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Abstract. Stream water temperatures influence water qual-
ity, with effects on aquatic biodiversity, drinking-water pro-
vision, electricity production, agriculture, and recreation.
Therefore, stakeholders would benefit from an operational
forecasting service that would support timely action. Deep-
learning models are well-suited to providing probabilistic
forecasts at individual stations of a monitoring network.
Here, we train and evaluate several state-of-the-art models
using 10 years of data from 54 stations across Switzerland.
Static catchment features, time of the year, meteorological
observations from the past 64 d, and their ensemble forecasts
for the following 32 d are included as predictors in the mod-
els to estimate daily maximum water temperature over the
next 32 d. Results show that the temporal fusion transformer
(TFT) model performs best, with a continuous rank proba-
bility score (CRPS) of 0.70 °C averaged over all lead times,
stations, and 90 forecasts distributed over 1 year. The TFT is
followed by the recurrent neural network encoder–decoder,
with a CRPS of 0.74 °C, and the neural hierarchical interpo-
lation for time series, with a CRPS of 0.75 °C. These deep-
learning models outperform other simpler models trained at
each station: random forest (CRPS = 0.80 °C), multi-layer
perceptron neural network (CRPS= 0.81 °C), and autore-
gressive linear model (CRPS= 0.96 °C). The average CRPS
of the TFT degrades from 0.38 °C at lead a time of 1 d to
0.90 °C at a lead time of 32 d, largely driven by the uncer-
tainty of the meteorological ensemble forecasts. In addition,
TFT water temperature predictions at new and ungauged sta-
tions outperform those from the other models. When analyz-
ing the importance of model inputs, we find a dominant role
of observed water temperature and future air temperature,

while including precipitation and time of the year further
improves predictive skill. Operational probabilistic forecasts
of daily maximum water temperature are generated twice
per week with our TFT model and are publicly available
at https://www.drought.ch/de/impakt-vorhersagen-malefix/
wassertemperatur-prognosen/ (last access: 20 March 2025).
Overall, this study provides insights into the extended-range
predictability of stream water temperature and into the appli-
cability of deep-learning models in hydrology.

1 Introduction

The services provided by streams and rivers are conditioned
by water quantity and quality (van Vliet et al., 2017, 2023).
For water quality, temperature is a key and highly sensi-
tive variable, as recognized by scientists, practitioners, and
regulators (Arora et al., 2016; Hannah et al., 2008; Han-
nah and Garner, 2015; Johnson et al., 2024; Webb, 1996).
Water temperature affects the growth, reproduction, distribu-
tion, health, and survival of aquatic life (Alfonso et al., 2021;
Booker et al., 2022; Elliott and Elliott, 2010; Hannah and
Garner, 2015; Little et al., 2020; Singh et al., 2024), as well as
dissolved oxygen (Chapra et al., 2021) and nutrient cycling
(Comer-Warner et al., 2019; Johnson et al., 2024). Economic
and societal aspects of electricity production, drinking-water
provision, recreation, and tourism are also conditioned by
water temperature (Michel et al., 2020; Ouellet et al., 2020;
van Vliet et al., 2013). As we undergo the effects of the
human-induced climate crisis, more frequent and new chal-
lenges related to changes in water temperature are expected
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(Caretta et al., 2022; Ficklin et al., 2023; Hardenbicker et al.,
2017; Michel et al., 2022; van Vliet et al., 2023).

Data-informed decisions are essential to adequately ad-
dress present and future challenges associated with stream
water temperature. Thus, the ongoing expansion of monitor-
ing networks and water temperature research (Ouellet et al.,
2020) provides valuable insights. While this largely applies
to Europe and North America, throughout most of the world,
water temperature data remain sparse, restricted, and frag-
mented in space and time (Ficklin et al., 2023; Hannah et al.,
2011; van Vliet et al., 2023). In addition, observed and pro-
jected long-term stream water temperature regional warming
trends (Arora et al., 2016; Hardenbicker et al., 2017; Kelleher
et al., 2021; Michel et al., 2020, 2022) are often insufficient
for stakeholders that require timely information from indi-
vidual streams at a high temporal resolution. The monitor-
ing network of the Swiss Federal Office for the Environment
aims to satisfy these requirements and is used in this study
to predict daily maximum water temperature across a wide
range of river stations.

Stream temperatures across regions are primarily deter-
mined by climate, with air temperatures having a dominant
effect. Nevertheless, the relationship between air and water
temperature at individual catchments is mediated by the local
meteorology, hydrology, and watershed characteristics (Han-
nah and Garner, 2015; Wade et al., 2023). Typically, air tem-
perature and runoff are used to predict stream temperature
(Qiu et al., 2021; Toffolon and Piccolroaz, 2015; Zhu and
Piotrowski, 2020), and, less often, solar radiation, precipi-
tation, and base flow (groundwater contribution) have also
been considered (Arora et al., 2016; Feigl et al., 2021; Wade
et al., 2023). The response of water temperature to changes in
these environmental conditions can vary according to catch-
ment characteristics (Wade et al., 2023). In Switzerland, the
contributions of glacier or snow meltwater are relevant as
they reduce the sensitivity of stream temperature to an in-
crease in air temperature (Michel et al., 2020). Another im-
portant aspect is the shorter hydrologic residence time of
small steep catchments, which hinders their ability to accu-
mulate heat compared to larger flatter catchments that often
encompass lakes. Lastly, direct human impacts from reser-
voir management, water withdrawal, wastewater discharge,
urbanization, and so on further increase the complexity of
processes influencing stream temperatures (Ficklin et al.,
2023).

Statistical data-driven models are used to predict stream
water temperature in an operational setting relevant to
decision-making given that it is usually not possible to meet
the high data requirements of process-based models to solve
the energy transfer equations to and from the river (Benyahya
et al., 2007; Dugdale et al., 2017; Feigl et al., 2021; Zhu
and Piotrowski, 2020). Statistical models estimate water tem-
perature as a function of related covariates and range from
simple linear (auto)regression models to novel deep-learning
model architectures (Corona and Hogue, 2024; Tripathy and

Mishra, 2023). The results from Feigl et al. (2021) for 10
river stations in Austria show an average mean absolute error
of 0.44 °C for the best-performing machine learning models
out of a set including random forest, XGBoost, feed-forward
neural networks, and long short-term memory (LSTM) recur-
rent neural networks. These machine learning models clearly
improve the prediction of daily water temperature compared
to the average mean absolute error of 1.24 °C for linear re-
gression and 0.76 °C for the Air2stream hybrid model, which
combines a physically based structure with a stochastic cali-
bration of the parameters (Toffolon and Piccolroaz, 2015). In
another study with data from eight river stations in the United
States, Switzerland, and China, Qiu et al. (2021) found an
average mean absolute error of 0.57 °C for a deep-learning
LSTM, which outperformed Air2stream, a random forest
model, and a back-propagation neural network. To date, there
are novel deep-learning architectures with promising results
for time series forecasting (Challu et al., 2023; Lim et al.,
2021; Wen et al., 2018) which are yet to be applied to fore-
casting water temperatures (Tripathy and Mishra, 2023).

Here, we evaluate the skill of three of these state-of-the-art
deep-learning models for predicting daily maximum water
temperature in 54 river stations in Switzerland over the 32 d
following the start of the forecast against three more com-
mon and simpler models. An important innovation of these
models is direct multi-horizon forecasting (i.e., the simulta-
neous prediction of multiple future time steps) instead of it-
eratively forecasting one day after another, which increases
efficiency and robustness (Challu et al., 2023; Fan et al.,
2019; Lim et al., 2021). Furthermore, some of these models
produce probabilistic forecasts that are useful for risk man-
agement under uncertainty. We also assess the uncertainty
stemming from the forecasts of meteorological variables that
are used as predictors of stream temperature. Counting with
probabilistic stream temperature forecasts over the upcoming
month allows users to optimize the timing of their actions,
such as adaptation measures when facing extreme conditions
(Ouellet-Proulx et al., 2017). The analysis of extended-range
forecasts is a novel aspect of our study that goes beyond the
traditional focus on one-step-ahead forecasts. In this study,
we also analyze the extrapolation capabilities of the deep-
learning models to predict stream water temperature at new
and ungauged stations, as well as the predictive importance
of model inputs and previous time steps. Lastly, we present
an example of our operational extended-range forecasts with
the best-performing model.

2 Methods

2.1 Data

We use a subset of 54 stations from the Swiss Federal Of-
fice for the Environment monitoring network (https://www.
hydrodaten.admin.ch/en/, last access: 2 March 2025) (Fig. 1
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and Table S1 in the Supplement). Our variable of interest is
daily maximum stream water temperature (WT), and for the
analysis, we use data from 12 May 2012 until 31 Decem-
ber 2022. In addition, we employ meteorological data and
information on catchment characteristics and time of the year
as relevant features for forecasting stream water temperature.

The catchment characteristics from the 54 stations include
catchment area, mean elevation, glacierized fraction, station
coordinates, and long-term average and standard deviation
of WT (i.e., target center and scale) (Table S1). The area of
the catchments ranges from 3.19 km2 for station 2414 (Ri-
etholzbach – Mosnang, Rietholz) to 34 524 km2 for station
2091 (Rhein – Rheinfelden, Messstation), and the mean el-
evation ranges from 503 m for station 2415 (Glatt – Rheins-
felden) to 2704 m for station 2256 (Rosegbach – Pontresina).
Glacierized area fraction can reach up to 24.7 % for station
2269 (Lonza – Blatten).

To provide information about the time of the year (season-
ality), we define a date index (DI) as a sine function of the
week of the year (woy) (Eq. 1). We construct DI to approxi-
mate 1 at the end of July (summer peak) and symmetrically
decrease towards 0 at the end of January (winter peak), such
that June and August or May and September have similar val-
ues. This is achieved by shifting woy by 52/12 weeks, which
corresponds to 1 month. A modified date index as a predictor
has been shown to improve the skill and/or training time of
models (Feigl et al., 2021; Zhu and Piotrowski, 2020).

DI=
∣∣∣∣sin

(
π ×

(
woy−

52
12

)
/52

)∣∣∣∣ (1)

The considered meteorological variables include daily av-
erage near-surface air temperature (AT), precipitation (P ),
and daily fraction of sunshine duration (SD). Gridded data
of these variables are provided by the Swiss Federal Office
for Meteorology and Climatology at a spatial resolution of
2 km. For simplicity, we use, for each station, the time series
of these variables from the single grid cell where the station
is located, assuming spatial coherence between neighboring
grid cells. In addition to the past observed values of these
meteorological variables, their forecasts for the next 32 d are
taken into account to forecast stream water temperature up to
the same lead time. The meteorological forecasts correspond
to a downscaled version of the extended-range forecasts from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) that are pre-processed by the Swiss Federal Of-
fice for Meteorology and Climatology to be consistent with
the gridded observations. Further details on the meteorologi-
cal forecasts are provided by Bogner et al. (2022) and Chang
et al. (2023), who use them for streamflow forecasting. We
use ensemble forecasts with 51 members (1 control and 50
perturbed initial conditions) to capture the increasing uncer-
tainty with lead time.

2.2 Forecasting models

We use three deep-learning models: the recurrent neural net-
work encoder–decoder (RNNED), the temporal fusion trans-
former (TFT), and the neural hierarchical interpolation for
time series forecasting (NHITS). In addition, we use three
more common and simpler models: an autoregressive lin-
ear model with exogenous variables (ARX), a random for-
est model (RF), and a multi-layer perceptron neural network
(MLP) with one hidden layer to put our results into context
with regard to previous studies. Data from 2012 to 2021 are
used for training the models, whereas data from 90 forecasts
during 2022 are used for evaluating their predictions. For all
deep-learning algorithms, a single general model is trained
with data from all 54 stations, and daily values for the next
32 d are predicted in a single forward pass. On the other hand,
the ARX, RF, and MLP models are trained separately for
each station, and forecasts are produced iteratively one day
at a time up to the 32 d lead time. The TFT, NHITS, RF,
and MLP generate quantile forecasts of q2, q10, q25, q50,
q75, q90, and q98, whereas the RNNED and ARX predict a
single best estimate. Source code and implementations of the
deep-learning models we employ are publicly available in the
PyTorch Forecasting documentation (Beitner, 2020). For RF,
we use the quantile regression forest implementation (Mein-
shausen, 2006) within the R package “ranger” (Wright and
Ziegler, 2017); for MLP, we use the R package “qrnn” (Can-
non, 2024); and for ARX, we use the linear model option in
the scikit-learn Python tool. An overview of the forecasting
models employed in this study is shown in Fig. 2.

The RNNED is a sequence-to-sequence framework based
on LSTM networks to encode the history of the input se-
quence into a context vector and to recursively decode it into
predictions (Cho et al., 2014; Hochreiter and Schmidhuber,
1997). Direct multi-horizon forecasting is performed by the
decoder, generating a sequence of future predictions at once.
The encoder is an RNN whose hidden state at the time step
when the forecast starts is a summary c of the whole input
sequence, while the decoder is an RNN that generates pre-
dictions yt based on its hidden state ht , the prediction of the
previous time step yt−1, and c. Note also that ht itself is a
function of yt−1 and c, as well as of ht−1.

The TFT also uses LSTMs for local temporal processing
in the encoder and decoder (similarly to the RNNED), but
it is characterized by an attention-based architecture that in-
tegrates information from any time step and captures long-
term dependencies in the data through interpretable self-
attention layers (Lim et al., 2021). The multi-head attention
block adds interpretability by identifying relevant time steps
within the encoder period. The TFT also includes variable
selection networks that, at each step, provide information
about the importance of the individual predictors and allow
the model to neglect irrelevant inputs. Gated residual net-
works (GRNs) consisting of two dense layers and an expo-
nential linear unit (ELU) activation function (Clevert et al.,
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Figure 1. Map of 54 stream water temperature stations in Switzerland used for the analysis. The color bar indicates the observed mean annual
maximum daily water temperature from 2012 to 2022. Squared markers indicate the subset of stations not used for training the models when
evaluating the predictive skill at new and ungauged stations.

Figure 2. Overview of the deep-learning and simpler models used to forecast daily maximum stream water temperature WT. For the deep-
learning algorithms, a single model is trained for the 54 stations as opposed to training one model per station. Therefore, deep-learning
models include static catchment features to differentiate across stations, and WT is normalized during training.

2016) are used within the variable selection networks and
elsewhere in the model architecture as gating mechanisms
to adapt the model’s depth and complexity according to the
task at hand. Note that attention-based approaches are com-
putationally demanding given that they can explicitly model
the interaction between every pair of input–output elements
(Challu et al., 2023).

Finally, the NHITS follows a different approach character-
ized by multi-rate sampling of the input and hierarchical in-
terpolation of the output to increase computational efficiency,

particularly for long-horizon forecasts (Challu et al., 2023).
The model is composed of stacks of MLP blocks, with each
stack dealing with a different frequency (timescale) of the
time series. The stacks range from those with a smooth in-
put and low-cardinality output to those with high-frequency
input and high-cardinality output. The forecast over all lead
times is assembled by summing the temporally interpolated
outputs of all blocks from all stacks.

For all three deep-learning models, we define the length
of the encoder to be 64 d, whereas the forecasting horizon
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goes up to 32 d. We use 23 different forecasts during the year
2021, with start dates that are 15 d apart from each other (i.e.,
4 January, 19 January, . . . , 30 November 2021), as our valida-
tion set when training the models. During each epoch of the
training, 30 batches of 64 encoder–decoder chains are ran-
domly sampled from the set of time series composed by the
data of all 54 stations between 2012 and 2020. At the end of
each epoch, the model parameters are updated only if they re-
duce the average quantile loss over all selected quantiles, lead
times, and forecasts of the validation set. The quantile loss
(QL) is given by Eq. (2), where q is a quantile, y is the ob-
served value, ŷ is the prediction, and (.)+ =max(0, .). Note
that the QL averaged over all quantile levels is an approxima-
tion of the well-known continuous ranked probability score
(CRPS) (Fakoor et al., 2023; Laio and Tamea, 2007). In the
case of the RNNED, we use mean absolute error (MAE) in-
stead of QL because QL is not supported in the source code.
Here, we decide to stop the training of the models if the pa-
rameters are not updated during 60 consecutive epochs, sug-
gesting that they have converged to an optimal value. In addi-
tion, to limit computing time, we stop the training if a max-
imum number of 200 epochs is reached. Finally, given that
the parameter optimization is not deterministic, we train each
deep-learning model 10 times with a different random seed.

QL= q
(
y− ŷ

)
+
+ (1− q)

(
ŷ− y

)
+

(2)

To train the ARX, RF, and MLP models, we use all data from
2012 to 2021 and their default settings. A least-squares fit is
done for the ARX, whereas QL is used when training the RF
and MLP.

2.3 Model features and hyperparameters

The deep-learning models include static catchment charac-
teristics as predictors, given that a single model is fitted for
all 54 stations. Here, we use all the static features provided
in Table S1, i.e., catchment area, mean elevation, glacierized
fraction, station coordinates, and long-term average and stan-
dard deviation of the target variable (target center and scale).
The primary set of known time-varying model features used
for the analysis includes meteorological variables and time
of the year, i.e., AT, P , SD, and DI, as these are commonly
available. Additional sets of model features that exclude pre-
dictors are also evaluated in Sect. 3.3. Lastly, the models also
include observed WT from the encoder period.

One important aspect that influences the predictions of ma-
chine learning models is the selection of hyperparameters
(Feigl et al., 2021; Kraft et al., 2025). Therefore, we conduct
hyperparameter tuning for each of the deep-learning models
using the Optuna framework (Akiba et al., 2019). Proposed
hyperparameter values are iteratively sampled 25 times with
a tree-structured Parzen estimator (Bergstra et al., 2011) that
efficiently explores the hyperparameter space by focusing on
the regions with the largest potential to improve the model
skill, i.e., to reduce the validation loss. Additionally, hyper-

band pruning is used to stop early on the iterations with hy-
perparameters that will not improve skill (Li et al., 2018).
Details on the hyperparameters of each model, the explored
hyperparameter space, and their tuned values are provided in
Table S2.

The ARX, RF, and MLP models are trained per station
and hence do not include static features. These models do
not encode information from the recent past, and so, here,
we include lagged (observed or predicted) water temperature
at time t − 1 (lagWT) to predict water temperature at time t .
The final set of features includes lagWT, AT, P , SD, and DI.
The ARX has no hyperparameters. In Table S3, we explore
the hyperparameter space of the RF and MLP and find that
the models perform well with their default values. Therefore,
we train the RF with its default values of 500 trees of un-
limited depth, two out of the five features to possibly split at
in each node, and a minimum node size of five data points
to allow a further split. Likewise, we set the hyperparame-
ters of the MLP to their default values of one hidden layer
with two hidden nodes, a maximum of 5000 iterations of the
optimization algorithm, and five trials to avoid local minima.

2.4 Forecasting at new and ungauged stations

The capability of a model to generate skillful water tempera-
ture forecasts at new locations can be of great added value
for stakeholders because long-term measurements are not
available everywhere (Ouarda et al., 2022). Given that deep-
learning models are trained on a set of stations instead of in-
dividual time series, we expect some transferability in space
to locations with similar conditions. To analyze the perfor-
mance of the deep-learning models at new stations with wa-
ter temperature observations and at ungauged locations, we
consider models with three different setups: (A) our control
model trained on all 54 stations, (B) a model trained on a
subset of 34 stations with the same features as A, and (C) a
model trained on a subset of 34 stations excluding past ob-
servations of water temperature from the features (i.e., un-
gauged). Finally, we compare the predictions of A and B, as
well as of A and C, across the subset of the remaining 20
stations not used when training B and C.

We divide our data into two subsets of 34 and 20 stations
with similar distributions in terms of catchment area, mean
elevation, and glacierized fraction as indicated in Table S1.
In addition, given that the WT long-term mean and standard
deviation would not be available at new or ungauged stations,
these variables can no longer be included as static features,
and they cannot be used to normalize WT when training the
models for setups B and C. Consequently, for setup B (new
stations), we instead use the average and standard deviation
of WT over the encoder period. For setup C (ungauged sta-
tions), given that we do not include past WT as a feature, we
also do not include its average and standard deviation among
the static features. Lastly, for each of the 20 ungauged sta-
tions in setup C, we normalize WT with data over the en-
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coder period from a similar station within the subset used to
train the models (Table S1).

2.5 Model performance evaluation

We use observed stream temperature from the year 2022 (ex-
cluded from model training) and 90 forecasts distributed over
the year to assess the predictive skill of the models (Ta-
ble S4). We do so with the continuous ranked probability
score (CRPS), which is designed for ensemble forecasts (Jol-
life and Stephenson, 2012). The CRPS compares the cumu-
lative distribution function (CDF) of the forecasts against the
observations, and it corresponds to the mean absolute error
for the case when a single value is predicted. Therefore, the
units of the CRPS are those of the observed variable, with
values closer to 0 corresponding to a better agreement be-
tween predictions and observations.

In our case, for each of the 51 driving meteorological fore-
casts, the models generate a probabilistic forecast of daily
maximum water temperature given by quantiles q2, q10,
q25, q50, q75, q90, and q98. First, for each set of quantiles,
we fit a normal distribution with mean µ= q50 and stan-
dard deviation σ = (q90−q10)/(sn(q90)−sn(q10)), where
sn(qX) corresponds to the quantile X of the standard normal
distribution (i.e., with a standard deviation of 1). We then
sample 100 values from each of the 51 fitted normal distri-
butions and fit a final normal distribution to these data with
parameters µf and σf. This final distribution is used when
computing the CRPS according to Eq. (3), where y is the
observed value (i.e., daily maximum water temperature), 8
is the CDF of the standard normal distribution, and ϕ is the
probability density function of the standard normal distribu-
tion.

CRPS= σf

(
y−µf

σf

(
28

(
y−µf

σf

)
− 1

)
+2φ

(
y−µf

σf

)
−

1
√
π

)
(3)

In addition to the CRPS, we compute the mean absolute error
(MAE) and the root mean squared error (RMSE) using model
estimates of q50 to facilitate the comparison of our results
with related work according to the performance categories
defined by Corona and Hogue (2024).

3 Results and discussion

3.1 Model performance comparison

We first compare the predictive skill of the models when us-
ing observed values of AT, P , and SD during the 32 d of the
prediction horizon as input to generate the WT forecasts, i.e.,
when omitting the uncertainty of meteorological forecasts
(Fig. 3). These results correspond to the best performance
the models could achieve to predict water temperature by as-

suming perfect forecasts of AT, P , and SD. The TFT per-
forms best with an average CRPS of 0.39 °C over all random
seeds, lead times, stations, and forecast start dates. The other
deep-learning models, namely the RNNED (0.57 °C) and the
NHITS (0.60 °C), are next in line, closely followed by the
RF (0.64 °C) and MLP (0.66 °C) models. For the simplest
linear ARX model, the CRPS is degraded to 0.97 °C, which
is 0.58 °C worse than that of the TFT. The deep-learning
models show little spread in their average CRPS across the
10 random seeds: 0.014 °C for the TFT, 0.040 °C for the
RNNED, and 0.022 °C for the NHITS. This suggests that
the models converged to optimal parameters during training.
In addition to the CRPS, we provide MAE and RMSE re-
sults in Figs. S1 and S2, respectively. Regarding the run time
needed on our server to train each model for 200 epochs, the
longest is 44 min for the TFT, with 286 100 parameters, fol-
lowed by 21 min for the RNNED, with 60 900 parameters,
and 17 min for the NHITS, with 103 800 parameters. For the
simpler models, less than a minute is needed to train them at
each station, and this can easily be done in parallel.

For all models, the predictive skill decreases with lead time
as the influence of observed daily maximum water tempera-
ture on the predictions is also reduced (Fig. 3a). The decrease
in skill is particularly fast during the first 4 d for ARX, MLP,
and RF, suggesting that these models have a higher reliance
on past water temperature for predicting future water tem-
perature. Across stations, there is substantial variability in
the CRPS for all models (Fig. 3b). As an example for the
TFT, it ranges from 0.23 °C for station 2276 (Grosstalbach –
Isenthal) to 0.74 °C for station 2068 (Ticino – Riazzino). No
clear relationships emerge when evaluating predictive skill
as a function of catchment characteristics such as area, el-
evation, and glacierized fraction (Fig. S3). Lastly, we note
that the predictive skill of the models also varies season-
ally (Fig. 3c). The CRPS is lower in the winter when water
temperature is colder and has lower day-to-day variability,
whereas it is higher in the summer when the conditions are
opposite.

It is likely that stream water temperature at several of the
Swiss stations analyzed in this study is influenced by reser-
voir and lake management (Michel et al., 2020) and poten-
tially also by water withdrawal and discharge from industry,
for example. Larger deviations between observed and fore-
casted values are expected when management decisions in-
fluencing water temperature take place, given that their tim-
ing can be largely arbitrary and thus not captured by our
models. This seems to be the case for stations 2068 (Ticino
– Riazzino), 2084 (Muota – Ingenbohl), and 2351 (Vispa –
Visp), with the highest CRPS as seen in Fig. 3b. These sta-
tions are highly influenced by hydropeaking from the release
of large volumes of cold water from reservoirs at high ele-
vations (Michel et al., 2020). It is noteworthy that the high
CRPS values for forecast start dates between mid-April to
mid-May (Fig. 3c) are mainly driven by high CRPS val-
ues at these affected stations (Fig. S4). Furthermore, dur-
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ing this time for the year 2022, the models underestimated
the observed water temperatures (Fig. S5), which is a rea-
sonable consequence if less cold water was released during
the drought year 2022 compared to during past years used to
train the models.

Figure 4 compares the operational predictive skill of the
models when using AT, P , and SD forecasts over the 32 d
of the prediction horizon as input to generate the forecasts.
The TFT remains the best-performing model, with an aver-
age CRPS of 0.70 °C over all random seeds, lead times, sta-
tions, and forecast start dates, followed by the RNNED with
0.74 °C, the NHITS with 0.75 °C, RF with 0.80 °C, MLP
with 0.81 °C, and ARX with 0.96 °C. When comparing these
results to those from Fig. 3, we note that the uncertainty of
the meteorological forecasts contributes 0.31 °C to the total
disagreement between observations and TFT predictions and
less for the other models. Consequently, the uncertainty of
the meteorological forecasts decreases the gain in predictive
skill to be achieved when using the TFT compared to the
other models. This is particularly the case for lead times be-
yond 5 d, where there is often a strong decrease in meteoro-
logical predictability (Bauer et al., 2015).

There is an evident decrease in the predictive skill of water
temperature as lead time increases (Fig. 4a), which is directly
related to the ensemble meteorological forecasts being less
accurate and having a larger spread for predictions further
into the future. For all models, the CRPS at a lead time of 32 d
is more than double its value at a lead time of 1 d. In the case
of the TFT, it increases from 0.38 °C at lead time 1 to 0.90 °C
at lead time 32. In addition, we find that the uncertainty of
the meteorological forecasts increases the CRPS variability
across stations and forecast start dates and can lead to other
models outperforming the TFT in some cases (Fig. 4b and c).

High average CRPS values greater than 1 °C – even for
the TFT – occur at several stations, namely 2612 (Riale di
Pincascia – Lavertezzo), 2308 (Goldach – Goldach, Bleiche,
nur Hauptstation), 2068 (Ticino – Riazzino), 2374 (Necker –
Mogelsberg, Aachsäge), and 2112 (Sitter – Appenzell), rep-
resenting a large increase compared to their values in Fig. 3
(except for station 2068, influenced by reservoir manage-
ment). Therefore, these high errors in predicted water tem-
perature arise from errors in the meteorological forecasts. It
is noteworthy that the catchment area of the above-mentioned
stations is less than 90 km2 (except station 2068), and the
catchment of station 2612 is particularly steep. These condi-
tions are likely to make water temperature more sensitive to
changes in AT, P , and SD – i.e., the change in water tem-
perature per unit change in the meteorological predictors is
greater (Wade et al., 2023). Indeed, Fig. S6 shows a tendency
for higher CRPS at stations with smaller catchment area.
Meanwhile, the high CRPS values during April and Septem-
ber in Fig. 4c result from the contribution of most stations
(with a strong influence from station 2612) (Fig. S7). This
decrease in predictive skill was caused by specific weather
events that deviated strongly from the meteorological fore-

casts, particularly for lead times beyond 2 weeks (Fig. S8).
Finally, in Fig. S9, we show that a similar average CRPS is
obtained for the TFT if we use catchment average AT, P , and
SD as predictors instead of their values in the single grid cell
where the station is located, as in Fig. 4. Using catchment av-
erages improves the predictive skill for relatively small and
steep catchments with high spatial variability in terms of the
meteorological conditions, such as 2612 and 2068, but it is
counterproductive for large catchments such as 2392 (Rhein
(Oberwasser) – Rheinau) and 2288 (Rhein – Neuhausen,
Flurlingerbrücke), where the meteorological conditions tens
of kilometers upstream of the station are less relevant than
the conditions near the station.

Supplementarily to the CRPS information of Fig. 4, we
provide the corresponding MAE and RMSE of the models in
Figs. S10 and S11 to facilitate the comparison of our results
with previous work. For a lead time of 1 d, all six models
tested here achieve a very good performance according to the
ratings suggested by Corona and Hogue (2024), while their
MAE values of 0.53 °C for the TFT, 0.45 °C for the RNNED,
0.61 °C for the NHITS, 0.55 °C for RF, 0.52 °C for MLP, and
0.56 °C for ARX are similar to the 0.44 °C reported by Feigl
et al. (2021) for 10 stations in Austria and the 0.57 °C re-
ported by Qiu et al. (2021) for 8 stations in the United States,
Switzerland, and China. The predictive skill for lead times
beyond 1 d is a novel aspect of our study, with no previously
reported values available for comparison. We note that, in
terms of MAE and RMSE, the RNNED performs better than
the TFT for lead times up to 7 d. This is not the case in terms
of the CRPS because, for the TFT, we use the seven quan-
tiles of the probabilistic forecast (instead of only q50, as for
computing MAE and RMSE), whereas, for the RNNED, we
only count with one best estimate available for each ensem-
ble member of the meteorological forecasts.

3.2 Predictive skill at new and ungauged stations

Figure 5 compares the CRPS across 20 stations from pre-
dictions of deep-learning models trained either including
(setup A) or excluding (setup B) data from this subset of sta-
tions. When forecasting water temperature at new stations on
which the models are not trained, results show that the TFT
performs best, with an average CRPS of 0.83 °C, across all
32 lead times, 20 stations, and 90 forecasts distributed over a
year, followed by the NHITS, with 0.92 °C, and the RNNED,
with 1.11 °C. The reduction in prediction skill when extrap-
olating the models to new stations is 0.11 °C for the TFT,
0.12 °C for the NHITS, and 0.34 °C for the RNNED. The
larger drop in skill of the RNNED occurs at more than half of
the 20 stations and throughout most forecast dates, with par-
ticularly large values at the highest-elevation stations: 2256
(Rosegbach – Pontresina) and 2462 (Inn – S-chanf). On the
other hand, we note the good extrapolation capability of the
TFT to new stations during the summer, with its CRPS fol-
lowing closely that of the TFT trained on all 54 stations.
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Figure 3. Model comparison of predictive skill when omitting the uncertainty of meteorological forecasts. The cumulative rank probability
score (CRPS) of each model is shown as a function of (a) lead time averaged over all stations and forecasts, (b) station averaged over all lead
times and forecasts, and (c) forecast start date averaged over all lead times and stations. The legend indicates the different models and their
average CRPS over all 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022.

There is a clear decrease in prediction skill across the 20
stations when forecasting with models that exclude informa-
tion on past water temperature and that are trained with the
data from these stations omitted (setup C) so as to represent
ungauged stations (Fig. 6). Nonetheless, the TFT is still able
to achieve an average CRPS of 1.29 °C across all 32 lead
times, 20 stations, and 90 forecast start dates, which corre-
sponds to a reduction in prediction skill of 0.57 °C compared
to the model that includes past observations of water tem-

perature and that is trained using data from all 54 stations.
The average CRPS of the TFT at ungauged stations increases
from 1.15 °C at a lead time of 1 d to 1.47 °C at a lead time of
32 d. Furthermore, the CRPS of the TFT is lower than that of
the RNNED and NHITS across almost all 20 stations and 90
forecast start dates. On the other hand, it is evident that the
NHITS model is not well-suited to generating predictions at
ungauged stations as it relies strongly on past observations of
the target variable to forecast future values.
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Figure 4. Model comparison of predictive skill when including the uncertainty of meteorological forecasts. The cumulative rank probability
score (CRPS) of each model is shown as a function of (a) lead time averaged over all stations and forecasts, (b) station averaged over all lead
times and forecasts, and (c) forecast start date averaged over all lead times and stations. The legend indicates the different models and their
average CRPS over all 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022.

3.3 Predictive importance of model inputs

Here, we focus on the TFT given the fact that it outperforms
the other models and because of its built-in interpretability
(Lim et al., 2021). For every forecast, the TFT directly out-
puts fractional importance weights (importance) that sum up
to 1 for static features, for encoder features, and for decoder
features separately. On average, across the 10 random seeds
and 54 stations, results show similar importance values for
all static features (Fig. S12).The target center (i.e., the long-

term average of daily maximum water temperature) with 0.16
has the highest importance, whereas the catchment area with
0.09 has the lowest importance. For individual stations, fea-
tures with higher importance are typically those that differen-
tiate them from other stations. For example, the importance
of catchment glacierized fraction increases for stations with
a higher glacierized fraction.

Figure 7 shows that WT has the highest importance among
the encoder features, with an average value of 0.35 over all
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Figure 5. Model comparison of predictive skill at new stations. Continuous lines correspond to setup A, in which models are trained on data
from all 54 stations, whereas dashed lines correspond to setup B, in which models are trained on data excluding the subset of 20 stations.
The cumulative rank probability score (CRPS) of each model is shown as a function of (a) lead time averaged over a subset of 20 stations
and all forecasts, (b) station averaged over all lead times and forecasts, and (c) forecast start date averaged over all lead times and a subset of
20 stations. The legend indicates the different models and their average CRPS over all 32 lead times, 20 stations, and 90 forecasts distributed
over the year 2022.

random seeds, encoder time steps, stations, and forecasts. AT,
SD, and DI have similar importance values of 0.17, 0.18,
and 0.19, respectively, whereas P with 0.11 has the low-
est. There is very low importance variability in the encoder
features across time steps, stations, and forecast start dates.
Nevertheless, we note a slightly higher importance of WT
at larger catchments and a small increase in the importance

of AT for forecasts in July and August. For the decoder fea-
tures, AT and DI have the highest average importance, with
a value of 0.33, followed by P , with a value of 0.20, and SD,
with a value of 0.14. These weights are almost constant for
all decoder time steps. Across stations, we find that in ap-
proximately half of them, AT is slightly more important than
DI, whereas the opposite is true for the remaining half. Also,
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Figure 6. Model comparison of predictive skill at ungauged stations. Continuous lines correspond to setup A, in which models include past
observations of water temperature as a feature and are trained on data from all 54 stations, whereas dashed lines correspond to setup C, in
which models exclude past observations of water temperature as a feature and are trained on data excluding the subset of 20 stations. The
cumulative rank probability score (CRPS) of each model is shown as a function of (a) lead time averaged over a subset of 20 stations and
all forecasts, (b) station averaged over all lead times and forecasts, and (c) forecast start date averaged over all lead times and a subset of 20
stations. The legend indicates the different models and their average CRPS over all 32 lead times, 20 stations, and 90 forecasts distributed
over the year 2022.

there is a small but noteworthy increase in P importance at
high elevation-stations at the expense of AT. Lastly, results
suggest that DI is generally more important for forecasts dur-
ing the cold months, whereas the importance of AT, P , and
SD increases during the warm months. The detailed insights
from Fig. 7 are consistent with the global feature importance

estimates from the RF model (Fig. S13), deduced from the
decrease in accuracy when randomly permuting the values
of a feature.

When interpreting the importance weights, it is useful to
acknowledge that the model features are clearly not indepen-
dent of one another. The meteorological features correlate
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Figure 7. TFT feature importance. The importance of each feature is shown as a function of (a, d) time step averaged over all stations and
forecasts, (b, e) station averaged over all time steps and forecasts, and (c, f) forecast start date averaged over all time steps and stations.
Encoder feature importance is shown in (a), (b), and (c), and decoder feature importance is shown in (d), (e), and (f). Note that, in (b),
stations are sorted by catchment area in ascending order, and in (e), stations are sorted by station elevation in ascending order. In all cases,
the importance is averaged across 10 models trained with different random seeds.

with DI due to their seasonality. A higher SD is expected to
coincide with a higher AT, particularly during the warmer
months. In addition, cloudiness influences the number of
sunny hours and is a prerequisite for precipitation, thus relat-
ing SD and P . Consequently, the feature importance values
can vary substantially every time the TFT model is trained
with a different random seed (Fig. S14), even though the pre-
dictive skill hardly changes. In an operational context, the
importance weights are nonetheless relevant to shed light on
which meteorological conditions influence the model more
every time a new forecast of daily maximum water tempera-
ture is generated.

The TFT also provides fractional attention weights (atten-
tion) that sum up to 1 and indicate the relevance of informa-
tion from different encoder time steps for the forecasts. On
average, attention is highest for the most recent 5 d leading
up to the forecast date and then rather similar from time step
−6 to time step −64 (Fig. 8a). These higher attention val-

ues for the most recent days prior to the start of the forecast
mainly occur for forecasts initialized in the spring and au-
tumn (Fig. 8b). Furthermore, it is evident how the high atten-
tion of recent time steps for forecasts starting in March and
April propagates to time steps further back in time over the
next forecast start dates. This suggests that the values of the
encoder features (WT, AT, P , SD, and DI) in spring remain
relevant for forecast start dates up to 64 d later at the end
of June. Given that attention weights are influenced by the
importance of the model’s encoder features, there is also sig-
nificant attention variability for models trained with different
random seeds (Fig. S15). Typically, the relative attention of
time steps further back in time increases when WT and DI
have higher importance, whereas the attention of most recent
time steps tends to increase when the model relies more on
AT and SD.

In addition to the TFT importance weights, here, we com-
pare the predictive skill of TFT models with different sets
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Figure 8. TFT attention weights of encoder time steps. (a) Attention averaged across random seeds, stations, and forecast start dates as a
function of encoder time step. (b) Attention averaged across random seeds and stations as a function of encoder time step and forecast start
date.

of predictor features (Fig. 9). When omitting the uncertainty
of meteorological forecasts, results show an average CRPS
of 0.51 °C for the simplest model with the following predic-
tors: long-term average and standard deviation of WT (target
center and scale) from each station as static features, encoder
period WT, and AT. With each new predictor included in the
model, the CRPS improves incrementally across almost all
lead times, stations, and forecasts, reaching an average of
0.39 °C for the most complex model with catchment static
features, P , SD, and DI as additional predictors. The largest
gain in predictive skill is obtained when adding P as a pre-
dictor, with the improvement taking place mostly at stations
of small and low-elevation catchments, in addition to being
particularly high in spring. Given that smaller catchments
tend to have less streamflow, precipitation events could more
easily influence upstream water mixing and, consequently,
station water temperature. Also, in spring, we expect larger
water temperature differences between contributing sources
such as rainfall runoff, snowmelt, and lake discharge. In addi-
tion to P , the inclusion of DI also clearly improves predictive
skill by capturing seasonal characteristics of water and heat
fluxes in the catchments. Overall, our findings are consistent
with previous studies noting the relevance of precipitation or

runoff, as well as global radiation and time of the year, for
predicting stream water temperature (Feigl et al., 2021; Zhu
and Piotrowski, 2020).

The biases and spread of the ensemble meteorological
forecasts limit the gain in predictive skill as more predictors
are included in the TFT models. The average CRPS improves
from 0.77 °C for the simplest model to 0.70 °C for the model
with static features, WT (encoder period), AT, P , SD, and DI.
Nevertheless, adding SD forecasts is particularly beneficial
with regard to improving model skill for lead times longer
than 3 weeks and at high-elevation stations such as 2256
(Rosegbach – Pontresina), 2269 (Lonza – Blatten), 2612 (Ri-
ale di Pincascia – Lavertezzo), and 2617 (Rom – Müstair).
Lastly, we note that including SD and DI is especially ben-
eficial for forecast start dates from mid-April to the end of
June.

3.4 Operational forecasts

Extended-range probabilistic forecasts of daily maximum
water temperature at the 54 stations in Switzerland are gen-
erated operationally twice per week and are made available
at https://www.drought.ch/de/impakt-vorhersagen-malefix/
wassertemperatur-prognosen/. The best-performing TFT
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Figure 9. Predictive skill comparison of TFT models with different features. The cumulative rank probability score (CRPS) of each model is
shown as a function of (a, d) lead time averaged over all stations and forecasts, (b, e) station averaged over all lead times and forecasts, and
(c, f) forecast start date averaged over all lead times and stations. The CRPS is shown when computed with the omission of the uncertainty of
meteorological forecasts (a, b, c) and when computed with the inclusion of the uncertainty of meteorological forecasts (d, e, f). The legend
indicates the different models and their average CRPS over all 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022.
“AT (no static)” includes the long-term average and standard deviation of WT (target center and scale) from each station as static features,
encoder period WT, and AT. “AT” has the same features, as well as catchment static features (i.e., station coordinates, area, mean elevation,
and glacierized fraction). “ATP” adds P as a predictor, “ATPSD” adds SD, and “ATPSDDI” adds DI.

model with static catchment features, AT, P , SD, DI, and
past WT as predictors is used. Figure 10 shows an example
forecast for station 2091 (Rhein – Rheinfelden, Messstation)
generated on 14 July 2022. Estimates based on each of the
51 ECMWF members provide insight into the expected un-
certainty driven by the meteorological forecasts. The ensuing
observations follow the best-estimate forecast closely during
the first 7 d of lead time and remain within range up to the
maximum lead time of 32 d.

It is our aim that stakeholders benefit from
our timely forecasts with regard to their decision-
making. As a concrete example, an early-warning
system for fish thermal stress was developed us-
ing the stream water temperature forecasts as input
(https://www.drought.ch/de/impakt-vorhersagen-malefix/
risiko-von-thermischem-stress-fuer-fische/, last access:

20 March 2025). High stream water temperatures pose a
grave threat to fish populations (Barbarossa et al., 2021), as
experienced during the summer of 2018 in Switzerland when
tons of fish died in the Rhein. Therefore, timely knowledge
on the exceedance potential of dangerous water temperature
thresholds as given in Fig. 10 is important. The 14 July
forecast indicated occurrence probabilities generally greater
than 60 % for daily maximum stream water temperature to
rise above 24 °C at station 2091 over the coming weeks,
which was then the case from 14 July to 8 August.

4 Conclusions

In this study, we evaluate state-of-the-art deep-learning mod-
els for stream water temperature predictions over 32 d given
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Figure 10. Operational daily maximum water temperature forecast on 14 July 2022 at station 2091 (Rhein – Rheinfelden, Messstation). The
forecast is generated with the best-performing TFT model with static catchment features, AT, P , SD, DI, and past WT as predictors. The
temporal evolution of observed water temperature is shown in (a) together with the forecast best estimate, the 51 estimates based on each of
the ECMWF ensemble members of the meteorological forecast, and the probability range. Panel (b) shows the daily forecast probability for
different categories of daily maximum water temperature.

the high value of skillful probabilistic extended-range fore-
casts for managerial decisions. Deep-learning models go
beyond the iterative predictions of their standard counter-
parts by efficiently generating direct multi-horizon forecasts
across multiple stations at once. The TFT model performs
best, with an average CRPS of 0.70 °C, which is degraded
from 0.38 °C at a 1 d lead time to 0.90 °C at a 32 d lead time.
We find that 0.31 °C of the average disagreement between ob-
servations and predictions stems from the uncertainty in the
meteorological forecasts of AT, P , and SD. This is a novel
insight into the current limits of extended-range water tem-
perature predictability.

The 54 stream water temperature stations from the Swiss
Federal Office for the Environment monitoring network com-
prise catchments varying in size, elevation, and steepness and
with different degrees of human interventions. These data
are exploited by the deep-learning algorithms to generalize
the relationships between water temperature and its predic-

tors. Our results demonstrate the potential of the TFT model
to predict water temperature at stations on which it was not
trained and at ungauged locations. The error at new stations
increases by 0.11 °C, reaching an average CRPS of 0.83 °C,
whereas it increases to 1.29 °C when local water tempera-
ture is unavailable to the model. This is an important step
forward in the quest to expand the availability of stream wa-
ter temperature estimates across the world. Furthermore, the
TFT model may also be used to generate predictions under
future climate scenarios assuming no major changes in how
water temperature responds to changes in the meteorological
drivers.

Our detailed analysis of the importance of different model
inputs highlights the roles of WT in the encoder period, of AT
and DI in the decoder period, and of the station-specific long-
term average of daily maximum water temperature among
the static features. The TFT model with only WT and AT as
time-varying inputs achieves an average CRPS of 0.76 °C,

https://doi.org/10.5194/hess-29-1685-2025 Hydrol. Earth Syst. Sci., 29, 1685–1702, 2025



1700 R. S. Padrón et al.: Forecasting stream water temperature

which improves to 0.70 °C when including P , SD, and DI.
Overall, the TFT insights into feature importance and the at-
tention to encoder period time steps for each forecast provide
valuable interpretability that was often missing in machine
learning models.

The publicly available operational system for extended-
range forecasts of daily maximum water temperature com-
pletes our contribution by regularly providing information to
parties interested in the consequences of extreme conditions.
The methodology, insights, and product of this study help ad-
dress the growing challenges surrounding stream water tem-
peratures – and, consequently, water quality – in our warm-
ing world. Finally, we underscore the necessity for more and
better information on this key environmental variable.
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