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Abstract. Long short-term memory (LSTM) networks have
demonstrated state-of-the-art performance for rainfall-runoff
hydrological modelling. However, most studies focus on
predictions at a daily scale, limiting the benefits of sub-
daily (e.g. hourly) predictions in applications like flood fore-
casting. Moreover, training an LSTM network exclusively
on sub-daily data is computationally expensive and may
lead to model learning difficulties due to the extended se-
quence lengths. In this study, we introduce a new architec-
ture, multi-frequency LSTM (MF-LSTM), designed to use
input of various temporal frequencies to produce sub-daily
(e.g. hourly) predictions at a moderate computational cost.
Building on two existing methods previously proposed by the
co-authors of this study, MF-LSTM processes older inputs
at coarser temporal resolutions than more recent ones. MF-
LSTM gives the possibility of handling different temporal
frequencies, with different numbers of input dimensions, in
a single LSTM cell, enhancing the generality and simplicity
of use. Our experiments, conducted on 516 basins from the
CAMELS-US dataset, demonstrate that MF-LSTM retains
state-of-the-art performance while offering a simpler design.
Moreover, the MF-LSTM architecture reported a 5 times re-
duction in processing time compared to models trained ex-
clusively on hourly data.

1 Introduction

Data-driven methods, particularly long short-term mem-
ory (LSTM) networks (Hochreiter and Schmidhuber, 1997),
have demonstrated state-of-the-art performance in rainfall-
runoff hydrological modelling (Kratzert et al., 2019b; Lees
et al., 2021; Loritz et al., 2024). Currently, most studies pri-
marily focus on predictions at a daily scale. However, certain
applications, such as flood forecasting, can benefit from sub-
daily scale predictions, especially in small fast-responding
catchments. These higher temporal resolutions allow the
model to better capture an event’s magnitude and avoid arti-
ficial attenuation or dampening caused by daily aggregation.
In addition, they allow the model to reproduce more accu-
rately the temporal dynamics of the hydrograph and open up
the possibility of capturing flash floods. For this reason, many
operational flood forecasting services, including the National
Water Prediction Service of the National Oceanic and Atmo-
spheric Administration (NOAA) in the USA and the Flood
Forecasting Centre of Baden-Wiirttemberg (HVZ) in Ger-
many, produce forecasts at a sub-daily resolution for their
operational services.

One major drawback of running LSTM models at exclu-
sively hourly resolution is the significant increase in com-
putational cost for both model training and evaluation. For
instance, studies using LSTM models at daily resolution typ-
ically employ a sequence length of 365d for predictions
(Kratzert et al., 2019b; Klotz et al., 2022; Lees et al., 2021;
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Loritz et al., 2024). By spanning a full year of data, this ap-
proach allows the LSTM model to capture long-term sea-
sonal processes, such as snowmelt (Kratzert et al., 2019a).
However, for hourly data, the equivalent sequence length in-
creases to 365 x 24 = 8760 time steps, leading to a substan-
tial increase in the computational resources required. More-
over, LSTM models have shown difficulties in learning in-
formation over long sequence lengths (Chien et al., 2021;
Zhang and You, 2020), which would create a direct limitation
when working exclusively with high-frequency data, such as
hourly or 15 min resolutions.

A potential strategy for tackling this problem is to re-
duce the sequence length. However, this comes at the cost of
excluding long-term processes. For example, if a sequence
length of 365 time steps is maintained when working with
hourly data, the look-back period would only cover 2 weeks,
as opposed to a full year. Consequently, the model might not
account for important long-term dynamics.

Another possible solution is the concept of ordinary dif-
ferential equation LSTM (ODE-LSTM) models proposed
by Lechner and Hasani (2020). The authors handle non-
uniformly sampled data through the use of a continuous-
time state representation of recurrent neural networks. Gauch
et al. (2021) carried out experiments exploring the potential
of ODE-LSTM models in rainfall-runoff modelling. How-
ever, they indicated that this method achieved lower perfor-
mance at a higher computational time than their proposed
alternative.

Gauch et al. (2021) proposed the idea of processing older
inputs at coarser temporal resolutions compared to more re-
cent data. This approach is based on the fact that, for a dissi-
pative system like a catchment, the importance of the tempo-
ral distribution of inputs diminishes the further back in time
we look (Loritz et al., 2021). For instance, in cases where dis-
charge during spring is driven by snowmelt, the exact hour
in which snow accumulated 2 months earlier is unlikely to
affect the hydrograph. Similarly, when modelling a storm,
the basin’s response will vary depending on the soil satura-
tion. If the soil is saturated due to heavy rain over the past
month, the precise timing of a peak in rainfall 3 weeks before
becomes irrelevant. Thus, this approach to handling inputs
at different temporal resolutions allows the model to cap-
ture long-term processes without the computational burden
of processing all data at high frequency. In the following, we
use a concrete example to both better illustrate the ideas pro-
posed by Gauch et al. (2021) and make the connection with
our method. For this, we will use 1 year of data to make a
prediction, but only the most recent 2 weeks (14 x 24 = 336
time steps) will be processed at hourly resolution, while the
rest will be processed at daily resolution. The number of time
steps processed at each frequency is a model hyperparameter.

The first architecture proposed by Gauch et al. (2021), re-
ferred to as shared multi-timescale LSTM (sSMTS-LSTM),
begins with a forward pass at daily resolution (e.g. 365 time
steps). The LSTM network’s hidden and cell states from 2
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weeks prior to the final time step are then retrieved, and the
LSTM network is re-initialized with these states. Then, a sec-
ond forward pass is performed using hourly data for the last
2 weeks. Moreover, since both daily (from the first forward
pass) and hourly (from the second forward pass) predictions
are available for the last 2 weeks, the authors proposed a reg-
ularization technique in which an extra term is incorporated
into the loss function to induce consistency between the daily
and hourly predictions.

One limitation of this architecture, highlighted by the au-
thors, is that, because the same LSTM cell processes both
daily and hourly data, the input at both timescales must in-
clude the same number of variables. As they mentioned, this
can be problematic in operational settings, where different
temporal resolutions often have different available variables.
To address this, the authors proposed a more general archi-
tecture called multi-timescale LSTM (MTS-LSTM). In this
variant, the hidden and cell states retrieved from 2 weeks
prior are passed through a transfer function, and the result
is used to initialize a second LSTM cell, which processes the
hourly data. The advantage of this approach is that, with sep-
arate LSTM cells for each temporal frequency, different sets
of input variables can be used at each resolution. We refer the
reader to Fig. B1 for a graphic visualization of these ideas.

Building on the work of Gauch et al. (2021), we propose a
new methodology that combines the strengths of both mod-
els. We refer to it as multi-frequency LSTM (MF-LSTM).
On the one hand, this new methodology retains the simplic-
ity and elegance of the SsMTS-LSTM model by using a sin-
gle LSTM cell to process data at multiple temporal frequen-
cies. On the other hand, we keep the ability of the MTS-
LSTM model to handle different numbers of input variables
at each frequency, which we accomplish through the use of
embedding layers. Moreover, and as explained in detail in the
following sections, we make predictions only at the highest
frequency (e.g. hourly), and the remaining frequencies are
recovered by aggregation, which guarantees cross-timescale
consistency without the use of additional regularization.

The remainder of the paper is structured as follows. Sec-
tion 2 details the MF-LSTM architecture and the experi-
mental setup, including the datasets used and the benchmark
comparisons. In Sect. 3, we present and analyse the results of
these experiments. Finally, Sect. 4 summarizes the key find-
ings and offers the study’s conclusions.

2 Data and methods
2.1 Data and benchmarking

To ensure consistency with Gauch et al. (2021) and to enable
a direct comparison, we followed their experimental setup.
Keeping the same experimental setup allowed us to compare
their results against our proposed method without having to
rerun their experiments. The importance of driving model
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improvement through community benchmarks has been dis-
cussed previously in the machine learning and hydrologi-
cal communities (Donoho, 2017; Nearing et al., 2021; Klotz
et al., 2022; Kratzert et al., 2024).

The experiments were conducted in 516 basins located
across the contiguous United States, all of which are part
of the CAMELS-US dataset (Addor et al., 2017). From this
dataset, we extracted 26 static attributes (see Table A3).
The hourly input data (see Table Al) were extracted from
North American Land Data Assimilation System (NLDAS-
2) hourly products (Xia et al., 2012), while the target dis-
charge data were retrieved from the USGS Water Information
System (USGS, 2016). Following standard machine learning
practices, the data were divided into three subsets. The train-
ing period was from 1 October 1990 to 30 September 2003,
the validation period was from 1 October 2003 to 30 Septem-
ber 2008, and the testing period was from 1 October 2008 to
30 September 2018.

2.2 MF-LSTM

The concept of MF-LSTM comes from the principle that an
LSTM cell has no inherent limitation in processing data at
different temporal frequencies. In contrast to process-based
hydrological models, where one would not update a stor-
age (say interflow) with a Smmh~! flux (say evapotranspi-
ration) in one time step and then with an 8 mmd~" flux in
another, an LSTM cell can accommodate an equivalent up-
dating scheme. To process an input, an LSTM cell always
processes a sequence one step at a time. However, there is
no explicit assumption about the progress of time within one
such step. Due to its time-dependent gating mechanisms, the
LSTM cell can learn to modulate how the cell states are up-
dated, regardless of the temporal resolution of the inputs.
Consequently, we can leverage this property to handle multi-
ple temporal frequencies within a single LSTM cell, process-
ing older inputs at coarser resolutions and more recent data
at higher resolutions.

A concrete example of this approach is illustrated in
Fig. 1a using daily and hourly frequencies. In this example,
our goal is to predict hourly discharge. To capture long-term
processes, we initially input a full year of high-resolution
hourly data (e.g. 365 x 24 = 8760 hourly time steps). To
avoid the computational burden and learning difficulties as-
sociated with processing long sequences, the first n time
steps were processed at a coarser resolution, reducing the
length of the input sequence entering the LSTM cell. The
number of time steps processed at each resolution is a model
hyperparameter and can be determined through hyperparam-
eter tuning.

The example in Fig. la shows the case where the first
n =351 x 24 = 8424 time steps were aggregated into 351
blocks, each containing an average of 24 hourly measure-
ments. Given the normalization of the input and target data
and the non-mass-conservative structure of the LSTM model,
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both the average and the sum of the hourly measurements can
be used. The remaining m = 14 x 24 = 336 time steps were
then processed at the original hourly resolution. By applying
this method, we reduced the original sequence length from
8760 to 351 + 336 = 687 time steps, decreasing the amount
of data to be processed by a factor of 12.8.

To inform the LSTM cell about the frequency it should be
operating at, we added a flag channel. This has a value of
zero for the first 351 time steps and a value of one for the
remaining 336. Adding a flag to help the model distinguish
between different types of conditions is a common practice
in machine learning, as it provides the model with additional
context (Nearing et al., 2022). For the LSTM cell specifically,
the flag channel acts as an additional bias that further regu-
lates the gating mechanisms. Figure 1b shows the inclusion
of the flag channel for the different frequencies.

Note that, in the previous paragraph, we used pre-defined
values to simplify the explanation and clarify the concept.
However, the method is by no means restricted to this setup,
and its flexibility allows it to adjust the number of time steps
processed at each resolution and the order in which the dif-
ferent frequencies are applied. Additionally, the composition
of the time series can be alternated from batch to batch dur-
ing training or inference. Moreover, the method is not re-
stricted to using only two frequencies and, as we show in the
next section, a weekly—daily—hourly frequency scheme can
be handled without any additional burden.

One of the main advantages stated by Gauch et al. (2021)
about the MTS-LSTM architecture is its ability to handle a
variable number of inputs for each frequency, because dif-
ferent LSTM cells are used for each temporal frequency (see
Fig. B1). We propose the use of embedding networks as an
alternative solution. By using one embedding network for
each temporal frequency, we can map different numbers of
inputs to a shared dimension. This strategy allows us to sep-
arate the steps of our pipeline. We use the LSTM cell for se-
quence processing only, and we use the embedding networks
to prepare the original information in the format or type that
the LSTM cell requires. In the simplest case, the embedding
networks could even be a single linear layer, as will be used
for the rest of this paper (see Fig. 1c). We evaluated the em-
bedding network with and without the flag channel and ob-
served comparable performance in both cases. This result in-
dicates that the embedding network can internally identify
frequency information without the need for an additional flag
channel. Therefore, we opted for the simpler approach and
excluded the extra channel.

In summary, the main distinction between MF-LSTM and
SMTS-LSTM lies in MF-LSTM’s ability to handle a differ-
ent number of inputs for each temporal frequency, which
gives an advantage in operational settings where different
temporal resolutions often have different available variables.
Moreover, the primary difference between MF-LSTM and
MTS-LSTM lies in the simpler architecture of the former,
which uses a single LSTM cell, in contrast to one cell per
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Figure 1. Data-handling structure for MF-LSTM. (al) The original sequence length consists of 1 year of hourly data: 8760 temporal steps.
(a2) The first (365 — 14) x 24 = 351 x 24 = 8424 time steps are aggregated into 351 blocks, while the remaining 14 x 24 = 336 time steps are
processed at their original hourly frequency. (a3) The final input series that will be processed by the LSTM cell consists of 351 4336 = 687
time steps. (b) In the case where the same number of inputs for each frequency are available, we add a flag as an additional channel to help
the LSTM cell to identify each frequency. (¢) In the case where different numbers of inputs for each frequency are available, a fully connected
(FC) linear layer can be used to map the variable number of inputs of each frequency to a pre-defined number of channels.

frequency. This results in a more parsimonious model that
aligns closely in structure and usage with traditional single-
frequency LSTM models.

3 Results and discussion
3.1 Performance comparison

Our long-term goal, which goes beyond the scope of this
study, is to implement an operational hourly hydrological
forecasting system using machine learning methods. The
MF-LSTM method is a step towards achieving this, as it
enables computationally efficient simulation of hourly dis-
charges while allowing us to handle a variable number of in-
puts at each temporal resolution — both requirements for our
broader objective. Consequently, the results reported in this
section will focus on two aspects: the ability of MF-LSTM to
produce hourly discharge and the ability to handle a variable
number of inputs while doing so.

Gauch et al. (2021) presented two experimental setups that
address these aspects. Therefore, we ran these experiments
as a benchmark to evaluate the performance of our method
against their results. Both experiments evaluate the case in
which one is interested in simulating hourly discharges, and
they do so by processing part of the information at daily fre-
quency and part of it at hourly frequency. More specifically,
data for 1 year are processed, but only the last 14d (336 h)
are processed at hourly frequency. The value of 336h was
identified in the original study by hyperparameter tuning. In
all of the cases, the results are reported using an ensemble
of 10 independent LSTM models that were initialized using
different random seeds. The final simulation value is taken
as the median streamflow across the 10 models for each time
step.

The first experiment evaluated the scenario where the same
number of inputs (see Table Al) was used for both daily
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and hourly processing. In this case, we can directly com-
pare our model’s performance with the results reported by
Gauch et al. (2021) for MTS-LSTM and sMTS-LSTM, to-
gether with what they refer to as the naive approach. The
naive approach involves running a standard LSTM model ex-
clusively on hourly data with a sequence length of 4320 h (6
months). We can see from Fig. 2a that all the models present
the same performance up to the second decimal place, with a
median Nash—Sutcliffe efficiency (NSE) of 0.75.

The second experiment evaluated the scenario in which
different numbers of inputs were used for the daily and
hourly steps (see Table A2). Specifically, the daily frequency
incorporated 10 dynamic variables from the Daymet and
Maurer forcing datasets, while the hourly steps included 21
variables. Eleven of these variables were sourced from the
NLDAS-2 forcing at hourly resolution, and the remaining 10
were a low-resolution re-discretization of the 10 daily vari-
ables into an hourly frequency (i.e. the daily value was re-
peated 24 times). Consistent with Gauch et al. (2021), since
the Maurer forcings go until 2008, the results of this ex-
periment are reported for the validation period. As shown
in Fig. 2b, MF-LSTM achieves a performance comparable
to that of MTS-LSTM, with both reporting a median NSE
of 0.81. Comparisons with the sMTS and naive models are
not possible for this experiment, as previously explained, be-
cause these models cannot accommodate different numbers
of variables for different frequencies.

The previous experiments showed that the MF-LSTM ar-
chitecture can achieve a state-of-the-art performance that is
fully comparable with the MTS-LSTM and sMTS-LSTM
architectures. The results show that a single LSTM cell
can handle multiple temporal frequencies at the same time.
Moreover, the second experiment confirms that a simple
fully connected linear layer can successfully encode differ-
ent numbers of input variables in a pre-defined number of
channels.
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Figure 2. Cumulative NSE distribution of the different models, evaluating the prediction accuracy for hourly discharges along 516 basins in
the USA. (a) Case where the same number of variables is used during daily and hourly processing (see Table Al). (b) Case where different
numbers of variables are used during daily and hourly processing (see Table A2).

We also ran an additional experiment to evaluate the ca-
pacity of the model to handle more than two frequencies.
Specifically, we used a weekly—daily—hourly scheme. The
first half of the year (182 d) was handled using a weekly ag-
gregation. The next 5.5 months (169 d) were at daily resolu-
tion, and the remaining 14 d used an hourly frequency. Our
results showed that MF-LSTM is capable of handling this
case, presenting a similar performance (see Fig. C1) and re-
ducing the sequence length from 687 to 531.

3.2 Computational efficiency

As shown in Fig. 1a, one key advantage of processing older
inputs at coarser temporal resolution than more recent ones is
the reduced computational cost, particularly when compared
with feeding in the whole sequence length at a finer resolu-
tion (e.g. hourly). This reduction in computational cost im-
pacts not only the training time, but also the memory usage.
With long sequence lengths, one might run out of GPU mem-
ory or be forced to use alternative strategies such as reducing
the batch size during training and evaluation.

However, the total training time is influenced by exter-
nal factors, such as differences in hidden size or batch size,
which are not directly related to the methods themselves.
To minimize these external effects, we conducted an ad-
ditional experiment where we standardized the hidden size
and batch size across all the models and compared the aver-
age time needed to process a batch. The results showed that
MF-LSTM, MTS-LSTM, and sMTS-LSTM exhibited nearly
identical efficiency, while the naive approach was approxi-
mately 5 times slower. For reference, training MF-LSTM on
a Tesla V100 GPU took around 7 h.
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4 Conclusions

In this study, we introduced the MF-LSTM architecture, de-
signed to produce sub-daily (e.g. hourly) predictions at a
moderate computational cost while giving the model access
to long sequences of input data. Building on Gauch et al.
(2021), our method processes the input’s temporal sequence
using different aggregations. Hence, it accounts for the fact
that the effect of the input’s temporal distribution diminishes
the further we look back in time. This allows MF-LSTM to
predict hourly discharges without the overhead of handling
the entire sequence at a fine temporal scale.

The ability of the LSTM model to maintain performance
while handling data from the past at lower resolutions
highlights how the LSTM cell acts similarly to a process-
based hydrological model, with dissipative behaviour when
it comes to the memory of past forcings. This is a step to-
wards understanding LSTM-based predictions better as they
are gaining popularity for applications in hydrology.

As high-resolution data become increasingly available in
the environmental sciences, traditional LSTM models will
continue to face challenges when trying to learn from these
long sequence lengths. The approach we present here, with
its simplicity and computational efficiency, offers a practical
solution. Areas like weather forecasting, where data at reso-
lutions of minutes are not uncommon, might benefit from this
type of model. Moreover, the possibility of combining mul-
tiple frequencies, like our weekly—daily—hourly scheme, en-
ables modellers to extend look-back periods. This may also
be beneficial in other domains such as groundwater, where
long-term historical data are required to capture slow dy-
namic processes.

Our proposed embedding strategy opens up the possibility
of mapping different numbers of inputs to a shared dimen-
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sion. This flexibility not only simplifies the model architec-
ture by allowing a single LSTM cell to handle diverse input
configurations but also enhances the model’s adaptability in
operational settings, where the availability of input data may
vary across timescales. This overcomes the limitation previ-
ously stated in SMTS-LSTM.

Furthermore, we demonstrate that a single LSTM cell
can effectively manage processes operating at different
timescales (eliminating the need for separate LSTM cells for
each timescale) and transfer functions between their hidden
states. This results in a more parsimonious model that aligns
more closely in structure and usage with traditional single-
frequency LSTM models, making the transition from single-
frequency to multi-frequency LSTM models more intuitive
for users.

Through experiments on 516 basins from the CAMELS-
US dataset, the MF-LSTM model demonstrated the same
performance as the MTS-LSTM and sMTS-LSTM models,
indicating that the added simplicity and generality do not
come at the expense of predictive capability. Moreover, the
new architecture presents a similar computational cost to the
two previous options and reduces the training time by a factor
of 5 when compared to the naive approach.

The fact that a single LSTM cell allows us to handle multi-
ple frequencies could be due to the close similarities between
processes at different timescales (e.g. daily and hourly).
The LSTM architecture takes advantage of these similarities,
along with its ability to regulate gates based on the current
context, enabling it to effectively process multiple frequen-
cies. By using a single LSTM cell, we can leverage the addi-
tional information content encoded in our data.

The hyperparameters of the model were adopted from
Gauch et al. (2021), who conducted hyperparameter tuning.
We acknowledge that transferring these parameters across
different architectures may not guarantee optimal model per-
formance. However, the primary objective of this technical
note is to introduce the new architecture. Furthermore, we
demonstrate that, even with the given hyperparameters, the
proposed model achieves a performance comparable to the
current state of the art.

Hydrol. Earth Syst. Sci., 29, 1749-1758, 2025
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Appendix A: Additional information on the
experimental design

The following tables present the variables used in the exper-
iments associated with this study. Tables Al and A2 present
the variables used in the first and second experiments. The
third and fourth columns of each table indicate whether the
variable was used at daily frequency, hourly frequency, or
both. Table A3 shows the 26 static attributes used as addi-
tional inputs in the models.

Table Al. Dynamic input variables used in the first experiment, where the same number of variables is used for the daily and hourly

frequencies.

Variable name Forcing Daily frequency  Hourly frequency
convective_fraction NLDAS hourly v v
longwave_radiation NLDAS hourly v v
potential_energy NLDAS hourly v v
potential_evaporation =~ NLDAS hourly v v
pressure NLDAS hourly v v
shortwave_radiation NLDAS hourly v v
specific_humidity NLDAS hourly v v
temperature NLDAS hourly v v
total_precipitation NLDAS hourly v v
wind_u NLDAS hourly v v
wind_v NLDAS hourly v v

Table A2. Dynamic input variables used in the second experiment, where different numbers of variables are used for the daily and hourly

frequencies.
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Variable name Forcing Daily frequency  Hourly frequency  Note
prep(mm/day) Daymet daily v v *LRR
srad(W/m2) Daymet daily v v *LRR
tmax(C) Daymet daily v v *LRR
tmin(C) Daymet daily v v *LRR
vp(Pa) Daymet daily v v *LRR
prep(mm/day Maurer daily v v *LRR
srad(W/m?2) Maurer daily v v *LRR
tmax(C Maurer daily v v *LRR
tmin(C) Maurer daily v v *LRR
vp(Pa) Maurer daily v v *LRR
convective_fraction NLDAS hourly - v
longwave_radiation NLDAS hourly - v
potential_energy NLDAS hourly - v
potential_evaporation =~ NLDAS hourly - v

pressure NLDAS hourly - v
shortwave_radiation NLDAS hourly - v
specific_humidity NLDAS hourly - v

temperature NLDAS hourly - v
total_precipitation NLDAS hourly - v

wind_u NLDAS hourly — v

wind_v NLDAS hourly - v

*LRR: low-resolution re-discretization is done when the original daily value is used at hourly frequency. Therefore, the
original daily value is repeated 24 times.

Hydrol. Earth Syst. Sci., 29, 1749-1758, 2025
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Table A3. Names of the 26 static attributes used in the experiments.

elev_mean slope_mean
lai_max lai_diff
soil_depth_pelletier soil_depth_statsgo
max_water_content sand_frac
carbonate_rocks_frac  geol_permeability
aridity frac_snow
low_prec_freq low_prec_dur

area_gages?2
gvf_max
soil_porosity
silt_frac
p_mean
high_prec_freq

frac_forest
gvf_diff
soil_conductivity
clay_frac
pet_mean
high_prec_dur

Appendix B: Structure of the MTS-LSTM model
architecture
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Figure B1. Ilustration of the MTS-LSTM architecture that uses one distinct LSTM model per timescale. In the depicted example, the daily
and hourly input sequence lengths are TP =365 and TH =72 (we chose this value for the sake of a tidy illustration; the benchmarked
model uses TH = 336). In the SMTS-LSTM model (i.e. without distinct LSTM branches), FCC and FCM are identity functions, and the two
branches (including the fully connected output layers FCH and FCP) share their model weights. Source: this figure and its description were

taken from Gauch et al. (2021).
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Appendix C: Additional results
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Figure C1. Comparison of cumulative NSE distributions for dif-
ferent frequency sequences. The daily—hourly experiment includes
10 distributions, each corresponding to an ensemble member gen-
erated through different random initializations. The average of the
10 median NSE values is 0.71. In contrast, the weekly—daily—hourly
experiment consists of a single simulation, yielding a median NSE
of 0.72.

Code availability. The code used for all the analyses in this paper
is publicly available at https://doi.org/10.5281/zenodo.14780059
(Acuna Espinoza, 2025). It is part of the Hy2DL library, which can
be accessed on GitHub: https://github.com/eduardoAcunaEspinoza/
Hy2DL (last access: 4 February 2025).

Data availability. All the data generated for this publica-
tion can be found at https://doi.org/10.5281/zenodo.14780059
(Acuna Espinoza, 2025). The benchmark models can be
found at https://doi.org/10.5281/zenodo.4095485 (Gauch et al.,
2020b). The hourly NLDAS forcing and the hourly stream-
flow can be found at https://doi.org/10.5281/zenodo.4072701
(Gauch et al., 2020a). The CAMELS-US dataset can be
found at https://doi.org/10.5065/D6G73C3Q (Newman
et al, 2022). However, one should replace the original
Maurer forcings with the extended version presented in
https://doi.org/10.4211/hs.17¢896843c¢f940339¢3¢3496d0c1c077
(Kratzert, 2019).
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