8a and A9a) and less than
0.04 m3 m−3 (with an average of about 0.03 m3 m−3) for the
top 100 cm layer (Figs. 8a and A9b). In the two soil depths
(top 25 cm and top 100 cm), both the R and anomaly R be-
tween SWI and HGS SM are very high and typically exceed
0.70 (Fig. A9c–f), with their means exceeding 0.82 (Fig. 8b
and c).

Further, the SWI time series are calculated from the
watershed-averaged SMAP SSM series (using T = 15 d and
T = 20 d, respectively) and are then compared with the
watershed-averaged HGS SM (top 25 cm and top 100 cm, re-
spectively) (Fig. 9). The SWI time series represent the simu-
lated SM variability in the two soil layers very well, with an
R value close to 0.9. Unsurprisingly, for both soil depth inter-
vals (top 25 cm and top 100 cm), the simulated SM showed
a higher correlation with the SWI than with the SMAP SSM
(Fig. 9).

Figure 10 presents the comparison of variations in the
HGS-simulated watershed-integrated GW storage and the
watershed-scale SWI in the 0–100 cm soil (using T = 20 d).
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Figure 6. Comparison between the SMAP and HGS simulations for the watershed-averaged SSM time series.

The SWI and GW storage share very similar temporal vari-
ations, with their best correlation occurring at a time lag of
about 2 d. This may demonstrate the potential of SWI to pre-
dict the day-to-day variations in GW.

5.2 Identification of optimal characteristic time length
Topt

Although the optimal characteristic time length Topt for SWI
estimation has been investigated for many regions across the
world (e.g., Bouaziz et al., 2020; Ceballos et al., 2005; Tian
et al., 2020; Wagner et al., 1999; Zhang et al., 2017), Cana-
dian agricultural watersheds are typically underrepresented
in this regard. In this part, Topt is identified for the study wa-
tershed by optimally matching variations in SWI and HGS-
simulated subsurface SM. First, at each SMAP grid, SWI is
calculated from the SMAP SSM series for the characteristic
time length T varying between 1 and 100 d. Then, Spear-
man’s rank correlations between the SMAP-derived SWI for
each value of T and the HGS-simulated subsurface SM (from
three depth intervals: 0–25, 0–50, and 0–100 cm) are calcu-
lated. For each depth interval, the T value corresponding to
the highest Spearman’s rank correlation is defined as the op-
timal Topt. The optimal Topt (in days) and the associated high-
est Spearman’s rank correlations across all SMAP 9 km grids
are provided in Fig. A10. A comparison between Fig. A10
and the soil map (Fig. 1c) indicates that the spatial vari-
ability of Topt is impacted by the soil texture. Topt is typi-
cally longer for the landscape with poorly (e.g., Bearbrook)
or imperfectly (e.g., Achigan) drained soils than for regions
with well-drained soils (e.g., Farmington). Table A2 shows
the average Topt for the six major soils over the study wa-
tershed. For each soil, the averaged Topt is calculated using
the 9 km SMAP grids dominated by the soil texture (the soils
of Organic and Morrisburg are not calculated and included
in the table due to their insufficient sample grids). Clearly,

the spatial variability of Topt is strongly related to the soil
drainage class. For the three depth intervals, 0–25, 0–50, and
0–100 cm layers, on average, Topt exceeds 20, 24, and 30 d,
respectively, in regions with imperfect or poor soil drainage,
while the Topt values are reduced to below 18, 21, and 28 d,
respectively, for the well-drained soils.

The frequency distribution of Topt at the 9 km grid scale
is provided in Fig. A11, while Fig. 11a presents Spearman’s
rank correlations (the 5th to 95th percentiles from all SMAP
grids over the study watershed) between the HGS-simulated
SM (0–25, 0–50, and 0–100 cm depths, respectively) and the
SWI using T from 1 to 100 d. Across the SNW, the 9 km
grid-scale Topt ranges largely from 14 to 26 d (Fig. A11a)
with a median of 21 d (Fig. 11a) for the 0–25 cm layer, from
20 to 32 d (Fig. A11b) with a median of 24 d (Fig. 11a) for
the 0–50 cm layer, and from 26 to 43 d for the 0–100 cm
(Fig. A11c) with a median of 31 d (Fig. 11a) for the 0–100 cm
layer. On average, Topt increases with depth in the soil pro-
file, which agrees with previous studies (e.g., Wagner et al.,
1999; Tian et al., 2020; Zhang et al., 2017).

The maximum Spearman’s rank correlations between SWI
and simulated subsurface SM (0–25, 0–50, and 0–100 cm
layer) typically exceed 0.8 at the 9 km scale (Figs. A10b,
d, and f). By comparing Fig. A10 and the land cover map
(Fig. 1b), the forested area typically shows higher maximum
Spearman’s rank correlations between the SWI and simu-
lated subsurface SM than the agricultural fields, which again
can be at least partially related to the absence of discretely re-
solved agricultural tile drainage in the model (see Sect. 6.3).

Figure 11b provides Spearman’s rank correlations between
watershed-averaged HGS subsurface SM and the SWI esti-
mated from watershed-averaged SMAP SSM for T varying
from 1 to 100 d. The watershed-scale Topt is about 19, 30, and
38 d for the 0–25, 0–50, and 0–100 cm layers, respectively,
showing a clear increase in Topt with increased soil depth
(Fig. 11b). Across the three layers, the watershed-scale Topt
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Figure 7. (a) Daily time series of HGS-simulated watershed-averaged SM in the 0–25, 25–50, and 50–100 cm depths and watershed-
integrated GW storage, along with watershed-averaged SMAP SSM. (b) Spearman’s rank correlation between the watershed-averaged SMAP
SSM versus the HGS-simulated watershed-averaged 0–25, 25–50, 50–100 cm SM and watershed-integrated GW storage, respectively, for a
time lag ranging from 0 to 60 d. Positive lags indicate that SMAP data lead the HGS simulations. In panel (b), for each pair of comparisons,
a vertical dashed line is provided to indicate the location of the optimal time lag corresponding to the maximum Spearman’s rank correlation.

falls within the range of the most frequently occurring Topt at
the 9 km scale (14 to 26 d for the 0–25 cm layer, 20 to 32 d
for the 0–50 cm layer, and 26 to 43 d for the 0–100 cm layer
as indicated in Fig. A11), indicating no significant change in
Topt across the two spatial scales.

In addition, note that at both spatial scales and across the
three layers, the correlations between the calculated SWI and
modeled SM are very strong for a range of T values surround-
ing Topt. For example, the simulated 0–100 cm SM shows a
correlation>0.9 with SWI for T ranging from 19 to 60 d at
the watershed scale (Fig. 11b), while a correlation>0.8 can
be obtained between the simulated 0–100 cm SM and SWI
for T ranging from 12 to 68 d at the 9 km scale (Fig. 11a).
The selected model-independent value of T = 20 d for the
0–100 cm layer SWI (Sect. 5.1) falls within both T ranges
and is therefore suitable for the 0–100 cm SWI estimation

at both spatial scales (Figs. 8 and 9). Similarly, the selected
model-independent value of T = 15 d for the 0–25 cm layer
SWI is also suitable for both spatial scales.

6 Discussion

6.1 Novelty and improved understanding of
near-surface–subsurface water interaction

This study quantified the potential of using SMAP SSM vari-
ability to predict subsurface water dynamics using two in-
dependent analysis approaches. The first approach is based
upon the time-lagged cross-correlation in SM variations be-
tween the near-surface and deeper soil layers (e.g., Mahmood
and Hubbard, 2007; Mahmood et al., 2012; Wu et al., 2002),
which can be used to quantify if the subsurface SM variabil-
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Figure 8. (a) Box plots for the ubRMSD between the SMAP SSM-derived SWI (using T = 15 d) and HGS-simulated top 25 cm SM and the
ubRMSD between the SMAP SSM-derived SWI (using T = 20 d) and HGS-simulated top 100 cm SM, respectively, summarized from all
SMAP 9 km grids over the study watershed. Within each box, the horizontal segment and the star denote the median and mean of the sample
data, respectively; the lower and upper edges of the box indicate the 25th and 75th percentiles, respectively; and the bottom and top ends of
the whiskers denote the 5th and 95th percentiles, respectively. Panels (b) and (c) are similar to panel (a) but for the correlation coefficient R
and anomaly R, respectively.

ity could be approximated by delaying the temporal varia-
tions in satellite/SMAP SSM. The second approach focuses
upon the SWI and optimal characteristic time length estima-
tion, which investigates if the subsurface water content vari-
ability can be estimated by smoothing the satellite/SMAP
SSM time series with an exponential filter (e.g., Bouaziz
et al., 2020; Ceballos et al., 2005; Ford et al., 2014; Paulik
et al., 2014; Tian et al., 2020; Wagner et al., 1999). Ei-
ther analysis approach can be independently used to evaluate
the linkage between the SMAP/satellite SSM variability and
the deeper subsurface water content fluctuations. Both ap-
proaches indicate that the SMAP/satellite SSM variability is
strongly linked to the deeper subsurface water content fluctu-
ations and can be used to predict or infer subsurface SM and
groundwater variability. Both the optimal time lag (for the
delaying method) and the optimal characteristic time length
(for the smoothing method) typically increase with soil depth
and are mainly impacted by the soil drainage properties.

The novelty and advances provided by the study
herein are as follows. Firstly, there is growing recog-
nition that high-resolution integrated surface water–soil
moisture–groundwater modeling and forecasting is crucial
for landscape-scale water resource management (e.g., Sim-
mons et al., 2020, and references therein). However, the as-
sessment of large-scale (i.e., watershed to river basin), high-
resolution integrated hydrologic simulations is often difficult
due to a lack of spatially distributed observational informa-
tion. This study attempts to fill this gap by presenting state-
of-the-art satellite (SMAP) SM products as a tool for eval-
uating integrated hydrologic simulations. The investigation

indicates that the SMAP product and the fully integrated hy-
drologic model simulations are matched very well in terms of
the near-surface (top few centimeters) SM variability at both
the 9 km scale and the watershed scale. Further, the simu-
lated deeper subsurface SM and GW storage fluctuation is
lagged and smoothed in relation to the SSM variability cap-
tured by SMAP. The quantified connections between satellite
measurements and modeling results demonstrate the capabil-
ity of the fully integrated hydrologic model to reproduce wa-
ter content in the variably saturated subsurface domain at a
spatial scale that aligns with SMAP cell size. The applica-
tion of SMAP towards high-resolution fully integrated sur-
face water–groundwater simulations expands upon previous
inter-comparisons of satellite SM and simulations produced
by land surface models (e.g., Al-Yaari et al., 2014; Dorigo et
al., 2010; Draper et al., 2013; Parrens et al., 2012) or lumped
models (e.g., Bouaziz et al., 2020).

Secondly, the study of coupling between near-surface–
subsurface water fluctuations was extended to the saturated
zone (GW) and investigated at multiple spatial scales in this
work. In previous work, vertical coupling analyses typically
included only the unsaturated zone (surface SM versus root
zone SM) for point-scale or small catchments. For example,
Mahmood and Hubbard (2007) and Mahmood et al. (2012)
quantified the coupling and time lags between near-surface
and root zone SM dynamics at the point or field scale in
the US state of Nebraska and suggested that the strength of
the coupling was subject to soil type, land use type, and cli-
mate, with the temporal delay ranging from several days to
a few months. Herein, the high-resolution integrated model
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Figure 9. (a) Watershed-scale time series of SMAP SSM, SMAP SSM-derived SWI (using T = 15 d), and HGS-simulated top 25 cm SM.
(b) Watershed-scale time series of SMAP SSM, SMAP SSM-derived SWI (using T = 20 d), and HGS-simulated top 100 cm SM. In each
plot, the correlation R between SWI (or SMAP SSM) and simulated SM is provided.

simulations enabled an investigation on the vertical coupling
and response time differences between dynamics of satel-
lite SM and subsurface water in both unsaturated and satu-
rated zones (i.e., variably saturated subsurface water) at both
the 9 km grid scale and the watershed scale. Results from
the two spatial scales showed consistent variation in vertical
coupling and response time across different layers. At both
scales, root zone SM and GW fluctuation can be approxi-
mated by shifting the SMAP SSM time sequences forward by
a soil-property-dependent optimal time length that increases
with subsurface depth. Over the SNW, where poorly or im-
perfectly drained soils dominate the agricultural regions, the
optimal time lag (relative to the SSM variability) is about
1 d for the 25–50 cm SM, about 6 d for the 50–100 cm SM,
and about 11 d for the GW storage at both scales. These
findings have important implications for exploiting the po-
tential of SMAP (or other satellite) SSM measurements for
estimating subsurface water dynamics in deeper unsaturated
and saturated zones. In particular, large-scale satellite SSM
monitoring could provide a quick approach for predicting
deeper subsurface water storage changes at continental or

global scales and alleviate the need for hydrologic modeling
in some types of investigations.

Thirdly, this work suggests optimal and appropriate time
length T values for satellite-based SWI estimation and pro-
vides insight into linkages between SWI and subsurface wa-
ter variability in both unsaturated and saturated zones over
a representative Canadian agricultural watershed. Since Topt
for SWI estimation is dependent on a number of factors,
including subsurface depth of interest, soil properties (e.g.,
Ceballos et al., 2005; de Lange et al., 2008; Wang et al.,
2017), climate (e.g., Albergel et al., 2008; Mahmood et al.,
2012; Wang et al., 2017), and land cover/land use (Bouaziz
et al., 2020; Mahmood and Hubbard, 2007), characteriza-
tion of Topt has been extensively studied. As pioneers of
the SWI approach, Wagner et al. (1999) recommended a
Topt of 15 and 20 d for the top 20 cm layer and top 100 cm
layer, respectively, based on satellite and in situ SM moni-
toring over Ukraine. Zhang et al. (2017) reported a Topt of
8 d for the 25 cm depth and 49 d for the 75 cm depth based
upon in situ measurements in the US state of Oklahoma.
Bouaziz et al. (2020) indicated that Topt values varied signif-
icantly across different regions, and when using the SMAP
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Figure 10. (a) Daily spaced time series of watershed-scale SWI (using T = 20 d) and HGS-simulated watershed-integrated GW storage.
(b) Spearman’s rank correlations between the two time series in panel (a) for a time lag ranging from 0 to 60 d. Positive lags indicate that
the SWI leads the GW. In panel (b), the vertical dashed line indicates the location of the time lag leading to the maximum Spearman’s rank
correlation between the two series.

SPL3SMP-E SM product (also used in the present study),
Topt values ranged from ∼ 2 to 42 d (within the 5 % to 95 %
percentiles), with a median of around 25 d across their 16
study catchments in France. Tian et al. (2020) obtained a me-
dian Topt of 10 d for the top 70 cm layer using SMAP SSM
across in situ SM monitoring sites in the Heihe River basin,
China. Canadian agricultural areas are typically underrepre-
sented in previous SWI-related studies, and hence the present
study helps fill this gap. In this study, the obtained optimal
Topt values for the entire root zone (0–100 cm layer) at the
watershed scale (∼ 38 d) and for the majority of the 9 km grid
cells (26 to 43 d) over the SNW are similar to those quanti-
fied in other agricultural regions (e.g., Bouaziz et al., 2020;
Ceballos et al., 2005). The spatial variability of 9 km scale
Topt reasonably reflected the impact of soil texture. Note that
at both scales (9 km and watershed) there is a range of T
values surrounding Topt that produce high correlations be-
tween the calculated SWI and modeled subsurface SM. As
such, subsurface moisture variability over the SNW can be
well represented by the SMAP-derived SWI using the clas-
sic T values (15 and 20 d for the 0–20 and 0–100 cm layers,
respectively). The analysis of optimal (and appropriate) time
length T values in this study provides important guidance for
SWI estimation over Canada and other agricultural regions
around the world. Furthermore, GW storage showed a similar
but slightly delayed day-to-day variation relative to SMAP-

derived SWI in the 0–100 cm layer, which further supports
the use of satellite-derived SWI for detecting GW changes
over a range of different timescales (e.g., Sutanudjaja et al.,
2013).

6.2 Point-scale analysis

With the in situ soil moisture measurements at the four
RISMA stations, the time lags between the variations of SSM
(top 5 cm) and subsurface SM at the point scale are investi-
gated and presented in Fig. A12 (other in situ sites are not
used since they do not provide the SSM measurements). The
optimal time lag is less than 1 d between the SSM and 20 cm
depth SM at all four RISMA stations, consistent with the ver-
tical coupling between dynamics of satellite SSM and the
simulated 0–25 cm SM. Across the four RISMA sites, the
optimal time differences between the variations of SSM and
the 50 cm SM range from 0 to 5 d (0 d for ON2 and ON6,
1 d for ON5, and 5 d for ON4), which is also comparable to
the response time difference (about 2 d in the RISMA region)
between satellite SSM and the simulated 25–50 cm SM.

The Topt values for SWI estimation based upon the point
scale in situ soil moisture measurements at the four RISMA
stations are given in Fig. A13. The point-scale Topt values
range from 1 to 12 d (1 d for ON2, 2 d for ON6, 3 d for ON4,
and 12 d for ON5) for SWI estimation at 20 cm depth, while
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Figure 11. (a) Spearman’s rank correlation coefficients between the time series (9 km grid scale) of HGS-simulated SM (from the 0–25,
0–50, and 0–100 cm layers, respectively) and SMAP SSM-derived SWI for the characteristic time length T ranging from 1 to 100 d. For each
layer, the shaded band represents the 5th to 95th percentiles of the results from all SMAP grids within the study watershed, with a vertical
dashed line indicating the location of the optimal Topt median from all SMAP grids. (b) Spearman’s rank correlation coefficients between
the time series (watershed scale) of HGS-simulated SM (from the 0–25, 0–50, and 0–100 cm layers, respectively) and SMAP SSM-derived
SWI for T ranging from 1 to 100 d. For each layer, the vertical dashed line indicates the location of Topt at the watershed scale.

the point-scale Topt values for SWI estimation at 50 cm depth
are mostly shorter than 12 d (although the ON4 site shows
an Topt of about 50 d for SWI estimation at 50 cm depth, the
confidence interval for the Topt is expected to be relatively
wide since the highest Spearman’s rank correlation varies lit-
tle over a wide range of T values). Overall, the point-scale
Topt values are shorter than those derived from the satellite
and model-simulated SM for the 9 km grid scale and the wa-
tershed scale. This may indicate that the deeper subsurface
layers typically show a quicker response to the near-surface
moisture content variability at the point scale.

6.3 Limitations

Numerous modeling studies have demonstrated the influ-
ences of tile drains on hydrological behavior in tile-drained
agricultural catchments or regions (e.g., De Schepper et al.,
2015; Hansen et al., 2013; Que et al., 2015; Rozemeijer et
al., 2010; Valayamkunnath et al., 2022). A limitation in the
present study is that tile drainage was not explicitly resolved
in the HGS model. However, this limitation is unavoidable,
due to the extremely complex challenge associated with
representing what are effectively a large number of field-
scale drainage features in a fully integrated surface water–
groundwater model for a∼ 3900 km2 watershed. While HGS
has previously been used to evaluate tile drainage impacts,
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the focus has been on much smaller (typically <50 km2)

catchments (e.g., Boico et al., 2022; De Schepper et al., 2015,
2017). To quantify the impact of tile drain omission on the
study herein, the fraction of tile drains within each SMAP
grid cell is calculated and evaluated in the context of the com-
parison between SMAP and HGS modeling.

Figure 12 presents scatter plots of tile drain percentage
versus calculated performance metrics for the SSM relation-
ship between SMAP and the HGS modeling across all SMAP
9 km cells. The fraction of tile drains shows a statistically sig-
nificant positive (negative) correlation with the ubRMSD (R
and anomaly R). Further, Fig. 13a shows a scatter plot of tile
drain percentage versus maximum Spearman’s rank correla-
tion between SWI and simulated SM in the 0–100 cm layer,
with there being a statistically significant decrease in corre-
lation strength as tile drainage increases. All these results in-
dicate that the lack of tile drainage representation impacted
the model performance over the tile drained areas, while also
explaining the better agreement between model simulations
and SMAP (SSM and SWI) in forested areas than over agri-
cultural fields (Figs. 3, A10b, A10d, and A10f).

However, the tile sensitivity analysis also suggests that
the tile drain omission would not negate the findings of the
study since it is expected that agreement/linkages between
SMAP and HGS modeling would be improved (rather than
being discouraged) if tile drainage is explicitly included in
the HGS model. Additionally, because the total tile-drained
area is only about 25 % of the entire watershed and the frac-
tion of tile drains is less than 30 % for the majority of SMAP
grid cells (Fig. 12), the linkages between SMAP and fully in-
tegrated surface water–groundwater modeling demonstrated
within the results of the study are still representative of the
dynamic interplay between near-surface–subsurface water
over the study watershed.

The other limitation of the study is that the presence of tile
drainage may impact accurate estimation of SWI over the
SNW through modifying the percolation process. However,
the impact of this limitation is expected to be marginal for
this study given the following reasons. Firstly, the fraction of
tile drainage is relatively low (<30 %) for most (80 %) of the
SMAP 9 km grid cells (Fig. 13). Therefore, the tile drainage
would not materially impact the percolation and the SWI es-
timation for most of the 9 km grids. At the watershed scale,
the percentage of total tile-drained area is only about 25 %
so that the estimation of watershed-scale SWI should not be
significantly influenced either. Secondly, the tile drainage has
little impact upon the identified Topt, the only control param-
eter for the SWI estimation. In this study, Topt was identified
by matching the variations in the SWI and simulated sub-
surface SM. Since the tile drainage was not resolved in the
model, the identified Topt and the corresponding SWI esti-
mation was not subject to the presence of tile drainage. Fig-
ure 13b provides the scatter plot of the tile drain percentage
versus the identified optimal Topt value for the SWI estima-
tion in the 0–100 cm layer. The identified optimal Topt did not

Figure 12. Scatter plot of the percent area of tile drains versus
(a) ubRMSD, (b) R, and (c) anomaly R, respectively, across all
SMAP grids within the SNW. The calculated performance metrics
(shown in Fig. 3) were for HGS-simulated SSM vs SMAP SSM.
The Pearson correlation between tile drain fraction and each perfor-
mance metric, along with the p value, is provided in each plot.

exhibit a statistically significant variation with the fraction of
tile drainage.

6.4 Other SMAP soil moisture products

In this study, only the SMAP-enhanced L3 radiometer 9 km
EASE-Grid SM (SPL3SMP_E) product (O’Neill et al., 2021)
was used. The SMAP–Sentinel-1 L2 Radiometer–Radar SM
product (Das et al., 2019, 2020), which can provide higher
spatial resolution (3 and 1 km) SSM, was not used here be-
cause the temporal resolution of the product (∼ 12 d) is not
appropriate for detecting the time lags between the variations
of SSM and subsurface SM. Further, although the SMAP
Level-4 (L4) product can provide the surface (0–5 cm) and
root zone (0–100 cm) SM data at 3 h intervals over 9 km
EASE-Grid (Reichle et al., 2022), the product is also not suit-
able for the approaches utilized in this study since the L4 root
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Figure 13. Scatter plot of the percent area of tile drains versus
(a) the highest Spearman’s rank correlation between the SWI se-
ries and HGS 0–100 cm SM (as shown in Fig. A10f) and (b) the
identified optimal Topt value for the root zone layer (as shown in
Fig. A10e) across all SMAP grids. In each plot, the Pearson correla-
tion between the two variables, along with the p value, is provided.

zone SM variability is not independent of the SMAP L3/L4
SSM variability. The links between the SMAP SSM and L4
root zone SM variations are controlled by the Catchment land
surface model and the assimilation system of SMAP bright-
ness temperatures that were used for producing the L4 prod-
uct. However, note that the SMAP L4 product is in very good
agreement with the HGS model simulations, which were
used for representing the subsurface water dynamics in this
work, in terms of the root zone SM variability (Fig. A14; the
absolute bias between them has no impact on the approaches
used in this work, which only considers the temporal varia-
tions of SM). This further supports the HGS model’s appli-
cation towards representing the dynamic behavior of subsur-
face water in this work.

7 Conclusions

The inter-comparison and quantified linkage between the two
independent data sources: SMAP measurements (SSM and
SWI) and HGS fully integrated surface water–groundwater
simulations over a representative agriculture-dominated wa-
tershed in eastern Canada led to improved insights into the
dynamics of near-surface–subsurface water interaction and
the capabilities and approaches of satellite-based SM moni-
toring and high-resolution fully integrated hydrologic mod-
eling. The SSM variability is a strong reflection of the deeper

subsurface water storage fluctuation, and results support the
use of SMAP SSM measurements as indicators and/or pre-
dictors of root zone SM and shallow GW storage dynam-
ics. Furthermore, the subsurface SM variability can be well
represented by SMAP-derived SWI series, which can also
be used to predict shallow GW storage change. The vertical
coupling strength and the timescale for water traveling from
the near-surface to deeper subsurface did not exhibit statisti-
cally significant differences across the two spatial scales of
investigation, namely SMAP 9 km grid cell and watershed.
The high-resolution fully integrated hydrologic simulations
conducted with the HGS model performed well in terms of
reproducing the variably saturated subsurface water dynam-
ics, although adding the representation of tile drains to the
model would further improve the model performance for the
tile-drained regions of the subject watershed through the use
of remote sensing based SM measurements as validation tar-
gets. As satellite SM monitoring continues to evolve, this
study has important implications for exploiting the potential
of satellite-based SM to predict root zone SM and GW dy-
namics.
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Appendix A

Table A1. Averaged optimal time lags for different soils.

Soils Soil drainage class
Number of Averaged optimal time lag with the 95 % confidence intervals (in days)

samples 0–25 cm SM 25–50 cm SM 50–100 cm SM GW

Achigan Imperfectly drained 9 0, [0, 0] 1.00, [0.78, 1.22] 13.0, [11.2, 14.4] 12.3, [11.8, 13.1]
Bainsville Poorly drained 5 0, [0, 0] 1.20, [1.00, 1.43] 3.6, [3.0, 4.3] 18.8, [14.3, 21.7]
Bearbrook Poorly drained 10 0, [0, 0] 1.00, [0.82, 1.15] 9.6, [7.5, 11.0] 13.7, [13.5, 14.0]
Brandon Poorly drained 14 0, [0, 0] 2.21, [1.50, 2.70] 5.9, [5.3, 6.6] 13.6, [13.4, 13.9]
Farmington Well drained 4 0, [0, 0] 0.75, [0.43, 1.00] 4.5, [4.0, 4.7] 7.5, [6.0, 8.0]
Grenville Well drained 6 0, [0, 0] 0.67, [0.43, 0.86] 6.0, [5.0, 6.8] 8.7, [7.2, 10.0]

Table A2. Averaged optimal characteristic time length Topt for SWI estimation for different soils.

Soils Soil drainage class
Number of Averaged Topt with the 95 % confidence intervals (in days).

samples 0–25 cm soil layer 0–50 cm soil layer 0–100 cm soil layer

Achigan Imperfectly drained 9 25, [23, 26] 28, [27, 30] 38, [37, 39]
Bainsville Poorly drained 5 25, [24, 26] 27, [26, 28] 30, [29, 31]
Bearbrook Poorly drained 10 21, [20, 22] 24, [23, 24] 32, [31, 33]
Brandon Poorly drained 14 20, [19, 22] 27, [26, 28] 32, [31, 33]
Farmington Well drained 4 18, [17, 20] 21, [19, 24] 24, [23, 25]
Grenville Well drained 6 17, [15, 18] 21, [19, 22] 28, [27, 29]
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Figure A1. The 0–25 cm depth soil moisture time series of HGS
versus in situ at (a) ON2, (b) ON4, (c) ON5, (d) ON6, (e) Metcalfe,
(f) Winchester, and (g) Pleasant Valley, respectively.

Figure A2. The 0–100 cm depth soil moisture time series of
HGS versus in situ at (a) ON2, (b) ON4, (c) ON5, (d) ON6,
(e) WEBs@11–14, (f) WEBs@20, and (g) Pleasant Valley, respec-
tively.
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Figure A3. Comparison between the observed and HGS-simulated
hydrographs at the seven gauges: (a) 02LB005, (b) 02LB006,
(c) 02LB007, (d) 02LB008, (e) 02LB013, (f) 02LB020, and (g)
02LB022, respectively. The corresponding Nash–Sutcliffe effi-
ciency (NSE) value is provided in each panel.

Figure A4. Comparison between the observed and HGS-simulated
groundwater level anomalies (GWAs) at the eight GW monitoring
wells. The anomalies represent the deviations relative to their re-
spective means over the study period. The corresponding R value is
provided in each panel.
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Figure A5. (a) Slope and (b) intercept for a linear regression between SMAP SSM (independent variable) and HGS SSM (dependent
variable) across all SMAP grids.

Figure A6. Scatter plots between SMAP SSM and HGS SSM for (a) Grid 1 and (b) Grid 2, as shown in Fig. A5.
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Figure A7. Optimal time lag (in days), relative to the SMAP SSM variability, for HGS-simulated (a) 0–25 cm SM, (b) 25-50 cm SM,
(c) 50–100 cm SM, and (d) GW storage across all SMAP grids.

Figure A8. Maximum Spearman’s rank correlation between SMAP SSM versus HGS-simulated (a) 0–25 cm SM, (b) 25–50 cm SM, (c) 50–
100 cm SM, and (d) GW storage, respectively, across all SMAP grids.
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Figure A9. (a) ubRMSD, (c) R, and (e) anomaly R between the SMAP-derived SWI (T = 15 d) and HGS-simulated 0–25 cm soil moisture
across all SMAP grids over the study watershed. (b) ubRMSD, (d) R, and (f) anomaly R between the SMAP-derived SWI (T = 20 d) and
HGS-simulated 0–100 cm soil moisture across all SMAP grids over the study watershed.
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Figure A10. Optimal Topt for SWI estimation for (a) 0–25 cm, (c) 0–50 cm, and (e) 0–100 cm soil layers, respectively. Maximum Spearman’s
rank correlation between the SWI and simulated soil moisture for (b) 0–25 cm, (d) 0–50 cm, and (f) 0–100 cm soil layers, respectively.
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Figure A11. Distribution of the optimal Topt at the 9 km grid scale
for (a) 0–25 cm, (b) 0–50 cm, and (c) 0–100 cm soil depths, respec-
tively.

Figure A12. Spearman’s rank correlation (ρ) between the near-
surface (top 5 cm) soil moisture (SSM) and the subsurface (20 and
50 cm depths) soil moisture (SM) for a time lag ranging from 0
to 60 d based upon the in situ measurements at the four RISMA
stations: (a) ON2, (b) ON4, (c) ON5, and (d) ON6, respectively.
Positive lags indicate that the SSM leads the subsurface SM. The
vertical dashed line indicates the optimal time lag corresponding to
the maximum ρ between the SSM and subsurface SM.
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Figure A13. Spearman’s rank correlation (ρ) between the subsur-
face SM (20 and 50 cm depths) and the SSM-derived SWI for the
characteristic time T ranging from 1 to 100 d, based upon the in
situ measurements at the four RISMA stations: (a) ON2, (b) ON4,
(c) ON5, and (d) ON6, respectively. The vertical dashed line indi-
cates the location of the optimal characteristic time Topt for SWI
estimation.

Figure A14. Comparison between the SMAP L4 and HGS simu-
lations for the watershed-averaged root zone (0–100 cm) SM time
series. The error metrics (ubRMSD, R, and anomaly R) are calcu-
lated without considering the data in winter (December to March),
for which satellite SSM measurements are typically not available.

Data availability. The SMAP-enhanced L3 radiometer 9 km
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et al., 2021) and the model output from HydroGeoSphere (HGS)
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are publicly accessible at https://doi.org/10.5281/zenodo.8145252
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