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Abstract. This study explores the causal relationships be-
tween catchment water availability, vapor pressure deficit,
and gross primary productivity (GPP) across 341 catchments
in the contiguous US. Seasonal climatic, hydrological, and
vegetation characteristics were represented using the Hor-
ton index, ecological aridity index, evaporative fraction in-
dex, and carbon uptake efficiency. Statistical methods, in-
cluding circularity statistics, correlation analysis, and causal-
ity tests, were employed to determine the complex interac-
tions between catchment wetness, atmospheric dryness, and
vegetation carbon uptake. The results revealed a maximum
lag of 2 months in the intra-annual variability of catchment
water supply–productivity and atmospheric water demand–
productivity relationships, with hysteresis patterns varying
with the catchment’s hydrological characteristics. In catch-
ments not permanently under water-limited or energy-limited
conditions, vegetation experiences hydrological stress during
the peak growing period, coinciding with the highest gross
primary productivity and carbon uptake efficiency being out
of phase with the Horton index and in phase with the evap-
orative fraction index. Causality analysis highlights strong
temporal continuity in GPP seasonal characteristics, with a
cause–effect relationship between catchment water supply,
atmospheric demand, and vegetation productivity spanning a
maximum of 2 months. These findings underscore the need
for a comprehensive functional framework that integrates
catchment water supply, atmospheric demand, and vegeta-
tion productivity to enhance our understanding and predic-
tive capabilities with regard to ecosystem responses to cli-
mate change.

1 Introduction

Root zone water availability and vapor pressure deficit
(VPD) are two critical abiotic factors that limit ecosystem
productivity and play vital roles in understanding vegetation
carbon dynamics. Recent studies have shown that vegeta-
tion water uptake occurs not only from soil layers but also
from bedrock fissures and groundwater systems (McCormick
et al., 2021; Evaristo and McDonnell, 2017; Gao et al., 2024),
suggesting that root zone water availability, rather than just
soil wetness, determines the volume of water that plants can
hydraulically lift (Gentine et al., 2019), while VPD controls
the opening and closing of stomata (Grossiord et al., 2020).
These factors are interconnected through the plant hydraulic
transport system, which serves as a conduit between the pro-
cesses at the leaf surfaces and the water supply at the roots.
The structure and physiology of plants, including the stom-
ata and hydraulic transport system, enable them to modu-
late their carbon assimilation rates in response to changes
in soil wetness and VPD (Martínez-Vilalta et al., 2014). Un-
derstanding photosynthetic carbon assimilation in relation to
root zone water availability and VPD fluctuations is crucial
for assessing the effects of climatic and hydrological pro-
cesses on carbon dynamics in terrestrial ecosystems. How-
ever, understanding the distinct roles of root zone water avail-
ability and VPD, along with their causal effects on vegetation
carbon uptake, remains a significant research challenge. This
has led to an un-harmonized representation of the importance
of these two variables in data analysis and modeling experi-
ments (Liu et al., 2020).

The importance of root zone water availability is partic-
ularly pronounced in water-limited subtropical ecosystems
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(Running et al., 2004; Seneviratne et al., 2010; Stocker et al.,
2018), including drylands that make up about 41 % of the
global land surface (Cherlet et al., 2018). In these ecosys-
tems, plant survival is primarily dictated by root zone wa-
ter availability (Anderegg et al., 2015), and the nonlinear
response of carbon fluxes to root zone water variability is
a critical process that affects an ecosystem’s long-term ca-
pacity as a carbon sink (Green et al., 2019). Reduced root
zone water availability can increase near-surface tempera-
ture and decrease latent heat flux, which, under drought con-
ditions, can result in extreme atmospheric aridity owing to
moisture feedback (Zhou et al., 2019). A recent global anal-
ysis showed that root zone water availability drives dryness
stress on ecosystem productivity in over 70 % of vegetated
land areas, highlighting its significance in carbon dynamics
and land–atmosphere interactions (Liu et al., 2020). Addi-
tionally, a global meta-analysis has shown that groundwater
use by vegetation is widespread, with a global prevalence of
37 %, further emphasizing the importance of subsurface wa-
ter sources for plant productivity (Evaristo and McDonnell,
2017).

On the other hand, VPD is a crucial driver of plant
functioning and a determinant of plant–water relations,
in some instances influencing vegetation carbon–water ex-
change more than root zone water availability (Giardina
et al., 2018; Novick et al., 2016). An increase in VPD aug-
ments the atmospheric demand for water, thereby influencing
leaf stomatal conductance and latent heat flux. However, ow-
ing to plant regulatory mechanisms, this does not necessarily
lead to decreased vegetation growth (Massmann et al., 2019;
Yuan et al., 2019). High or rapidly increasing VPD causes
plants to close their stomata, minimizing water loss and pre-
venting hydraulic transport system failure, even though it
suppresses the photosynthetic rate (Grossiord et al., 2020;
McAdam and Brodribb, 2015). Recent research has empha-
sized the need for a more holistic understanding of the root
zone in the Earth system, integrating its role across multi-
ple spheres, including the biosphere, hydrosphere, and atmo-
sphere (Gao et al., 2024). This integrated approach is crucial
for accurately modeling plant responses to changes in root
zone water availability and VPD. With the rise in global tem-
peratures and an expected increase in future VPD (Byrne and
O’Gorman, 2013; Hatfield and Prueger, 2015), it is vital to
quantify the impact of VPD on ecosystem productivity under
both water-stressed and saturated conditions.

Low root zone water availability, high VPD, or a combi-
nation of both often triggers hydrological stress in vegetation
(Fang et al., 2021; Grossiord et al., 2020; Liu et al., 2020).
Enhanced VPD, in combination with low root zone water
availability, can induce severe drought events (Zhou et al.,
2019). Prolonged periods of such conditions can damage the
hydraulic transport system of plants, potentially increasing
mortality rates. However, determining the specific root zone
water availability and VPD thresholds and their combined
effect that precipitates hydrological stress presents a signif-

icant challenge (Fu et al., 2022). Conversely, a season with
favorable conditions can stimulate vegetation growth and in-
crease water usage, thereby accelerating the rate of root zone
water availability depletion. If root zone water availability
conditions are unfavorable in the subsequent season, this can
intensify the hydrological stress (Bastos et al., 2020). The
phenomenon known as ecosystem structural overshoot often
occurs when a preceding period of unusually large biomass
leads to a supply–demand imbalance for the current period
(Jump et al., 2017; Zhang et al., 2021). Many studies have
indicated that structural overshoots significantly exacerbate
drought events (Bastos et al., 2020; Buermann et al., 2018;
Goulden and Bales, 2019; Wolf et al., 2012). Globally, re-
ports indicate that structural overshoots were responsible for
approximately 11 % of the drought events from 1981 to 2015
(Zhang et al., 2021). Understanding the lag in vegetation re-
sponse to alterations in root zone water availability and VPD
is integral to a better understanding of these issues. This en-
ables us to anticipate and mitigate shifts in vegetation health
and vitality due to changing climatic conditions given the de-
layed rather than instantaneous reaction of vegetation to such
changes.

In this study, we aimed to advance our understanding of
the complex interactions among water available for vegeta-
tion, atmospheric dryness, and vegetation productivity by in-
vestigating the response of ecosystem carbon uptake to intra-
annual variability in root zone water availability and VPD at
the catchment scale. To address the limitations of previous
studies, we considered total root zone water availability in-
stead of soil moisture across different soil layers to provide a
more comprehensive representation of the water available for
plant use (Abeshu and Li, 2021). Furthermore, we use a 30 m
resolution gross primary productivity (GPP) product to ef-
fectively capture the spatial heterogeneity of catchment GPP.
Our study seeks to answer three key questions: (1) how does
catchment GPP respond to root zone water availability and
VPD across different vegetation types? (2) What are the crit-
ical features responsible for between-catchment differences
in the vegetation responses? (3) How robust are the causal
links between these variables? By addressing these ques-
tions, we aim to provide valuable insights into the complex
dynamics of ecosystem productivity under varying hydrolog-
ical and atmospheric conditions, with potential implications
for ecosystem management and climate change adaptation.
The remainder of this paper is structured as follows: Sects. 2
and 3 introduce the data and methods, Sect. 4 presents the
results, Sect. 5 discusses the findings, and Sect. 6 concludes
the paper.

2 Data

This study utilizes the CAMELS (Catchment Attributes and
MEteorology for Large-sample Studies) dataset, featuring
data from 671 unimpaired catchments across the contiguous
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United States (Newman et al., 2015). The use of unimpaired
catchments allows for the analysis of vegetation response to
root zone water availability and VPD under natural condi-
tions, minimizing the influence of human interventions such
as land use change or water management practices. These
catchments span across various climatic, topographic, and
vegetation gradients, providing diverse samples for under-
standing the relationship between root zone water availabil-
ity, atmospheric dryness, and vegetation productivity. The
CAMELS dataset comprises daily observed and observation-
based hydrometeorological datasets, including model out-
puts such as actual evapotranspiration (ET) from the inte-
grated Snow-17/SAC-SMA model (Addor et al., 2017; New-
man et al., 2015). The CAMELS dataset also provides infor-
mation on catchment attributes, such as dominant vegetation
cover characteristics. Our analysis depends on daily data, in-
cluding precipitation (rain and melt), maximum and mini-
mum temperature, actual vapor pressure, actual and potential
evapotranspiration (PET), and stream discharge. The daily
potential evapotranspiration is estimated using the Priestley–
Taylor method. The slow flow is derived from observed dis-
charge using a one-parameter recursive digital filter with
three passes (Nathan and McMahon, 1990).

Beyond the hydrometeorological data, this study also in-
corporates gross primary productivity data sourced from
the Landsat GPP dataset for the contiguous United States
(Robinson et al., 2018). This dataset features a spatial res-
olution of 30 m and a temporal resolution of 16 d. The high
spatial resolution of the Landsat GPP dataset is crucial for
capturing the spatial heterogeneity of catchment GPP. Acces-
sible via Google Earth Engine, these data were masked us-
ing catchment polygons over the period from 1986 to 2021.
Subsequently, a time series of the average catchment GPP
was constructed at 16 d intervals and was later transformed
into a monthly series. The leaf area index (LAI) data were
generated for each catchment based on the AVHRR dataset
(Claverie et al., 2014) and are used to characterize the veg-
etation density and growth stage in the catchments. Quality
controlling of the data is conducted based on two criteria.
The first criterion is the complete absence of missing data
in both the model output and observation data. The second
criterion is that the relative percent error between the simu-
lated annual mean of the model output ET and the observed
ET (calculated as the annual mean precipitation minus the
annual mean discharge) must be less than 10 %. Adhering to
these criteria results in a study period ranging from 1986 to
2014 and includes 341 catchments distributed across the con-
tiguous United States (Fig. 1). These 341 catchments are di-
vided into six vegetation groups based on the dominant veg-
etation cover (vegetation covering ≥ 50 % of the catchment
area). The dominant vegetation cover information is sourced
from the CAMELS dataset and aligns with the National Land
Cover Database (NLCD) classifications. To streamline our
analysis and facilitate meaningful comparisons, we consoli-
dated similar vegetation classes into six broader categories.

Evergreen forest (EF) combines broadleaf and needleleaf
evergreen forests, reflecting their similar ecological func-
tions and carbon uptake dynamics. Woody savannah and
open and closed shrublands were merged due to their com-
parable structural and functional characteristics to form the
woody savannah and shrublands (WSSL) group. The crop-
land and natural vegetation mosaic (CL/NVM) and crop-
land (CL) were grouped together as CL/NVM to account for
areas dominated by agricultural activities. The other three
groups, including deciduous broadleaf forest (DBF), grass-
land (GL), and mixed forest (MF), are all original classifi-
cations from the NLCD and have not been merged with any
other group. This categorization allowed us to efficiently an-
alyze and interpret the data across the catchments, ensuring
that each group represented a distinct dominant ecological
regime. Among the 341 catchments, we have 101 CL/NVM,
85 DBF, 51 WSSL, 43 GL, 40 MF, and 21 EF catchments.

3 Methods

3.1 Water available for vegetation use

Storage carryover significantly modifies precipitation parti-
tioning at both annual and sub-annual scales. By considering
the inputs and outputs that impact the dynamics of surface
and subsurface storage within catchments, the water balance
at a monthly scale is expressed as follows:

P −ET−Qb−Qs =1S, (1)
W −1S = ET+Qb. (2)

P is precipitation, ET is actual evapotranspiration,Qb is slow
runoff, Qs is fast runoff, and 1S is the net change in water
storage. The term 1S encompasses changes in surface water
storage (including streams, lakes, swamps, and surface de-
pressions) and subsurface storage. Total wetting (W ) refers to
precipitation that wets the catchment, excluding precipitation
that becomes surface runoff. It includes the precipitation that
infiltrates the land surface and the portion stored on the land
surface (i.e., rivers, lakes, swamps, and surface depressions);
thus, P =W +Qs . This represents the first stage of hydro-
logic partitioning. By substituting P −Qs withW in Eq. (1),
Eq. (2) is derived, illustrating the second stage of hydrologic
partitioning. Catchment wetness (W −1S), representing the
total water available for vegetation use, will henceforth be
referred to as “wetness” throughout the paper. Understand-
ing the dynamics of catchment wetness is crucial for assess-
ing the impact of root zone water availability on vegetation
productivity and carbon uptake, which is a key focus of this
study.

3.1.1 Catchment atmospheric dryness

VPD, which measures the extent of atmospheric dryness, is
calculated as the difference between the actual vapor pressure
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Figure 1. (a) Spatial distribution of the 341 study catchments across the contiguous United States, with catchments color-coded based on
their long-term mean annual green vegetation fraction. (b) Scatterplot showing the relationship between the mean annual ecological aridity
index (PET/W ) and the mean annual Horton index (ET/W ) for the study catchments. The dashed line represents the energy limit (ET
equates to PET) and water limit (ET equates to P ). (c) Number of catchments within each dominant vegetation type: evergreen forest (EF),
deciduous broadleaf forest (DBF), mixed forest (MF), woody savannas and shrublands (WSSL), grassland (GL), and cropland and natural
vegetation mosaic (CL/NVM).

(AVP) and the saturation vapor pressure (SVP). The mean
daily AVP was sourced from the CAMELS dataset, and the
mean daily SVP is calculated using the Tetens formula, typi-
cally used in potential evapotranspiration (Allen et al., 1998).
The mean daily SVP is the mean of SVP at maximum and
minimum daily air temperatures, which is later converted to
monthly SVP. VPD is an important measure of atmospheric
dryness as it directly influences the water demand of vegeta-
tion and the rate of evapotranspiration. Higher VPD values
indicate a greater atmospheric moisture deficit, which can
lead to increased water stress on plants. Investigating the re-
lationship between VPD and vegetation productivity is cru-
cial for understanding the impact of atmospheric dryness on
ecosystem carbon uptake, which is a focus of this study.

3.1.2 Catchment hydroclimatic and vegetation
dynamics

For a more comprehensive understanding of catchment eco-
hydrological system functionality, which is crucial for as-
sessing the impact of root zone water availability and at-
mospheric dryness on vegetation productivity, we incorpo-
rate indices based on ecological, hydrological, and energy
perspectives. To evaluate the seasonal variation in climatic
demand–supply interactions, we utilize the ecological arid-
ity index (EAI). The Horton index (HI) assesses the hydro-
logic demand–supply interaction, while the energy demand–
supply state is characterized using the evaporation fraction
(EFI). The EAI, calculated as the ratio of potential evapo-
transpiration to catchment wetness (Abeshu and Li, 2021),
illustrates the interplay between catchment energy and wa-
ter supply for plant water use. Its magnitude can vary from
0 to infinity, with a wetter climate corresponding to lower
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values. The HI is defined as evapotranspiration in proportion
to the water available for vegetation use within the catch-
ment (Abeshu and Li, 2021). The HI can range from 0 to
1, indicating absolute hydrologic wetness and dryness condi-
tions, respectively. The EFI represents the ratio of actual to
potential evapotranspiration, indicating the catchment’s en-
ergy use efficiency. Its magnitude ranges between 1 and 0,
with 1 denoting the most efficient catchments and 0 indicat-
ing the least efficient ones. Furthermore, we use the carbon
uptake efficiency (CUE) to characterize catchment vegeta-
tion dynamics. According to the light use efficiency model,
GPP (Robinson et al., 2018; Jiang et al., 2021) is parameter-
ized as

GPP= εmax · (Tscalar ·Wscalar) ·APAR, (3)

where εmax is the maximum radiation conversion efficiency
(kg C MJ−1) specific to a vegetation type, which is down-
regulated by temperature limitation (Tscalar) and water stress
(Wscalar) to yield the actual radiation conversion efficiency,
ε = εmax · Tscalar ·Wscalar, and APAR is the absorbed photo-
synthetically active radiation. Both Tscalar and Wscalar reflect
the climatic limits of plant carbon uptake. Hence, under no
limiting conditions (i.e., Tscalar =Wscalar = 1), Eq. (3) leads
to estimates of potential GPP as follows:

GPPpotential = εmax ·APAR. (4)

The ratio of actual to potential GPP, CUE, can be expressed
as follows:

CUE=
GPP

GPPpotential
= Tscalar ·Wscalar. (5)

CUE ranges between 0 and 1. The mean monthly Tscalar
and Wscalar were estimated from the mean daily tempera-
ture and VPD data, along with the Biome-Property-Look-
Up-Table (Robinson et al., 2018). A CUE value of 1 rep-
resents an efficient catchment.

3.2 Statistical analysis

To comprehensively analyze the relationships between catch-
ment hydroclimatic variables and vegetation dynamics, we
employ a range of statistical methods tailored to our study’s
objectives. Circularity statistics are used to summarize the
intra-annual variability of fluxes, providing insights into the
seasonality and timing of GPP, wetness, and VPD. The
Granger causality test and PCMCI+ are employed to inves-
tigate potential causal relationships between these variables,
helping to identify the directionality and strength of their in-
teractions. Principal component analysis (PCA) is utilized to
explore the degree to which long-term catchment character-
istics explain the variability of mean monthly GPP–Wetness
and GPP–VPD relationships, aiding in the identification of
key factors influencing these interactions. Finally, Pearson’s
correlation is used to quantify the strength and direction of

monotonic relationships between paired data. By applying
these diverse statistical techniques, we aim to gain a compre-
hensive understanding of the complex interactions between
catchment hydroclimatic variables and vegetation dynamics
and their implications for ecosystem functioning and carbon
uptake.

– Circularity statistics. Circular (directional) statistics is
used to summarize the intra-annual variability of fluxes
(Dingman, 2015; Fisher, 1993; Markham, 1970). We
first convert the average monthly data into vector quan-
tities to implement these statistics. The vector’s magni-
tude corresponds to the month’s flux amount, and the
vector direction (φ) is the month expressed in a unit
of arc. The direction of a given month is the median
date of the month measured from 1 January in a clock-
wise direction. In a standard year with 365 d, 1 d equals
360
365 = 0.986° on a circle. This factor adjusts the day
of the year to give the corresponding angular direction
on a circle. The mean monthly vector components (C
and S) of any catchment flux Fm were determined as
C = Fm cosφm and S = Fm sinφm. The resultant vector
R is the square root of the sum of the squares of C and

S (i.e.,
√∑

C2
+

∑
S2). The seasonality index (SI), a

measure of the degree of variation of a given catchment
flux throughout the year (Fisher, 1993), was obtained
by dividing the resultant vector R by the annual mean
flux. SI values range from 0 to 1. A value of 0 suggests
a flux uniformly distributed intra-annually, while 1 in-
dicates a flux concentrated within a single month. The
average time of occurrence (φ) corresponds to the angu-
lar direction of the resultant vector. In this framework, a
φ for 1 January represents the north (0°), 1 April repre-
sents the east (90°), 1 July represents the south (180°),
and 1 October represents the west (270°). The average
time of occurrence represents the time of year when the
flux (such as gross primary production, wetness, or va-
por pressure deficit) typically reaches its peak, weighted
by its intensity across all months. Utilizing this frame-
work, we computed the seasonality index and average
time of occurrence for GPP (SIgpp and φgpp), wetness
(SIwetness and φwetness), and VPD (SIvpd and φvpd) for
all catchments. Note that the estimation of the time of
occurrence based on circularity statistics is less mean-
ingful when the seasonality is very weak.

– Granger causality test. Granger causality is a statisti-
cal concept used to determine if one time series can
help predict another (Stokes and Purdon, 2017). The
test is based on the principles of temporal precedence
and predictability (Granger, 1969) – that is, if one time
series causes another then past values of the causing se-
ries should contain information that can be used to im-
prove the prediction of the second series (Stokes and
Purdon, 2017). The Granger causality test involves re-
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gressing each time series on its own past values and the
past values of the other series. If the coefficients are sig-
nificant, the test concludes that the first-series Granger
causes the second series. Note that the Granger causal-
ity test does not prove true causality in the philosophical
sense. It only shows that one series can be used to fore-
cast another and not whether changes in the first series
necessarily cause changes in the second.

– PCMCI+ for causal analysis. PCMCI+ is a statisti-
cal method to discover potential causal relationships
between time series. It blends two key components:
the Peter and Clark (PC) algorithm and the momentary
conditional independence (MCI). The PC algorithm, a
constraint-based method for causal discovery, is used to
select conditions, while MCI, a measure of the degree to
which two random variables are independent given the
values of other variables, is used to test for momentary
conditional independence (Runge, 2018; Runge et al.,
2019a). The underlying assumption of PCMCI+ is that,
if two variables demonstrate statistical dependence, they
may hold a causal relationship, and, conversely, if they
are statistically independent, it is likely that they do
not have a causal relationship (Runge et al., 2019a, b).
It is crucial to remember that, while PCMCI+ can
suggest causal relationships, it does not confirm them.
PCMCI+ has been tested and applied to flux tower data
(Krich et al., 2022, 2020), and we apply it to the catch-
ment scale to discover the GPP–Wetness and GPP–VPD
causal links. A partial correlation is employed for con-
ditional independence test statistics to assess the causal
strength.

– Principal component analysis (PCA). PCA is a statisti-
cal technique commonly used in data analysis and ma-
chine learning. It is a dimension reduction method that
transforms a large set of variables that may be corre-
lated into a smaller set of uncorrelated variables called
principal components. The first principal component ac-
counts for as much of the variability in the data as pos-
sible, and each succeeding component accounts for as
much of the remaining variability as possible under the
constraint that it is orthogonal (uncorrelated) to the pre-
ceding components. PCA identifies the axes in the data
space along which the data vary the most and reorients
the data along these axes. This process of transforma-
tion and reduction can help simplify the data description
and highlight important relationships between variables.
We employed PCA to explore the degree to which long-
term catchment characteristics explain the variability in
mean monthly GPP–Wetness and GPP–VPD relation-
ships.

– Pearson’s r. Pearson’s correlation is a metric for quan-
tifying the degree of a monotonic relationship between
paired data. It ranges from −1 to +1. Generally, 0<

|r| ≤ 0.20 is considered to be negligible, 0.21< |r| ≤
0.40 is considered to be weak, 0.41< |r| ≤ 0.60 is con-
sidered to be moderate, 0.61< |r| ≤ 0.80 is considered
to be strong, and 0.81< |r| ≤ 1.00 is considered to be
very strong.

4 Results

We evaluated the strength of monotonic relationships be-
tween the three components (i.e., GPP, VPD, and wetness)
at annual and monthly scales using Pearson’s r . In 72 % of
the study catchments, we observed a strong negative correla-
tion between wetness and VPD on an annual scale. Another
20 % of the catchments exhibited a moderate negative cor-
relation. For the monthly scale, after grouping the data by
month, we computed the correlation coefficient between wet-
ness and VPD for each month. During months of high water
demand (June–August), we found a moderate to strong neg-
ative correlation in 80 % of the catchments (Fig. 2a). This
pattern persisted for 73 % of the catchments in September.
We carried out a similar monthly scale analysis for GPP–
VPD and GPP–Wetness (Fig. 2b and c). Over 60 % of the
catchments demonstrated a moderate to strong positive cor-
relation between wetness and GPP during the peak growing
months (June–August). A moderate to strong negative corre-
lation between GPP and VPD emerged in more than 66 % of
the catchments from June to September. During the most pro-
ductive months (June–August), a weak correlation between
GPP–Wetness and GPP–VPD persists for 30 %–40 % of the
catchments (Fig. 2b and c). This could be because there is a
lag between the vegetation’s response to water supply and the
demand. To investigate this, we performed cross-correlation
analyses for GPP–Wetness and GPP–VPD using monthly
data. We found that the best association between GPP and
wetness is at zero lag (i.e., vegetation responds to a change in
water supply in the same month) for 57 % of the catchments
and at a 1-month lag (i.e., vegetation responds to a change in
the water supply after 1 month) for another 37 %. The cor-
relation coefficient at the corresponding lags is ≥ 0.8 for all
catchments. Similarly, the best association between GPP and
VPD is at zero lag for 14.5 % of the catchments and at a
1-month lag for 73 %. The results suggest that water supply–
productivity and water demand–productivity cause–effect in-
teractions occur within a maximum span of 2 months (i.e.,
+1 month from GPP). These variations in lag times can be
attributed to differences in catchment characteristics such as
soil properties, vegetation types, catchment size, and hydro-
logical features. Granger causality tests indicated that wet-
ness and VPD significantly affected GPP in all catchments
(p values < 0.05), demonstrating their compound effect on
seasonal GPP patterns.

We further explored the spatial relationships among GPP,
wetness, and VPD across different vegetation types using
mean monthly values. We conducted these analyses inde-
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Figure 2. Heatmaps showing monthly Pearson’s r indicating
within-catchment relationships between (a) Wetness–VPD, (b)
GPP–VPD, and (c) GPP–Wetness. The monthly Pearson corre-
lations for each catchment are computed independently. Vegeta-
tion types include evergreen forest (EF), deciduous broadleaf for-
est (DBF), mixed forest (MF), woody savannas and shrublands
(WSSL), grassland (GL), and cropland and natural vegetation mo-
saic (CL/NVM).

pendently for each of the six vegetation classes described
in Sect. 2. Our results revealed a strong positive associa-
tion (r ≥ 0.61) between GPP and wetness in WSSL and GL
catchments (Fig. 3c), which is consistent with the expectation
that these vegetation types, inhabiting water-limited environ-
ments, would exhibit rapid responses to changes in root zone
water availability. For CL/NVM and DBF, the relationship
ranged from moderate to strong and positive, except during
the peak carbon uptake period in the summer months (June–
August). In contrast, EF (4 months) and MF (5 months)
showed a moderate relationship (r > 0.41) only during the
dormant months (October–March) (Fig. 3c). The GPP–VPD
relationship exhibited a distinct seasonal pattern across vege-
tation types (Fig. 3b). During the dormant months (typically
October–March), we observed a moderate to strong positive
relationship (r ≥ 0.41) for all vegetation types, except for

WSSL. Conversely, during the peak growing season (June–
August), the relationship was moderate to strong and nega-
tive (r ≤−0.41). This negative association can be attributed
to the relatively high atmospheric water demand during these
months, which tends to induce stomatal closure in plants, re-
ducing carbon uptake relative to the potential. The positive
association between GPP and wetness for most vegetation
types during the non-growing periods suggests a relatively
rapid vegetation response to changes in catchment water sup-
ply. However, the lack of a significant GPP–Wetness associ-
ation during the most productive months, except for WSSL
and GL, coupled with a strong negative GPP–VPD associa-
tion, implies a delayed response to catchment water supply in
most catchments during this period. These findings highlight
the complex interplay between root zone water availability,
atmospheric dryness, and vegetation productivity across dif-
ferent ecosystems. The varying strengths and directions of
the relationships between GPP, wetness, and VPD demon-
strate the importance of considering both the spatial and tem-
poral dimensions when investigating the drivers of ecosys-
tem productivity. Understanding these relationships is crucial
for predicting the responses of different vegetation types to
changes in root zone water availability and atmospheric dry-
ness, with implications for ecosystem functioning and carbon
uptake in the face of climate change.

To better understand how the GPP–Wetness and GPP–
VPD relationships change throughout the year, we used
circular statistics to summarize their intra-annual variabil-
ity. This analysis yielded two statistical measures for each
variable: seasonality index (SI) and average time of occur-
rence (φ). The SI values varied with geographic latitude,
with a general trend of increasing SI from south to north
for all three variables within a given longitudinal swath
(Fig. 4a). Comparing the SI values among the variables
revealed that SIgpp>SIwetness for 86 % of the catchments
and SIgpp>SIvpd for 92 % of the catchments, indicating
that catchment vegetation productivity exhibits greater intra-
annual variability than both catchment wetness and atmo-
spheric demand. Furthermore, SIwetness>SIvpd for 66 % of
the catchments, suggesting that atmospheric water demand
is the least varied component among the three in most cases.
When converting the angular estimations of φ to months, we
found that the average time of occurrence for wetness and
GPP matched for 73 % of the catchments, while φgpp was
delayed by at least 1 month for another 23 % (Fig. 4b). The
φvpd differed by at least+1 month from φgpp and φwetness for
91 % and 95 % of the catchments, respectively. However, it
is important to note that the time of occurrence is less mean-
ingful when the GPP seasonality is weak; therefore, we re-
lied primarily on the seasonality strength for further analysis.
These findings highlight the spatial variability in the season-
ality of GPP, wetness, and VPD across the study catchments
(Fig. 4c). The higher SI values for GPP compared to wetness
and VPD suggest that vegetation productivity is more sen-
sitive to seasonal changes than root zone water availability
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Figure 3. Heatmaps showing Pearson’s r indicating between-
catchment relationships for (a) wetness and VPD, (b) GPP and
VPD, and (c) GPP and wetness for each vegetation type. The color
scale represents the strength and direction of the correlations, with
blue indicating negative correlations and red indicating positive cor-
relations.

and atmospheric dryness. The differences in the timings of
peak values for GPP, wetness, and VPD, as indicated by the
φ values, further underscore the complex interplay between
these variables and the potential for lagged responses of veg-
etation to changes in water supply and demand. The strength
of seasonality, combined with the lag in vegetation response,
creates hysteresis between GPP and the abiotic driving vari-
ables, namely wetness and VPD. Hysteresis is a phenomenon
that occurs when changes in an effect lag behind changes in
the causal variable. We first examined the hysteresis patterns
of GPP–Wetness and GPP–VPD in the six dominant vege-

tation groups. To standardize the comparison across catch-
ments within each group, we normalized all three variables
by their mean values exceeding the 90th percentile. Figures 5
and 6 illustrate the GPP–Wetness and GPP–VPD hystere-
sis in the six vegetation groups. As displayed, hysteresis can
manifest in various defining patterns, such as size and direc-
tion. Hysteresis can be narrow (e.g., Fig. 5e) or wide (Fig. 5a)
based on size, and it can proceed in a clockwise (e.g., Fig. 6)
or counterclockwise direction (i.e., Fig. 5). The lag between
the variables primarily dictates the direction of the hystere-
sis, whereas factors influencing the size of the hysteresis can
differ for GPP–Wetness and GPP–VPD hysteresis.

To understand the spatial variability of the hysteresis, we
established a standard measure of the relative size of the
hysteresis loop for comparisons across catchments, and we
calculated the area within the loop. We probed the drivers
of the hysteresis area variability across space by assess-
ing the relationships between the hysteresis loop area and
the long-term catchment characteristics using PCA. First,
we evaluated several variables in relation to the areas of
the hysteresis loops, filtering out those that showed a sig-
nificant correlation with both the GPP–Wetness and GPP–
VPD hysteresis loop areas. The identified variables include
the long-term climatic aridity (with ρGPP–Wetness =−0.381,
ρGPP–VPD =−0.677), PET–P phase index (ρ(PET,P ),
phase agreement between P and PET seasonal pattern)
(ρGPP–Wetness =−0.242, ρGPP–VPD =−0.379), peak LAI
(ρGPP–Wetness = 0.531, ρGPP–VPD = 0.707), the fraction of
forest (ρGPP–Wetness = 0.482, ρGPP–VPD = 0.674), and vege-
tation root depth (ρGPP–Wetness = 0.511, ρGPP–VPD = 0.62).
We then conducted a PCA on these variables in relation to
the area of the hysteresis loop, the results of which are de-
picted in Fig. 7. The first two components from the PCA col-
lectively accounted for more than 80 % of the variability in
the loop sizes for both the GPP–Wetness and GPP–VPD hys-
teresis. For both GPP–Wetness and GPP–VPD, all variables,
except for the PET–P phase index, made significant contri-
butions to the variability along the first principal component
(PC-1), as shown in Fig. 7b. However, the PET–P phase index
was the dominant contributor to the variability in the second
principal component (PC-2) but only for GPP–Wetness, as
illustrated in Fig. 7c.

The intra-annual variability within individual catchments
revealed two primary patterns in the relationships between
GPP and the abiotic drivers wetness and VPD. These patterns
manifest in the size and direction of the hysteresis loops, as
depicted in Fig. 8. Firstly, regarding the direction of hystere-
sis, VPD typically peaked approximately 1 month after the
GPP peak, creating a clockwise hysteresis loop when GPP
is plotted as a function of VPD (Fig. 8c and f). In contrast,
for the majority of the 341 catchments analyzed, the intra-
annual wetness peak precedes or coincides with the GPP
peak, resulting in a counterclockwise hysteresis loop when
GPP is plotted against wetness (Fig. 8b). However, a rel-
atively clear clockwise pattern is observed in 40 of these
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Figure 4. Circularity statistics for (a) VPD, (b)wetness, and (c) GPP. The SI values range from 0 to 1, with higher values indicating stronger
seasonality. The orientation of the arrows indicates the average time of occurrence φ, which should be judged relative to the provided four
main directions.
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Figure 5. Hysteresis patterns between normalized GPP and wetness for the six vegetation groups. The variables are normalized by their mean
values exceeding the 90th percentile. The dashed line represents the median hysteresis curve. The letters on the color bar represent months,
with J for January, F for February, and so on.

catchments (Fig. 8b), characterized by low seasonality in
both the HI and the EFI, with high values throughout the year.
Secondly, the size of the hysteresis loop varies across catch-
ments. The catchments exhibiting a clockwise GPP–Wetness
hysteresis pattern also display low seasonality in the carbon
uptake efficiency and low monthly CUE values, resulting in a
narrow hysteresis loop. These findings suggest that a narrow
hysteresis predominantly occurs when wetness approaches
the PET across all months, indicating a minimal lag between
GPP and wetness.

Figure 9 presents the causal strengths between monthly
GPP, its past values, and its relationship with wetness and
VPD, considering lags of up to 4 months. Our analysis un-
covers a strong positive causal link in GPP autocorrelation
at a 1-month lag across diverse catchments (Fig. 9d). This
finding suggests that a given month’s GPP value is signif-
icantly influenced by the preceding month’s value, echoing
the temporal continuity frequently observed in biological and
environmental time series. However, this positive correla-
tion inverts to negative at a 2-month lag (Fig. 9g). This un-
expected pattern, persisting in catchments where the causal
link remains statistically significant, is more likely to indi-
cate a spurious connection rather than natural ecological pro-
cesses. We hypothesize that the seasonality typical of envi-
ronmental data could be the source of such anomalies, po-

tentially introducing misleading correlations. As a result, we
consider only the 1-month lag as a valid connection in our
analysis. The strong positive autocorrelation in GPP at a 1-
month lag (Fig. 9d) suggests that vegetation productivity in a
given month is significantly influenced by the conditions and
dynamics of the preceding month. This temporal carry-over
effect could arise from various factors, such as the persis-
tence of environmental conditions (e.g., soil moisture, tem-
perature) or the lagged response of vegetation to changes in
these conditions due to physiological processes like carbon
allocation and biomass accumulation. Capturing this auto-
correlation is crucial for accurately representing the inertia
and memory effects in ecosystem processes and improving
the predictive capabilities of vegetation productivity models.

Causal links between wetness and GPP generally exhibit
a positive and statistically significant relationship in 99 %
of the catchments at zero lag (Fig. 9b). The proportion of
catchments with a significant positive connection is reduced
to 81 % at a 1-month lag (Fig. 9e), 34 % at a 2-month lag
(Fig. 9h), and 5 % at a 3-month lag (Fig. 9k). As observed in
the GPP autocorrelation, negative MCI values are regarded to
be spurious, primarily due to our expectation of a positive in-
fluence of catchment root zone water availability on vegeta-
tion productivity. The strength of the VPD–GPP causal links
is only significant for 194 catchments at zero lag (Fig. 9c),
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Figure 6. Hysteresis patterns between normalized GPP and VPD for the six vegetation groups. The dashed line represents the median
hysteresis curve. The letters on the color bar represent months, with J for January, F for February, and so on.

Figure 7. Principal component analysis (PCA) results showing the relationships between the hysteresis loop area and long-term catchment
characteristics for (a) GPP–Wetness and GPP–VPD hysteresis. (a) The first two principal components (PC-1 and PC-2) collectively ac-
count for more than 80 % of the variability in the loop sizes for both GPP–Wetness and GPP–VPD hysteresis. Panels (b) and (c) show the
contributions of the identified variables to the variability in PC-1 and PC-2 for GPP–Wetness and GPP–VPD hysteresis, respectively.

of which 153 are positive and 41 are negative. These results
display a spatial pattern: catchments with a negative MCI are
predominantly found in arid regions, while those with a pos-
itive MCI are generally found in relatively humid regions.
The contrasting spatial patterns observed for the VPD–GPP
causal links at zero lag (Fig. 9c) highlight the varying re-

sponses of vegetation productivity to vapor pressure deficit
(VPD) across different hydroclimatic regimes. In arid re-
gions, characterized by low root zone water availability, high
VPD levels can induce stomatal closure in plants as a water
conservation mechanism, leading to a negative causal link
between VPD and GPP. Conversely, in humid regions with
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Figure 8. GPP–Wetness and GPP–VPD hysteresis patterns. Panels (a)–(c) are for narrow hysteresis, and panels (d)–(f) are for wide hysteresis.
The arrows in (b), (c), (e), and (f) indicate the direction of hysteresis.

abundant water supply, moderate VPD levels can stimulate
transpiration and carbon uptake, resulting in a positive causal
link. These divergent responses reflect the intricate balance
between water demand and supply, as well as the adapta-
tions of vegetation to their respective environmental condi-
tions. Incorporating this spatial variability in the VPD–GPP
relationship is crucial for accurately representing the cou-
pled water and carbon cycles in terrestrial ecosystem mod-
els, particularly under changing climatic conditions. Conse-
quently, a positive causal link is prevalent in humid climates,
while a negative causal link is observed in arid climates. At
a 1-month lag, approximately 80 % of the 341 catchments
demonstrate a positive causal link, albeit with varying de-
grees of strength (Fig. 9f). Both the number of catchments
exhibiting significant causal links and the strength of these
links decrease as the lag increases (Fig. 9i and l).

5 Discussion

Our analysis of Wetness–VPD relationships at the annual
scale revealed that wet and dry years correspond to low and
high atmospheric water demands, respectively. This finding
aligns with previous research that investigated the relation-
ship between annual soil wetness and VPD (Liu et al., 2020;
Seneviratne et al., 2010; Zhou et al., 2019). Delving deeper,
our monthly scale analysis showed a robust negative corre-
lation between wetness and VPD during the most productive
periods for vegetation (i.e., June, July, and August), while,

during other months, this negative correlation was observed
in fewer than 25 % of the 341 catchments we analyzed. This
suggests that the critical productive months may dispropor-
tionately influence the patterns observed at the annual scale.
Our lag correlation analysis between GPP, wetness, and VPD
hints at a complex supply–demand–productivity cause-and-
effect process at the catchment scale, typically unfolding
over a span of 2 months. The GPP responds to wetness with
a maximum lag of 1 month, whereas VPD generally lags be-
hind GPP by 1 month. Previous research has shown sim-
ilar characteristics in the GPP–VPD relationship, even for
diurnal-scale analysis (Zhou et al., 2014).

The vegetation’s response time is the primary determinant
of the hysteresis direction between GPP and wetness, as well
as between GPP and VPD. As root zone water availability
is a crucial driver for plant growth, a delay in response typ-
ically results in a counterclockwise GPP–Wetness hysteresis
curve. Conversely, a clockwise hysteresis curve is somewhat
unexpected. Catchments that show this feature usually have
high energy and water use efficiency yet low carbon uptake
efficiency throughout the year. Interestingly, most months for
these catchments show that ET approximates wetness, mean-
ing ET predominantly defines the second stage of hydrologic
partitioning, and the hysteresis between GPP and ET follows
a clockwise direction, as affirmed by prior research (Zhou
et al., 2014). Catchments with a counterclockwise GPP–
Wetness hysteresis exhibit three unique traits: (i) HI and EFI
are not synchronized, (ii) CUE aligns with HI during the
greening and browning phases, and (iii) CUE is in-phase with
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Figure 9. Spatial patterns of the causal link strength, measured by the momentary conditional independence (MCI), of monthly GPP and its
past months values (b, e, h, k), GPP and wetness (c, f, i, l), and GPP and VPD (b, e, h, k) at 0-, 1-, 2-, and 3-month lags. The color scale
indicates the MCI values, ranging from negative (blue) to positive (red), reflecting the strength and direction of the causal link.

EFI during peak growing periods. It is worth noting that the
mismatch between CUE and HI during peak carbon uptake
periods in most catchments indicates that their vegetation ex-
periences hydrologic stress. A catchment increases its water
use efficiency as it progressively dries out. In other words,
the amount of carbon taken up by vegetation at the expense
of one unit of water increases with catchment hydrological
stress (i.e., ↑HI). This is validated seasonally by a strong cor-
relation between HI and GPP. However, there is a decrease in
carbon uptake efficiency (i.e., the ratio of carbon absorbed to

its potential value) with increasing HI, especially during pe-
riods of hydrologic stress (i.e., when HI→ 1). This pattern
holds for catchments that remain water-limited throughout
the year. For catchments where hydrologic conditions alter-
nate between water-limited and energy-limited states within
a year, this phenomenon occurs specifically when the catch-
ment is in a water-limited state. Both intra-annual and long-
term hydrologic variations correlate strongly with the size
of the hysteresis loop. Wetter catchments typically display
wider hysteresis, while narrow hysteresis is typical in dry
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catchments. A narrow hysteresis curve signals a catchment
that is efficient in energy and water use but falls short in car-
bon uptake relative to its potential. Overall, the hysteresis
loop size variation between catchments can be sufficiently
explained by climatic features (e.g., aridity, sync in the phase
of PET and P ) and landscape features (e.g., forest fraction,
LAI, and root depth).

Our causality analysis reveals significant influences of
GPP (autocorrelation), wetness, and VPD on the current
month’s GPP at zero lag and 1-month lag. The strong 1-
month autocorrelation of GPP across different catchments re-
inforces the prevalent notion of temporal continuity in envi-
ronmental processes. The negative correlation observed at a
2-month lag, which we initially perceived as counterintuitive,
invites further scrutiny. The inherent seasonality in environ-
mental datasets might explain these anomalies, necessitating
careful interpretation. This further underlines the need to dif-
ferentiate natural ecological processes from statistical arti-
facts, prompting our focus, with regard to the GPP autocorre-
lation, on 1-month lags as ecologically relevant connections.
The wetness influence on GPP demonstrated through a sta-
tistically significant relationship at zero lag across all catch-
ments confirms the critical role of root zone water availability
in vegetation productivity. A significant causal link strength
appeared, even with a 1-month lag, in approximately 280
catchments. Our analysis also unveils the subtle interaction
between climate and photosynthesis through the causal links
between VPD and GPP. Even though the cross-correlation
analysis shows VPD lagging behind GPP, the significant in-
fluence of VPD on GPP extends up to 2 months. A larger
number of catchments (282) demonstrated significant causal
links at a 1-month lag (i.e., GPP lagging behind VPD). No-
tably, in the VPD–GPP causal link, catchments with nega-
tive MCI values mostly appear in arid regions, reflecting the
plants’ defensive mechanism of stomatal closure under high-
VPD conditions, leading to reduced carbon uptake. Con-
versely, a positive MCI in humid climates validates the stim-
ulating impact of moderate VPD levels on GPP through en-
hanced transpiration. As lags increase, a decline in the num-
ber of catchments and the strength of significant causal links
suggest a diminishing effect over time, stressing the impor-
tance of considering temporal lags in ecological modeling.
These observations provide a crucial foundation for future re-
search and could guide the development of more accurate and
region-specific eco-hydrological models. Overall, the causal
analysis supports the lag correlation analysis, indicating that
most of the cause–effect relationship between wetness and
GPP and between VPD and GPP spans a maximum of 2
months.

This study builds upon the foundational understanding
of interactions between soil moisture, VPD, and vegeta-
tion productivity highlighted in previous research. For in-
stance, Liu et al. (2020) identified soil moisture as a key
driver of ecosystem productivity in over 70 % of vegetated
land areas globally. We extend this understanding by ev-

idencing significant positive causal links between wetness
and GPP across 341 diverse catchments in the contiguous
United States. Similarly, our identification of strong nega-
tive correlations between VPD and GPP during peak grow-
ing seasons corroborates the findings of Novick et al. (2016)
and Giardina et al. (2018), both of whom underscored the
substantial role of VPD in modulating vegetation carbon–
water exchange. Moreover, our analysis of hysteresis pat-
terns in GPP–Wetness and GPP–VPD relationships provides
novel insights into lagged vegetation responses to hydrolog-
ical and atmospheric variables. While Zhou et al. (2014) ob-
served such lag characteristics at diurnal scales, our study
extends these observations to longer temporal scales and di-
verse catchment types. Building on Zhou et al. (2019), who
found that reduced soil moisture can lead to extreme atmo-
spheric aridity through feedback mechanisms, our work fur-
ther emphasizes the intricate relationships between soil mois-
ture, VPD, and vegetation productivity. Our comprehensive
analysis across various ecosystems and climatic regimes en-
hances the spatial and temporal nuance of these relationships.
Notably, the application of circularity statistics and hystere-
sis analysis reveals new temporal dynamics, particularly the
lag times between changes in root zone water availability,
atmospheric demand, and vegetation response. This method-
ological approach builds on the diurnal-scale observations of
Zhou et al. (2014), extending them to longer timescales and
across diverse catchments. Furthermore, our causality anal-
ysis, employing Granger causality tests and PCMCI+, pro-
vides a quantitative basis for determining the direction and
strength of causal links between these variables.

While our study provides valuable insights into the com-
plex interactions between vegetation productivity, root zone
water availability, and atmospheric dryness, it is important
to acknowledge certain limitations. The nonlinear relation-
ships between GPP, wetness, and VPD present significant
challenges in relation to their analysis and interpretation.
Our approach, while comprehensive, may not fully cap-
ture all the nuances of these complex interactions. For in-
stance, the use of monthly aggregated data may obscure
finer-scale temporal dynamics that could be important in un-
derstanding rapid ecosystem responses to changes in root
zone water availability or atmospheric demand. Addition-
ally, while our causality analysis provides important insights,
it is based on statistical relationships and may not always
reflect true mechanistic causality. The spatial heterogene-
ity within catchments, which can influence local root zone
water availability and vegetation responses, is not fully ac-
counted for in our catchment-scale analysis. Furthermore,
our study does not explicitly consider the effects of extreme
events or long-term climate change, which could poten-
tially alter the relationships we have observed. Future stud-
ies could address these limitations by incorporating higher-
temporal-resolution data, considering spatial heterogeneity
within catchments, and explicitly modeling nonlinear rela-
tionships and feedback mechanisms between variables.
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6 Conclusions

This study employs a comparative analysis to investigate the
lag in vegetation productivity response to catchment wet-
ness and atmospheric dryness, utilizing 341 catchments dis-
tributed across topographic, climatic, and vegetation gra-
dients of the contiguous US. Using comparative analysis,
we investigated the intra-annual variability and connected-
ness between catchment water available for vegetation use,
atmospheric water demand, and vegetation carbon uptake.
Our primary objective was to evaluate the interactions be-
tween these variables, particularly the controlling factors at
the catchment scale. These controlling factors could provide
insights into the causal relationships between the variables.
However, the questions that emerged from our findings re-
main: how robust are these causal links? Furthermore, we
aimed to determine if specific periods are critical drivers
for these links. Specifically, do certain months in particular
primarily influence the GPP–Wetness and GPP–VPD causal
link?

Our correlation analysis showed a strong, inverse rela-
tionship between wetness and VPD on an annual scale.
Yet, this pattern seemed to stem predominantly from a few
highly productive months. Correlation analysis of GPP with
wetness and VPD at a monthly scale revealed a stronger
connection during these specific months across all catch-
ments. Further, our cross-correlation analysis showed a lag
in the cause–effect relationships between water supply, at-
mospheric demand, and vegetation productivity from 0 to
2 months. Moreover, Granger causality tests also support the
fact that wetness and VPD have a statistically significant im-
pact on GPP across all catchments, emphasizing the com-
pound effect of these factors on the seasonal dynamics of
catchment GPP. The study further explored the spatial re-
lationship between GPP, wetness, and VPD across differ-
ent vegetation classes, revealing various interactions across
vegetation types and seasons. Most notably, strong posi-
tive correlations between GPP and wetness were observed
in catchments in water-limited vegetation types during non-
growing periods, whereas a negative correlation emerged
during the peak growing season. These findings imply a swift
response of vegetation to changes in water supply during
non-growing periods but a delayed response during peak-
productivity months, highlighting the temporal sensitivity of
vegetation to changes in root zone water availability.

Vegetation response lagged behind changes in wetness,
and changes in VPD followed the vegetation response, re-
sulting in a hysteresis phenomenon. The sizes of this hystere-
sis varied, reflecting diverse vegetation responses to shifts in
wetness and VPD across various catchments and vegetation
types. We conducted PCA using selected variables that had
a significant correlation with the areas of the GPP–Wetness
and GPP–VPD hysteresis loops. The analysis showed that the
first two principal components accounted for more than 80 %
of the variability in the size of the hysteresis loops across

catchments. This finding points to long-term properties being
fundamental drivers of the differences between catchments.
It is also worth noting that other sets of long-term catchment
properties could potentially explain this variability to a simi-
lar extent.

Our causality analysis revealed a strong positive causal
link between the current and the preceding month’s GPP,
reflecting the temporal continuity typical of ecological pro-
cesses. The strong causal link between the current and pre-
ceding month’s GPP can be attributed to vegetation’s bio-
logical inertia (where a plant’s physiological state influences
future productivity), root zone water availability memory ef-
fects, and consistent phenological patterns (reflecting sea-
sonal growth trends), all of which contribute to the continu-
ity of productivity across consecutive months, among other
things. We also found a significant positive causal link be-
tween wetness and GPP with no lag and at a 1-month lag.
The VPD–GPP relationship exhibited a significant link with
a delay of up to 2 months, with a positive connection in hu-
mid climates and a negative one in arid regions. Collectively,
these causality analysis results indicate that the cause–effect
relationship between catchment water supply and productiv-
ity, as well as that between atmospheric demand and GPP,
spans a maximum period of 2 months. These findings offer
valuable insights into the mechanisms and patterns of veg-
etation responses to changes in root zone water availability,
underlining the need to account for these factors in vegeta-
tion productivity models.
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