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Abstract. The temporal resolution of forcing and calibra-
tion data substantially influences the performance of hydro-
logical models. This impact varies among regions according
to the climatic and landscape characteristics of the water-
sheds. In this study, we evaluate the benefits of using high-
resolution rainfall and streamflow data in hydrological mod-
eling across 63 small-to-medium-scale catchments in south-
east China. We applied rainfall and streamflow data at var-
ious resolutions ranging from 1 to 24 h to drive and cali-
brate a well-established hydrological model. Our findings re-
veal that (1) utilizing sub-daily rainfall data significantly en-
hances the accuracy of daily streamflow forecasts, with no-
table improvements observed when models transition from
daily to sub-daily resolutions; (2) forcing and calibrating the
model by rainfall and streamflow data with sub-daily res-
olution data markedly improve hourly streamflow forecasts
compared to daily data, but the enhancements become neg-
ligible when the resolution exceeds 6 h; and (3) the advan-
tages of sub-daily resolution data are more pronounced in
catchments characterized by a smaller drainage area, signif-
icant diurnal streamflow variability, and greater number of
rain gauges. These findings provide basis for a more efficient
rainfall and streamflow data acquisition.

1 Introduction

Hydrological models are vital for understanding and predict-
ing the dynamics of water resources as well as occurrences of
floods and droughts. The effectiveness of these models heav-

ily depends on the quality and resolution of the data, espe-
cially the rainfall used for forcing and measured streamflow
for calibration. Traditionally, hydrological modeling has uti-
lized daily or even coarser-resolution data, which limits its
application for shorter time steps required in scenarios such
as flash flood forecasting. To address this limitation, data
are often artificially disaggregated from raw time series us-
ing mass curves (Blöschl and Sivapalan, 1995) or complex
stochastic generators (Creutin and Obled, 1980). However,
models based on coarsely resolved or artificially refined data
can introduce biases, particularly when forecasting at finer
temporal scales, as they may not accurately capture the vari-
ability and magnitude of hydrological variables (Younis et
al., 2008; Huang et al., 2019).

Rainfall is crucial in driving high-frequency responses in
catchments in contrast to the more gradual changes caused
by evapotranspiration (Oudin et al., 2006). The temporal dis-
tribution of rainfall profoundly affects runoff patterns, in-
fluencing both peak discharge rates (Gabellani et al., 2007)
and total runoff volume (Viglione et al., 2010). These ef-
fects are primarily due to the nonlinear dynamics of in-
filtration and runoff generation processes, which typically
occur over a timescale of minutes (Blöschl and Sivapalan,
1995; Kandel et al., 2005). Previous studies indicated that
models incorporating sub-daily time steps more effectively
capture the complexities of infiltration-excess and surface
runoff, highlighting the importance of peak rainfall rates
in accurate rainfall–runoff modeling (Kandel et al., 2004,
2005; Socolofsky et al., 2001; Yu et al., 1998). Addition-
ally, streamflow measurement, a vital component for model
calibration, ensures that the quality of calibration data sig-
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nificantly impacts model parameters. Parameters governing
slower dynamics exhibit considerable stability across vari-
ous timescales, whereas those associated with faster dynam-
ics achieve greater accuracy and stability as data resolution
improves (Kavetski et al., 2011).

Recent advancements in measurement technologies, in-
cluding high-frequency automated rain/streamflow gauges
and phased array rain radars, have enabled access to high-
resolution rainfall and runoff datasets. Despite these techno-
logical advances, the quantitative benefits of high-resolution
data in enhancing hydrological model performance remain
unclear. For instance, studies on the impact of rainfall data
resolution on hydrological models have produced inconsis-
tent results. Research such as that of Jeong et al. (2011) sug-
gested that finer temporal resolution significantly improves
model simulations, whereas other studies (Kannan et al.,
2007; Ficchì et al., 2016) found that greater data resolution
does not necessarily lead to better model performance. These
variances could be due to factors like process descriptions in
the models, watershed characteristics, and scale of data ag-
gregation, yet there is a lack of comprehensive research in-
vestigating these elements.

This study seeks to enhance our understanding of the
value of fine-time-step hydro-climatic data for hydrological
model performance. We designed two experiments focus-
ing on the most common hydrological forecasting timescales
– daily and hourly. The impact of high-resolution rainfall
and streamflow data is assessed across 63 small-to-medium-
scale catchments in southeastern China using data resolu-
tions ranging from 1 to 24 h to drive and calibrate the hydro-
logical models. In addition, we explored factors that influ-
ence model performance and evaluate the benefits of high-
resolution data from the perspective of watershed character-
istics. Specifically, we aim to answer three key questions:

1. To what extent can sub-daily rainfall data improve daily
streamflow simulations?

2. What is the coarsest resolution of rainfall and stream-
flow data possible to provide reliable hourly streamflow
simulations?

3. What factors influence model performance and the
value of high-resolution data?

The structure of the remainder of this paper is as follows:
Sect. 2 details the methodology and experimental design, in-
cluding the selection of the 63 catchments, the hydrologi-
cal model employed, and the techniques used to quantify the
benefits of high-resolution data and to identify influential fac-
tors. Section 3 presents the results, offering a comparison of
model performance at different temporal resolutions across
the selected catchments. We investigate performance varia-
tions and discuss possible explanations for these differences.
Section 4 examines the implications of measuring rainfall
and streamflow and addresses the limitations of this study.
Finally, Sect. 5 provides the concluding remarks.

2 Materials and methodology

2.1 Catchment set and data

In this study, we utilized a set of 63 small–medium-scale
catchments located in southeastern China (Fig. 1). The catch-
ment outlets are geographically dispersed, ranging from
102 to 119° E longitude and 21 to 33° N latitude. Predomi-
nantly, most of these catchments (57 out of 63) fall within
the Yangtze River Basin, while four are situated in the
Pearl River Basin and two in the Southeast Basin. Table 1
presents the statistical summaries of the catchment attributes.
The drainage areas of these catchments vary considerably,
ranging from 91.5 to 5266 km2, with an average area of
1528 km2. These catchments exhibit significant diversity in
climatic conditions and rainfall–runoff relationships, high-
lighted by a wide range of mean annual rainfall (647 to
2593 mm) and runoff ratios (0.31 to 0.96).

Hydrometeorological data spanning from 1 January 2014
to 31 December 2015 were sourced from the National Rain-
fall and Hydrological Database, curated by the Information
Center of the Ministry of Water Resources (http://xxfb.mwr.
cn/sq_dtcx.html, last access: 10 December 2023). The selec-
tion criteria for hydrological stations were established based
on several key factors:

1. Catchment size. The focus is on the sub-daily varia-
tion of streamflow, which is crucial in small-scale and
mesoscale catchments, and only those with a drainage
area of less than 6000 km2 were selected.

2. Temporal resolution. The original data varied in resolu-
tion from 5 min to more than 1 d. Given the scarcity of
stations with complete and continuous time series data,
we chose stations with an average resolution – defined
by the ratio of the length of the time period to the num-
ber of measurements – that exceeded 3650 s. This reso-
lution threshold, slightly over 1 h, was designed to min-
imize gaps in hourly time series data.

3. Water level and discharge relationship. The database in-
cludes both water level and discharge data. Notably, wa-
ter level data tend to be more complete and more con-
tinuous.

We utilized the relationship between water level and dis-
charge to infer discharge values for periods only covered by
water level data. Stations were chosen based on their provi-
sion of discharge data for more than 80 % of the time steps
that also had water level data and a determination coeffi-
cient (R2) of the water level–discharge relationship exceed-
ing 0.95, ensuring the accuracy of these calculations.

The criteria for selecting rainfall data were similar to
those for streamflow data. We identified 63 high-quality sta-
tions situated within the study catchments from the original
database, characterized by an average temporal resolution of
slightly over 1 h. To generate the areal rainfall data for each
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Table 1. Statistical summaries of the catchment attributes.

Attribute Description Min Max Average Unit

DRA Drainage area 92 5266 1528 km2

MAR Mean annual rainfall 647 2593 1531 mm
MAQ Mean annual runoff 356 1571 868 mm
QR Runoff ratio 0.31 0.96 0.58 –
RGA Rainfall gauging area 27 859 109 km2

RGN Number of rainfall gauges 2 64 14.87 –
ISTD Intraday standard deviation 0.06 0.79 0.22 –
GOUE Goodness of uniform estimation 0.65 0.98 0.82 –

Figure 1. Geographic distribution of catchments spanning across southeastern China. Publisher’s remark: please note that the above figure
contains disputed territories.

catchment, we employed the Thiessen polygon method (Han
and Bray, 2006). The number of rainfall gauges per catch-
ment varied from 2 to 64, averaging 15 stations. Addition-
ally, the rainfall gauging area – calculated as the catchment
area divided by the number of stations – ranged from 27 to
859 km2, with an average of 109 km2.

Besides, the DEM in this study was from the MERIT dig-
ital elevation model (Yamazaki et al., 2017) with a spatial
resolution of 90 m. Temperature and potential evapotranspi-
ration data were sourced from ERA5-Land (Muñoz Sabater,
2019). The 8 d leaf area index (LAI) and the 16 d normalized
difference vegetation index (NDVI) data, both with a spa-
tial resolution of 500 m, were downloaded from the MODIS
product, MOD15A2H (Myneni et al., 2021) and MOD13A1
(Didan, 2021), respectively.

2.2 Hydrological model: THREW

The hydrological model employed in this study is the
Tsinghua Hydrological Model based on Representative
Elementary Watershed (THREW) developed by Tian et
al. (2006). THREW integrates a set of equilibrium equations
for mass, momentum, energy, and entropy, along with consti-
tutive relationships governing various fluxes between repre-
sentative units and sub-regions within units. In the THREW
model, the REW is separated into two layers, i.e., surface
layer and the subsurface layer. Six sub-regions (or zones),
i.e., the bare soil zone (b zone), vegetated zone (v zone),
snow-covered zone (n zone), glacier-covered zone (g-zone),
sub-stream network (t zone), and main channel reach (r
zone), are defined within the surface layer, and two sub-
regions, i.e., the unsaturated zone (u zone) and the satu-
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rated zone (s zone), are defined within the subsurface layer
(Fig. 2). And so the principal landscape types can be explic-
itly treated in the REW approach (Tian et al., 2008). The pri-
mary parameters utilized and to be calibrated in the THREW
model are presented in Table 2. This model has demonstrated
versatility across watersheds with diverse climates and ge-
ological conditions, such as the Han River basin (Sun et
al., 2014; Li et al., 2018), where many basins in this study
are located, and other basins such as the Yarlung Tsangpo–
Brahmaputra River basin (Xu et al., 2019; Nan et al., 2021;
Cui et al., 2023) and the Ürümqi River basin (Mou et al.,
2009).

2.3 Model experimental design

To examine the influence of rainfall and runoff data at differ-
ent resolutions on streamflow simulation, we designed two
specific experiments: the daily test and the hourly test. The
flowchart of the experimental tests, which is described as fol-
lows, is shown in Fig. 3:

1. Daily test. This experiment was designed to investi-
gate the impact of high-resolution rainfall data on daily
streamflow simulations. The model was driven by rain-
fall data at various resolutions and calibrated using daily
resolution streamflow data. This approach allowed us to
assess whether (and to what extent) sub-daily rainfall
data can enhance daily streamflow simulation, address-
ing the first question raised in the introduction.

2. Hourly test. This experiment was designed to investi-
gate the impact of high-resolution rainfall and stream-
flow data on hourly streamflow simulation. In this test,
the temporal resolutions of rainfall data and measured
streamflow data for calibration were the same, both set
to various resolutions. The model was calibrated us-
ing streamflow data with the given temporal resolution,
and then the hourly streamflow simulated by the cali-
brated model was evaluated based on the hourly mea-
sured data. This setup aimed to determine the necessary
data resolution for providing reliable hourly streamflow
forecasts, thereby addressing the second question intro-
duced earlier.

These experiments were designed to explore how data res-
olution impacts the accuracy and reliability of the model’s
performance at different temporal scales. The computational
time step of the model is also one of the factors impacting the
model’s performance (Jie et al., 2018; Reynolds et al., 2017).
To minimize any bias associated with varying computational
time steps, the computational time step of hydrological sim-
ulations was consistently set to 1 h. This standardization was
maintained regardless of the actual temporal resolution of the
input data. All input data besides rainfall were resampled to
the hourly resolution through averaging prior to simulation.
As a result, the output, specifically the simulated runoff data,
was consistently produced at an hourly scale.

In the daily test, rainfall data at various temporal reso-
lutions were fed into the hydrological model to generate
simulated hourly streamflow. These hourly data were then
aggregated to a daily scale for direct comparison with ob-
served daily streamflow data. Through this process, model
parameters were calibrated by aligning the simulated out-
comes with observed data, thus optimizing the parameters
for different resolutions of rainfall data. An automatic opti-
mization algorithm, Python Surrogate Optimization Toolbox
(pySOT, Eriksson et al., 2019), was employed for model cal-
ibration, with the objective of maximizing Kling–Gupta ef-
ficiency (KGE). The pySOT algorithm utilizes radial basis
functions (RBFs) as surrogate models to approximate simu-
lations, thereby reducing the runtime for each model itera-
tion. During a single optimization process, the optimization
algorithm iteratively generates new parameters via the sym-
metric Latin hypercube design (SLHD) method. The opti-
mization ceases when the optimization objective converges
or the number of iterations reaches a predetermined thresh-
old (set at 3000). In this study, the pySOT algorithm was re-
peated 100 times, and the final parameter set was determined
based on the optimal objective (maximum KGE). After cal-
ibration, another performance metric, relative error of peak
flow (REP), was calculated. These metrics are calculated as
follows:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (1)

REP=
Qsim,p−Qobs,p

Qobs,p
, (2)

where r represents the Pearson correlation coefficient be-
tween simulated and observed values, α is the ratio of the
mean of simulated values to the mean of observed values, β is
the ratio of the standard deviation of simulated values to the
standard deviation of observed values, andQsim,p andQobs,p
are the simulated and observed peak flow, respectively.

The hourly test followed a similar procedure to the daily
test, inputting rainfall data at various temporal resolutions
into the hydrological model to produce simulated hourly
streamflow. This output was aggregated to match the resolu-
tion of the input data and compared with the corresponding
observed data for calibration. The performance of calibrated
model on simulating hourly streamflow was then assessed by
calculating KGE and REP, based on the hourly simulated and
observed streamflow data.

The flowchart of the experimental tests is illustrated in
Fig. 3, where D and H refer to the daily and hourly tests,
and xi is each member of the time step (t.s.) set (TS), which
consists of 1, 2, 3, 4, 6, 12, and 24 h. KGED,xi and REPD,xi
are the KGE of and REP of daily streamflow forced by rain-
fall at the time step of xi . Similarly, KGEH,xi and REPH,xi
denote the KGE and REP for hourly streamflow at time step
of xi . To quantify the different model abilities on streamflow
simulations at hourly and daily scales, rKGE and 1REP are
calculated as in Eqs. (3) and (4). Generally, rKGE is greater
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Figure 2. Structural diagram of runoff generation processes in the THREW model.

Table 2. Parameters to be calibrated in the THREW model.

Symbol Unit Physical description Range

Kv – Fraction of potential transpiration rate over potential evaporation 0–0.8

nt – Manning roughness coefficient for hillslopes 0–0.2

GaIFL – Coefficient for spatially averaged infiltration capacity 0–0.7

GaEFL – Coefficient for spatially averaged exfiltration capacity 0–0.7

WM cm Tension water storage capacity, which was used in the Xinanjiang model (Zhao et al., 1992) to
calculate saturation area

0–10

B – Shape coefficient used in the Xinanjiang model to calculate saturation area 0–1

KKA – Coefficient to calculate subsurface runoff in Rg =KKD×KS
S × (ys/Z)

KKA, where S is the
topographic slope, KS

S is the saturated hydraulic conductivity, ys is the depth of saturated groundwater,
and Z is the total soil depth

0–6

KKD – See description for KKA 0–0.5

C1 – Coefficient to calculate the runoff concentration process using the Muskingum method:
Q2 = C1× I1+C2× I2+C3×Q1+C4×Qlat, where I1 and Q1 are the inflow and outflow at the
prior step, respectively; I2 and Q2 are the inflow and outflow at the current step, respectively; Qlat is
lateral flow of the river channel; C3 = 1−C1−C2; and C4 = C1+C2

0–1

C2 – See description for C1 0–1
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than 1, and 1REP is positive because it is easier for models
to achieve good performance on the streamflow simulation at
coarse temporal resolutions. A rKGE close to 1 indicates that
the model performs equally well at the hourly scale as it does
at the daily scale, suggesting its applicability across differ-
ent temporal scales and providing comparable reliability. A
1REP approaching 0 has a similar implication. In addition to
the metric calculated for different temporal resolutions, The
average KGE and REP in the daily and hourly test, aggre-
gating these metrics across temporal scales, are calculated
to provide an average performance measure for the model
within each catchment. The average KGE in the daily test
and hourly test are calculated as in Eqs. (5) and (6), and the
average relative error REPD,ave and REPH,ave are calculated
in a similar way. The average rKGE and1REP are calculated
as in Eqs. (7) and (8).

rKGExi =
KGED,xi
KGEH,xi

(4)

1REPxi = REPD,xi −REPH,xi (5)

KGED,ave = average
{
KGED,xi

}
=

∑
KGED,xi

8
(xi ∈ TS) (6)

KGEH,ave = average
{
KGEH,xi

}
=

∑
KGED,xi

8
(xi ∈ TS) (7)

rKGEave =
KGED,ave

KGEH,ave
(8)

1REPave = REPD,ave−REPH,ave (9)

2.4 Quantifying the value of high-resolution data

The paired two-sample t test, a widely used statistical
method to determine whether the means of two related
groups of samples are significantly different (e.g., Xu et al.,
2017), was adopted to test whether the performance of the
hydrological model based on high-resolution data signifi-
cantly improved. Furthermore, the improvement index (IMP)
was proposed to quantify this performance improvement.
The IMP is calculated as follows:

IMPD =
Max

{
KGED,xi

}
KGED,24 h

, (10)

IMPH =
Max

{
KGEH,xi

}
KGEH,24 h

. (11)

IMPD and IMPH represent the highest degree of improve-
ment of the sub-daily-scale data relative to the daily scale
data in the daily test and the hourly test, respectively. It
should be noted that although IMP and rKGE have similar
equations, they reflect different issues: the rKGE represents
the difference in model ability on streamflow simulation at
daily and hourly scales, while the IMP indexes quantify the
value of the sub-daily-scale dataset on hydrological models.

Figure 3. Flowchart of the experimental tests.

2.5 Analyzing the influence factors of model
performances

In order to identify potential factors affecting the perfor-
mance of the model and determine which catchments ben-
efit more from high-resolution data, correlation analyses
were performed between catchment attributes and model per-
formance metrics. The model performance metrics are de-
scribed in the previous section. The following catchment at-
tributes were selected as potential factors: (1) drainage area
(DRA); (2) mean annual rainfall (MAR); (3) mean annual
runoff (MAQ); (4) runoff coefficient (QR); and (5) good-
ness of uniform estimation (GOUE) for streamflow, which
is the Nash–Sutcliffe efficiency coefficient (NSE) of hourly
streamflow based on daily streamflow assuming a uniform
intraday streamflow, revealing the intraday streamflow varia-
tion (Andréassian et al., 2001). The equation for GOUE is
shown by Eq. (11), where n is the length of the time se-
ries of the streamflow, Qh is the actual hourly streamflow,
Qh is the mean of the Qh, and QDh is the hourly stream-
flow based on daily streamflow assuming a uniform intraday
streamflow. A larger GOUE indicates a smaller difference
between daily and hourly streamflow, and a smaller intraday
streamflow variation. Finally, there are the (6) intraday stan-
dard deviation (ISTD) of the streamflow relative to the aver-
age streamflow and (7) rainfall gauge area (RGA), which is
the catchment area divided by the number of rainfall stations
in the catchment. Subsequently, correlation analyses were
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conducted between evaluation metrics (including KGED,ave,
KGEH,ave, rKGEave, REPD,ave, REPH,ave, 1REPave, IMPD,
and IMPH) and the above seven potential influencing fac-
tors. Statistical summaries of these attributes across the study
catchments are presented in Table 1.

GOUE= 1−

∑n
i=1
(
QDh
i −Q

h
i

)2
∑n
i=1

(
Qh
i −Q

h
)2 (12)

3 Results

3.1 Model performance at different timescales

The results of the daily and hourly tests are shown in Fig. 4
and detailed in Table 3. Considering the performance met-
rics obtained by various resolutions (ranging from 1–24 h) of
data, in the daily test, the average KGE varied in the range of
0.84–0.87. The model performed the worst when using the
24 h resolution data, but even so, KGE exceeded 0.8 in over
76 % of the catchments. At the 1 h resolution, this propor-
tion rose to 86 %. As for REP, its average value at various
data resolutions ranged between −16 % and −24 % indicat-
ing the general underestimation on peak flow. In the hourly
test, the metrics got slightly worse compared with the daily
test, with average KGE 0.03 lower and average REP 10 %
larger than that of the daily test. The average KGE at var-
ious data resolutions varied in the range of 0.79–0.84, and
the model produced a KGE higher than 0.8 in over 75 % of
the catchments when using 1 h rainfall and streamflow data.
The average REP varied in the range ranges between −24 %
and −38 %. The average rKGE and 1REP varied within the
ranges of 1.04–1.07 and 7.8 %–14 %, respectively. Further-
more, with the increasing temporal resolution, both rKGE
and 1REP exhibited a decline trend, suggesting that the dis-
crepancy in the model’s performance between hourly and
daily scales diminished as the data resolution improved. In
brief, at all data resolutions in both daily and hourly tests,
the average KGE was consistently greater than 0.8, and the
absolute value of average bias was consistently lower than
25 %, respectively.

Besides, considering the metrics aggregated across differ-
ent temporal scales for each catchment, the spatial patterns
of average KGE and REP are shown in Fig. 5 and detailed in
the last column in Table 3. In most catchments, the average
KGE exceeded 0.8 in both the daily and hourly experiments.
The average absolute value of REP was less than 20 % in
the daily test and less than 30 % in the hourly test. These
results demonstrated the high performance and reliability of
the THREW model in these catchments, with a high KGE
and low REP.

The evaluation metrics improved when using input and
calibration data with higher temporal resolutions. Particu-
larly, there was an obvious improvement in model perfor-
mance when transitioning from daily to sub-daily resolution.

In the daily test, the average KGE and REP obtained for 1 h
data were 0.03 % and 8 % higher, respectively, compared to
those obtained under 24 h data driving. In hourly testing, the
difference in KGE and REP between 1 h data- and 24 h data-
driven results were 0.05 % and 14 %, respectively. Figure 4c
and f show that the differences between daily and hourly met-
rics got smaller when higher-resolution input data were used.
Transitioning from 24 to 1 h intervals in input data resolu-
tion resulted in a decrease in rKGE from 1.07 to 1.04 and
a decrease in 1REP from 14.1 % to 7.76 %. This signified
a close proximity in the model’s performance between fore-
casting hourly and daily streamflow when utilizing 1 h reso-
lution data.

3.2 Influence of data temporal resolution on model
performance

In both the daily and the hourly test, there was an obvious im-
provement in model performance when the rainfall/stream-
flow data resolution increased from daily to sub-daily. For
instance, in the daily test, when the data resolution shifted
from 24 h to sub-daily 12 h, the average KGE increased from
0.84 to 0.87, and the average REP decreased from −24 % to
−19 %. But such improvements got increasingly limited as
the resolution further increased (Fig. 4). To quantify the dif-
ference in the model performances when adopting data with
different resolutions, paired two-sample t tests were con-
ducted, and the results are shown in Table 4. In the daily test,
significant improvement (at 0.01 significance level) in the
streamflow simulation was brought by sub-daily-resolution
rainfall data compared to the daily data, as indicated by the
low p values in the bottom rows of Table 4a and b. At least at
the 0.05 significance level, there were significant differences
in KGE obtained at 6 and 8 h resolutions compared to that
obtained at 12 h resolution, but the difference in REP was
not significant. The KGE obtained at 6 and 3 h resolutions
also showed significant differences, but the p value was very
close to 0.05. Meanwhile, it is noteworthy to mention that the
differences among evaluation metrics were insignificant at
the 0.05 level when the resolution of rainfall data was higher
than 8 h. This suggested that for daily streamflow forecasting,
continuously increasing the rainfall data resolution beyond
the 8 h threshold did not bring significant improvements to
model performance. That is, the simulated daily streamflow
obtained from a model driven by 8 h rainfall input had com-
parable reliability to that forced by 1 h data, and the effect
of rainfall data with a temporal resolution exceeding 8 h on
enhancing daily forecasted flow was negligible.

Similar results were observed in the hourly test (Table 4c
and d). Compared to resolutions of 24 and 12 h, utilizing
higher-resolution data effectively enhanced the model’s fore-
casting performance for hourly streamflow. Taking KGE as
the performance metric, significant differences existed be-
tween the performance of the model when using 8 h resolu-
tion data and that when using 2–6 h resolution data. Notably,
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Figure 4. Box plot of KGE, REP, rKGE, and 1REP based on experiments across 63 catchments.

Table 3. The characteristic values of KGE, REP, rKGE, and1REP obtained by data with different temporal resolutions based on experiments
across 63 catchments.

Metrics Value 1 h 2 h 3 h 4 h 6 h 8 h 12 h 24 h Average

KGED

min 0.696 0.683 0.685 0.702 0.661 0.680 0.653 0.565 0.668
max 0.955 0.957 0.958 0.955 0.958 0.959 0.958 0.946 0.955
average 0.873 0.872 0.874 0.873 0.871 0.871 0.867 0.840 0.867

KGEH

min 0.663 0.669 0.656 0.670 0.636 0.614 0.575 0.464 0.638
max 0.956 0.947 0.950 0.950 0.949 0.946 0.956 0.942 0.946
average 0.843 0.845 0.847 0.846 0.845 0.839 0.831 0.790 0.836

rKGE
min 0.963 0.989 0.979 0.988 0.985 0.979 0.984 0.961 0.981
max 1.184 1.118 1.132 1.136 1.140 1.148 1.157 1.274 1.138
average 1.037 1.033 1.032 1.033 1.032 1.040 1.047 1.068 1.040

REPD (%)
min −48.8 −50.6 −61.8 −55.5 −56.3 −55.3 −57.9 −57.1 −51.8
max 43.0 54.2 56.2 54.2 31.1 21.0 14.8 10.2 32.8
average −15.9 −15.3 −16.2 −16.4 −17.1 −16.9 −19.0 −24.0 −17.6

REPH (%)
min −65.6 −67.8 −68.5 −66.6 −72.3 −70.7 −72.3 −75.4 −69.0
max 22.6 29.0 18.3 25.3 26.3 21.5 19.2 37.8 18.0
average −23.7 −23.8 −24.3 −23.4 −26.5 −26.7 −30.9 −38.1 −27.2

1REP (%)
min −24.4 −24.4 −26.0 −32.6 −25.6 −18.0 −31.0 −27.6 −19.6
max 53.9 57.2 49.9 42.0 55.9 39.8 41.7 54.4 38.5
average 7.76 8.48 8.10 7.03 9.32 9.77 11.8 14.1 9.55

there were no statistical differences between the KGEs ob-
tained at 8 and 1 h resolutions, indicating that there was a
decrease in KGE when the resolution increased to 1 h from
2–6 h. Yet, from the perspective of the average KGE (Fig. 4),
this decrease was very slight, reaching 0.004 at most. The
difference between REP obtained by the 3 and 6 h resolu-

tions and that obtained by 8 h resolution was not significant.
When the temporal resolution of data used for forcing and
calibrating models exceeded 6 h, there was no significant im-
provement in the model’s performance. Although the REP
obtained at 6 and 4 h resolutions exhibited significant dif-
ferences, the p value was very close to 0.05. Consequently,
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Figure 5. Spatial pattern of KGE and REP. Publisher’s remark: please note that the above figure contains disputed territories.

simulated hourly streamflow obtained by a model driven and
calibrated by 6 h data was comparably accurate to that driven
and calibrated with 1 h data, and there was no significant
added value brought by data with a resolution higher than
6 h.

To further quantify the benefits from higher-resolution
data to hydrological simulation, the IMP indexes were cal-
culated and are shown in Fig. 6. In the daily test, the im-
provement in the daily KGE brought by sub-daily rainfall
input data ranged from −1.6 % to 24.1 % (5.3 % on aver-
age). Specifically, higher-resolution rainfall data caused a
slight decrease in daily streamflow simulation efficiency in
two catchments, and the increase in daily KGE was lower
than 5 % in more than half of the catchments (40 of 63).
In the hourly test, the improvement brought from sub-daily-
resolution data was significantly correlated to that in the
daily test (R2

= 0.72, p<0.01), and the improvement was
more pronounced. The model performance was improved by
the sub-daily rainfall and streamflow data in all the catch-
ments, with the increase in hourly KGE ranging from 0.1 %
to 52.9 % (9.3 % on average). The IMP had no significant

spatial distribution pattern, but it was likely larger in smaller
catchments (also shown in Fig. 7).

3.3 Influence factors of model performance and the
improvement brought by high-resolution data

In order to identify the potential factors affecting model
performance and improvement, a correlation analysis was
carried out between catchment attributes and model per-
formance metrics, and the results are shown in Table 5.
Overall, GOUE was the strongest predictor among the in-
fluence factors with the highest correlation coefficient for
most model performance and improvement metrics except
for the two metrics evaluating peak simulation. In both daily
and hourly tests, KGE was significantly positively corre-
lated with DRA, MAR, and GOUE (detailed in Fig. 7), in-
dicating that the model performed better in daily and hourly
streamflow simulations in catchments with a larger drainage
area, more rainfall, and higher goodness of uniform estima-
tion (lower intraday streamflow variation). This could be at-
tributed to the general fact that larger watershed areas tend
to exhibit relatively stable and slower changes in stream-
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Table 4. P values of the paired two-sample t tests for each metric. Sub-tables (a) and (b) represent the p values of the paired two-sample t
test for KGE and REP in the daily test, respectively; sub-tables (c) and (d) represent the p values of the paired two-sample t test for KGE
and REP in the hourly test, respectively. Bold values indicate p<0.05, with ∗ representing 0.01≤ p<0.05 and ∗∗ representing p<0.01.

(a)

Resolution 1 h 2 h 3 h 4 h 6 h 8 h 12 h

2 h 0.6277
3 h 0.5988 0.3039
4 h 0.8525 0.6220 0.3443
6 h 0.3437 0.6170 0.0486∗ 0.2234
8 h 0.3658 0.6131 0.1148 0.269 0.9369
12 h 0.0328∗ 0.0300∗ 0.0011∗∗ 0.0025∗∗ 0.0119∗∗ 0.0086∗∗

24 h 2.8× 10−9∗∗ 2.5× 10−9∗∗ 4.2× 10−11∗∗ 1.2× 10−10∗∗ 9.3× 10−12∗∗ 4.8× 10−11∗∗ 6.9× 10−12∗∗

(b)

Resolution 1 h 2 h 3 h 4 h 6 h 8 h 12 h

2 h 0.4736
3 h 0.7260 0.2896
4 h 0.5653 0.1686 0.789
6 h 0.2874 0.1106 0.3414 0.5084
8 h 0.2659 0.1327 0.4602 0.5592 0.8511
12 h 0.0132∗ 0.0033 0.0205∗ 0.0305∗ 0.0909 0.0593
24 h 2.8× 10−6∗∗ 1.3× 10−6∗∗ 8.8× 10−6∗∗ 7.7× 10−6∗∗ 2.3× 10−7∗∗ 3.6× 10−6∗∗ 0.0006∗∗

(c)

Resolution 1 h 2 h 3 h 4 h 6 h 8 h 12 h

2 h 0.3494
3 h 0.0931 0.3611
4 h 0.3350 0.7743 0.5075
6 h 0.4749 0.9775 0.3646 0.8304
8 h 0.1511 0.0202∗ 0.0034∗∗ 0.0057∗∗ 0.0011∗∗

12 h 0.0004∗∗ 0.0001∗∗ 3.2× 10−6∗∗ 1.2× 10−5∗∗ 6.3× 10−7∗∗ 0.0002∗∗

24 h 6.7× 10−12∗∗ 7.6× 10−13∗∗ 1.9× 10−13∗∗ 9.4× 10−13∗∗ 1.5× 10−14∗∗ 2.4× 10−13∗∗ 7.6× 10−16∗∗

(d)

Resolution 1 h 2 h 3 h 4 h 6 h 8 h 12 h

2 h 0.9048
3 h 0.6343 0.6620
4 h 0.8370 0.7715 0.5732
6 h 0.0637 0.0556 0.1390 0.0429∗
8 h 0.0364∗ 0.0364∗ 0.1023 3 0.0312∗ 0.8301
12 h 4.6× 10−6∗∗ 6.2× 10−6∗∗ 6.4× 10−6∗∗ 3.1× 10−5∗∗ 0.0009∗∗ 0.0011∗∗

24 h 1.5× 10−9∗∗ 2.2× 10−10∗∗ 9.6× 10−10∗∗ 1.4× 10−8∗∗ 5.7× 10−9∗∗ 2.5× 10−8∗∗ 1.1× 10−5∗∗

flow and the generally stronger correlation between rain-
fall and runoff in catchments with wetter conditions result-
ing in more predictable streamflow. In addition, the KGE
for hourly streamflow was positively correlated with MAQ
(r = 0.279, p<0.05) and negatively correlated with ISTD
(r =−0.260, p<0.05), indicating that the model performed
better in catchments with larger runoff and less intraday
streamflow variation. In arid regions and areas with signif-
icant diurnal flow fluctuations, streamflow forecasting at fine

temporal scales poses greater challenges. REP was signif-
icantly negatively correlated with ISTD at both the daily
(r =−0.272, p = 0.031) and the hourly scale (r =−0.324,
p<0.01), indicating that the model performed better in peak
flow simulations in catchments with less intraday streamflow
variation (Fig. 8). Predicting peaks accurately is more chal-
lenging in data sequences with larger fluctuations. rKGE was
negatively correlated with DRA (r =−0.393, p<0.01) and
GOUE (r =−0.672, p<0.01) and positively correlated with
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Figure 6. Spatial pattern of the benefit from higher-resolution data. (a) IMP in the daily test; (b) IMP in the hourly test. Publisher’s remark:
please note that the above figure contains disputed territories.

ISTD (r = 0.350, p<0.01), indicating that the model exhib-
ited a closer performance between daily and hourly scales
in catchments with a larger drainage area and lower diurnal
streamflow variability (Fig. 9).

Figure 10 shows the relationship between IMP and the
significant influence factors. First, the IMP was negatively
correlated with DRA (r =−0.408 and −0.490 for the daily
and hourly tests, p<0.01 for both), indicating that the ben-
efit of sub-daily rainfall and streamflow data was more sig-
nificant in smaller catchments. This could be attributed to the
fast rainfall–runoff response in smaller catchments leading to
sharp streamflow variations. The model forced and calibrated
by the higher-temporal-resolution data contained more fine-
grained information, consequently being more likely to pro-
duce a realistic description of hydrological processes and
capture the streamflow variations. Second, the IMP was neg-
atively correlated with GOUE (r =−0.489 and −0.643 for
daily and hourly tests, p<0.01 for both), and the reason
was similar to that of the negative relation between IMP
and DRA. Last, the IMP was negatively correlated with
RGA (r =−0.295, p = 0.020, and r =−0.330, p<0.01 for
the daily and hourly tests), indicating that the benefit from
higher-resolution data was more significant in catchments
with more rain stations, which could provide more detailed
and refined rainfall input data and consequently improve
model performance.

3.4 Specific insights from representative cases

To further analyze how rainfall and streamflow data at differ-
ent resolutions specifically influence the hydrological sim-
ulation results, we selected three representative catchments
based on the hourly test results (IMPH) and sensitive factors
such as DRA, GOUE, and RGA, which were identified as
having a significant impact on IMPH. These catchments were
chosen as representative examples specifically due to their

following typical characteristics and the distinct patterns they
exhibit in hydrological simulation results, providing valuable
insights into the influence of data resolution on model perfor-
mance:

– Catchment 1 (Tiantangyan). This catchment, character-
ized by relatively small DRA, GOUE, and RGA values,
showed a significant improvement in simulation results
with increased data resolution, as reflected by a large
IMP.

– Catchment 2 (Saitang). With medium values for DRA,
GOUE, and RGA, this catchment demonstrated a
gradual improvement in KGE as resolution increased,
though the gains were less substantial.

– Catchment 3 (Gaoan). As one of the largest catchments
in terms of DRA, with relatively large GOUE and RGA,
Gaoan exhibited limited improvement in performance
with higher-resolution data, as indicated by a smaller
IMP.

The attributes of these representative catchments are listed
in Table 6 (catchment names correspond to the names of the
hydrological stations at their respective outlets). The KGE
values obtained from data of different resolutions are shown
in Table 7.

The hourly time series of rainfall, simulated flow, and ob-
served flow for the representative catchments under 1 and
24 h resolution data for the entire study period (2014–2015)
are shown in Fig. 11. Across all representative catchments
and data resolutions, the model successfully simulated the
majority of flood events and baseflow. Furthermore, to gain
more specific and clear insights into the issue, the flood event
with the highest peak flow during the study period was se-
lected as the representative case, and the hydrological time
series for 1 or 3 weeks before and after these events are
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Figure 7. Scatter diagram of KGE and impact factors (DRA, MAR, and GOUE).

Figure 8. Scatter diagram of REP and ISTD.

shown in Fig. 12. In particular, the results at 6 h resolution
have been added to the figure, as this has been identified as a
threshold resolution.

In the case of the Tiantangyan catchment, data at 1 h res-
olution show that there were three distinct rainfall and cor-
responding flood events within the period. The streamflow
changed rapidly, with each flood lasting less than 1 d, while
floods in other basins typically span several days. When
using 24 h resolution, it is difficult to distinguish between
the three independent rainfall events, resulting in a single
flood event lasting 3 d in the simulation. With 6 h resolution,
despite some peak discrepancies, both the rainfall and the
observed streamflow data closely capture the real rainfall–
runoff process, significantly improving simulation accuracy.
At 1 h resolution, there is some improvement in peak simula-

tion for the first flood event, with no notable changes in other
events.

In the case of the Saitang catchment, the observed flow
data at 24 h resolution have large errors compared to the ac-
tual 1 h resolution, whereas the measured flows at 6 and 1 h
resolutions are very close. Thus, improving the resolution
from 24 to 6 h enhanced simulation accuracy significantly,
but further increasing it to 1 h offered no substantial improve-
ment as no additional effective information is introduced.

In the case of the Gaoan catchment, the streamflow
changes more smoothly in this larger catchment. The ob-
served flow at 24 h resolution already closely approximates
actual flow, with the relative error in peak flow being only
−8.8 % compared to−62.3 % and−28.9 % for the peak flow
errors in the other two catchments. Furthermore, when the
resolution of the observed flow is increased to 6 h, it exhibits
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Figure 9. Scatter diagram of rKGE and DRA, GOUE, and ISTD.

Table 5. Correlation coefficient among evaluation metrics and catchment attributions. Bold values indicate p<0.05, with ∗ denoting 0.01≤
p<0.05 and ∗∗ denoting p<0.01.

KGED,ave KGEH,ave rKGEave REPD,ave REPH,ave 1REPave IMPD IMPH

DRA 0.301∗ 0.380∗∗ −0.393∗∗ 0.131 0.208 −0.133 −0.408∗∗ −0.490∗∗
MAR 0.330∗∗ 0.314∗ −0.120 0.056 0.036 0.022 0.080 0.060
MAQ 0.247 0.279∗ −0.230 0.105 0.123 −0.040 −0.141 −0.023
QR −0.115 −0.031 −0.206 0.102 0.152 −0.088 −0.250∗ −0.079
GOUE 0.377∗∗ 0.518∗∗ −0.627∗∗ 0.214 0.304∗ −0.163 −0.489∗∗ −0.643∗∗
ISTD −0.171 −0.260∗ 0.350∗∗ −0.272∗ −0.324∗∗ 0.114 0.302∗ 0.193
RGA 0.197 0.247 −0.244 0.136 0.127 −0.006 −0.295∗ −0.330∗∗

negligible discrepancy when compared to the data at 1 h reso-
lution. Thus, when using 24 h resolution data, the model per-
forms well on an hourly scale, and continuous improvement
in resolution did not lead to a notable increase in simulation
accuracy.

4 Discussions

4.1 Implication on the measurement of rainfall and
streamflow

This study assesses the value of high-resolution rainfall
and streamflow data on hydrological modeling. In terms of
streamflow simulation at a daily scale, results indicate that
increasing the temporal resolution of rainfall data from daily
to sub-daily intervals significantly improved the simulation
accuracy, aligning with the general expectation of the role
of high-resolution data in enhancing predictive performance.
However, the improvement in daily streamflow simulation
brought by rainfall input data with resolution higher than 8 h
was limited. A similar phenomenon was observed in the test
of hourly streamflow simulations, and the resolution thresh-
old above which higher resolution brought negligible im-
provement was 6 h. These findings seemed to contradict in-
tuitive expectations that higher-resolution data consistently
benefit hydrological models, but similar results were reported
in previous articles across different catchments using vari-

ous models. For instance, Ficchì et al. (2016) conducted a
study of 240 French catchments, utilizing the GR4 rainfall–
runoff model forced by rainfall inputs at eight different time
steps ranging from 6 min to 1 d, to investigate the extent to
which the performance of hydrological modeling is improved
by short time step data. Their conclusion is that, on average
and within their set of catchments, using shorter model time
steps provides no additional value for reference time steps
equal to or shorter than 6 h (when evaluating outputs aggre-
gated at the reference timescales). Reynolds et al. (2017) ex-
amined the relationship between model performance and the
transferability of parameter sets calibrated at various tempo-
ral resolutions in two small catchments in Central America,
employing the HBV model. They found that parameters cal-
ibrated at daily resolution provided peak flow simulations al-
most as good as parameters calibrated at sub-daily resolu-
tions. Tudaji et al. (2024) investigated the impact of differ-
ent input data resolutions using a four-source hydrological
model in seven catchments in northern China and found that
for daily streamflow simulations, improvements in model
performance become negligible when the resolution exceeds
12 h. As for hourly streamflow simulations, improvements in
overall flood process accuracy become negligible when the
resolution of input exceeds 6 h, while higher resolutions fur-
ther enhance the precision of peak flow simulations.

Although the involved catchments and models differed
among different studies, the findings were fundamentally
consistent: higher-resolution data did not necessarily guaran-
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Figure 10. Scatter diagram of IMP and impact factors (DRA, GOUE, and RGA).

Table 6. Attributes of representative catchments.

ID Name DRA (km2) GOUE RGA (km2) IMP

1 Tiantangyan 347 0.65 34.70 1.281
2 Saitang 2978 0.87 165.47 1.051
3 Gaoan 5172 0.94 246.28 1.021

tee better model performance. There are several reasons that
may constrain the additional benefits of higher-resolution
data. From a data-driven perspective, first and foremost, due
to the spatial and temporal autocorrelation of data such as
rainfall and runoff, further increases in resolution beyond a
certain threshold may not necessarily yield additional valu-
able information. The fundamental value of high-resolution
data lies in its capacity to introduce novel, accurate, and valu-
able information, which is essential for enhancing model per-
formance. In this study, the GOUE metric was employed
to partially quantify the additional information contributed
by high-resolution data. Specifically, GOUE reflects the in-
formational gain of actual hourly resolution data compared
to data obtained by uniformly resampling daily-resolution
data to an hourly scale. Among various basin characteristics,
GOUE exhibited the strongest correlation with IMP, suggest-
ing that basins with greater streamflow variability benefit
more from increased data resolution as it introduces more
detailed and novel information. This is further supported by
the case studies of three representative basins, which vividly
demonstrate that the ability of higher-resolution data to pro-
vide additional, accurate, and effective information is cru-
cial for realizing its potential to enhance model performance.

Secondly, the model’s input data, particularly rainfall, might
exhibit a lower signal-to-noise ratio at shorter timescales,
owing to challenges in data validation and increased uncer-
tainty in areal averaged rainfalls (Obled et al., 2009). Thirdly
and specifically in our study, we focus on the value of rainfall
and streamflow data, while the resolution of other auxiliary
data used in the model is fixed and relatively coarse. The
resolution of other driving data, especially for the processes
with significant diurnal variations, such as evapotranspiration
(currently at daily resolution), could be a factor constraining
the model’s ability to improve the model’s performance at
finer temporal scales.

From the perspective of model structure, the model itself
may not be well suited to capture the increased complexity
of processes at shorter time steps. A real watershed acts as a
low-pass filter, smoothing out short-term variability in input
data and reducing the sensitivity of runoff to rapid changes
(Ficchì et al., 2016). In contrast, hydrological models are
simplified representations of actual runoff processes and of-
ten lack mechanisms to accurately replicate this natural fil-
tering effect, such as dynamic re-infiltration or flow rout-
ing. When high-temporal-resolution data are used to drive
these models, the simulated streamflow may exhibit exces-

Hydrol. Earth Syst. Sci., 29, 1919–1937, 2025 https://doi.org/10.5194/hess-29-1919-2025



M. Tudaji et al.: Assessing the value of high-resolution rainfall and streamflow data 1933

Figure 11. Hourly time series of rainfall, simulated flow and observed flow for the representative catchments under 1 and 24 h resolution
data for the entire study period (2014–2015). Note that when the original data resolution is 24 h, the rainfall is averaged and resampled to an
hourly resolution.

sive variability because the models directly reflect the rapid
fluctuations present in the input data without the smooth-
ing effects inherent in natural systems. This excessive vari-
ability can lead to discrepancies between simulated and ob-
served streamflow, ultimately reducing the model’s perfor-
mance. For instance, localized short-duration heavy rainfall

may cause infiltration-excess runoff, but during the surface
flow routing process over the hillslope, re-infiltration can
occur, leading to slower runoff variations (Li et al., 2022;
Zhang et al., 2020). Although the hydrological model does
not explicitly account for re-infiltration, the use of coarse-
resolution data effectively performs a buffering function,

https://doi.org/10.5194/hess-29-1919-2025 Hydrol. Earth Syst. Sci., 29, 1919–1937, 2025



1934 M. Tudaji et al.: Assessing the value of high-resolution rainfall and streamflow data

Figure 12. Hourly time series of rainfall, simulated flow and observed flow for the representative flood events under 1, 6, and 24 h resolutions.
The blue bars indicate the resampled hourly average precipitation for the catchment (used by the model during simulation). The solid red
line indicates the hourly simulated flow output from the model. The dashed red line represents the simulated flow aggregated to other time
resolutions (6 h or 12 h). The solid black line shows the actual hourly observed flow, and the dashed black line represents the observed flow
aggregated to other time resolutions.

which can result in comparable or even better performance
than when using high-resolution data. Additionally, Melsen
et al. (2016) argued that the calibration and validation time
interval should keep up the pace with the increase in spa-
tial resolution in order to resolve the processes that are rele-
vant at the applied spatial resolution. Some simple empirical

formulas within the model may not be applicable at shorter
timescales.

Considering the limited enhancement in model perfor-
mance from high-resolution data, which varies across water-
sheds with different characteristics, this sheds light on the
measurement of rainfall and streamflow. As stated by Seib-
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Table 7. KGE of each representative catchment obtained from data of different resolutions in the hourly test.

Name 1 h 2 h 3 h 4 h 6 h 8 h 12 h 24 h

Tiantangyan 0.776 0.781 0.777 0.75 0.755 0.73 0.706 0.61
Saitang 0.881 0.874 0.867 0.868 0.865 0.873 0.865 0.839
Gaoan 0.922 0.924 0.925 0.921 0.92 0.918 0.917 0.906

ert et al. (2024), “balancing the information content of ad-
ditional measurements with their costs allows one to allo-
cate resources efficiently, ensuring that you get your money’s
worth”. When planning new monitoring facilities, it is essen-
tial to conduct a preliminary assessment of the value of cur-
rent monitoring capabilities for building hydrological mod-
els and conducting hydrological forecasts based on the fore-
cast objectives, precision requirements, and accuracy of ex-
isting data. This assessment can verify the necessity of mon-
itoring and determine the areas where monitoring efforts
should be increased based on model and watershed charac-
teristics. For instance, in our study catchments, the benefits
of sub-daily resolution data were more pronounced in catch-
ments with a smaller drainage area, stronger intraday stream-
flow variation, and more existing rainfall gauges. Thus, when
conducting hourly hydrological forecasts using the THREW
model in this region, it is advisable to increase monitoring ef-
forts and enhance monitoring frequency in catchments with
smaller drainage areas or stronger intraday streamflow varia-
tion. However, in catchments where the temporal resolutions
of rainfall and streamflow data are already higher than 6 h,
investing more costs in further increasing measurement res-
olution may not bring significant improvements to model ef-
ficiency. Additionally, the negative correlation between IMP
and RGA also offers the implication that when upgrading the
model which is based on coarse-temporal-resolution inputs
to those with higher temporal resolution, such as switching
from daily to hourly data, concurrently increasing rain gauge
density can help enhance model performance.

4.2 Limitations

Despite this study employing extensive catchment data and
multiple evaluation metrics to derive general conclusions,
some potential limitations warrant further consideration.
First, this study adopted a specific model, and the selected
catchments were mainly distributed in southeastern China
with similar climate types due to data availability. The appli-
cability of the conclusions to other climatic regions and mod-
els requires further verification. Second, results show that the
benefit of high-resolution rainfall/streamflow data for daily
and hourly streamflow simulation is negligible when the tem-
poral resolution is higher than a threshold (8 and 6 h for daily
and hourly simulation), and the possible mechanism of such a
phenomenon is primarily discussed. However, a deeper anal-
ysis and validation of such a threshold effect are still lacking,

which needs further investigation, such as comparative stud-
ies using distributed hydrological models with stronger phys-
ical mechanisms and higher resolution. Lastly, the time of
the model run during the calibration procedure was limited.
Although it proved to be enough to produce a good simula-
tion based on our previous modeling and calibration practice
(e.g., Nan and Tian, 2024a, b), it cannot ensure that the glob-
ally optimal result could be found. Consequently, it is diffi-
cult to determine whether the slightly decreasing model per-
formance in some catchments is caused by high-resolution
data or local optimal results.

5 Conclusions

This study evaluates the impact of high-resolution rainfall
and streamflow data on hydrological modeling across 63
small-to-medium-scale catchments in southeastern China.
The models utilize data with resolutions ranging from 1 to
24 h for both forcing and calibration, and the influence fac-
tors of model performance and improvements brought by
high-resolution data are analyzed. Key findings are summa-
rized as follows:

1. Resolution impact on daily simulation. Increasing the
resolution of the rainfall from daily (24 h) to sub-daily
(12 h) resolution significantly enhanced daily stream-
flow forecasts, bringing 3 % and 5 % improvement to
average KGE and peak flow simulation, respectively.
However, rainfall input data with resolutions finer than
8 h showed negligible improvement.

2. Resolution impact on hourly simulation. While sub-
daily rainfall and streamflow data significantly im-
proved hourly streamflow simulation compared to daily
data, improvements were minimal when the data reso-
lution was finer than 6 h. For the studied catchments,
data with a 6 h resolution generally provided adequate
confidence for hourly simulations as hourly data.

3. Model performance in varied conditions. Drainage
area and intraday streamflow variation are significant
influence factors on model performance and bene-
fit of high-resolution data. To specify, the THREW
model showed enhanced performance in catchments
with larger drainage areas, higher rainfall, and less in-
traday streamflow variation. Sub-daily resolution data
brought greater benefits in catchments with a smaller

https://doi.org/10.5194/hess-29-1919-2025 Hydrol. Earth Syst. Sci., 29, 1919–1937, 2025



1936 M. Tudaji et al.: Assessing the value of high-resolution rainfall and streamflow data

drainage area, more pronounced intraday flow variation,
and higher number of rain gauges.
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