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Abstract. Accurately modeling and predicting flood flows
across multiple sites within a watershed presents significant
challenges due to potential issues of insufficient accuracy and
excessive computational demands in existing methodologies.
In response to these challenges, this study introduces a novel
approach centered around the use of vine copula models,
termed RDV-Copula (reduced-dimension vine copula con-
struction approach). The core of this methodology lies in its
ability to integrate and extract complex data before construct-
ing the copula function, thus preserving the intricate spatial–
temporal connections among multiple sites while substan-
tially reducing the vine copula’s complexity. This study per-
forms a synchronization frequency analysis using the de-
vised copula models, offering valuable insights into flood en-
counter probabilities. Additionally, the innovative approach
undergoes validation by comparison with three benchmark
models which vary in dimensions and nature of variable in-
teractions. Furthermore, the study conducts stochastic sim-
ulations, exploring both unconditional and conditional sce-
narios across different vine copula models. Applied in the
Shifeng Creek watershed, China, the findings reveal that vine
copula models are superior in capturing complex variable re-
lationships, demonstrating significant spatial interconnectiv-
ity crucial for flood risk prediction in heavy-rainfall events.
Interestingly, the study observes that expanding the model’s
dimensions does not inherently enhance simulation preci-
sion. The RDV-Copula method not only captures compre-
hensive information effectively but also simplifies the vine
copula model by reducing its dimensionality and complexity.
This study contributes to the field of hydrology by offering a
refined method for analyzing and simulating multi-site flood
flows.

1 Introduction

Floods are the most frequent natural disaster, inflicting sub-
stantial economic losses, environmental degradation, and hu-
man casualties (Teng et al., 2017). As reported by Centre for
Research on the Epidemiology of Disasters (CRED), floods
represented 45.6 % of worldwide natural disasters in 2022,
affecting an average of 57.1 million people annually (CRED,
2023). The data also indicated a 4.76 % increase in flood oc-
currences in 2022 compared to the annual average from 2002
to 2021 (CRED, 2023). Therefore, it is very meaningful and
essential to analyze flooding and achieve flood risk control.
At the watershed scale, flood risk is primarily influenced by
rainfall patterns and interconnections among sub-watersheds.
Large floods often result from the merging of floods from
multiple sub-watersheds (Prohaska and Ilic, 2010). Concur-
rent flood events cause runoff from various sources to merge,
forming large floods that pose threats to downstream regions.
As a result, analyzing the runoff at various sites not only
provides a better understanding of the flood characteristics
within the watershed but also contributes to the development
of flood control programs to avoid flood risks.

There are currently many techniques for analyzing hydro-
logical variables. Common univariate methods include sta-
tistical analyses such as frequency analysis (Stedinger et al.,
1993), extreme value theory (Coles, 2001), and time series
analysis methods like the autoregressive integrated moving
average (ARIMA) model (Box and Jenkins, 2013). However,
univariate analyses often fall short in accurately estimating
the risks associated with extreme events due to their inability
to account for the interdependence of variables (Guo et al.,
2023; Khan et al., 2023). This oversight can lead to a sig-
nificant underestimation or overestimation of risks, particu-
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larly given the inherent relationships among variables within
a catchment. To address the complexity of these relationships
across multiple variables, researchers have turned to mul-
tivariate analysis techniques. Methods such as autoregres-
sive (AR) models are utilized for analyzing temporal corre-
lations (Box and Jenkins, 2013), while spatial relationships
can be examined using techniques like geostatistical meth-
ods (Isaaks and Srivastava, 1989), spatial regression mod-
els (Bekker et al., 2001), copula functions (Sklar, 1959),
and Bayesian hierarchical models (Gelman et al., 2013).
However, these methods have their limitations. AR mod-
els, while effective for temporal analysis, do not account for
spatial dependencies. Geostatistical methods and spatial re-
gression models focus primarily on spatial relationships but
may struggle with temporal dynamics. Bayesian hierarchical
models can handle complex dependencies but often involve
high computational demands and require substantial prior in-
formation. In contrast, copula functions offer substantial ad-
vantages when dealing with multivariate spatial–temporal re-
lationships. They provide a flexible framework for modeling
dependencies between variables without assuming a specific
marginal distribution, allowing for a more accurate represen-
tation of complex interdependencies. Later adopted in hy-
drology by De Michele and Salvadori (2003), copula func-
tions link multi-dimensional probability distribution func-
tions to their one-dimensional margins, preserving both the
dependence structure and the distinct distribution character-
istics of random variables (Tosunoglu et al., 2020). Copula
functions are widely applied in hydrological fields, includ-
ing the joint frequency analysis (Liu et al., 2018; Zhang et
al., 2021), water resources management (Gao et al., 2018;
Nazeri Tahroudi et al., 2022), wetness–dryness encountering
(Wang et al., 2022; Zhang et al., 2023), flood risk assessment
(Li et al., 2022; Tosunoglu et al., 2020; Zhong et al., 2021),
water quality analysis (Yu et al., 2020; Yu and Zhang, 2021),
and precipitation model (Gao et al., 2020; Nazeri Tahroudi et
al., 2023; Tahroudi et al., 2022).

Despite the broad application of conventional copula func-
tions to create joint distributions for multiple variables, their
capacity to accurately represent high-dimensional realities is
constrained. This limitation arises from their reliance on a
single parameter to describe correlations and a simplistic ap-
proach to model the dependence structure between variables
(Aas et al., 2009a; Daneshkhah et al., 2016). To overcome
these limitations, Bedford and Cooke (2002) proposed a reli-
able way called the vine copula to construct complex multi-
variate models with high dependency. Vine copula construc-
tion relies exclusively on the principle of breaking down the
complete multivariate density into a series or simple, founda-
tional components through conditional independence or pair-
copula constructs. There are two main types of vine struc-
tures: C-vine and D-vine structures (Brechmann and Schep-
smeier, 2013). The former presents star-shaped configura-
tions, while the latter displays path-like structures, provid-
ing enhanced flexibility in constructing the joint distribution

of multiple variables by enabling the use of different types of
bivariate copulas for each pair, thus accommodating a diverse
range of dependency structures (Aas et al., 2009a; Çekin et
al., 2020).

Vine copulas are becoming increasingly applied in hydro-
logical studies to model complex relationships among multi-
ple variables. For instance, Ahn (2021) developed a D-vine
copula-based model to estimate flows in catchments with
limited or partial gauging, focusing on the temporal relation-
ship of runoff at a specific site. This model employed a six-
dimensional copula structure centered around annual runoff
using conditional simulation to compensate for missing data.
Wang et al. (2022) explored the joint distribution of multi-
inflows to assess wetness–dryness conditions, highlighting
spatial interconnections across three water systems but ignor-
ing the temporal influences within each system on the over-
all assessment. Unlike the above studies, Xu et al. (2022a)
developed a stepwise and dynamic C-vine copula-based con-
ditional model (SDCVC) to incorporate the non-stationarity
into a monthly streamflow prediction. This model synthe-
sizes the temporal and spatial relationships at multiple sites,
developing a four-dimensional C-vine copula for dual-site
monthly streamflow forecasts. The term “four dimensions”
relates to the categories of variables involved, such as rain-
fall and downstream station streamflow. Integrating temporal
and spatial relationships into copula construction allows for
a more comprehensive data inclusion, facilitating enhanced
modeling of complex inter-variable relationships. However,
challenges arise as the number of sites or the analysis pe-
riod extends, leading to the increased complexity and dimen-
sionality of the copula function. This complexity can com-
plicate the copula structure’s determination, inflate computa-
tional demands during parameter fitting, and potentially di-
minish the accuracy of stochastic simulations. To bridge this
gap, this study aims to propose a new approach to achieve
dimensionality reduction while ensuring the complete access
of spatial–temporal relationships for multiple sites. The pri-
mary focus is to filter effective information to fully incorpo-
rate runoff data from each site and mitigate the complexity
of the vine copula function, thereby preventing poor model
fitting due to increased computational effort.

Moreover, understanding the spatial and temporal relation-
ships of runoff across multiple sites within a catchment is
essential for effective flood control and water resources man-
agement. Synchronization probability analysis and stochas-
tic simulation of streamflow sequences play a pivotal role in
these processes (Chen et al., 2015; Guo et al., 2024). The ter-
minology used to describe the encounter situations of wet-
ness and dryness varies; an asynchronous event refers to a
scenario where such encounters do not occur simultaneously,
whereas both wetness–wetness and dryness–dryness encoun-
ters are considered synchronous events. These encounters
exist not only in diversion projects and multi-source water
supply systems but also in main streams and tributaries at a
watershed scale. They offer invaluable insights into the spa-
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tial and temporal distribution of water resources, aiding in
the preparation for anticipated future events (Szilagyi et al.,
2006). Copula-based simulation was first discussed in the
study of Bedford and Cooke (2001b, 2002). Subsequently,
as more studies have been conducted, copula-based model-
ing and simulation models for hydrological variables have
demonstrated a high performance (Gao et al., 2021; Huang
et al., 2018; Tahroudi et al., 2022). Utilizing stochastic sim-
ulation to generate sets of runoff sequences from multiple
sites not only allows for a more progressive test of the effec-
tiveness of the vine copula function in fitting the relationship
but also provides a database for flood control scheduling in
making decisions.

The basic task of this study is to construct the relationship
functions of runoff across multiple sites within a catchment
using the vine copula. By leveraging the copula model, the
frequency of flood encounters for multiple runoffs is calcu-
lated to further analyze the intrinsic spatial and temporal rela-
tionship characteristics. Addressing the challenge of dimen-
sionality disaster caused by excessive variables, this study
proposes a novel approach to reduce the dimensionality by
filtering the effective information under the premise of fully
incorporating the runoff information from each site. This ap-
proach makes it possible to access the spatial and temporal
relationships of runoff from multiple sites in the catchment
more accurately and efficiently. In addition, more reality-
oriented simulation results can be obtained which provide
statistical support for flood control and scheduling decision-
making.

This paper is structured as follows: Sect. 2 outlines the
proposed methodology’s framework. Section 3 presents the
application of this methodology through a case study. The
results are detailed in Sect. 4, while Sect. 5 provides a thor-
ough analysis and discussion of the results. Finally, Sect. 6
concludes the paper by summarizing the principal conclu-
sions.

2 Methodology

The framework of this study is shown in Fig. 1. This sec-
tion focuses on constructing and applying multivariate joint
distribution functions based on the vine copula function. It
is divided into two cases: one considering only spatial re-
lations and the other combining spatial and temporal rela-
tions. Utilizing the data characteristics, it describes how to
build a vine copula function based on multiple variables and
details the processes of synchronization frequency analysis
and stochastic simulation with the constructed vine copula
function. Additionally, it presents a new approach called the
reduced-dimension vine copula (RDV-Copula).

2.1 Joint distribution of multiple variables

Before identifying the dependence relationships among mul-
tiple variables, their correlations need to be analyzed and
judged. Kendall’s correlation coefficient, a nonparametric
statistic, serves to measure the correlation degree between
two variables, making it suitable for nonlinear relationships
and categorical variables. In this study, vine copula functions
are constructed to achieve a synchronization frequency and
stochastic simulation of multiple streamflow sequences. To
more accurately simulate the temporal and spatial relation-
ships, the correlations among multi-site streamflow series
are determined by calculating the Kendall correlation coef-
ficients.

2.1.1 Marginal distribution function

To build the dependence structure of hydrological variables
using copulas, it is essential to determine the marginal distri-
bution of each variable first. Given that the marginal distri-
bution function for each characteristic variable is not prede-
termined and the skewness of their probability distributions
varies (Zhong et al., 2021), it becomes crucial to consider
multiple marginal distribution functions as candidates. In
this study, a comprehensive comparison is conducted among
12 commonly utilized distributions (Tosunoğlu, 2018), in-
cluding gamma distribution (gamma), exponential distribu-
tion (exp), Pearson III distribution (p3), generalized extreme
value distribution (gev), inverse Gaussian distribution (in-
vgauss), normal distribution (norm), logistic distribution (lo-
gis), log-normal distribution (lnorm), log-logistic distribu-
tion (llogis), generalized Pareto distribution (gpd), Weibull
distribution (weibull), and Gumbel distribution (gumbel).
According to the goodness-of-fit test and Akaike informa-
tion criterion (AIC) minimum criterion, the optimal distribu-
tion functions are selected as the marginal functions of the
characteristic variables. The specific details of different dis-
tributions, such as the probability distribution function and
the respective parameters, are displayed in Appendix A.

2.1.2 Vine copula function theory

Copula functions, first introduced in 1959, represent a multi-
variate joint probability distribution function within the unit
square [0, 1], featuring uniform marginal distributions. Ac-
cording to Sklar’s theorem (Sklar, 1959), for a multivariate
random variable x1, x2, x3, . . .,xd , there exist marginal dis-
tributions u1 = f1(x1), u2 = f2(x2), u3 = f3(x3), . . . , ud =
fd(xd) and joint distribution f (x1,x2,x3, . . .,xd), and then
there exists a copula function Cθ such that

f (x1,x2,x3, . . .,xd)= Cθ
[
f1 (x1) ,f2 (x2) , . . .,fd(xd)

]
= Cθ (u1,u2, . . .,ud) . (1)
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Figure 1. Framework of the proposed methodology.

If f1(x1), f2(x2), . . . , fd(xd) are continuous functions, then
C is unique. θ represents an explicit parameter of the func-
tion.

The multivariate conditional density function can be rep-
resented as follows:

f (x | ν)= C xνj |ν−j

(
F
(
x|ν−j

)
,F
(
νj
∣∣ν−j ))f (x|ν−j ) , (2)

where νj denotes a component of the n-dimensional vectorν,
while ν−j denotes the (n−1)-dimensional vector with νj re-
moved.

The term f (x |ν) in each conditional density function can
be denoted as

F (x |ν)=
∂C xνj |ν−j

(
F
(
x|ν−j

)
,F
(
νj
∣∣ν−j ))

F
(
νj
∣∣ν−j ) . (3)

The copula function, essentially, acts as a transforma-
tion function that connects the joint distribution of mul-
tiple variables to the marginal distributions. There are a
number of alternative copula families that can be selected
for the construction of modeling dependence, such as the
Gaussian copula, t copula, Clayton copula, Gumbel cop-
ula, and Frank copula. However, the construction of high-

dimensional copula functions is often constrained by param-
eter limitations and is computationally demanding. Bedford
and Cooke (2002) introduced a more advanced and flexi-
ble alternative method of constructing the dependence struc-
ture called vine copula. Also later called pair-copula con-
struction by Aas et al. (2009a), vine copulas decompose the
joint density function into a cascade of building blocks of
the bivariate copulas. Assuming that there are d variables
given to us, it is possible by this method to decompose the
d-dimensional joint distribution into d (d − 1)/2 pair-copula
densities. In vine copula structure, the vine consists of a se-
ries of trees, nodes, and edges. The trees represent the lay-
ers. Each layer contains several nodes, and the connections
between the nodes are called the edges. The nodes in the
first tree represent the marginal distributions of each variable.
Each edge represents a pair-copula joint distribution function
of two adjacent nodes. The edges in each tree except the last
tree are used as nodes in the next tree. There are two sub-
sets of regular vines in common use: canonical vines (C-vine
copulas) and drawable vines (D-vine copulas). Both types of
vine copula have their own specific way of decomposing the
density function.
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In the C-vine copula structure, each tree features a cen-
tral node that is connected to all other edges, as illustrated
in Fig. 2a. The C-vine copula is suitable for structures with
a key variable that has a significant correlation with the re-
maining other variables. In contrast, in the D-vine copula
structure, each node is connected to no more than two edges,
as depicted in Fig. 2b. The order of dependencies between
variables can be determined by one after the other. The ex-
pressions for the n-dimensional joint probability density of
C-vine and D-vine copulas are shown in Eqs. (4) and (5).

f (x1, . . . ,xd)=
[∏d−1

j=1

∏d−j

i=1
cj,j+1|1, ... ,j−1

]
·

[∏d

k=1
fk (xk)

]
(C-vine copula), (4)

f (x1, . . . ,xd)=
[∏d−1

j=1

∏d−j

i=1
ci,(i+j)|(i+1), ... ,(i+j−1)

]
·

[∏d

k=1
fk (xk)

]
(D-vine copula), (5)

where c() refers to the bivariate copula with index i running
over the edges for each tree and index j identifying the trees
and fk (xk) denotes the marginal density.

2.2 Estimation of inflow synchronization frequency

A distinct advantage of the copula method lies in its preci-
sion in analyzing inflow encounter probabilities and condi-
tional probabilities. In this study, a synchronization event is
defined as the simultaneous occurrence of inflows of simi-
lar magnitudes from multiple sites. We categorize the flow
into three levels: high, medium, and low. The frequencies
associated with high-water and low-water events are set to
Ph = 37.5% and Pl = 62.5%. It is assumed that there is a
generalized reservoir group scheduling system, as shown in
Fig. 3. The system encompasses N reservoirs and M flood
control cross sections.

We can generalize all reservoirs and cross sections to mul-
tiple sites within the watershed system. Each of these sites
may be exposed to incoming flows when rainfall occurs. Let
Xph and Xpl be the amount of water corresponding to Ph and
Pl, respectively. Xi >Xph corresponds to high water (H),
Xi <Xpl corresponds to low water (L), and Xpl <Xi <Xph
corresponds to medium water (M), where Xi denotes the in-
flow of day i.

Let the inflows of the different sites be represented
by X1,X2,X3, . . . ,XN+M . X1

ph,X
2
ph,X

3
ph, . . . ,X

N+M
ph rep-

resent the amount of inflow corresponding to the high
water of these different sites, respectively. Meanwhile,
X1

pl,X
2
pl,X

3
pl, . . . ,X

N+M
pl represent the amount of in-

flow corresponding to the low water of these differ-
ent sites, respectively. The marginal distribution func-
tions are u1,u2,u3, . . . ,uN+M , respectively. Specifically,
u1

ph,u
2
ph,u

3
ph, . . . ,u

N+M
ph denote the marginal distribution

functions corresponding to the high-water inflow amount
X1

ph,X
2
ph,X

3
ph, . . . ,X

N+M
ph , capturing the probabilistic be-

havior of the inflows during high-water conditions at each
site. Similarly, u1

pl,u
2
pl,u

3
pl . . . ,u

N+M
pl represent the marginal

distribution functions for the low-water inflow amount
X1

pl,X
2
pl,X

3
pl, . . . ,X

N+M
pl , describing the inflow behavior

during low-water conditions at these sites.
The number of possible inflow-state combinations in-

creases with the number of sites, which are then directly tied
to the three distinct states (high, medium, or low) identified
for each site. For instance, with just two sites, there are nine
unique combinations. The number of combinations expands
to 27 for three sites, 81 for four sites, and 243 for five sites.
The pattern continues similarly for additional sites. Take the
combinations of four sites as an example; following the cop-
ula theory, P

(
X1 < x1,X2 < x2)

= f
(
u1,u2)

= C
(
u1,u2)

and P (X > x)= 1−P (X < x), the probability formulas of
synchronization are derived as below.

1. The probability of synchronized high water is as fol-
lows:

P
(
X1 >X1

ph,X
2 >X2

ph,X
3 >X3

ph,X
4 >X4

ph

)
= 1− u1

ph− u
2
ph− u

3
ph− u

4
ph+C

(
u1

ph,u
2
ph

)
+C

(
u1

ph,u
3
ph

)
+C

(
u1

ph,u
4
ph

)
+C

(
u2

ph,u
3
ph

)
+C

(
u2

ph,u
4
ph

)
+C

(
u3

ph,u
4
ph

)
−C

(
u1

ph,u
2
ph,u

3
ph

)
−C

(
u1

ph,u
2
ph,u

4
ph

)
−C

(
u1

ph,u
3
ph,u

4
ph

)
−C

(
u2

ph,u
3
ph,u

4
ph

)
+C

(
u1

ph,u
2
ph,u

3
ph,u

4
ph

)
. (6)

2. The probability of synchronized medium water is as fol-
lows:

P=
(
X1

pl <X
1 <X1

ph,X
2
pl <X

2 <X2
ph,X

3
pl <X

3 <X3
ph,

X4
pl <X

4 <X4
ph
)
= C

(
u1

ph,u
2
ph,u

3
ph,u

4
ph

)
−C

(
u1

ph,u
2
ph,u

3
ph,u

4
pl

)
−C

(
u1

ph,u
2
ph,u

3
pl,u

4
ph

)
−C

(
u1

ph,u
2
pl,u

3
ph,u

4
ph

)
−C

(
u1

pl,u
2
ph,u

3
ph,u

4
ph

)
+C

(
u1

ph,u
2
ph,u

3
pl,u

4
pl

)
+C

(
u1

ph,u
2
pl,u

3
ph,u

4
pl

)
+C

(
u1

pl,u
2
ph,u

3
ph,u

4
pl

)
+C

(
u1

ph,u
2
pl,u

3
pl,u

4
ph

)
+C

(
u1

pl,u
2
ph,u

3
pl,u

4
ph

)
+C

(
u1

pl,u
2
pl,u

3
ph,u

4
ph

)
−C

(
u1

ph,u
2
pl,u

3
pl,u

4
pl

)
−C

(
u1

pl,u
2
ph,u

3
pl,u

4
pl

)
−C

(
u1

pl,u
2
pl,u

3
ph,u

4
pl

)
−C

(
u1

pl,u
2
pl,u

3
pl,u

4
ph

)
+C

(
u1

pl,u
2
pl,u

3
pl,u

4
pl

)
.

(7)
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Figure 2. The vine structures for the given order of three variables in (a) the C-vine copula and (b) the D-vine copula.

Figure 3. Schematic diagram of the generalized system in the catchment.

3. The probability of synchronized low water is as follows:

P
(
X1 <X1

pl,X
2 <X2

pl,X
3 <X3

pl,X
4 <X4

pl

)
=

C
(
u1

pl,u
2
pl,u

3
pl,u

4
pl

)
. (8)

2.3 Stochastic simulation based on RDV-Copula
functions

2.3.1 Reduced-dimension vine copula construction
approach (RDV-Copula) for multi-variate
processes

To construct joint distribution functions for multiple vari-
ables that encapsulate both temporal and spatial relation-
ships, it is essential to incorporate a comprehensive range of
information to efficiently capture the interconnections among
variables.

Using the flow atN points within a catchment as an exam-
ple, the relationships among the flows are analyzed. Given
that these points reside within the same geographical re-

gion, it is highly likely that they are spatially related and the
strength of the relationship is negatively correlated with spa-
tial distance. Additionally, each site exhibits temporal corre-
lations, such as the relationship between today’s flow and that
of the previous day(s), although for simplicity, this analysis
assumes relevance only between consecutive days’ flows. In-
corporating both temporal and spatial dimensions into the
analysis implies that for N sites, there should ideally be
N +N variables considered in constructing the copula func-
tion. As the number of sites grows, it simultaneously elevates
the dimensionality of the copula, leading to increasingly
complex structures. This complexity not only escalates com-
putational efforts but also poses significant challenges in ac-
curately fitting the model. To address this issue, our study in-
troduces a novel methodology termed the reduced-dimension
vine copula construction approach (RDV-Copula). This strat-
egy aims to extract essential spatial–temporal information,
thereby reducing the vine copula function’s dimensionality
to simplify the model structure.

The primary goal of this approach is to pinpoint the crucial
variables necessary for effectively and efficiently represent-
ing the spatial–temporal relationships among different sites.
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The process begins by identifying variables to capture spa-
tial relationships under the assumption that the spatial re-
lationships remain stable over short periods. Consequently,
the current days’ flows across all sites are selected as spatial
variables, totaling N . Subsequently, the Kendall correlation
coefficient between the current and previous day’s flows is
computed for each site, with the values ranked in descending
order. The site with the highest Kendall coefficient is deemed
the most temporally correlated, and its previous day’s flow is
also chosen as a key variable for the vine copula construc-
tion. Flows from the previous day at other sites are excluded
from being key variables. Ultimately, this approach selects
N + 1 key variables, achieving an effective representation
of spatial–temporal relationships while minimizing variable
count. The schematic diagram of the process is shown in
Fig. 4.

After identifying the N + 1 key variables, the marginal
distribution function for each variable is determined, select-
ing the most appropriate distribution (e.g., normal, gamma)
based on the statistical characteristics of each variable. Us-
ing these marginal distributions, a suitable copula structure
is then selected, such as the C-vine or D-vine copula struc-
ture, depending on the nature of dependencies among the key
variables. Next, for each pair of variables in the chosen vine
structure, the most appropriate bivariate copula family (e.g.,
Gaussian, Clayton, Gumbel) is selected to accurately capture
their dependencies. Subsequently, parameters for each se-
lected pair copula are estimated sequentially using methods
like maximum likelihood estimation (MLE). Finally, the con-
structed copula model is validated using statistical criteria
such as the Akaike information criterion (AIC) or Bayesian
information criterion (BIC).

2.3.2 Stochastic simulation

Simulation methods for multivariate stochastic processes are
categorized into two main types: unconditional and condi-
tional simulations, as delineated by Wu et al. (2015). The
key difference between these two simulation methods lies
in whether specific data points are known in advance, be-
fore generating the simulation. Figure 5a and b illustrate the
unconditional simulation and the conditional simulation, re-
spectively.

Unconditional simulation. This approach, illustrated in
Fig. 5a, generates random samples based solely on the
marginal probability distribution without incorporating any
existing data constraints. The probability distribution is
shown in the upper-left plot, and random samples are gen-
erated simultaneously, resulting in the scatterplot below. The
generated samples, represented by blue points, illustrate the
joint variability according to their predefined marginal distri-
butions. Since no prior information is used, each data point
is in an unknown state before the simulation.

Conditional simulation. In this scenario, illustrated in
Fig. 5b, the simulation takes into account pre-existing data

conditions. The marginal probability distribution is displayed
in the top-center plot, while the known conditional data
are shown in the upper-right scatterplot (in pink). These
known data points act as a constraint for generating new ran-
dom samples. The resulting scatterplot below (blue and pink
points) demonstrates how the conditional samples are influ-
enced by both the marginal distribution and the specified con-
ditions of the known data. This method allows for a tailored
simulation that incorporates pre-existing data insights.

Based on the presentation of each section in detail above,
it can be generalized that stochastic simulation based on
the RDV-Copula function needs to go through the following
steps.

– Step 1. Collect as much historical data as possible.

– Step 2. Correlation analysis is conducted on the col-
lected data by calculating Kendall’s coefficient.

– Step 3. According to the method of filtering key vari-
ables proposed in Sect. 2.3.1, the representative key
variables are extracted based on the correlation relation-
ship among multiple variables.

– Step 4. Marginal distribution functions are fitted to the
historical data series of the screened key variables.

– Step 5. Based on the proposed RDV-Copula approach,
the joint distribution function of multi-site runoff se-
quences is constructed with consideration of spatial–
temporal relationships.

– Step 6. The stochastic simulation sequences of runoff
are generated by performing unconditional stochastic
simulation and conditional stochastic simulation based
on the constructed vine copula functions with different
structures.

3 Case study

3.1 Study area and data description

This study applies its methodology to a case study focus-
ing on constructing spatial–temporal relationships within the
Shifeng Creek area, located in the Jiao River catchment in
eastern China. The Jiao River ranks as the third largest river
in Zhejiang Province. As the primary tributary of the Jiao
River basin and the principal watercourse in Tiantai County,
Shifeng Creek plays a significant role. Rainfall distribution
in the Shifeng Creek catchment is notably uneven through-
out the year, with a substantial portion, approximately 70 %
to 80 %, occurring from March to September. The remaining
20 % to 30 % of yearly rainfall is distributed over the other
months. The period from July to September is particularly
marked by intense storms and rainfall, largely influenced by
the Pacific subtropical high-pressure system and the frequent
occurrence of typhoons, and contributes about 35 % of the
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Figure 4. Schematic diagram of the RDV-Copula method.

annual total precipitation, with the amount ranging from 400
to 600 mm.

The objective of this study is to delineate the spatial–
temporal relationships of inflows within the catchment dur-
ing August, a flood-prone month, to enhance flood pat-
tern understanding and support effective flood management
strategies. In the Shifeng Creek region, there are many im-
portant hydraulic structures and critical control cross sec-
tions. This study focuses on four major sites within the
Shifeng Creek catchment: the Lishimen Reservoir (LSM)
site; the Longxi Reservoir (LX) site, along with the Qian-
shan (QS) cross-section site; and the Shaduan (SD) cross-
section site. These four sites were selected for their strate-

gic importance within the Shifeng Creek catchment, covering
the upper, middle, and lower reaches. The Lishimen (LSM)
and Longxi (LX) reservoirs, both in the upper reaches, are
vital for flood control, regulating inflows to reduce down-
stream flood risks. The Qianshan (QS) cross section, in the
middle reaches, and the Shaduan (SD) cross section, in the
lower reaches, serve as key flood control points. Analyzing
flows at these sites enables better coordination of reservoir
operations and prevents flood peak convergence, enhancing
overall flood management. To achieve this, daily runoff data
of August, covering a span from 2000 to 2020, were com-
piled. This dataset encompasses inflows for the LSM and LX
reservoir sites as well as flow data for the QS and SD cross
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Figure 5. Schematic diagram for generating random simulation samples: (a) unconditional simulation and (b) conditional simulation.

sections. The geographic positioning of Shifeng Creek is de-
picted in Fig. 6.

3.2 Numerical experiment setup

3.2.1 Synchronization frequency analysis based on
spatial relationship

In this study, we employ the vine copula function to construct
the joint distribution of runoff across four sites, aiming to an-
alyze the synchronization frequency of floods in August, a
month identified as having a high risk of flooding. The vari-
ables under consideration include the inflow from these four
sites, denoted as LSM-Aug, LX-Aug, QS-Aug, and SD-Aug.
Our initial step involves calculating the Kendall coefficients
among these variables to assess their interdependencies. Fol-
lowing the methodology outlined in Sect. 2.1.1, we deter-
mine the marginal distribution functions of the four variables
through a fitting test. Subsequently, based on the marginal
distribution function of each variable, the joint distribution
function of four variables is constructed. The parameters of
the vine copula are estimated via the maximum likelihood
method, with the Akaike information criterion (AIC) serving
as the selection criterion to ensure optimal model fit. Upon
passing the fitting test, we identify the most appropriate vine
copula structure to accurately model the relationships among
the variables.

With the four-dimensional vine copula function estab-
lished, we proceed to calculate and analyze the synchroniza-
tion frequency of inflows as described in Sect. 2.2. The in-

flows at the four sites are symbolized as LSM, LX, QS, and
SD, with the high-water and low-water inflow amount repre-
sented as Xph, Yph, Zph, and Wph and Xpl, Ypl, Zpl, and Wpl,
respectively. The marginal distribution functions are denoted
as u, v, r , and s.

Considering the three potential states (high, medium, and
low) at each site, a total of 81 possible inflow-state combi-
nations are identified. For ease of presentation, H, M, and L
are then used as abbreviations for high, medium, and low.
Among the 81 combinations, the combinations [X-H, Y -
H, Z-H, W -H], [X-M, Y -M, Z-M, W -M], and [X-L, Y -L,
Z-L, W -L] are classified as synchronous high water, syn-
chronous medium water, and synchronous low water, respec-
tively, while the remainder are deemed asynchronous. The
calculation equations can be provided in Appendix B.

3.2.2 Various vine copulas construction based on
spatial–temporal relationships and stochastic
simulation

To enhance the vine copula function’s accuracy, it is impera-
tive to integrate the temporal dimension into its construction.
In this section, the vine copula functions are developed on a
daily basis, encompassing a series of 31 copula models cor-
responding to each day of August, from the 1st to the 31st.
Consequently, both Kendall correlation analysis and the fit-
ting of marginal distribution functions must be independently
conducted for the data spanning these 31 d. Following this
preliminary analysis, 31 distinct relationship functions are
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Figure 6. Map of the location of Shifeng Creek.

constructed, each tailored to the specific type of vine copula
identified for each day.

RDV-Copula function construction

Given that all four sites are situated within the Shifeng Creek
watershed, their spatial interconnectivity is inherent and can
be leveraged in constructing a vine copula function. Addi-
tionally, the results of the correlation analysis indicate that
the correlation between the current day’s runoff and the pre-
vious day’s runoff is the highest. At the same time, the data
from 2 d ago no longer have much influence on the current
day’s runoff data, so they can be excluded from the criti-
cal variable selection. Considering only the previous day’s
contribution in the time dimension can effectively represent
the time correlation while avoiding an unnecessary dimen-
sion increase. This study integrates the inflows from the four
sites over two consecutive days. The inflows for the current
day are denoted as LSM, LX, QS, and SD, while those for
the previous day are labeled LSM1, LX1, QS1, and SD1, re-
spectively.

The methodology, as detailed in Sect. 2.3, is initiated by
analyzing the current day’s inflows at the four sites to estab-
lish their spatial relationships. The subsequent step involves
identifying the site with the most significant correlation to its

preceding day’s inflow, which is then used as a variable to
represent the temporal relationship on that day. For instance,
analysis between 1 and 2 August reveals that the LSM site
had the highest correlation with its prior day’s flow com-
pared to the other sites. Taking the construction of the copula
function relationship between 1 and 2 August as an example,
the analysis reveals that the LSM site has the highest cor-
relation with its previous day’s flow compared to the other
three sites. As a result, a total of five key variables are deter-
mined for this relationship set, including LSM, LX, QS, SD,
and LSM1, effectively encompassing both temporal and spa-
tial correlations while streamlining the variable dimensions
within the copula.

Due to the fundamental difference in structure between
C-vine and D-vine copula, this study constructs five-
dimensional RDV-Copula functions based on these two
types, respectively, labeled as RDV-Cvine and RDV-Dvine.
These two types of models should first be evaluated against
each other on various indexes, including AIC, BIC, and Log-
lik, to ascertain the most suitable five-dimensional RDV-
Copula structure. The RDV-Copula structure with better in-
dex values is then further compared with other copula func-
tions to validate its efficacy.
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Benchmark copula functions construction

To validate the effectiveness of the RDV-Copula approach,
this study compares it against a series of benchmark cop-
ula functions. These benchmarks are constructed by apply-
ing various combinations of multiple variables and stochastic
simulation approaches to the existing data, resulting in vine
copula models of differing dimensions. The specifics of these
vine copula models are summarized as follows and illustrated
in Fig. 7.

– Benchmark 1. This model focuses solely on spatial cor-
relations, utilizing inflows at the four sites on the current
day (LSM-LX-QS-SD) to create a four-dimensional
vine copula. Simulations are conducted unconditionally.

– Benchmark 2. This model incorporates both spatial and
temporal correlations, including inflows at the four sites
for both the current and the previous day (LSM-LX-
QS-SD-LSM1-LX1-QS1-SD1), resulting in an eight-
dimensional vine copula. This model also employs un-
conditional simulation.

– Benchmark 3. Like Benchmark 2, this model considers
both spatial and temporal correlations using the same set
of key variables (LSM-LX-QS-SD-LSM1-LX1-QS1-
SD1), thereby forming an eight-dimensional vine cop-
ula. However, it differs in its application of conditional
simulation, assuming the previous day’s runoff is a
known condition to simulate the current day’s flows.

To further detail the distinctions in stochastic simulation
approaches, the RDV-Copula functions are bifurcated into
two categories: RDV-un and RDV-con.

Both models account for spatial and temporal correlations
by incorporating inflows at the four sites on the current day
and the inflow at one site from the previous day (LSM-
LX-QS-SD-X1), creating a five-dimensional vine copula.
The variable X represents the site with the strongest tempo-
ral connection. RDV-un employs unconditional simulation,
while RDV-con utilizes conditional simulation.

4 Results

4.1 Synchronization frequency analysis

Prior to performing a synchronization frequency analysis on
multiple variables, it is imperative to conduct a correlation
analysis to verify the presence of spatial correlations among
them. Following the approach outlined in Sect. 2.1, this study
begins with a correlation analysis of the daily runoff in Au-
gust at the four selected sites, utilizing Kendall coefficients
to quantify their interconnections. The results of this analy-
sis, demonstrating the correlation among the four variables,
are shown in Fig. 8a. The asterisk (*) on the ellipse means
that the correlation passes the significance test of α = 0.05.

Subsequent to identifying correlation, the next step involves
determining the marginal distributions for these variables.
Figure 8b displays the results of this process, showcasing
both the plots of the fitted marginal distributions for the four
variables and the actual data distribution, thereby laying the
groundwork for a comprehensive understanding of the data’s
distribution characteristics.

Figure 8 demonstrates that the correlations among the
four study variables have all passed the significance test
(p≤ 0.05), with the QS and SD sites exhibiting the strongest
correlations. This is closely followed by the spatial connec-
tions between the LX site and both QS and SD sites, with
correlation coefficients of 0.67 and 0.65, respectively. The
correlations involving the LSM site and the other three sites
are relatively low, reflecting a reduction in spatial correla-
tion with increasing distance. In terms of runoff distribu-
tion, the LSM site’s runoff adheres to the Weibull distribu-
tion (weibull), while the runoff at the LX site fits the inverse
Gaussian distribution (invgauss), and the runoffs at both QS
and SD sites align with the log-normal distribution (lnorm).
Building on the vine copula function methodology outlined
in Sect. 2.1.2, we have developed a four-dimensional vine
copula function using these variables. The function’s struc-
ture, alongside the estimated parameters, is detailed in Ta-
ble 1.

Upon the construction of four-dimensional vine copula
function, the synchronization frequency analysis can be ex-
panded. Using the approach detailed in Sect. 2.2, we obtained
81 encounter probabilities reflecting potential inflow scenar-
ios at four sites: high-water, medium-water, and low-water
scenarios. Figure 9a shows these 81 probabilities in detail.
Figure 9b–g present aggregated views, focusing on nine com-
binations representing two of the four variables in each of
their three states.

As observed in Fig. 9, the cumulative probability of
synchronization across all four sites simultaneously stands
at 41.92 %, encompassing three scenarios: (1) LSM-high,
LX-high, QS-high, and SD-high; (2) LSM-medium, LX-
medium, QS-medium, and SD-medium; and (3) LSM-low,
LX-low, QS-low, and SD-low. Any two of these sites also
demonstrate a very strong synchronization between them,
with probabilities nearing 60 %. The obvious dark-colored
blocks in the graph indicate the high probabilities of being in
high-water or low-water states concurrently. Among these,
the strongest synchronization occurs between the QS and SD
sites, reaching a probability of 77.52 %. This is closely fol-
lowed by the LX site’s synchronization with both QS and SD
sites at probabilities of 72.76 % and 68.24 %, respectively.
While the LSM site’s synchronization probabilities with the
other sites are comparatively lower, they still exceed 50 %,
with values of 58.29 % for the LX site, 61.25 % for the QS
site, and 57.15 % for the SD site. This analysis underscores
the clear spatial correlation among the four sites and high-
lights the critical importance of monitoring high-water syn-
chronization. This is because such a case of simultaneous
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Figure 7. Five different vine copula models.

Figure 8. (a) Results of the correlation analysis for daily runoff at multiple sites. (b) Cumulative probability distribution of the preferred
marginal distribution function.

high water at multiple sites can easily induce flooding and
pose a risk to the downstream. By analyzing the relationship
of flow among multiple sites in advance and clarifying the
probability of synchronization, it would be more conducive
to the formulation of flood control and scheduling strategies
to reduce the probability of flood encounters and ensure the
safety of the downstream.

4.2 Construction of joint distributions of multi-site
daily inflows

4.2.1 Correlation analysis

Correlation analysis serves as an efficient tool for quickly
identifying and quantifying the correlations among multiple
variables. Following the methodology outlined in Sect. 2.1,
this study incorporates both temporal and spatial correlations
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Table 1. Four-dimensional vine copula structure and parameters.

Tree Edge Family Rotation Parameters τ Loglik

1, 3 bb7 0 2.2, 1.1 0.54 296
1 2, 3 t 0 0.86, 6.51 0.66 433

3, 4 t 0 0.92, 2.69 0.74 636

2
1, 4|3 frank 0 −1.3 −0.15 15
2, 4|3 bb1 180 0.13, 1.10 0.15 25

3 12|43 bb7 180 1.07, 0.21 0.13 24

Figure 9. Encounter probabilities for multiple sites: (a) LSM-LX-QS-SD, (b) LSM-LX, (c) LSM-QS, (d) LSM-SD, (e) LX-QS, (f) LX-SD,
and (g) QS-SD.
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in its analysis. To achieve this, historical runoff data from
four key sites, along with the previous day’s runoff data at
each site, were used, resulting in a set of eight variables for
the correlation analysis. The results of the analysis are pre-
sented in Fig. 10. Due to the large amount of information,
only part of the correlation results is shown here. The com-
plete set of results is available in Appendix C.

Figure 10 illustrates the Kendall correlation coefficients
between pairs of variables. The intensity of colors correlates
with the strength of positive correlation, with darker shades
signifying a correlation coefficient closer to 1. The asterisk
(*) on the ellipse means that the correlation passes the signif-
icance test of α = 0.05. This figure uncovers a marked pos-
itive correlation among the runoff series at the LSM, LX,
QS, and SD sites, with approximately 93 % of these corre-
lations meeting the significance threshold. This finding in-
dicates that there is an obvious spatial correlation among
the four locations. Notably, the QS and SD sites exhibit the
strongest spatial correlation, with an average coefficient in
August of 0.74, which is closely followed by the LX reser-
voir’s correlation with the QS and SD sections at 0.67 and
0.63, respectively. In comparison, the LSM reservoir’s runoff
shows relatively lower correlations with the other sites, aver-
aging 0.48 at the LX site, 0.55 at the QS site, and 0.45 at the
SD site in August.

Upon analyzing the temporal correlation of runoff at each
site for adjacent days within August (denoted as LSM-
LSM1, LX-LX1, QS-QS1, and SD-SD1), it becomes evident
that temporal correlations are significant and should not be
overlooked. In early August in particular, these correlations
register at a notably high level, suggesting more frequent
flooding during this period. The LSM site demonstrates a
standout temporal correlation, averaging 0.72 in August, in-
dicative of a strong link between the current and previous
day’s runoff. The other sites display slightly lower, yet sig-
nificant, temporal correlations: LX at 0.65, QS at 0.65, and
SD at 0.67. When these temporal correlations are considered
alongside the spatial ones, it is evident that LSM’s temporal
correlation surpasses its spatial correlation with other sites.

These correlation analysis results solidly confirm both spa-
tial and temporal correlations among the four sites, laying a
foundational basis for advancing with the construction of a
copula structural model.

4.2.2 Fitting of marginal distribution of each runoff

In this study, 12 distinct distribution functions were uti-
lized to model the daily runoff at four sites throughout Au-
gust. To assess the goodness of fit of these distributions, the
Kolmogorov–Smirnov (K–S) test with a significance level of
0.05 was employed. Following a successful significance test,
the Akaike information criterion (AIC) minimum method
was applied to evaluate and determine the optimal marginal
distribution for each dataset. Figure 11 shows the preferred
marginal distribution functions for each variable over the

31 d of August. This figure contrasts the actual historical
data points against the curves of the fitted functions, offer-
ing a visual representation of the fitting accuracy. The spe-
cific marginal distribution functions chosen for each variable,
along with their parameters for each day, are comprehen-
sively listed in Appendix D. Figure 11 notably illustrates how
well these selected marginal distribution functions match the
actual data for all four variables from 1 to 12 August. The
chosen marginal distribution functions for the entire month
are detailed in Fig. D1. Furthermore, the figure’s legend ex-
plicitly details the types of fitting functions employed for
each variable, providing a clear and comprehensive overview
of the distributional characteristics.

The distribution of the corresponding marginal distribu-
tion functions for the four variables over the 31 d in August
is summarized in Fig. 12.

Figure 12 shows that most streamflow series follow
the gev distribution (27.52 %) and the invgauss distribu-
tion (23.39 %). Relatively few streamflow series follow the
weibull, llogis, lnorm, and gpd distributions, and only a very
small number follow the gamma and gumbel distributions.
Additionally, 71 % of the runoff sequences at the LSM site
follow the weibull and gev distributions, each accounting for
35.5 %. The runoff sequences at the LX site, the QS site, and
the SD site predominantly follow the gev and invgauss distri-
butions, accounting for 29.03 % and 29.03 % at the LX site,
22.58 % and 35.48 % at the QS site, and 22.58 % and 29.03 %
at the SD site, respectively. Meanwhile, nearly 30 % of the
runoff sequences at the SD site also follow the gpd distribu-
tion.

4.2.3 Construction of the RDV-Copula function

Following the identification of each variable’s marginal dis-
tribution, the next step involves selecting the appropriate cop-
ula structures to construct the vine copula models among
the multiple variables. Utilizing the RDV-Copula function
construction approach described in the section “RDV-Copula
function construction”, we identified the sites exhibiting the
highest temporal correlation for each day in August based
on our correlation analysis results. The variables chosen for
each specific day are illustrated in Fig. 13.

Prior to selecting a specific copula function for modeling,
it is essential to decide on the type of copula to be employed.
Among the options, C-vine and D-vine structures stand out
for their common use in various applications. In this study,
we constructed both C-vine and D-vine copula structures for
the set of multiple variables under consideration. To evaluate
the efficacy of these structures, metrics such as the Akaike
information criterion (AIC), Bayesian information criterion
(BIC), and log-likelihood (Loglik) values were utilized and
computed, with the results presented in Fig. 14. The AIC and
BIC values reveal that for the majority of cases, the D-vine
copula structures exhibit significantly lower values compared
to those of the C-vine structures. Lower values in these cri-
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Figure 10. Partial results of the correlation analysis for daily runoff at multiple sites (LSM, LX, QS, and SD represent the runoff sequences
of the current day, while LSM1, LX1, QS1, and SD1 represent the runoff sequences of the previous day).

teria suggest a model’s better performance and fit. Moreover,
the comparison of log-likelihood values also showed that D-
vine structures typically yielded lower values than their C-
vine counterparts. Consequently, the D-vine copula struc-
ture was identified as more effective and suitable for mod-
eling the intricate relationships among the variables in this
study. Therefore, the RDV-Copula and other benchmark cop-
ula models were designed using the D-vine structure.

A large number of copula families was utilized to model
the joint distributions, such as the Gaussian copula, Gumbel
copula, t copula and so on. Following the guidance of AIC
criteria, the most suitable pair copula for each connection
within every tree was selected. After fitting the goodness of
the copula functions, we employed the maximum likelihood
method to estimate the parameters. As an illustrative exam-
ple, the copula structure for 1–2 August is shown in Fig. 15.
This figure reveals not only the best-fit copula family for each
pair of adjacent nodes but also the estimated parameters. The
nodes, labeled 1 through 5, represent LSM, LX, QS, SD, and

X1, which indicates the site with the highest temporal cor-
relation on that day, respectively. In this instance, X1 cor-
responds to LSM1. It is important to note that the specific
choice of X1 might vary from day to day as further elabo-
rated in Fig. 13. In Fig. 15, each pair of panels situated be-
tween nodes shows two aspects of the bi-dimensional copula
function for those nodes. The first panel presents the joint
probability plot, while the second illustrates the joint proba-
bility density plot.

4.3 Stochastic simulation results of runoff from
multiple sites

To validate the models and facilitate a comparative analy-
sis of different vine copula functions, the following work
was carried out. Initially, the constructed copula structure
and the results from parameter estimation were incorporated
into a simulation process, generating 20 000 sets of random
runoff scenarios for each day in August. Considering Au-
gust’s susceptibility to flooding and the typical continuity of
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Figure 11. Cumulative probability distribution of the preferred marginal distribution function for runoff on each day throughout 1–9 August.

Figure 12. Distribution of the preferred marginal distribution function for the daily series of flows at the LSM, LX, QS, and SD sites in
August.
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Figure 13. Key factors in the five-dimensional vine copula structure constructed on two adjacent days (LSM, LX, QS, and SD represent the
runoff sequences of the current day, while LSM1, LX1, QS1, and SD1 represent the runoff sequences of the previous day).

Figure 14. Comparison of the performance of RDV-Copula models for C-vine and D-vine (a) AIC, (b) BIC, and (c) log likelihood.
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Figure 15. Structure of the five-dimensional D-vine copula model for 1–2 August (nodes 1–5 represent LSM, LX, QS, SD, and LSM1; the
plots between each two nodes are schematic plots of the corresponding copula function, with the joint probability plot on the left and joint
probability density plot on the right).

rainfall events, it is highly likely that runoff on consecutive
days is temporally correlated. Therefore, comparing only the
mean and standard deviation of runoff simulated for individ-
ual days might not fully capture the model’s simulation effi-
cacy. In this context, the study calculated the mean and stan-
dard deviation for the current day by considering the simu-
lated flows of both the preceding and the following day. Ul-
timately, after the exclusion of outliers from the 20 000 sets
of simulated runoff scenarios, the average of the mean and
standard deviation calculated from these three days’ simu-
lated flows will be used as the mean and standard devia-
tion for the current day. The runoff simulation results for
the four locations (LSM, LX, QS, and SD) are presented in
Figs. 16, 17, 18, and 19, respectively. Notably, in each fig-
ure, panel (a) displays the mean values and standard devi-
ations from the simulation results for the five copula struc-

tures, allowing these results to be compared against histori-
cal observations for a nuanced evaluation of the simulation’s
performance. Panels (b), (c), (d), (e), and (f) represent the
simulation results for five different sets of copula structures
(RDV-con, RDV-un, Benchmark1, Benchmark2, and Bench-
mark3), respectively. The solid line in the figure is the mean
of the simulation results, and the shaded area represents the
uncertainty (±1 standard deviation) of the simulation.

From four figures, it is evident that the simulation results
of RDV-Copula, Benchmark1, and Benchmark2 are compar-
atively more accurate. The mean values and standard devi-
ations from these simulations closely match the actual ob-
served runoff, particularly for simulations involving smaller
flow magnitudes, where the accuracy aligns more precisely
with the actual values. Although the RDV-Copula results are
consistent with the benchmark models, they do not exhibit a
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Figure 16. Comparison of the actual observed series with simulation results of four copula structures at the LSM site. (a) Comparison of
daily runoff mean values and standard deviation. (b) Simulation results of RDV-con. (c) Simulation results of RDV-un. (d) Simulation results
of Benchmark1. (e) Simulation results of Benchmark2. (f) Simulation results of Benchmark3.

Figure 17. Comparison of the actual observed series with simulation results of four copula structures at the LX site (a) Comparison of daily
runoff mean values and standard deviation. (b) Simulation results of RDV-con. (c) Simulation results of RDV-un. (d) Simulation results of
Benchmark1. (e) Simulation results of Benchmark2. (f) Simulation results of Benchmark3.

marked advantage for smaller flows. However, in scenarios
involving larger flows, such as those at the SD site, RDV-
Copula models outperform other models, highlighting their
superiority in capturing the characteristics of larger inflow
events. This analysis suggests that for smaller flows, models
focusing solely on spatial relationships suffice to capture the
critical interrelationships among variables. In contrast, for
larger flows, neglecting the influence of temporal correlations

can lead to substantial inaccuracies in the simulation results,
suggesting that larger flows are more significantly influenced
by adjacent days’ flows. Comparing the four figures, we can
also find that the simulation results at the LX location con-
sistently exhibit high accuracy, with the simulation results
basically covering the actual observations. This suggests that
the constructed copula models can easily extract the histor-
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Figure 18. Comparison of the actual observed series with simulation results of four copula structures at the QS site (a) Comparison of daily
runoff mean values and standard deviation. (b) Simulation results of RDV-con. (c) Simulation results of RDV-un. (d) Simulation results of
Benchmark1. (e) Simulation results of Benchmark2. (f) Simulation results of Benchmark3.

Figure 19. Comparison of the actual observed series with simulation results of four copula structures at the SD site (a) Comparison of daily
runoff mean values and standard deviation. (b) Simulation results of RDV-con. (c) Simulation results of RDV-un. (d) Simulation results of
Benchmark1. (e) Simulation results of Benchmark2. (f) Simulation results of Benchmark3.

ical correlations and simulate them, particularly in smaller
flow magnitudes.

However, the Benchmark3 model’s performance is notably
less effective among the five models. This suboptimal per-
formance can be attributed to two main factors. Firstly, the
complexity of the eight-dimensional copula function, which
involves a diverse combination of trees, nodes, and various
types of parameters, poses significant challenges in accu-

rately extracting the relationship characteristics among the
four sites. Secondly, the conditional simulation approach of
Benchmark3, which relies on the previous day’s flow at the
four sites as a known condition for simulation, is highly sus-
ceptible to the accuracy of these initial conditions. If the sim-
ulation results for the previous day contain significant errors,
these inaccuracies are likely to propagate through the simu-
lation, leading to compounded errors in all results. Another
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noteworthy point is that the simulation results on 10, 20, and
31 August are not quite consistent with historical conditions.
This is because the runoff on these three days has been at a
low level for most of the time over a number of years in his-
tory. It is therefore a rather exceptional phenomenon that a
major flood event occurred on these particular dates in just
1 year. Specifically, the data recorded on these dates (10 Au-
gust 2009, 31 August 2011, and 20 August 2014) indicate
unusually high runoff, which significantly exceeds their re-
spective historical averages. Such an occurrence presents a
challenge for the simulations as it requires accurately captur-
ing and replicating these atypically high flow values within
the model.

Comparing the two types of simulations of RDV-Copula,
it can be found that the performances of the simulation re-
sults of RDV-un and RDV-con are at a similar level for LSM
and LX sites. However, in the simulation of QS and SD
sites, RDV-con shows an obvious superiority compared to
RDV-un. This illustrates the better generalization of condi-
tional simulation for such complex structure with spatial–
temporal relationships. In contrast to the unconditional sim-
ulation, RDV-con can better utilize the temporal correlation
to improve the accuracy of the simulation. Meanwhile, since
it is different from the conditional simulation of the eight-
dimensional vine copula (Benchmark2), RDV-con success-
fully reduces the cumulative error caused by the excessive
dimensionality.

In summary, for the relational construction and stochastic
simulation of flows across varying magnitudes, RDV-Copula
and Benchmark2 emerge as more suitable, particularly when
considering the influences of both temporal and spatial cor-
relations. However, the use of an eight-dimensional cop-
ula function in Benchmark2 introduces significant compu-
tational demands and adds complexity to the problem. RDV-
Copula is favored for its effective integration of temporal and
spatial correlations along with the simplification of the cop-
ula structure, thereby streamlining the problem-solving pro-
cess and enhancing computational efficiency.

5 Discussion

For variables with interdependencies, the copula function, in-
creasingly popular in contemporary studies, extracts spatial–
temporal relationships from their marginal distributions.
Vine copulas are notably effective in modeling complex de-
pendencies among variables as they offer substantial flexi-
bility. This capability is exemplified in the work of Pereira
and Veiga (2018), who developed a multivariate conditional
model using D-vine copulas for simulating periodic stream-
flow scenarios, emphasizing the structured arrangement of
variables to capture monthly flow dependencies. This and nu-
merous other studies (Nazeri Tahroudi et al., 2022; Wang et
al., 2018, 2019; Wang and Shen, 2023b) underscored the ef-

fectiveness of vine copulas in capturing dependencies among
variables with differing marginal distributions.

The synchronous probability analysis of multi-site runoff
shows that the vine copula model can be used to provide a
good fit to the dependencies among variables obeying dif-
ferent marginal distributions. Similar conclusions have been
obtained in other studies (Qian et al., 2022; Ren et al., 2020;
Wei et al., 2023). In the study of Xu et al. (2022b), the
multivariate Copula model was implemented to evaluate the
synchronous–asynchronous characteristics for hydrological
probabilities for multiple water sources. The simultaneous
probabilistic analysis of multi-site runoff provides an under-
standing of the flood characteristics of the catchment leading
to better flood control and prevention.

For high-dimensional variable dependency analysis, the
structure of the vine copula is extremely complicated to con-
struct. Depending on the number of hydrometric stations,
Wang and Shen (2023b) established seven-dimensional reg-
ular vine (R-vine) copula models to depict the complex and
diverse dependencies. To tackle the problem above, in their
study, the corresponding vine structure was specified by the
vine structure array that can reflect the sequence of tribu-
taries flowing into the main stream and the spatial locations
of different hydrometric stations. The performance of the ul-
timate simulation results was favorable, but it did not incor-
porate the temporal connection of the variables for each hy-
drometric station. If considered, it would lead to an expo-
nential increase in the dimensionality of the variable. The
RDV-Copula method proposed in this study aims to mini-
mize the dimensionality of the copula model while extracting
the effective information of spatial–temporal relationships.
The evaluation criterion of high-performance stochastic sim-
ulation is that the simulated series can preserve the statisti-
cal characteristics of the observed records (Hao and Singh,
2013). As shown in Figs. 16–19, different vine copula struc-
tures have a large impact on the results of stochastic simu-
lations. The simulation results of the four-dimensional and
five-dimensional vine copula models are relatively closer to
the actual historical values. Although the eight-dimensional
vine copula model considers both temporal and spatial cor-
relations, its complexity reduces simulation efficiency due to
the large number of variables. This illustrates that when per-
forming multi-site runoff simulations, it is not better for the
vine copula function to consider as many variables as possi-
ble. Compared to the four-dimensional copula structure that
only considers spatial relations, the five-dimensional copula
structure can better fit the characteristics of high flows, which
is especially evident in the simulation results of QS and SD
points. This is due to the fact that high flows in flood sea-
son mostly originate from continuous heavy rainfall, which
implies that the temporal connection is not negligible for cap-
turing the flow characteristics.

Consequently, the approach introduced in this study ef-
fectively integrates all pertinent information for multi-site
runoff simulations while reducing the complexity of the vine
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copula function. This methodology strikes a critical balance
between detailed representation and practicality in model
complexity, enhancing the applicability of the simulations.

6 Conclusions

This study introduced an innovative approach designed to
capture the spatial–temporal relationships across multiple
sites while simplifying the computational complexity inher-
ent in vine copula functions. By computing Kendall corre-
lation coefficients, we assessed the interconnections among
various sites. Utilizing the approach proposed, we pinpointed
the key variables for the construction of the vine copula
model, fitted the marginal distribution functions for multiple
variables, and constructed the RDV-Copula functions consid-
ering the spatial–temporal relationships. Subsequent to this,
a synchronization frequency analysis based on the copula
model was executed to delve deeper into the characteristics
of the watershed. To gauge the efficacy of this method, three
benchmark vine copula models, each predicated on differ-
ent dimensions and variable relationships, were constructed.
Stochastic simulations were then employed to generate ar-
rays of daily inflow sequences over a typical flood month,
with both conditional and unconditional simulation methods
being critically compared. Key findings are summarized be-
low.

– The results of our study demonstrated that within the
Shifeng Creek watershed, the synchronization probabil-
ity among the four sites reaches up to 41.92 %, with the
average synchronization probability between any two
sites hitting 65.87 %. This strong spatial connectivity
indicates a potential for heavy-rainfall events to exac-
erbate flooding risks downstream.

– This study revealed that increasing model dimensions
does not inherently improve simulation outcomes. The
high-dimensional copula function, while it can capture
more information on the variables, also makes the struc-
ture more complicated. The RDV-Copula method not
only ensures comprehensive data integration but also
diminishes the complexity and dimensionality of the
vine copula function, showcasing an optimal balance
between information accuracy and model simplicity.

– Conditional simulation is a double-edged sword. In
comparison to unconditional simulation, for temporally
correlated runoff sequences, conditional simulation can
better follow the properties of prior conditions. How-
ever, with an increase in the copula’s dimensionality,
relying on previously simulated runoff as a basis for
current-day predictions can accumulate errors, reducing
the overall simulation accuracy.

In summary, our proposed approach can effectively con-
solidate relevant spatial–temporal information for multi-site

runoff simulations, striking a critical balance between de-
tailed representation and practical model complexity. This
methodology enhances the applicability of vine copula mod-
els for analyzing and managing flood risks. The results ob-
tained using this method can provide valuable decision sup-
port for flood control and scheduling, effectively mitigating
flood risk.
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Appendix A

Table A1. Common hydrological distribution functions.

Distribution name Probability distribution function Parameters

Gamma distribution (gamma) f (x)= xk−1

αk(k)
exp

[
−(x)
α

]
k – shape parameter (k > 0)
α – scale parameter (α > 0)

Exponential distribution (exp) f (x)=

{
λexp(−λx) ,x ≥ 0
0 ,x < 0

λ – rate parameter

Pearson III distribution (p3) f (x)=
βα

0(α)
(x− γ )α−1e−β(x−γ ) α− shape parameter (α > 0)

β – scale parameter (β > 0)
γ – location parameter

Generalized extreme value distribution (gev) f (x)= exp

{
−

(
1+ ξ x−µα

)− 1
ξ

}
α – scale parameter (α > 0)
µ– location parameter
ξ – shape parameter

Inverse Gaussian distribution (invgauss) f (x)=

√
λ

2πx3 exp
{
−λ(x−µ)2

2µ2x

}
µ− mean (location parameter)
λ – shape parameter

Normal distribution (norm) f (x)= 1√
2πσ

exp
(
−
(x−µ)2

2σ 2

)
µ− location parameter
σ – scale parameter

Logistic distribution (logis) f (x)= e−(x−µ)/γ

γ
(
1+e−(x−µ)/γ

)2 µ – location parameter
γ – shape parameter (γ > 0)

Log-normal distribution (lnorm) f (x)=

{
1

x
√

2πσ
exp

[
−

1
2σ 2 (lnx−µ)

2
]
,x > 0

0 ,x ≤ 0
µ – location parameter
σ – scale parameter

Log-logistic distribution (llogis) f (x)=

(
β
α

)
x
α
β−1[

1+
(
x
α

)β]2 , x > 0 α – scale parameter (α > 0)
β – shape parameter (β > 0)

Generalized Pareto distribution (gpd) f (x)= 1
σ

(
1+ k (x−µ)σ

)−1−1/k
µ – location parameter
σ – scale parameter
k – shape parameter

Weibull distribution (weibull) f (x)= k
α

(
x−γ
α

)k−1
exp

[
−

(
x−γ
α

)k]
k− shape parameter (k > 0)
α – scale parameter (α > 0)
γ− location parameter

Gumbel distribution (gumbel) f (x)= 1
σ exp

(
−
x−µ
σ − exp

(
−
x−µ
σ

))
µ – location parameter
σ – scale parameter
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Appendix B

The probability formulas for the 81 combinations are pre-
sented as follows.

1. The probability of type [X-H, Y -H, Z-H, W -H] is as
follows:

P
(
X >Xph,Y > Yph,Z > Zph,W >Wph

)
=

1−uph− vph− rph− sph+C
(
uph,vph

)
+C

(
uph, rph

)
+

C
(
uph, sph

)
+C

(
vph, rph

)
+C

(
vph, sph

)
+C

(
rph, sph

)
−

C
(
uph,vph, rph

)
−C

(
uph,vph, sph

)
−C

(
uph, rph, sph

)
−

C
(
vph, rph, sph

)
+C

(
uph,vph, rph, sph

)
.

2. The probability of type [X-M, Y -M, Z-M, W -M] is as
follows:

P =
(
Xpl <X <Xph,Ypl < Y < Yph,Zpl < Z <

Zph,Wpl <W <Wph
)
= C

(
uph,vph, rph, sph

)
−

C
(
uph,vph, rph, spl

)
−C

(
uph,vph, rpl, sph

)
−

C
(
uph,vpl, rph, sph

)
−C

(
upl,vph, rph, sph

)
+

C
(
uph,vph, rpl, spl

)
+C

(
uph,vpl, rph, spl

)
+

C
(
upl,vph, rph, spl

)
+C

(
uph,vpl, rpl, sph

)
+

C
(
upl,vph, rpl, sph

)
+C

(
upl,vpl, rph, sph

)
−

C
(
uph,vpl, rpl, spl

)
−C

(
upl,vph, rpl, spl

)
−

C
(
upl,vpl, rph, spl

)
−C

(
upl,vpl, rpl, sph

)
+

C
(
upl,vpl, rpl, spl

)
.

3. The probability of type [X-L, Y -L, Z-L,W -L] is as fol-
lows:

P
(
X <Xpl,Y < Ypl,Z < Zpl,W <Wpl

)
=

C
(
upl,vpl, rpl, spl

)
.

4. The probability of type [X-L, Y -H, Z-H, W -H] is as
follows:

P
(
X <Xpl,Y > Yph,Z > Zph,W >Wph

)
=

upl−C
(
upl,vph

)
−C

(
upl, rph

)
−C

(
upl, sph

)
+

C
(
upl,vph, rph

)
+C

(
upl,vph, sph

)
+C

(
upl, rph, sph

)
−

C
(
upl,vph, rph, sph

)
.

5. The probability of type [X-H, Y -L, Z-H, W -H] is as
follows:

P
(
X >Xph,Y < Ypl,Z > Zph,W >Wph

)
=

vpl−C
(
uph,vpl

)
−C

(
vpl, rph

)
−C

(
vpl, sph

)
+

C
(
uph,vpl, rph

)
+C

(
uph,vpl, sph

)
+C

(
vpl, rph, sph

)
−

C
(
uph,vpl, rph, sph

)
.

6. The probability of type [X-H, Y -H, Z-L, W -H] is as
follows:

P
(
X >Xph,Y > Yph,Z < Zpl,W >Wph

)
=

rpl−C
(
uph, rpl

)
−C

(
vph, rpl

)
−C

(
rpl, sph

)
+

C
(
uph,vph, rpl

)
+C

(
uph, rpl, sph

)
+C

(
vph, rpl, sph

)
−

C
(
uph,vph, rpl, sph

)
.

7. The probability of type [X-H, Y -H, Z-H, W -L] is as
follows:

P
(
X >Xph,Y > Yph,Z > Zph,W <Wpl

)
=

spl−C
(
uph, spl

)
−C

(
vph, spl

)
−C

(
rph, spl

)
+

C
(
uph,vph, spl

)
+C

(
uph, rph, spl

)
+C

(
vph, rph, spl

)
−

C
(
uph,vph, rph, spl

)
.

8. The probability of type [X-M, Y -H, Z-H, W -H] is as
follows:

P
(
Xpl <X <Xph,Y > Yph,Z > Zph,W >

Wph
)
= uph− upl−C

(
uph,vph

)
−C

(
uph, rph

)
−

C
(
uph, sph

)
+C

(
upl,vph

)
+C

(
upl, rph

)
+C

(
upl, sph

)
+

C
(
uph,vph, rph

)
+C

(
uph,vph, sph

)
+C

(
uph, rph, sph

)
−

C
(
upl,vph, rph

)
−C

(
upl,vph, sph

)
−C

(
upl, rph, sph

)
−

C
(
uph,vph, rph, sph

)
+C

(
upl,vph, rph, sph

)
.

9. The probability of type [X-H, Y -M, Z-H, W -H] is as
follows:

P
(
X >Xph,Ypl < Y < Yph,Z > Zph,W >

Wph
)
= vph− vpl−C

(
uph,vph

)
−C

(
vph, rph

)
−

C
(
vph, sph

)
+C

(
uph,vpl

)
+C

(
vpl, rph

)
+C

(
vpl, sph

)
+

C
(
uph,vph, rph

)
+C

(
uph,vph, sph

)
+C

(
vph, rph, sph

)
−

C
(
uph,vpl, rph

)
−C

(
uph,vpl, sph

)
−C

(
vpl, rph, sph

)
−

C
(
uph,vph, rph, sph

)
+C

(
uph,vpl, rph, sph

)
.

10. The probability of type [X-H, Y -H, Z-M, W -H] is as
follows:

P
(
X >Xph,Y > Yph,Zpl < Z < Zph,W >

Wph
)
= rph− rpl−C

(
uph, rph

)
−C

(
vph, rph

)
−

C
(
rph, sph

)
+C

(
uph, rpl

)
+C

(
vph, rpl

)
+C

(
rpl, sph

)
+

C
(
uph,vph, rph

)
+C

(
uph, rph, sph

)
+C

(
vph, rph, sph

)
−

C
(
uph,vph, rpl

)
−C

(
uph, rpl, sph

)
−C

(
vph, rpl, sph

)
−

C
(
uph,vph, rph, sph

)
+C

(
uph,vph, rpl, sph

)
.

11. The probability of type [X-H, Y -H, Z-H, W -M] is as
follows:

P
(
X >Xph,Y > Yph,Z > Zph,Wpl <W <

Wph
)
= sph− spl−C

(
uph, sph

)
−C

(
vph, sph

)
−

C
(
rph, sph

)
+C

(
uph, spl

)
+C

(
vph, spl

)
+C

(
rph, spl

)
+

C
(
uph,vph, sph

)
+C

(
uph, rph, sph

)
+C

(
vph, rph, sph

)
−

C
(
uph,vph, spl

)
−C

(
uph, rph, spl

)
−C

(
vph, rph, spl

)
−

C
(
uph,vph, rph, sph

)
+C

(
uph,vph, rph, spl

)
.

12. The probability of type [X-L, Y -L, Z-H, W -H] is as
follows:

P
(
X <Xpl,Y < Ypl,Z > Zph,W >Wph

)
=

C
(
upl,vpl

)
−C

(
upl,vpl, rph

)
−C

(
upl,vpl, sph

)
+

C
(
upl,vpl, rph, sph

)
.

13. The probability of type [X-L, Y -H, Z-L, W -H] is as
follows:

P
(
X <Xpl,Y > Yph,Z < Zpl,W >Wph

)
=

C
(
upl, rpl

)
−C

(
upl,vph, rpl

)
−C

(
upl, rpl, sph

)
+

C
(
upl,vph, rpl, sph

)
.

14. The probability of type [X-L, Y -H, Z-H, W -L] is as
follows:
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P
(
X <Xpl,Y > Yph,Z > Zph,W <Wpl

)
=

C
(
upl, spl

)
−C

(
upl,vph, spl

)
−C

(
upl, rph, spl

)
+

C
(
upl,vph, rph, spl

)
.

15. The probability of type [X-H, Y -L, Z-L, W -H] is as
follows:

P
(
X >Xph,Y < Ypl,Z < Zpl,W >Wph

)
=

C
(
vpl, rpl

)
−C

(
uph,vpl, rpl

)
−C

(
vpl, rpl, sph

)
+

C
(
uph,vpl, rpl, sph

)
.

16. The probability of type [X-H, Y -L, Z-H, W -L] is as
follows:

P
(
X >Xph,Y < Ypl,Z > Zph,W <Wpl

)
=

C
(
vpl, spl

)
−C

(
uph,vpl, spl

)
−C

(
vpl, rph, spl

)
+

C
(
uph,vpl, rph, spl

)
.

17. The probability of type [X-H, Y -H, Z-L, W -L] is as
follows:

P
(
X >Xph,Y > Yph,Z < Zpl,W <Wpl

)
=

C
(
rpl, spl

)
−C

(
uph, rpl, spl

)
−C

(
vph, rpl, spl

)
+

C
(
uph,vph, rpl, spl

)
.

18. The probability of type [X-M, Y -L, Z-H, W -H] is as
follows:

P
(
Xpl <X <Xph,Y < Ypl,Z > Zph,W >Wph

)
=

C
(
uph,vpl

)
−C

(
upl,vpl

)
−C

(
uph,vpl, rph

)
−

C
(
uph,vpl, sph

)
+C

(
upl,vpl, rph

)
+C

(
upl,vpl, sph

)
+

C
(
uph,vpl, rph, sph

)
−C

(
upl,vpl, rph, sph

)
.

19. The probability of type [X-L, Y -M, Z-H, W -H] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Z > Zph,W >Wph

)
=

C
(
upl,vph

)
−C

(
upl,vpl

)
−C

(
upl,vph, rph

)
−

C
(
upl,vph, sph

)
+C

(
upl,vpl, rph

)
+C

(
upl,vpl, sph

)
+

C
(
upl,vph, rph, sph

)
−C

(
upl,vpl, rph, sph

)
.

20. The probability of type [X-M, Y -H, Z-L, W -H] is as
follows:

P
(
Xpl <X <Xph,Y > Yph,Z < Zpl,W >Wph

)
=

C
(
uph, rpl

)
−C

(
upl, rpl

)
−C

(
uph,vph, rpl

)
−

C
(
uph, rpl, sph

)
+C

(
upl,vph, rpl

)
+C

(
upl, rpl, sph

)
+

C
(
uph,vph, rpl, sph

)
−C

(
upl,vph, rpl, sph

)
.

21. The probability of type [X-L, Y -H, Z-M, W -H] is as
follows:

P
(
X <Xpl,Y > Yph,Zpl < Z < Zph,W >Wph

)
=

C
(
upl, rph

)
−C

(
upl, rpl

)
−C

(
upl,vph, rph

)
−

C
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41. The probability of type [X-M, Y -M, Z-H, W -L] is as
follows:
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)
= C

(
vpl, rph, sph

)
−C

(
vpl, rpl, sph

)
−

C
(
vpl, rph, spl

)
+C

(
vpl, rpl, spl

)
−C

(
uph,vpl, rph, sph

)
+

C
(
uph,vpl, rpl, sph

)
+C

(
uph,vpl, rph, spl

)
−

C
(
uph,vpl, rpl, spl

)
.

52. The probability of type [X-M, Y -L, Z-L, W -H] is as
follows:

P
(
Xpl <X <Xph,Y < Ypl,Z < Zpl,W >Wph

)
=

C
(
uph,vpl, rpl

)
−C

(
upl,vpl, rpl

)
−C

(
uph,vpl, rpl, sph

)
+

C
(
upl,vpl, rpl, sph

)
.

53. The probability of type [X-L, Y -M, Z-L, W -H] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Z < Zpl,W >Wph

)
=

C
(
upl,vph, rpl

)
−C

(
upl,vpl, rpl

)
−C

(
upl,vph, rpl, sph

)
+

C
(
upl,vpl, rpl, sph

)
.

54. The probability of type [X-L, Y -L, Z-M, W -H] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Z < Zpl,W >Wph

)
=

C
(
upl,vpl, rph

)
−C

(
upl,vpl, rpl

)
−C

(
upl,vpl, rph, sph

)
+

C
(
upl,vpl, rpl, sph

)
.

55. The probability of type [X-M, Y -L, Z-H, W -L] is as
follows:

P
(
Xpl <X <Xph,Y < Ypl,Z > Zph,W <Wpl

)
=

C
(
uph,vpl, spl

)
−C

(
upl,vpl, spl

)
−C

(
uph,vpl, rph, spl

)
+

C
(
upl,vpl, rph, spl

)
.
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56. The probability of type [X-L, Y -M, Z-H, W -L] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Z > Zph,W <Wpl

)
=

C
(
upl,vph, spl

)
−C

(
upl,vpl, spl

)
−C

(
upl,vph, rph, spl

)
+

C
(
upl,vpl, rph, spl

)
.

57. The probability of type [X-L, Y -L, Z-H, W -M] is as
follows:

P
(
X <Xpl,Y < Ypl,Z > Zph,Wpl <W <Wph

)
=

C
(
upl,vpl, sph

)
−C

(
upl,vpl, spl

)
−C

(
upl,vpl, rph, sph

)
+

C
(
upl,vpl, rph, spl

)
.

58. The probability of type [X-M, Y -H, Z-L, W -L] is as
follows:

P
(
Xpl <X <Xph,Y > Yph,Z < Zpl,W <Wpl

)
=

C
(
uph, rpl, spl

)
−C

(
upl, rpl, spl

)
−C

(
uph,vph, rpl, spl

)
+

C
(
upl,vph, rpl, spl

)
.

59. The probability of type [X-L, Y -H, Z-M, W -L] is as
follows:

P
(
X <Xpl,Y > Yph,Zpl < Z < Zph,W <Wpl

)
=

C
(
upl, rph, spl

)
−C

(
upl, rpl, spl

)
−C

(
upl,vph, rph, spl

)
+

C
(
upl,vph, rpl, spl

)
.

60. The probability of type [X-L, Y -H, Z-L, W -M] is as
follows:

P
(
X <Xpl,Y > Yph,Z < Zpl,Wpl <W <Wph

)
=

C
(
upl, rpl, sph

)
−C

(
upl, rpl, spl

)
−C

(
upl,vph, rpl, sph

)
+

C
(
upl,vph, rpl, spl

)
.

61. The probability of type [X-H, Y -M, Z-L, W -L] is as
follows:

P
(
X >Xph,Ypl < Y < Yph,Z < Zpl,W <Wpl

)
=

C
(
vph, rpl, spl

)
−C

(
vpl, rpl, spl

)
−C

(
uph,vph, rpl, spl

)
+

C
(
uph,vpl, rpl, spl

)
.

62. The probability of type [X-H, Y -L, Z-M, W -L] is as
follows:

P
(
X >Xph,Y < Ypl,Zpl < Z < Zph,W <Wpl

)
=

C
(
vpl, rph, spl

)
−C

(
vpl, rpl, spl

)
−C

(
uph,vpl, rph, spl

)
+

C
(
uph,vpl, rpl, spl

)
.

63. The probability of type [X-H, Y -L, Z-L, W -M] is as
follows:

P
(
X >Xph,Y < Ypl,Z < Zpl,Wpl <W <Wph

)
=

C
(
vpl, rpl, sph

)
−C

(
vpl, rpl, spl

)
−C

(
uph,vpl, rpl, sph

)
+

C
(
uph,vpl, rpl, spl

)
.

64. The probability of type [X-L, Y -L, Z-L,W -H] is as fol-
lows:

P
(
X <Xpl,Y < Ypl,Z < Zpl,W >Wph

)
=

C
(
upl,vpl, rpl

)
−C

(
upl,vpl, rpl, sph

)
.

65. The probability of type [X-L, Y -L, Z-H,W -L] is as fol-
lows:

P
(
X <Xpl,Y < Ypl,Z > Zph,W <Wpl

)
=

C
(
upl,vpl, spl

)
−C

(
upl,vpl, rph, spl

)
.

66. The probability of type [X-L, Y -H, Z-L,W -L] is as fol-
lows:

P
(
X <Xpl,Y > Yph,Z < Zpl,W <Wpl

)
=

C
(
upl, rpl, spl

)
−C

(
upl,vph, rpl, spl

)
.

67. The probability of type [X-H, Y -L, Z-L,W -L] is as fol-
lows:

P
(
X >Xph,Y < Ypl,Z < Zpl,W <Wpl

)
=

C
(
vpl, rpl, spl

)
−C

(
uph,vpl, rpl, spl

)
.

68. The probability of type [X-M, Y -M, Z-M, W -L] is as
follows:

P
(
Xpl <X <Xph,Ypl < Y < Yph,Zpl <

Z < Zph,W <Wpl
)
= C

(
uph,vph, rph, spl

)
−

C
(
uph,vph, rpl, spl

)
−C

(
uph,vpl, rph, spl

)
−

C
(
upl,vph, rph, spl

)
+C

(
uph,vpl, rpl, spl

)
+

C
(
upl,vph, rpl, spl

)
+C

(
upl,vpl, rph, spl

)
−

C
(
upl,vpl, rpl, spl

)
.

69. The probability of type [X-M, Y -M, Z-L, W -M] is as
follows:

P
(
Xpl <X <Xph,Ypl < Y < Yph,Z <

Zpl,Wpl <W <Wph
)
= C

(
uph,vph, rpl, sph

)
−

C
(
uph,vph, rpl, spl

)
−C

(
uph,vpl, rpl, sph

)
−

C
(
upl,vph, rpl, sph

)
+C

(
uph,vpl, rpl, spl

)
+

C
(
upl,vph, rpl, spl

)
+C

(
upl,vpl, rpl, sph

)
−

C
(
upl,vpl, rpl, spl

)
.

70. The probability of type [X-M, Y -L, Z-M, W -M] is as
follows:

P
(
Xpl <X <Xph,Y < Ypl,Zpl < Z <

Zph,Wpl <W <Wph
)
= C

(
uph,vpl, rph, sph

)
−

C
(
upl,vpl, rph, sph

)
−C

(
uph,vpl, rpl, sph

)
−

C
(
uph,vpl, rph, spl

)
+C

(
uph,vpl, rpl, spl

)
+

C
(
upl,vpl, rph, spl

)
+C

(
upl,vpl, rpl, sph

)
−

C
(
upl,vpl, rpl, spl

)
.

71. The probability of type [X-L, Y -M, Z-M, W -M] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Zpl < Z <

Zph,Wpl <W <Wph
)
= C

(
upl,vph, rph, sph

)
−

C
(
upl,vpl, rph, sph

)
−C

(
upl,vph, rpl, sph

)
−

C
(
upl,vph, rph, spl

)
+C

(
upl,vph, rpl, spl

)
+

C
(
upl,vpl, rph, spl

)
+C

(
upl,vpl, rpl, sph

)
−

C
(
upl,vpl, rpl, spl

)
.

72. The probability of type [X-M, Y -M, Z-L, W -L] is as
follows:

P
(
Xpl <X <Xph,Ypl < Y < Yph,Z < Zpl,W <

Wpl
)
= C

(
uph,vph, rpl, spl

)
−C

(
uph,vpl, rpl, spl

)
−

C
(
upl,vph, rpl, spl

)
+C

(
upl,vpl, rpl, spl

)
.
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73. The probability of type [X-M, Y -L, Z-M, W -L] is as
follows:

P
(
Xpl <X <Xph,Y < Ypl,Zpl < Z < Zph,W <

Wpl
)
= C

(
uph,vpl, rph, spl

)
−C

(
uph,vpl, rpl, spl

)
−

C
(
upl,vpl, rph, spl

)
+C

(
upl,vpl, rpl, spl

)
.

74. The probability of type [X-M, Y -L, Z-L, W -M] is as
follows:

P
(
Xpl <X <Xph,Y < Ypl,Z < Zpl,Wpl <W <

Wph
)
= C

(
uph,vpl, rpl, sph

)
−C

(
uph,vpl, rpl, spl

)
−

C
(
upl,vpl, rpl, sph

)
+C

(
upl,vpl, rpl, spl

)
.

75. The probability of type [X-L, Y -M, Z-M, W -L] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Zpl < Z < Zph,W <

Wpl
)
= C

(
upl,vph, rph, spl

)
−C

(
upl,vph, rpl, spl

)
−

C
(
upl,vpl, rph, spl

)
+C

(
upl,vpl, rpl, spl

)
.

76. The probability of type [X-L, Y -M, Z-L, W -M] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Z < Zpl,Wpl <W <

Wph
)
= C

(
upl,vph, rpl, sph

)
−C

(
upl,vph, rpl, spl

)
−

C
(
upl,vpl, rpl, sph

)
+C

(
upl,vpl, rpl, spl

)
.

77. The probability of type [X-L, Y -L, Z-M, W -M] is as
follows:

P
(
X <Xpl,Y < Ypl,Zpl < Z < Zph,Wpl <W <

Wph
)
= C

(
upl,vpl, rph, sph

)
−C

(
upl,vpl, rpl, sph

)
−

C
(
upl,vpl, rph, spl

)
+C

(
upl,vpl, rpl, spl

)
.

78. The probability of type [X-M, Y -L, Z-L, W -L] is as
follows:

P
(
Xpl <X <Xph,Y < Ypl,Z < Zpl,W <Wpl

)
=

C
(
uph,vpl, rpl, spl

)
−C

(
upl,vpl, rpl, spl

)
.

79. The probability of type [X-L, Y -M, Z-L, W -L] is as
follows:

P
(
X <Xpl,Ypl < Y < Yph,Z < Zpl,W <Wpl

)
=

C
(
upl,vph, rpl, spl

)
−C

(
upl,vpl, rpl, spl

)
.

80. The probability of type [X-L, Y -L, Z-M, W -L] is as
follows:

P
(
X <Xpl,Y < Ypl,Zpl < Z < Zph,W <Wpl

)
=

C
(
upl,vpl, rph, spl

)
−C

(
upl,vpl, rpl, spl

)
.

81. The probability of type [X-L, Y -L, Z-L, W -M] is as
follows:

P
(
X <Xpl,Y < Ypl,Z < Zpl,Wpl <W <Wph

)
=

C
(
upl,vpl, rpl, sph

)
−C

(
upl,vpl, rpl, spl

)
.

https://doi.org/10.5194/hess-29-179-2025 Hydrol. Earth Syst. Sci., 29, 179–214, 2025



208 X. Yu et al.: Synchronization and stochastic simulation of multi-site flood flows

Appendix C

Figure C1.
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Figure C1. Results of the correlation analysis for daily runoff at multiple sites.
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Appendix D

A total of 12 different distribution functions were employed
to fit the daily runoff flows at the four points for each day in
August. Figure D1 shows the preferred marginal distribution
functions for each variable over the month of August.

Figure D1.
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Figure D1. Cumulative probability distribution of the preferred marginal distribution function for runoff on each day throughout August.
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