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Abstract. Root water uptake strongly affects soil water bal-
ance and plant development. It can be described by mecha-
nistic models of soil–root hydraulics based on soil water con-
tent, soil and root hydraulic properties, and the dynamic de-
velopment of the root architecture. Recently, novel upscaling
methods have emerged, which enable the application of de-
tailed mechanistic models on a larger scale, particularly for
land surface and crop models, by using mathematical upscal-
ing.

In this study, we explore the underlying assumptions and
the mathematical fundamentals of different upscaling ap-
proaches. Our analysis rigorously investigates the errors in-
troduced in each step during the transition from fine-scale
mechanistic models, which considers the nonlinear perirhizal
resistance around each root, to more macroscopic represen-
tations. Upscaling steps simplify the representation of the
root architecture, the perirhizal geometry, and the soil spatial
dimension and thus introduces errors compared to the full
complex 3D simulations. In order to investigate the extent
of these errors, we perform simulation case studies, spring
barley as a representative non-row crop and maize as a rep-
resentative row crop, using three different soils.

We show that the error introduced by the upscaling steps
strongly differs, depending on root architecture and soil type.
Furthermore, we identify the individual steps and assump-
tions that lead to the most important losses in accuracy. An
analysis of the trade-off between model complexity and ac-
curacy provides valuable guidance for selecting the most
suitable approach for specific applications.

1 Introduction

Plant transpiration plays a vital role in the overall soil water
balance and is a sensitive process in land surface and crop
models, accounting for 61 %–75 % of the total evapotranspi-
ration (Schlesinger and Jasechko, 2014) and 10 %–15 % of
the total global evaporation (Ruhoff et al., 2022). A mech-
anistic description of how plant transpiration is influenced
by soil and root properties helps to unravel the interaction
between climate, soil water balance, and plant development.
Such models can support plant breeding efforts to find root
traits aiming for more drought-resistant plants in specific pe-
doclimatic environments and empower decision-makers in
optimizing agricultural practices for improved crop water
management and sustainable land use (Louarn and Song,
2020; Soualiou et al., 2021).

The soil–plant system is a multi-scale hierarchically struc-
tured system with typical structures that exist and influence
or control processes at different scales. At the smallest scale,
water flow in soils depends on the structure of the water-filled
pore network, i.e. the size of water-filled pores and water
films on solid surfaces and their connectivity. In plants, this
scale corresponds to the water flow in cell walls through cell
membranes and through water-conducting vessels, i.e. xylem
vessels. The arrangement of cells in tissues, the constitution
of cell walls, and the size of xylem vessels and the pits in
their sieve plates control water flow in root system. Using
models that solve Navier–Stokes equations, hydraulic prop-
erties that define the averaged flow over these smaller-scale
structures as a function of averaged water potential gradients
can be derived. For porous media, Darcy’s law can be de-
rived from the Navier–Stokes equations using homogeniza-
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tion (Hornung, 1996). Also, in plants, water flow is gener-
ally laminar. Couvreur et al. (2018) describe water move-
ment within root cross-sections, numerically calculating ef-
fective radial conductivity from root anatomical features. The
effective hydraulic properties can subsequently be used to
describe the averaged flow as a function of averaged water
potential using continuum equations.

In summary, Darcy-type flow equations are used to sim-
ulate water flow in both the soil and the root domains and
in the water exchange between them. However, the small di-
ameter of roots (≈ 1× 10−4 m) with respect to their length
(≈ 1 m) leads to very small diameter-to-length ratios O(1×
10−4). The size of the root zone requires very small dis-
cretizations with respect to the size of the simulation do-
main to accurately represent the fluxes and water potential.
Therefore, a so-called 1D–3D mixed-model approach is used
(Koch et al., 2018), where the flow in the soil is described us-
ing a 3D continuum equation, i.e. the Richards equation. This
approach will be the starting point of our upscaling.

The flow in the root system is represented by a network
of porous pipes with pipe walls representing the root tissues
through which water flows radially towards the xylem tissue
that represents the internal part of the tube where water flows
axially. The flow in each xylem segment is described as a
function of the water potential gradient along the xylem and
the exchange between the root and the soil as a function of
the water potential difference between the soil–root interface
and the water in the root xylem tissue. The root system is
assumed not to occupy a volume in the soil domain, and the
water flow between the soil and root domains is represented
by a source/sink term in the soil domain. The information
that needs to be exchanged between the two domains is the
water potential and water fluxes at the soil–root interface.

Schnepf et al. (2023, 2020) recently benchmarked such
functional-structural root architecture models for simulating
the root water uptake (RWU) from drying soils. A central
part is the coupling between the two domains. In the 3D soil
model, the water potential is calculated at the nodes or the
centres of the grid cells that are used to discretize the 3D soil
domain. The 3D soil model, in which RWU is represented
as a source or sink term, does not resolve the fluxes and wa-
ter potential gradients around the root segments within a grid
cell. In order to obtain water potential at the soil–root in-
terface, which is used by the root model, a perirhizal model
around the root segments is employed that incorporates non-
linear soil conductance based on Schröder et al. (2008). This
is crucial, since Khare et al. (2022) showed that, in drying
soils, a mere increase in grid resolution fails to accurately
characterize the sharp gradients in soil water potential. Fol-
lowing Vanderborght et al. (2023) the perirhizal zone is ap-
proximated by a cylindrical domain. Typically, the domain
volume is approximated in proportion to the segment’s root
length, surface, or volume in a given macroscopic soil ele-
ment volume (e.g. De Bauw et al., 2020; Mai et al., 2019).
It is well known that the inter-root distance influences the

uptake potential (de Willigen, 1987) due to inter-root com-
petition, and Graefe et al. (2019) underline the importance
of the outer perirhizal cylinder radii distribution. Kohl et al.
(2007) used Voronoi diagrams to determine the outer radii
in 2D, where the Voronoi faces are located exactly at mid-
distance between the roots and therefore separate the corre-
sponding perirhizal zones. Schlüter et al. (2018) used dis-
tance functions in 3D to quantify the perirhizal zone. In this
work, we present a novel approach using Voronoi diagrams
in 3D, where the Voronoi cells describe the perirhizal vol-
umes.

Moving to larger-scale models, the first obvious step is to
reduce the dimensions of the macroscopic soil model. RWU
was simulated by de Willigen et al. (2012) at different com-
plexities, using 1D, 2D, and 3D soils. They found that ac-
knowledging the lateral water potential gradients resulted in
a reduction in simulated actual transpiration. However, they
considered a soil with the same lateral (x and y) dimension,
with the root system in the middle, which is not consistent
with the inter-plant and inter-row distances of most agricul-
tural crops. Couvreur et al. (2014) demonstrated that failing
to account for lateral variations in root density and bulk soil
water potential results in an overestimation of simulated col-
lar water potential for row crops but works sufficiently well
for crops with rather uniform lateral root distributions.

The representation of the root architecture in an upscaled,
e.g. 1D, soil water flow model can be of different complex-
ity. When the 3D root architecture model is coupled with a
1D soil model, a first assumption is that the water potential at
the soil–root interface is uniform at a given depth or in a cer-
tain layer of the discretized 1D soil profile. Therefore, we use
a representation of a mean behaviour, where the variance is
captured only when using higher-dimensional models. When
the hydraulic root system model is assumed to be linear, i.e.
it is assumed that the conductance of the different segments
does not depend on the water potential, then an exact up-
scaled root hydraulic model can be derived (Vanderborght
et al., 2021). This exact upscaled model can be approximated
by a so-called parallel root model that assumes that the wa-
ter that is taken up by root segments in a certain soil layer
is directly transferred to the root collar through an effective,
laterally impermeable root pipe that does not exchange water
with other soil layers so that RWU from different soil lay-
ers occurs in parallel (Couvreur et al., 2014; Vanderborght
et al., 2021). Vanderborght et al. (2021) demonstrated that
this approach well reproduced the water uptake by 3D root
architectures. When the root architecture model is coupled
with a 1D soil model, the 1D soil model simulates the bulk
soil water potential and assumes that they are uniform at a
certain depth. When the soil is sufficiently wet and the hy-
draulic conductivity of the soil is sufficiently large, the soil
water potential at the soil–root interface can be assumed to
be equal to the bulk soil water potential. However, when soils
dry out, the water potential at the soil–root interface differs
from the bulk soil water potential and depends on the flow
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to a specific root segment. In order to couple the 3D root
architecture model with an upscaled 1D soil model, Vander-
borght et al. (2023) used cylindrical perirhizal models around
the single-root segments and assumed that the bulk soil wa-
ter potential and outer radii of the perirhizal cylinders were
the same for all root segments. The perirhizal radii were de-
rived assuming that all roots in a soil layer were parallel and
equidistant, which is a good approximation when roots are
homogeneously distributed. To simplify the model further,
they used a parallel root model assuming that the xylem wa-
ter potential in and the water flow to each root segment in a
certain soil layer were the same. Despite the fact that the flow
rate and water potential in the xylem and at the soil–root in-
terface of root segments of the 3D architecture that was cou-
pled to the 1D model varied a lot between the root segments,
the parallel root model described both the total RWU from
a soil layer and the overall transpiration quite well and with
strongly reduced computational costs.

However, the consequences of assuming uniform bulk soil
water potential were not considered in Vanderborght et al.
(2023, 2021). In this study, we systematically test these new
upscaling methods for the first time for scenarios that repre-
sent the distribution of plants in an agricultural field. We use
spring barley as a representative non-row crop and maize as a
representative row crop. We simulate plant transpiration over
2 weeks in three soil types (loam, clay, and sandy loam) to
observe soil water depletion and the occurrence of plant wa-
ter stress. We perform the simulations with the full hydraulic
3D model and compare the accuracy of the approximations
in each upscaling step.

The full root hydraulic architecture model combined with
a 3D soil model enables us to analyse spatial water depletion
in detail. However, the computational costs make it ineffi-
cient for large-scale applications. Also, the full hydraulic root
architecture is not easily included in large-scale models, and
it is preferable to use an RWU sink term that is only based on
the soil states explicitly. Vanderborght et al. (2023) showed
how such sink terms can be derived from more mechanistic
models using 3D root hydraulics. We divide the different up-
scaling steps into three categories (see Fig. 1) and analyse the
steps regarding accuracy and speed:

1. The way the root hydraulic system is represented (green
column). The surrounding soil of the root system is
characterized by soil water potential at the soil–root
interface for each root segment (Fig. 1, A(1)) or is
given for each soil element of the macroscopic soil grid
(Fig. 1, B(1)). The third choice is to approximate the
root architecture by a parallel root system with similar
macroscopic hydraulic properties (Fig. 1, C(1)).

2. The way the radius of the perirhizal zone is calcu-
lated (yellow column). The first option uses 3D Voronoi
diagrams to obtain the volume of the perirhizal zone
(Fig. 1, A(2)), or homogeneously distributed roots are
assumed within each soil cell (Fig. 1, B(2)).

Figure 1. The green column shows the simplification of RWU re-
garding the root architecture: (A) full model, (B) exactly upscaled
with uniform soil–root interface water potential per soil cell, (C)
parallel root model. The yellow column shows a 2D representation
of the perirhizal radii computation using (A) Voronoi diagrams or
(B) uniform perirhizal radii in a soil element. The blue column de-
scribes the dimensionality of the macroscopic soil domain: (A) full
3D or (B) cases where we assume that the soil water potential does
not change in specific directions.

3. The dimensionality of the soil model (blue column). Ei-
ther the macroscopic soil is described in full 3D (see
Fig. 1, A(3)) or the soil is approximated by a lower-
dimensional model, where we assume the soil water po-
tential does not change in specific directions (see Fig. 1,
B(3)).

We use the three columns of Fig. 1 for a precise categoriza-
tion of the upscaling steps involved, choosing a triple where
the first letter denotes the root hydraulic system, the second
denotes the way the perirhizal zone is calculated, and the
third denotes the dimensionality of the model. In this way,
AAA :=A(1)A(2)A(3) describes the most accurate model,
and CBB :=C(1)B(2)C(3) describes the fastest and coarsest
model, and we use a lower-case “x” to indicate the choice
of any model; e.g. Axx is all possible models where the full
3D root hydraulic model is calculated; therefore soil water
potential at the soil–root interface is given for each root seg-
ment.

2 Materials and methods

We describe water flow in the plant–rhizosphere–soil system
by regarding each subdomain as mathematical sub-problems
that are solved sequentially (see Koch et al., 2021, for al-
ternative monolithic schemes). We sequentially compute the
macroscopic soil model (Sect. 2.1) and the root architecture
development (Sect. 2.2) and use a fixed-point iteration, where
we solve the root hydraulic model and the perirhizal model
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Figure 2. The main simulation loop first solves the macroscopic soil model yielding the total soil potential H s; next, optionally, root
architectural development; and, finally, finds consistent values for the total xylem water potential H x and soil–root interface potential H sr
using a fixed-point iteration. Sink terms are calculated from the potentials H x and H sr.

(Sect. 2.3). From the resulting root xylem potentials H x and
the total potentials at the root–soil interface H sr, the RWU
is determined, which then acts as a sink for the macroscopic
soil model; see Fig. 2. Table 1 presents a summary of all vari-
ables and parameters of the models.

The models were implemented in CPlantBox (Zhou et al.,
2020; Schnepf et al., 2018) and dumux-rosi (Giraud et al.,
2023), which are available on GitHub and are open-source,
which facilitates reproducibility and further advancements
(Barba, 2022). The use of upscaled models fundamentally in-
creases performance. Depending on the root architecture and
soil type, we could achieve speed-ups up to 15000 %. We
discuss the trade-off between model accuracy and computa-
tional speed which guides users how to pick the appropriate
modelling approach for specific applications.

In the following, we describe each part of Fig. 2 in detail:
firstly the macroscopic soil model (Sect. 2.1), the root archi-
tecture development model (Sect. 2.2), and the fixpoint iter-
ation, where we iterate the full root hydraulic model and the
perirhizal model (Sect. 2.3). These models are of type Axx
(see Fig. 1). We present two upscaled models: the upscaled
aggregated model (Sect. 2.5), corresponding to the models
Bxx, and the parallel root model (Sect. 2.6), corresponding
to the models Cxx. Next, we describe the two approaches to
obtain the outer perirhizal radii (Sect. 2.4) corresponding to
the models xAx and xBx. Finally, in Sect. 2.7, we define test
scenarios to benchmark the efficiency of the simplifications
of the larger-scale models against the reference full hydraulic
model.

2.1 Macroscopic soil model

Water movement is described by the Richards equation,

∂θ

∂t
=∇ · (K(θ) ∇H s)+ S, (1)

where θ (cm3 cm−3) is the water content, K (cm d−1) is the
soil hydraulic conductivity, Hs (cm) is the total soil water
potential, and S is a sink term that describes RWU (d−1).

We can solve the Richards equation in 3D (these models
are named xxA) or assume no change in water potential in
specific directions using a 1D or 2D soil grid (xxB). We use
the finite volume solver DuMux (Koch et al., 2021) to nu-
merically solve Eq. (1). The sink, our source S, is calculated
for each finite volume cell as a function of the root xylem
total potentials H x and the total potentials at the root surface
interface H sr. Generally, H sr is derived as a function of Hx
and Hs using a perirhizal model, as described in Sect. 2.3.
For each finite volume cell i, the sink or source Si (cm3 d−1)
is calculated as

Si =
∑
j∈celli

2aroot,jπkr,jdlj (Hsr,j −Hx,j ), (2)

where j is the root segment index of a segment located within
the finite volume cell i, aroot,j (cm) is the root radius, kr,j
(d−1) is the intrinsic root radial conductivity, dlj (cm) is the
segment length, Hsr,j (cm) is the total potential at the soil–
root interface, and Hx,j (cm) is the segment xylem total po-
tential.

The relation between θ and the soil matric potential hs is
given by the water retention curve, which we describe using
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Table 1. Overview of parameter and variable names in alphabetical order.

Name Description Units

aprhiz Outer radius of the perirhizal zone cm
aroot Root radius cm
B Is a geometry factor 1
C Incidence matrix 1
cell Set containing the segment indices located in a finite-volume grid cell 1
dl Segment length cm
dx Axial resolution of the root architecture model cm
H collar Root collar water potential cm
Heff The effective water potential at the soil–root interface cm
Hprescribed Prescribed water potential at the root collar cm
H s, hs Soil total water potential, soil matric potential cm
H sr, hsr Total potential at the soil–root interface, matric potential at the soil–root interface cm
H x , hx Xylem total potential, xylem matric potential cm
K Soil hydraulic conductivity cm d−1

Kprhiz Average hydraulic conductance cm d−1

Kr intrinsic root radial conductance d−1

kr Root hydraulic conductivity 1 cm−1

Krs Root system conductivity cm2 d−1

kx Intrinsic root axial conductance cm3 d−1

Kx Root axial conductance cm2 d−1

L Laplacian matrix cm2 d−1

la Length of the apical zone cm
lb Length of the basal zone cm
ldelay Apical delay time day
lmax Maximal root length cm
ln Inter-lateral distance cm
lroot Root length cm
m Number of finite volume soil cells 1
M Matrix mapping root node index to soil cell index 1
n Number of nodes of the root system 1
N(i) Set of nodes that are connected to node i 1
8 Soil matric flux potential cm2 d−1

q,qr,qsr Volumetric water flow through the rhizosphere, root surface, or soil–root interface cm3 d−1

qaxial Root axial water flow cm3 d−1

qradial Radial water uptake or loss by the roots per root length cm2 d−1

qroot Water uptake or loss by the roots cm3 d−1

qsoil RWU from a soil volume cm3 d−1

r Initial growth rate cm d−1

r1 Radial resistance to water flow through the root d cm−2

r2 Radial resistance to water flow through the perirhizal zone d cm−2

ρ Ratio of the outer radius of the perirhizal zone (aprhiz) and the root radius (aroot) 1
S Sink term describing RWU in the macroscopic soil model d−1

SUF Standard uptake fraction 1
surf Surface of the root segment for each apical node cm2

t Time day
tact Actual transpiration cm3 d−1

θ Water content cm3 cm−3

θroot Root insertion angle with respect to parent root rad
vol The volume of the Voronoi cell corresponding to the segments apical node cm3

volsoil Volume of the soil grid cell representing the macroscopic soil model cm3

z Elevation cm
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the Van Genuchten model (Van Genuchten, 1980). The con-
version between total and matric potentials can readily take
place as

hs =Hs− z, (3)

where z is the elevation.

2.2 Root architecture development model

We use the model CPlantBox to describe the root architec-
ture (Giraud et al., 2023; Zhou et al., 2020; Schnepf et al.,
2018), which is able to represent the development of different
root architecture geometries. CPlantBox is an open-source
software, and the code is available at https://github.com/
Plant-Root-Soil-Interactions-Modelling/CPlantBox (last ac-
cess: 30 December 2024). The root architecture is repre-
sented as straight 1D segments in 3D space (1D/3D), where
the segment length is less than or equal to the axial resolution
dx.

Parameters are defined per root type and given by a mean
and standard deviation to mimic the stochastic nature of
the root system. Typical parameters are the insertion angle
(θroot), the length of the basal zone (lb), the inter-lateral dis-
tance (ln), the maximal root length (the number of laterals is
deduced from maximal length) (lmax), the length of the apical
zone (la) or apical delay time (ldelay), the root radius (aroot),
and the initial growth rate (r), as well as type and probabil-
ity of successor roots. We chose root architecture parameter
sets for spring barley according to Eloundou (2021) based on
Postma et al. (2017) and for maize according to Landl et al.
(2018), which are available within the CPlantBox repository.

CPlantBox is a relatively generic code that allows different
models of elongation rate, branching patterns, tropisms, and
root senescence. In this study, we assumed negative exponen-
tial growth independently of any environmental influences
such as soil temperature or bulk density. Likewise, branching
patterns and insertion angles are not influenced by environ-
mental conditions. Root radii are constant per root branch.
The root types which can emerge from a given parent root
are determined by root order. With these relatively simple
root architecture simulations, we still produce realistic root
system geometries that allow us to determine the effects of
those geometries and, in particular, their heterogeneities on
the upscaling results.

2.3 Root hydraulic and perirhizal model (Axx)

We use the model of Doussan et al. (1998) and in the follow-
ing describe it using methods from graph theory. Along each
root segment, the axial water flow is driven by the gradient
of the total xylem water potential, and it is given by

qaxial = kx∇H x, (4)

where qaxial (cm3 d−1) is the axial water flow, kx (cm3 d−1) is
the intrinsic root axial conductance, and H x (cm) is the total

xylem water potential. The radial water flow is given for each
root node i as

qradial,i = 2πaroot,ikr,i(H sr,i −H x,i), (5)

where qroot,i (cm2 d−1) is the radial water flow per root
length at node i, aroot,i (cm) is the root radius, kr,i (d−1) is
the intrinsic root radial conductance, and H sr,i (cm) is the
total soil water potential at the soil–root interface. In agree-
ment with Doussan et al. (1998), we consider that the soil
water is a dilute solution, as is the sap; therefore we neglect
the osmotic potential in the xylem and the soil.

The root system can be interpreted as a directed graph of
n nodes and n−1 edges representing the root segments. The
axial water flow (Eq. 4) is approximated by

qaxial,i,j ≈ kx
H x,j −H x,i

dli,j
, (6)

where (i,j) is the edge connecting node i and j and dli,j is
the length of this segment (cm). In this context, Kirchhoff’s
law just states that the axial fluxes equal the radial flux at
each node i. All volume fluxes going into the node must leave
the node again; i.e. we assume that there is no water storage
inside the root. Thus,∑
j∈N(i)

qaxial,i,j = qradial,i, (7)

where i and j are node indices andN(i) shows the indices of
the edges (i,j) in the graph. Note that, in the sum on the left-
hand side, H x,i occurs for each edge ij , which is the degree
of node i, and H x,j enters exactly once for each j ∈N(i).
Therefore, we can use the Laplace matrix L to easily describe
Kirchhoff’s law (Eq. 7) in matrix notation:

L
[

H collar
H x

]
=

[
tact
qroot

]
, (8)

where the symmetric Laplacian matrix L ∈ Rn×n is given by

L= C diag(Kx) CT (9)

and C ∈ Rn×n−1 is the graph’s incidence matrix, where the
ij th entry is equal to−1 when edge j is leaving node i and 1
when edge i arrives in node j . The matrix Kx is the (n−1)×1
vector of root axial conductances (cm2 d−1), where

(Kx)i =Kx,i = kx,i/lroot,i, (10)

with kx,i being the intrinsic root axial conductance (cm3 d−1)
and lroot,i being the segment length (cm) of root segment with
apical node index i. H collar is the total root collar potential
(cm), and H x is the (n− 1)× 1 vector of the total root wa-
ter potential (cm) of the other root nodes. On the right-hand
side of Eq. (8), the value tact describes the actual volumetric
transpiration at the root collar (cm3 d−1), and qroot (cm3 d−1)
describes the sources (positive sign) and sinks (negative sign)
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which represent water uptake from soil or water loss into soil
by the roots. To solve specific root hydraulic scenarios, we
need to define the RWU and adjust Eq. (8) to include root
collar boundary conditions.

The volumetric RWU qroot (cm3 d−1) is given for a total
xylem potential H x (cm) and a total water potential at the
soil–root interface H sr (cm) as

qroot = diag(K r)(H sr−H x), (11)

where H sr is the (n− 1)× 1 vector of the total soil water
potential at the soil–root interface and K r is the (n− 1)× 1
vector of the root radial conductances (cm2 d−1), where

(K r)i =K r,i = 2 aroot,i π lroot,i kr,i, (12)

kr,i being the intrinsic root radial conductance (d−1) and
aroot,i being the root segment radius (cm) of root segment
i.

Including a Dirichlet boundary condition at the root collar,
which is assumed to be located at the first node, Eq. (8) can
be rewritten as

Ld

[
H collar
H x

]
=

[
Hprescribed

diag(K r)(H sr−H x)

]
, (13)

where Ld is the Laplacian matrix adjusted for the Dirichlet
boundary condition such that the first entry of the first row is
equal to 1 and all other entries are zeros. If we want to solve
for H x we can rewrite the above equation as

−Kx,1e1 H collar+Ln−1 H x = diag(K r) H sr− diag(K r) H x , (14)

where Ln−1 is the (n− 1)× (n− 1) submatrix of L with re-
moved first row and column and e1 is the (n− 1)× 1 unit
vector (see also Vanderborght et al., 2021, Eq. A5). Then, for
any known H sr, we can solve for H x as

(Ln−1+ diag(K r))︸ ︷︷ ︸
=:A

H x = diag(K r) H sr+Kx,1e1 H collar︸ ︷︷ ︸
=:bd

,

(15)

where A is symmetric and diagonal dominant for (K r)i >

0, and therefore positive definite and the right-hand side b

depends on the matric potential of the soil–root interface H sr
and the total root collar potential H collar.

When developing larger-scale soil models, we generally
do not want to consider individual root water potential, since
it is not feasible to explicitly describe the root architecture in
such models. Thus, the effective sink term for RWU should
be formulated in a way such that the values H x are not ex-
plicitly needed. For Dirichlet boundary conditions, we calcu-
late H x from Eq. (15) and insert it into the Eq. (11) which

describes RWU as

qroot = diag(K r)(H sr− (A−1 diag(K r) H sr

+A−1 Kx,1e1 H collar)), (16)

qroot = diag(K r)(I−A−1 diag(K r))H sr

− diag(K r)A−1 Kx,1e1 H collar, (17)

corresponding to Vanderborght et al. (2021), Eq. (A16). For
big, sparse matrices A, it is not efficient to compute A−1,
since this matrix is dense, so we express above equation as

A diag(K r)
−1︸ ︷︷ ︸

=:Aq

qroot = (A− diag(K r))H sr−Kx,1e1 H collar︸ ︷︷ ︸
=:bq

. (18)

and we can solve this sparse linear system for qroot for given
H sr and H collar (note that diag(K r)

−1 is sparse).
We can easily switch between Dirichlet boundary condi-

tions, where we set the total potential H collar (cm) at the
root collar, and Neumann boundary conditions, where we
predetermine a volumetric transpiration tact (cm3 d−1). In
the simulation, the boundary condition will automatically
be switched between Neumann and Dirichlet, ensuring that
the root collar potential cannot be below a critical potential
where we assume the plant’s wilting point. The relationship
between tact =

∑
iqroot,i and H collar is given by

tact =Krs(Heff−H collar), (19)
H collar = (KrsHeff− tact)/Krs, (20)

where Krs (cm2 d−1) is the root system conductivity, Heff =

SUF T
·H sr (cm) is the effective water potential at the soil–

root interface, and SUF (1) is the standard uptake fraction
as defined by Couvreur et al. (2012), which corresponds
with qroot/tact calculated for a uniform H sr. Equation (19)
is derived by summing up the rows of Eq. (17). For a de-
tailed derivation we refer to Vanderborght et al. (2021), Ap-
pendix A.

In dry soils, RWU is often limited by low soil hydraulic
conductivity near the root surface, i.e. in the perirhizal zone
that is influenced by the radial water flow towards the root.
Therefore, we consider an additional perirhizal resistance
for each root segment as described by Vanderborght et al.
(2023), which uses the approach of Schröder et al. (2008) to
determine the total potential at the soil–root interface H sr.
We assume a steady rate in the cylindrical perirhizal zone,
i.e. dθ/dt does not vary with radial distance from the root
axis r . The steady-state model is not transient, and the model
state only depends on the steady rate, which is determined
from the bulk total soil water potential H s and the root
xylem potential H x . Note that, with respect to the model
application, the steady-rate approach can also be replaced
by more complex dynamic rhizosphere models to determine
H sr (e.g. Khare et al., 2022; De Bauw et al., 2020; Mai et al.,
2019).
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The RWU of a single segment is given by

qr = 2arootπlrootkr(Hsr−Hx)=
Hsr−Hx

r1
, (21)

where qr (cm3 d−1) is the volumetric flow rate (see Eqs. (11)
and (12)) and r1 = (2arootπlrootkr)

−1 (d cm−2) is the radial
resistance to water flow through the root.

The volumetric flow rate qsr (cm3 d−1) towards the soil–
root interface through the perirhizal zone is equal to

qsr = 2πlrootKprhizB (Hs−Hsr)=
Hs−Hsr

r2
, (22)

where Hs (cm) is the mean total soil potential of the
perirhizal zone of the segments and Kprhiz (cm d−1) is the
average hydraulic conductance in the perirhizal zone, defined
by

Kprhiz =
8(hs)−8(hsr)

Hs−Hsr
, (23)

where 8(hc)=
∫ hc
−∞

K(h)dh is the soil matric flux potential
(cm2 d−1) and hs :=H s−z is the soil matric potential in the
perirhizal cylinder corresponding to the average volumetric
water content in that cylinder and to the soil matric potential
of the macroscopic soil model. Furthermore, hsr :=H sr− z

is the matric potential at the soil–root interface, B (1) is a
geometry factor, and r2 = (2arootπlrootKprhizB)

−1 (d cm−2)
is the resistance to water flow through the perirhizal zone.
The geometry factor B (1) is dependent on ρ (1), which is
the ratio of the outer radius of the perirhizal zone aprhiz (cm)
and the root radius aroot (cm). The geometry factor is given
by

B =
2(ρ2
− 1)

(1− 0.53ρ)2+ 2ρ2 ln(0.53ρ)
, (24)

ρ =
aprhiz

aroot
. (25)

We derive the geometry factor B in Sect. S1 in the Supple-
ment. The factor 0.53 represents the ratio between the ra-
dial distance from the root surface at which the water con-
tent is equal to the average perirhizal water content and the
perirhizal radius (Van Lier et al., 2006).

For the steady-rate assumptions, the flux into the root qr
equals the flux through the perirhizal zone qsr, i.e. qr = qsr :=

q. Since root and perirhizal zone resistances are serial, we
can compute the overall resistance as

q =
H s−H x

r1+ r2
=

2πarootlrootBkrKprhiz

arootkr+BKprhiz
(H s−H x) , (26)

where r1+ r2 is the resistance to water flow through the root
and perirhizal zone.

From qr = qsr, we can compute H sr as

H sr =
arootkrH x +BKprhizH s

arootkr+BKprhiz
. (27)

Note that Kprhiz is a function of H sr (see Eq. (23)) and that
we need to solve this implicit nonlinear equation for H sr for
given H s and H x . Note that, for a simulation with a Neu-
mann boundary condition, H x is variable and also depends
on H sr. Thus, for any given value of H s, two consistent val-
ues of H x and H sr need to be found.

To speed up computation time, we precompute the so-
lutions of Eq. (27) for a specific soil and create a four-
dimensional look-up table depending on H x , H s, (aroot kr),
and ρ. We use a fixed-point iteration to find consistent values
H x and H sr; see Algorithm 1. Initialization of H sr is done
with H

prev
sr , the soil–root interface potential of the previous

time step, or H s for the first time step.

2.4 Perirhizal geometry (xAx) versus uniform root
length density (xBx)

The geometry of the perirhizal zone is cylindrical and deter-
mined by the root radius aroot (cm) and the outer perirhizal
radius aprhiz (cm). The ratio ρ (1) between these two values
enters the geometry factor B (see Eq. (24)) and therefore af-
fects the potential at soil–root interface H sr (see Eq. (27)).
We use either 3D Voronoi mesh to obtain the outer perirhizal
radii (models of type xAx) or root length, surface, or volume
densities (models of type xBx).

In the first approach, we use a 3D Voronoi mesh around
the nodes of the root system considering all lateral roots.
In this way, the soil volume is partitioned into cells, where
each node has a corresponding Voronoi cell; see Fig. 3. The
Voronoi cell faces are located at mid-distance between the
neighbouring nodes. Therefore, the volume of the Voronoi
cells is a good approximation of the node perirhizal vol-
ume, and we define the root segment’s perirhizal volume volj
(cm3) as the volume of the Voronoi cell of the segment’s api-
cal node. We approximate this volume by a cylindrical ge-
ometry of the same volume, i.e.

volj = πlroot,j (a
2
prhiz,j − a

2
root,j ), (28)

and we can calculate the outer perirhizal radius aprhiz,j for
each root segment j as

aprhiz,j =

√
volj
πlroot,j

+ a2
root,j . (29)

The more commonly used approach so far is to approximate
the perirhizal geometry using root length density (cm cm−3),
surface density (cm2 cm−3), or volume density (cm3 cm−3)
in a finite soil volume volsoil (cm3) (e.g. De Bauw et al.,
2020; Mai et al., 2019). Assuming that the roots are evenly
distributed, the perirhizal volume is given by

volj = tj volsoil, (30)

where tj (1) is the ratio between the segment length (or sur-
face or volume) and the total root length (or surface or vol-
ume) within the finite soil volume. The outer radius aprhiz,j
for each root segment j is again given by Eq. (29).
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Algorithm 1 Fixed-point iteration to find consistent values H x and H sr.

Initialize: k := 0, H 0
x := froot(H

prev
sr ); see Eq. (15).

(1) H k+1
sr := fprhiz(H

k
x , H s); see Eq. (27).

(2) H k+1
x := froot(H

k
sr); see Eq. (15).

(3) k := k+ 1 and proceed with Step (1) until H k+1
x ≈H k

x and H k+1
sr ≈H k

sr.

Figure 3. Panel (a) shows the spring barley root system mapped to a periodic domain. Panel (b) shows the Voronoi diagram bounded by the
periodic domain, where each Voronoi cell is located around a node. Panel (c) shows the Voronoi diagram of a single layer with 1 cm height.

If we couple the perirhizal models with a macroscopic
soil model, the Voronoi mesh or the density-based method
must be aligned with the macroscopic finite volume cells
for mass conservation. For both methods, this will affect the
distribution of perirhizal radii; see Sect. 3.2. This density-
based approach is suitable for soils where the soil grid cells
are 3D with edge length in the order of centimetres. For
1D layered soil grids, the Voronoi-mesh-based method is
preferable, allowing more realistic distributions of the true
perirhizal zones within each soil layer. Note that both ap-
proaches are approximations, since we assume a cylindrical
perirhizal zone, which is generally not the case. The Voronoi
method computes more realistic perirhizal volumes but is
computational expensive and less feasible for dynamic root
growth.

2.5 Upscaling by aggregating RWU from root segment
to soil element level (Bxx)

For developing larger-scale models, we want to describe the
effect of the root system without keeping track of the ex-
act root system geometry. Generally, the number of root seg-
ments is much higher than the number of finite soil volumes
for 1D, 2D, or 3D soil models. Therefore, we aim for models
that are described on the soil element level. These models are
of category Bxx.

The linear system in Eq. (18) describes one equation per
root node excluding the root collar, i.e. n− 1 equations. The
number of soil cells m is generally much lower m� n− 1,

and we will rewrite the linear system in variables given per
soil cell. We can sum up Eq. (17) regarding the soil cells by
multiplying with the matrix M, i.e.

M qroot =M diag(K r)(I−A−1 diag(K r))H sr

−M diag(K r) A−1 kx,1e1 H collar, (31)

where M is an m× (n− 1) matrix mapping each root node
index to a soil cell index. For each column (i.e. node index-1)
the matrix contains exactly a 1 in the row of the soil cell index
where the node is located and zero otherwise. Therefore, the
RWU from a soil volume qsoil (cm3 d−1) is given by

qsoil =M qroot, (32)

and the right-hand side of Eq. (31) exactly computes the soil
fluxes. Now, we can simplify the system by assuming that the
soil–root matric potential is the same in each soil cell.

We define H soil
sr ∈ Rm to be the mean value of the H sr in

each soil volume. Note that (M MT ) is an m×m diagonal
matrix containing the number of root nodes within each soil
cell; therefore the mean value is given by

H soil
sr := (M MT )−1 M H sr = (MT )+ H sr, (33)

where MT+ is the Moore–Penrose pseudo-inverse of MT .
We can approximately solve above the equation for H sr,
yielding

MT H soil
sr ≈H sr, (34)
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Figure 4. Starting from the full hydraulic model, panel (a), we first derive the root system conductance Krs and layer aggregated root
hydraulic root properties, panel (b). These are given for each soil layer or soil volume i as SUFups

i
, total root surface surf

ups
i

, total summed
length lups

i
, and mean radial conductivity Kups

r,i . In a final step, panel (c), we neglect the actual root architecture and replace it with a parallel
root system with hydraulic parameters, preserving the macroscopic hydraulic properties.

where MT is an n×m matrix, H soil
sr is an m dimensional

vector at soil element level, and H sr is an n dimensional vec-
tor at root segment level. Note that, in this case, all entries
of H sr will be the same within every soil element, and this
assumption causes loss of information.

Inserting the approximation of Eq. (34) into Eq. (31) yields

qsoil =M diag(K r)(I−A−1 diag(K r))MT︸ ︷︷ ︸
Aup∈Rm×m

·H soil
sr −M diag(K r) A−1 kx,1e1 H collar︸ ︷︷ ︸

bup∈Rm

. (35)

This much smaller linear system can be solved very quickly
after calculating Aup once. However, the number of root
nodes might be limiting, since it is necessary to explicitly
calculate A−1.

For including the perirhizal model in the aggregated ap-
proach (Eq. 35), the total potential H soil

x can be calculated
from qsoil summing up Eq. (11) over the soil cells:

Mqroot =M diag(K r)(H sr−H x), (36)
Mqroot =M (diag(K r)

−1
+ diag(Kprhiz)

−1)−1(H s−H x), (37)

qsoil =M diag(K r)(MT H soil
sr −MT H soil

x ),yielding (38)

H soil
x =H soil

sr − (M diag(K r) MT︸ ︷︷ ︸
Kr,up∈Rm×m

)−1 qsoil. (39)

Therefore, the soil total potential can be represented by the
potentials at the perirhizal interfaces subtracted by the soil
flux.

A suitable pair, H soil
x and H soil

sr (both on soil element
level), is found using a fixed-point iteration as before for val-
ues per segment (Algorithm 2).

2.6 Upscaling by root architecture simplification: the
parallel root system approach (Cxx)

In a further simplification step, we replace the exact root sys-
tem by a parallel root system, where we assume exactly one
single-root segment per soil element (Vanderborght et al.,
2021). Each of these segments is connected directly to the
root collar by an artificial root segment; see Fig. 4. The RWU
of such a system is described by

qsoil =Krs diag(SUF ups) (H
ups
sr −H collar), (40)

where qsoil is the RWU per soil volume (cm3 d−1), Krs the
standard uptake fraction, H

ups
sr is the total potential at the

soil–root interface (cm), and H collar is a vector where each
component is the total water potential at root collar (cm).

Root hydraulic parameters of the parallel root model are
chosen in a way that the macroscopic hydraulic properties of
the exact root system are preserved. These properties are the
root system conductance Krs (cm2 d−1), the standard uptake
fraction SUF ups (1), the total root length lups (cm), the total
root surface surf ups (cm2), and the root radial conductance
K

ups
r (cm2 d−1) per each soil element. These models are of

category Cxx. This model is simpler than Bxx, as the general
incidence matrix representing the hydraulic root architecture
and mapped to the soil elements is replaced by a simple di-
agonal matrix. This results in a computationally less expen-
sive simulation at the cost of loss of accuracy, particularly
noticeable for highly heterogeneous soil water potential, as
hydraulic lift can only occur via a “detour” via the root col-
lar.

Firstly, we obtain SUF ups, root length l
ups
root, surface

surf ups, and root radial conductance K
ups
r per soil element

by summing the corresponding values given per each root
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Algorithm 2 Fixed-point iteration to find consistent values H soil
x and H soil

sr .

Initialize: k := 0, H
soil,0
x := hsoil(qsoil(H

soil,prev
sr )), applying Eq. (35) first and then Eq. (39).

(1) H
soil,k+1
sr := fprhiz(H

soil,k
x ,H s), Eq. (27), with averaged root and perirhizal radii per soil volume (3D) or soil layer (1D).

(2) H
soil,k+1
x := hsoil(qsoil(H

soil,k
sr )), applying Eq. (35) first and then Eq. (39).

(3) k := k+ 1, proceed with Step (1), until H
soil,k+1
x ≈H

soil,k
x and H

soil,k+1
sr ≈H

soil,k
sr .

segment over each soil layer or soil volume,

SUF ups
:=M SUF , (41)

l
ups
root :=M lroot, (42)

surf ups
:=M surf , (43)

K
ups
r :=M K r, (44)

where M is an m× (n− 1) matrix mapping each root node
index to a soil cell index as described in the previous section.
Therefore, SUF ups, l

ups
root, aups, and K

ups
r are m× 1 vectors,

where m is the number of soil layers.
Next, we choose the axial conductance K

ups
x of the arti-

ficial segments, which connects the single-root segments to
the collar in such a way that the macroscopic root system hy-
draulic properties SUF and Krs are the same as in the exact
hydraulic model. For each soil layer, the RWU can be de-
scribed as

(qsoil)i =KrsSUFups
i

(
(H

ups
sr )i −Hcollar

)
, (45)

=K
ups
r,i
(
(H

ups
sr )i − (H

ups
x )i

)
, (46)

=K
ups
x,i

(
(H

ups
x )i −Hcollar

)
, (47)

where H
ups
x is the total xylem potential of the parallel root

system model (cm). From these equations, we can we calcu-
late K

ups
x as

(K
ups
x )i =

KrsSUFups
i

1−KrsSUFups
i /K

ups
r,i
, (48)

usingKrsSUFi/K
ups
r,i = (H

ups
sr,i −H

ups
x,i )/(H

ups
sr,i −H collar) from

Eqs. (45) and (46).
We use the same iteration as in Algorithm 1, but the exact

root architecture is replaced by the parallel root model. We
iterate to find a suitable pair of H

ups
sr and H

ups
x .

With the parallel root system approach, the exact root ar-
chitecture and hydraulic properties can be neglected, while
Krs and SUF ups are still preserved. The simplified model is
typically much faster to solve, having less than 1 % of the
degrees of freedom of the original root system. Furthermore,
root hydraulics are solely dependent on the parameters Krs,
lups, aups, and K

ups
r , which are much easier to handle com-

pared to the full hydraulic model. At a constant total soil po-
tential, the approximation will be exact, but we expect dif-
ferences in dynamic settings where strong variations in soil
potential can appear.

Table 2. Van Genuchten parameters for loam, clay, and sandy loam
from the Hydrus 1D soil catalogue (Simunek et al., 2005).

Soil type θres θsat α n Ks
(–) (–) (cm−1) (–) (cm d−1)

Loam 0.078 0.43 0.036 1.56 24.96
Clay 0.068 0.38 0.008 1.09 4.8
Sandy loam 0.065 0.41 0.075 1.89 106.1

2.7 Root soil hydraulic scenarios

Root hydraulic properties are given by the root radial and
root axial conductances. These values were taken from the
literature: Knipfer and Fricke (2010) for spring barley us-
ing linear regression and Couvreur et al. (2012) for maize.
The hydraulic properties depend on the age of the root seg-
ments; see Fig. 5. For both measurements, axial conduc-
tances increase with root age, while radial conductances de-
crease. Soil hydraulic properties were described by the Van
Genuchten model (Van Genuchten, 1980). We obtained typi-
cal parameters for loam, clay, and sandy loam using the Hy-
drus 1D soil catalogue (Simunek et al., 2005); see Table 2.

In order to simulate field conditions, we consider the root
architectures of spring barley and maize in a periodic do-
main. In this way, we have two contrasting setups: for spring
barley, we choose an inter-row distance of 13 cm and plant
spacing of 3 cm; for maize, we choose a larger inter-row
distance of 76 cm and plant spacing of 16 cm. We consider
both plants at the end of their vegetative stage, resulting in a
growth period of 7 weeks for spring barley and 8 weeks for
maize.

All the following scenarios include nonlinear conductivi-
ties from the perirhizal model. The simulations describe wa-
ter depletion from an initially wet soil of −200 cm total soil
water potential using a transpiration rate of 0.5 (cm d−1) with
a sinusoidal shape from 06:00 to 18:00 LT with maximal
transpiration at noon and no uptake during the night. Ac-
tual RWU and corresponding cumulative uptake is calculated
over 2 weeks. At the top and bottom of the soil domain, we
prescribe no-flux boundary conditions so that water can leave
the domain only through transpiration. In the 3D scenarios,
the boundary conditions at the sides are periodic.
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Algorithm 3 Fixed-point iteration to find consistent values H
ups
sr and H

ups
x .

Initialize: k := 0, H
ups,0
x := froot(H

ups,prev
sr ); see Eq. (15).

(1) H
ups,k+1
sr := fprhiz(H

ups,k
x ,H

ups
s ); see Eq. (27).

(2) H
ups,k+1
x := froot(H

ups,k
sr ), see Eq. (15)

(3) k := k+ 1 and proceed with Step (1) until H
ups,k+1
x ≈H

ups,k
x and H

ups,k+1
sr ≈H

ups,k
sr .

Figure 5. The age-dependent root axial conductances and radial conductivities for spring barley (left subplot) and maize (right subplot).

3 Results

In the following, we first present the simulation re-
sults of root architecture and the corresponding pre-
computed perirhizal outer radii. Then, we show sim-
ulation results of the root hydraulic models using the
dynamic scenarios presented in Sect. 2.7. The imple-
mentation of the new upscaled models was performed
in the framework of CPlantBox (https://github.com/
Plant-Root-Soil-Interactions-Modelling/CPlantBox, last
access: 30 December 2024) and dumux-rosi (https://github.
com/Plant-Root-Soil-Interactions-Modelling/dumux-rosi,
last access: 30 December 2024), and the following results
can be found in the branch “upscaling”.

3.1 Root architectures for spring barley and maize

Figure 6 shows the root architecture development after 7
weeks for spring barley and after 8 weeks for maize, and
it illustrates the concept of using periodicity to mimic field
conditions. The axial resolution of the roots is set to a maxi-
mum of 0.5 cm, yielding a final amount of 6.92× 103 nodes
for the spring barley and 4.82× 104 segments for the maize
root system.

From root topology and root hydraulic parameters at seg-
ment level (see Sect. 2.7), we calculated the macroscopic root
system hydraulic parameters Krs, SUF; see lower-left sub-
plots in Fig. 6. Spring barley has a Krs of 0.0064 (cm2 d−1),
and maize has a Krs of 0.1345 (cm2 d−1).

3.2 Perirhizal outer radii

Perirhizal outer radii are precomputed for both root systems.
The first approach (xAx; see Sect. 2.4) is to use a Voronoi
mesh that is aligned to the soil grids; i.e. the maximum
Voronoi cell volume is equal to soil cell volume. Figure 7
shows the distribution of perirhizal outer radii with a topsoil
depth of 0–30 cm and a subsoil depth of 30–150 cm. Note
that the perirhizal radius can be larger than

√
volsoil/π if the

root segment length is small; see Eq. (29). In both root ar-
chitectures, root density in the topsoil is higher, leading to a
smaller mean outer perirhizal radius in the topsoil. For spring
barley, the mean outer radius is 0.51 cm (3D) and 0.71 cm
(1D) in topsoil and 0.53 cm (3D) and 0.92 cm (1D) in sub-
soil; for maize, it is 0.47 cm (3D), 0.65 cm (2D), and 0.75 cm
(1D) in topsoil and 0.55 cm (3D), 0.92 cm (2D), and 1.14 cm
(1D) in subsoil. A reduction in the dimensions of the soil grid
generally leads to higher mean outer perirhizal radii.

The second approach (xBx; see Sect. 2.4) uses root length,
surface, or volume densities to compute the perirhizal outer
radii. Figure 8 shows the distribution of perirhizal outer
radii in topsoil and subsoil based on length densities for the
soil grid types used in the simulations. As for the Voronoi
method, topsoil mean outer radii are smaller due to higher
root density: 0.43 cm (3D) and 0.72 cm (1D) for spring bar-
ley and 0.42 cm (3D), 0.65 cm (2D), and 1.05 cm (1D) for
maize. For subsoil, mean radii are 0.51 cm (3D) and 1.02 cm
(1D) for spring barley and 0.49 cm (3D), 0.93 cm (2D), and
1.5 cm (1D) for maize. For the 1D soil layers, the histogram
is strongly divided into radii classes because of the limited
number of soil layers, where most smaller outer radii are
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Figure 6. Spring barley (a) and maize (b) root architecture under field conditions, both at the end of their vegetative stage (after 7 weeks for
spring barley and 8 weeks for maize). In the lower-left subplots, we show the corresponding SUF and root length density (RLD).

Figure 7. Histogram of perirhizal zone outer radii using a 3D Voronoi diagram for spring barley (a, b) and maize (c–e) for the soil grids used
in the following sections. Colours denote typical soil horizons: topsoil 0–30 cm depth and subsoil 30–150 cm depth.

located in the upper layers. For 1D soil grids, we expect
the largest deviation in model results compared to using the
Voronoi method.

3.3 Root soil hydraulic simulation results

3.3.1 Full hydraulic model using a 3D grid (AAA)
compared to a lower-dimensional grid (AAB)

The full hydraulic 3D model is solved as described in
Sect. 2.3, and perirhizal radii were determined using the
Voronoi method (see Sect. 2.4) for the scenarios presented
in Sect. 2.7. We compare using a 3D macroscopic soil with
a resolution of 1 cm3 (reference scenario AAA) to using a

1D macroscopic soil with layers of 1 cm thickness (AAB),
where only the vertical water movement is considered. Fig-
ure 9 shows the resulting soil matric potential for maize in
loam soil after 2 weeks of simulation time and highlights
the difference between the 3D grid and the 1D grid where
horizontal water movement is neglected. Using a 3D grid
(left subplot) shows the development of local water depletion
around areas with high RLD, while using a 1D grid (right
subplot) relies on averaged values per layer.

The actual and cumulative transpiration is presented in
Fig. 10 for the three soil types. The solid curve represents
the reference scenario (AAA), and the dashed line represents
the scenario using a 1D macroscopic soil grid (AAB). Addi-
tionally, for maize, the dotted line shows the solution using a
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Figure 8. Histogram of perirhizal zone outer radii using root length densities to obtain perirhizal outer radii for spring barley (a, b) and
maize (c–e) for the soil grids used in the following sections. Colours denote typical soil horizons: topsoil 0–30 cm depth and subsoil 30–
150 cm depth.

Figure 9. Soil matric potential for maize in loam soil after 2 weeks of simulation time in a 3D grid (a) and in a 1D grid (b). In panel (a),
local depletion develops around areas with high RLD, while, in panel (b), the water potential is constant per soil layer.

2D macroscopic grid, where water movement along the plant
rows is neglected. Generally, for maize, water stress occurred
earlier compared to spring barley for loam and clay. For
sandy loam, both root systems were immediately in stress.
The differences in cumulative root uptake are much higher
for maize, since there is more variation in RLD due to the
distance between the planting rows. Using a 2D macroscopic
grid, where water movement in this direction is enabled,
yields an improved accuracy. For spring barley, RLD is much
more uniform due to smaller planting distances; therefore the

error by neglecting lateral water movement is small. Addi-
tionally, the differences are smaller in finer-textured soils,
since they redistribute the water over larger distances so that
the soil water potential is more uniform.

A lower-dimensional soil grid leads to an overestimation
in RWU compared to the full 3D model. For spring barley,
after 1 week, the cumulative root uptake differed by 1 %
for loam, 0.7 % for clay, and 12.5 % for sandy loam; after 2
weeks, the error increased to 1.6 % for loam, 1.7 % for clay,
and 13.9 % for sandy loam. For maize, cumulative transpi-
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ration is largely overestimated using a 1D soil grid. After 1
week simulation time, it differed by 43.5 % for loam, 28.1 %
for clay, and 115.1 % for sandy loam; after 2 weeks, it dif-
fered by 62.4 % for loam, 42.5 % for clay, and 110.8 % for
sandy loam. Using a 2D soil grid, errors for maize reduced
to 13.3 % for loam, 8 % for clay, and 45.5 % for sandy loam
after 1 week and 13.4 %, 8.4 %, and 34.9 % after 2 weeks.

Figures 11 and 12 show the RWU of spring barley and
maize from soil at noon (top row) and redistribution dur-
ing the night (bottom row) for the three soil types. Solid
lines represent the results using a 3D soil grid (AAA), while
dashed lines use a 1D grid (AAB). The different root archi-
tectures result in different RWU patterns. In the beginning
(blue line), the RWU is proportional to the SUF, since the
initial total soil water potential is constant. Firstly, water is
taken up from the upper layers; later, when the upper layer
becomes drier, more water is taken up from the lower layers,
qualitatively changing the shape of the RWU profile. During
the night, water is redistributed from the lower layers into
the upper layers. Redistribution is strongest for clay for both
spring barley and maize and is negligible for sandy loam.

Using a 1D soil grid leads to differences in RWU patterns:
for spring barley, the differences are small in all soil types
over the whole period of 2 weeks. Differences in maize are
strong due to the overestimated cumulative transpiration (see
the right column of Fig. 10), which also impacts the local
uptake. For loam and clay soil, uptake from the upper layer
is largely overestimated at the beginning, leading to a de-
layed dynamic in water uptake and redistribution. For loam
and clay, the RWU is proportional to the SUF for the first
2 d until the profile changes due to soil water depletion in the
upper layers.

While introducing errors, computational time decreases.
For spring barley, the model runs 5 times faster for loam and
clay and 3 times faster for sandy loam. For maize, the speed-
up compared to the 3D soil grid is higher, since the 3D do-
main is larger, yielding a speed-up of 15 times for loam, 18
times for clay, and 11 times for sandy loam for the 1D grid
and 8 times for loam and clay and 10 times for sandy loam
for the 2D grid.

3.3.2 The impact of using density-based outer
perirhizal radii instead of the Voronoi method
(AAA vs. ABA; AAB vs. ABB)

We compare the full hydraulic model using the 3D macro-
scopic soil and the Voronoi method for the outer perirhizal
radii (AAA) to the same model, where the outer radii were
based on root length, surface, or volume (ABA). Actual tran-
spiration and the shape and dynamics of the resulting RWU
were similar, and errors of cumulative transpiration were un-
der 1 % after 2 weeks. Given their similarities, this informa-
tion is not plotted.

The approximation has a stronger impact on the results in
1D because the soil layers are much larger than the soil vol-

umes in 3D and because the root length, surface, or volume
densities are constant in each of these soil volumes. Figure 13
shows a comparison between the full hydraulic 3D model in
a 1D soil grid using the Voronoi method (AAB) and an ap-
proximation based on densities (ABB). The choice to cal-
culate outer radii based on root length, surface, or volume
showed negligible differences in the overall cumulative root
uptake, with the exception of maize in loam soil: radii based
on length densities overestimate the cumulative flux for 1 %,
while they underestimate the cumulative flux for 6 % based
on surface or volume. For spring barley, the difference be-
tween the Voronoi and density-based methods is small. After
2 weeks, cumulative flux is underestimated less than 1 % for
loam and clay and 3.1 % for sandy loam. For maize, the dif-
ferences are stronger, leading to an error of approximately
6 % for loam using surface or volume densities (1.2 % for
length), 5 % for clay, and 16 % for sandy loam.

The shape and dynamics of RWU are similar for spring
barley. For maize, small deviations can be observed around
day 6 for loam and clay. For clay soil, the error increases,
leading to less water redistribution using the approximation.
For sandy loam, RWU is strongly underestimated in the be-
ginning of the simulation, but RWU profiles become more
similar for later simulation times (day 6 and day 13). RWU
profiles for spring barley and maize are given in Figs. S1 and
S2 in the Supplement, showing soil at noon (top row) and
redistribution during the night (bottom row) using a 1D grid
for the three soil types comparing the two different methods
of calculating the perirhizal radii, using the Voronoi method
or based on RLD. Solid lines represent the results using the
Voronoi method (AAB), and dashed lines use outer radii
based on RLD (ABB).

The Voronoi method is computationally expensive, but the
outer radii can be precomputed. Therefore, there is no speed-
up in simulation time using the density-based methods. The
approximation using density-based outer radii is very accu-
rate regarding RWU but needs review for more complex rhi-
zosphere models, e.g. including root solute uptake.

3.3.3 Full hydraulic model (ABB) compared to the
upscaled root hydraulic model (BBB)

In the next step, we replace the full 3D hydraulic model
with a 1D grid (ABB) by the aggregated model (BBB) (see
Sect. 2.5) and compare plant actual and cumulative transpi-
ration; see Fig. 14. The approximation works very well for
loam and clay: for spring barley, the error is less than 0.8 %;
for maize, it is less 1.9 % for loam and 5.7 % for clay af-
ter 2 weeks. For sandy loam, the cumulative transpiration is
underestimated by around 20 % for spring barley and 9.5 %
for maize. This indicates that, in the case of sandy loam, the
variation in root xylem potential across one soil layer is high;
therefore, we introduce a larger error by using the same to-
tal potential at the root–soil interface and the same xylem for
each layer; see Eq. (34).
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Figure 10. Potential and actual transpiration of the full 3D hydraulic model of spring barley (a, c, e) and maize (b, d, f) for the soil types
loam (a, b), clay (c, d), and sandy loam (e, f). The blue line indicates the cumulative plant water uptake. Solid lines represent the results
using a 3D soil grid (AAA), while dashed lines are the results using a 1D grid and dotted lines are the results using a 2D grid (AAB).

Figure 11. Vertical RWU of the full hydraulic 3D model during noon (a–c) and redistribution during the night (d–f) of spring barley for
loam (a, d), clay (b, e), and sandy loam (c, f). Solid lines represent the results using a 3D soil grid (AAA), while dashed lines use a 1D grid
(AAB).
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Figure 12. Vertical RWU of the full hydraulic 3D model during noon (a–c) and redistribution during the night (d–f) of maize for loam (a,
d), clay (b, e), and sandy loam (c, f). Solid lines represent the results using a 3D soil grid (AAA), while dashed lines use a 1D grid (AAB).

Figure 13. Potential and actual transpiration of the full hydraulic 3D model of spring barley (a, c, e) and maize (b, d, f) for the soil types
loam (a, b), clay (c, d), and sandy loam (e, f) in a 1D soil grid. The blue line indicates the cumulative plant water uptake. Solid lines represent
the results using Voronoi method (AAB), while dashed lines use outer radii based on root length, surface, or volume densities (ABB).
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Figure 14. Comparison of the full hydraulic model (ABB) to the aggregated model (BBB) using a 1D soil grid. Potential and actual transpi-
ration of spring barley (a, c, e) and maize (b, d, f) for the soil types loam (a, b), clay (c, d), and sandy loam (e, f). The blue line indicates the
cumulative plant water uptake.

The RWU profiles for spring barley and maize reveal that
aggregation works well for loam and clay. However, for
sandy soil, the profiles show qualitative differences, strongly
underestimating RWU in the lower soil layers for both plants
and, in the case of maize, initially overestimating RWU in
the upper layers. RWU profiles are presented in Figs. S3 and
S4.

Compared to the full 3D root hydraulic model using a 1D
soil grid (ABB), computation time was 6–8 times faster for
spring barley and 75–100 times faster for the maize using the
aggregated model. Generally, the speed-up of the method is
mainly dependent on the number root of segments, which is
reduced to the number of soil elements. The total speed-up
in the aggregated model in a 1D soil (BBB) compared to the
full hydraulic model using a 3D soil grid (ABA) is around 25
times for spring barley and 1000 times for maize.

3.3.4 Full hydraulic model (ABB) compared to the
parallel root system (CBB)

As a further simplification, we replace the 3D full hydraulic
root model using a 1D grid (ABB) by the parallel root model
(CBB) (see Sect. 2.6). Figure 15 shows the actual and cumu-
lative transpiration of spring barley and maize. For spring
barley, the parallel root system underestimates the actual
transpiration. After 2 weeks, the error of the cumulative tran-
spiration is 11.9 % for loam, 12.3 % for clay, and 20.2 % for
sandy loam. For the maize root system, the actual transpira-
tion is overestimated, with errors of 1.7 %, 6.4 %, and 30.4 %
for loam, clay, and sandy loam.

For loam and clay, RWU profiles look similar; for spring
barley, redistribution is shifted upwards after day 6. As in
the case of the aggregated model, sandy loam has the largest
error. RWU profiles for the parallel root system model for
spring barley and maize are given in Figs. S5 and S6.

The computational speed-up of the parallel root system
model (CBB) compared to the full hydraulic model (ABB)
is similar to the speed-up of the aggregated model. The rea-
son for this is that, in both models, the degrees of freedom
are proportional to the number of soil layers. Compared to
the full root hydraulic model, the computation time was 7–
8 times faster for spring barley and 96–126 times faster for
maize. The total speed-up of the parallel model in a 1D soil
(CBB) compared to the full hydraulic model using a 3D grid
(ABA) is around 30 times for spring barley and 1180 times
for maize.

The advantage of the parallel root system is that the num-
ber of parameters is small compared to the full hydraulic
model or the aggregated model. The root system hydraulic
properties are solely described by SUF, length l, root sur-
face “surf”, and radial conductivity K r per soil layer (see
Sect. 2.6), which can easily be managed by larger-scale mod-
els.

4 Discussion

The right spatial and temporal scale of a mathematical model
is often a balance between accuracy and efficiency. Equally
importantly, small-scale mechanistic models are often hard to
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Figure 15. Comparison of the full hydraulic model (ABB) and the parallel root model (CBB) using a 1D soil grid. Potential and actual
transpiration of spring barley is shown in panels (a), (c), and (e), and that of maize is shown in panels (b), (d), and (f). The blue line indicates
the cumulative plant water uptake.

parameterize and are not feasible for larger-scale applications
(Roose and Schnepf, 2008). In this study, we showed step by
step how to develop larger-scale models, from fully param-
eterized mechanistic hydraulic root–soil interaction models,
such as those presented by Schnepf et al. (2023, 2020). We
analyse the increase in efficiency by each upscaling step, the
error that is introduced, and the number of model parameters
that are needed. Tables 3 and 4 show the errors and the cor-
responding speed-ups introduced by the upscaled models for
spring barley and by using a 1D grid or 2D grid for maize.
Results suggest that the error introduced by the upscaling
steps depends on both the root architecture and the root and
soil hydraulic properties. The root hydraulic architectures in
our simulations were in range with values for maize (Meu-
nier et al., 2019) and cereals (Baca Cabrera et al., 2024).

Reducing the dimensionality of the macroscopic soil
model from 3D to 1D (AAA vs. AAB) works well if lateral
water movement can indeed be neglected. This is the case if
roots are evenly distributed with similar root hydraulic prop-
erties (Couvreur et al., 2014). Furthermore, even if the roots
are evenly distributed, they also need to be sufficiently dense,
depending on the soil hydraulic conductivity. Otherwise, iso-
lated depletion zones can develop, which would lead to hor-
izontal fluxes in the 3D soil domain that are not represented
in the 1D soil layer. For spring barley, this worked well for
loam and clay, but, for sandy loam, we observed a larger er-
ror due to low soil conductivity. For maize, errors were larger
due to its non-uniform root distribution. Generally, the ac-
curacy of 1D soil models is dependent on the inter-row and

planting distance. In the maize scenario, root density strongly
varies in the direction between two plant rows. Therefore, to
maintain a more precise model, it is recommended to neglect
only one dimension, keeping the direction orthogonal to the
planting row and averaging along the direction of the plant-
ing row, where changes in root density are expected to be
smaller. In the case of maize, using a 2D macroscopic soil
model reduced the error, with a speed-up between 5 and 10
times dependent on the soil type (see Table 4).

We used a new method to determine the outer radii of the
perirhizal zones based on Voronoi diagrams in 3D, similarly
to what Kohl et al. (2007) did for 2D root observations in
trenches. We compared these more exact results to the com-
mon approach calculating the radii based on length, surface,
or volume densities (AAB vs. ABB), e.g. Schröder et al.
(2008), Van Lier et al. (2006). Generally, the approximation
using densities works very well, with a negligible impact for
3D soil grids and a stronger impact using 1D soil layers. In
the 1D case, using the Voronoi approach leads to higher radii
at the root tips, since the Voronoi cell volumes are statisti-
cally larger at the root tip nodes, where a small root segment
has access to a large soil volume. Thus, those parts of the root
system with a higher root radial conductance have access to
a larger soil volume compared to the uniformly distributed
roots, leading to an increased actual transpiration. Since re-
stricting the model to vertical movement leads to an overesti-
mation of actual transpiration, the underestimation of actual
transpiration of the more classical approaches seems benefi-
cial. Overall, we showed that perirhizal radii based on length,
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surface, and volume densities introduced only a small error
compared to the other upscaling steps. For both plants, the
sandy loam scenario led to the highest discrepancies in cu-
mulative plant uptake because low soil conductivity leads to
steeper gradients in the rhizosphere and generally increases
the importance of the perirhizal zones.

Upscaling by aggregating RWU from root segment to soil
element level was introduced by Couvreur et al. (2012), not
considering any perirhizal conductance. In this case, the to-
tal potential at the soil–root interface is the same for all root
segments in each soil layer in the full hydraulic model and
in the aggregated one. Vanderborght et al. (2023) included
perirhizal conductance, which leads to individual total po-
tentials at the soil–root interface for the full hydraulic model,
and aggregation leads to the additional assumption that these
total potentials at the soil–root interface are equal in each
soil layer. In this study, we tested this assumption for the first
time in dynamic settings. The approximation performs well
in loam and clay soil because of the higher soil conductivity,
with relative errors less than 1 % for spring barley (0.04 and
0.05 mm absolute error) and maize (±0.5 mm absolute error
for 1D; −1.7 and −0.6 mm for 2D) compared to reference
scenario AAB. For sandy loam, cumulative transpiration was
underestimated by around 23 % for both plants (5.9 mm for
spring barley; −3.9 mm for maize 1D and −2.5 maize 2D);
see Tables 3 and 4. The speed-up of the method is dependent
on the number of segments within the root system. Depend-
ing on soil type, the aggregated model is at least 26 times
faster for spring barley and 1111 times faster for maize using
a 1D grid and 28 times faster for maize using a 2D grid.

In a further step, we replaced the root architecture model
with a parallel root model to obtain a more efficient model
with fewer parameters, which is easier to parameterize and
can be used in an easier way by larger-scale models (Van-
derborght et al., 2024). It relies only on the root system con-
ductivity Krs and values given per soil layer (SUF, length l,
root surface “surf”, and radial conductivity K r) and needs
no additional information on root system topology. Results
are exact when the soil–root interface potentials are uni-
form. For non-uniform soil–root interface potentials, the up-
take compensation is not exact anymore. Under the dynamic
depletion scenarios, this approach led to an underestimation
of cumulative uptake for spring barley and an overestima-
tion for maize, owing to different root hydraulic properties.
The parallel model (CBB) is an efficient approximation, with
the largest speed-ups where the lumped parameters are de-
rived from the mechanistic parameters of the detailed model
(AAA).

Within the perirhizal zone, the steep gradients in water
potential towards the roots are described using the steady
rate approach of Schröder et al. (2008). We emphasize that
this analysis of upscaling methods could be done with more
complex rhizosphere models. The water potential near the
root surface depends on a variety of biochemical processes
leading to complex mechanistic models that are often hard to

parameterize. Important rhizosphere processes affecting root
water uptake include mucilage (Schwartz et al., 2016), root
hairs (Duddek et al., 2023), mycorhizal fungi (Püschel et al.,
2020), and the osmotic potential (Wang et al., 2023). They
are often not explicitly described by the model, but they enter
the model as effective or lumped parameters. Furthermore,
one could aim to reduce the errors introduced by the dimen-
sionality reduction, especially in row crops, e.g. by numer-
ical homogenization. In general, to obtain effective models
and parameters, a homogenization procedure can be a valu-
able tool in model development (Hornung, 1996).

5 Conclusions

RWU is crucial for soil water balance and plant develop-
ment. We describe soil–root hydraulics and dynamic root ar-
chitecture in a mechanistic way and analyse upscaling meth-
ods to develop efficient sink terms for land surface or crop
models. In this study, we explored the mathematical funda-
mentals of the different upscaling approaches and the im-
pact of each simplification step. Reducing the dimension-
ality of the macroscopic soil model from 3D to 1D (AAA
vs. AAB) worked well if lateral water movement can indeed
be neglected. This depended on root distribution and on root
and soil hydraulic properties. Assuming homogeneously dis-
tributed roots to calculate the outer perirhizal radii provided
accurate results regarding RWU (AAB vs. ABB) but needs
review for more complex rhizosphere models. Generally, the
approximation had a stronger impact using coarse 1D soil
layers, which leads to an underestimation of the actual tran-
spiration. The exactly upscaled model (BBB) with uniform
soil–root interface water potential offered a large speed-up
in computation time, introducing only small errors compared
to the error introduced by dimensionality reduction. The par-
allel root model (CBB) introduced slightly larger errors but
can be implemented more easily in larger-scale models due
to a lower number of model parameters.

This study highlights the importance of carefully consid-
ering the trade-offs between model complexity and accu-
racy. By pinpointing the sources of errors and understand-
ing where they accumulate or cancel out, we provide guid-
ance for choosing appropriate models based on the required
performance and accuracy. This knowledge facilitates the de-
velopment of new sink terms and enhances the reliability of
RWU modelling in diverse agricultural and environmental
contexts.
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