

Supplement of

Integration of the vegetation phenology module improves ecohydrological simulation by the SWAT-Carbon model

Mingwei Li et al.

Correspondence to: Yongshuo H. Fu (yfu@bnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

2 Figure S1: Temporal variability in the LAI during the calibration (2007–2011) and

3 validation (2012–2014) periods. The 8-day LAI time series were observed by satellite and

4 simulated by the original SWAT-Carbon model with an adjustment of non-growing season

5 LAI for forest (a) and grassland (b).

7 Figure S2: Projection of future runoff during 2030–2100 using the original SWAT-

8 **Carbon.** Colored lines and shading in the left subplot represent the mean and one standard

9 deviation across the four Coupled Model Intercomparison Project Phase 6 (CMIP6) models.

10 The scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5 refer to low emissions, moderate emissions,

11 and high emissions, respectively. The cross symbol represents the outliers.

12

13 Figure S3: Projection of average future runoff from 2030 to 2100 under each emission

14 scenario by the modified SWAT-Carbon model and CMIP6.

15

- 16 Figure S4: Precipitation, simulated water yield, and ET by modified SWAT-Carbon
- 17 model from 2030 to 2100 under each emission scenario.

Table S1: Summary of the LAI-related parameters controlling vegetation growth and

D (Calibrat	ion values
Parameter	Definition (unit)	FRST	PAST
ALAI_MIN	Minimum leaf area index (m ² /m ²)	1.099	0.287
BLAI	Maximum potential leaf area index (m ² /m ²)	4.012	4
DLAI	Fraction of PHU when LAI beings to decline	0.850	0.839
FRGRW1	Fraction of PHU corresponding to the 1st point on the leaf area development curve	0.166	0.161
FRGRW2	Fraction of PHU corresponding to the 2nd point on the leaf area development curve	0.809	0.408
LAIMX1	Fraction of BLAI corresponding to the 1st point on the optimal leaf area development curve	0.296	0.636
LAIMX2	Fraction of BLAI corresponding to the 2nd point on the optimal leaf area development curve	0.472	0.984
T_BASE	Minimum temperature for plant growth (°C)	0.855	0.006

19 calibrated values for forest (FRST) and grassland (PAST).

Table S2: Summary of the original and modified SWAT-Carbon models' parameters

22 controlling runoff with their calibrated values.

Parameter	Definition (unit)	Scaling type	Range	Original model		Modified	Modified model	
				Value	Rank	Value	Rank	
CN2	Initial SCS runoff curve number for moisture condition II	multiple	-0.5 - 0.5	0.01	1	-0.12	3	
SFTMP	Snowfall temperature (°C)	replace	-5 - 5	1.56	20	1.89	5	
SMTMP	Snow melt base temperature (°C)	replace	-5 - 5	-0.18	15	-4.28	17	
TIMP	Snow pack temperature lag factor (°C)	relative	0 – 1	0.30	14	0.79	9	
ALPHA_BF	Baseflow alpha factor (days)	replace	0 - 1	0.72	8	0.34	7	
GW_DELAY	Groundwater delay time (days)	replace	0 - 500	16.60	9	6.09	8	
GWQMN	Threshold depth of water in the shallow aquifer required for return flow to occur (mm H ₂ 0)	replace	0 - 5000	1142.72	5	2882.59	10	
GW_REVAP	Groundwater "revap" coefficient	relative	0.02 - 0.2	0.03	12	0.08	21	
RCHRG_DP	Deep aquifer percolation fraction	replace	0 - 0.5	0.44	7	0.42	4	
CH_N2	Manning's "n" value for the main channel	replace	0.25 - 0.14	0.05	19	0.05	14	
SOL_K	Saturated hydraulic conductivity (mm/hr)	multiple	-0.5 - 0.5	-0.38	3	-0.31	6	
SOL_AWC	Available water capacity of the soil layer (mm H ₂ O/mm soil)	multiple	-0.5 - 0.5	-0.003	10	-0.05	16	
SOL_BD	Moist bulk density (g cm ⁻³)	multiple	-0.5 - 0.5	0.25	2	0.19	1	
SOL_Z	Depth from soil surface to bottom of layer (mm)	multiple	-0.5 - 0.5	-0.38	13	0.19	18	
HRU_SLP	Average slope steepness	multiple	-0.5 - 0.5	0.23	4	0.50	2	
SLSUBBSN	Average slope length (m)	multiple	-0.5 - 0.5	0.04	11	-0.39	12	
CANMX	Maximum canopy storage	replace	0 - 15	7.86	22	13.0	13	
ESCO	Soil evaporation compensation factor	replace	0 - 1	0.97	6	0.89	11	

Table S3: Performance of runoff simulation in different months using the original and

25 modified SWAT-Carbon models.

Month		R ²	N	NSE		
Month	Original	Modified	Original	Modified		
June	0.45	0.58	0	0.39		
October	0.49	0.79	0.31	0.78		
Non-growing season	0.72	0.73	0.19	0.54		