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Table S1: List of 54 stream water temperature stations from the Swiss Federal Office for the Environment monitoring network 
(https://www.hydrodaten.admin.ch/en/) with their corresponding characteristics used as static features when training the deep learning 10 
models. *Indicates the subset of 20 stations not used for training the models when evaluating the predictive skill at new and ungauged 
stations. For each of these stations a corresponding similar station is indicated in parentheses whose data are used to normalize water 
temperature when evaluating the predictive skill at ungauged stations. 

Station ID Name Area 
[km2] 

Mean 
elevation 
[m asl] 

Glacierized 
fraction 

[%] 

Coord 
X 

[m] 

Coord 
Y 

[m] 

Station 
elevation 
[m asl] 

Water 
temp 
mean 
[ºC] 

Water 
temp 
stdev 
[ºC] 

2009 Rhône - Porte du Scex 5238 2127 11.1 557660 133280 377 8.36 2.42 

2016 Aare - Brugg 11681 1000 1.5 657000 259360 332 13.31 5.76 

2018* (2016) Reuss - Mellingen 3386 1259 1.8 662830 252580 345 13.41 6.01 

2019 Aare - Brienzwiler 555 2135 15.5 649930 177380 570 7.72 2.21 

2029 Aare - Brügg, 
Aegerten 8249 1142 2.1 588220 219020 428 13.12 5.91 

2030 Aare - Thun 2459 1746 6.9 613230 179280 548 12.39 4.90 

2034 Broye - Payerne, 
Caserne d 'aviation 416 715 0 561660 187320 441 13.01 6.87 

2044 Thur - Andelfingen 1702 770 0 693510 272500 356 12.98 6.46 

2056* (2276) Reuss - Seedorf 833 2013 6.4 690085 193210 438 8.35 3.15 

2068 Ticino - Riazzino 1613 1643 0.1 713670 113500 200 10.95 4.20 

2070* (2343) Emme - Emmenmatt, 
nur Hauptstation 443 1065 0 623610 200430 638 10.81 5.39 

2084 Muota - Ingenbohl 317 1363 0 688262 206170 438 9.32 3.48 

2085* (2029) Aare - Hagneck 5112 1368 3.4 580680 211650 437 13.18 5.21 

2091 Rhein - Rheinfelden, 
Messstation 34524 1068 0.8 627189 267845 265 13.54 5.91 

2104 Linth - Weesen, 
Biäsche 1062 1584 1.6 725160 221380 419 12.08 5.14 

2106 Birs - Münchenstein, 
Hofmatt 887 728 0 613570 263080 268 12.28 4.97 

2109* (2019) Lütschine - Gsteig 381 2050 13.5 633130 168200 585 7.81 2.80 

2112 Sitter - Appenzell 74.4 1256 0.1 749040 244220 769 9.72 5.13 

2113* (2091) Aare - Felsenau, K.W. 
Klingnau (U.W.) 17687 1060 1.4 659150 271790 312 14.14 5.90 

2126 Murg - Wängi 80.2 652 0 714105 261720 466 12.50 4.85 

2135 Aare - Bern, Schönau 2941 1596 5.8 600710 198000 502 12.62 5.04 

2150* (2276) Landquart - 
Felsenbach 614 1797 0.7 765364 204910 571 8.55 4.26 

2152 Reuss - Luzern, 
Geissmattbrücke 2254 1504 2.8 665330 211800 432 13.34 5.84 

2159* (2126) Gürbe - Belp, 
Mülimatt 116 846 0 604810 192680 522 12.82 5.84 

2167 Tresa - Ponte Tresa, 
Rocchetta 609 803 0 709580 92145 268 16.13 7.10 

https://www.hydrodaten.admin.ch/en/
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2179 Sense - Thörishaus, 
Sensematt 351 1071 0 593350 193020 553 11.62 6.39 

2210* (2179) Doubs - Ocourt 1275 952 0 572530 244460 417 11.90 5.39 

2243 Limmat - Baden, 
Limmatpromenade 2384 1131 0.7 665640 258690 351 13.83 6.51 

2256* (2269) Rosegbach - 
Pontresina 66.5 2704 21.7 788795 151694 1766 5.89 4.23 

2269 Lonza - Blatten 77.4 2624 24.7 629130 140910 1520 5.87 2.72 

2276 Grosstalbach - 
Isenthal 43.9 1819 6.7 685500 196050 767 8.51 2.09 

2288 Rhein - Neuhausen, 
Flurlingerbrücke 11930 1239 0.6 689145 281975 383 13.29 6.53 

2307* (2414) Suze - Sonceboz 127 1036 0 579810 227350 642 10.03 2.79 

2308 
Goldach - Goldach, 

Bleiche, nur 
Hauptstation 

50.4 832 0 753190 261600 399 11.89 7.01 

2343 Langeten - Huttwil, 
Häberenbad 59.9 760 0 629560 219135 597 10.81 4.06 

2351* (2617) Vispa - Visp 786 2648 23.1 634030 125900 659 7.54 2.86 

2369 Mentue - Yvonand, 
La Mauguettaz 105 675 0 545440 180875 449 11.41 5.98 

2374* (2343) Necker - Mogelsberg, 
Aachsäge 88.1 956 0 727110 247290 606 10.92 6.25 

2392 Rhein (Oberwasser) - 
Rheinau 11950 1238 0.6 687420 277140 353 13.28 6.49 

2414 Rietholzbach - 
Mosnang, Rietholz 3.19 794 0 718840 248440 682 9.77 4.62 

2415 Glatt - Rheinsfelden 417 503 0 678040 269720 336 14.25 5.94 

2432 Venoge - Ecublens, 
Les Bois 228 686 0 532040 154160 383 12.37 5.18 

2433* (2493) Aubonne - Allaman, 
Le Coulet 105 952 0 520720 147410 390 10.39 4.17 

2457* (2369) Aare - Ringgenberg, 
Goldswil 1138 1951 12.1 633730 171510 564 11.53 4.58 

2462* (2617) Inn - S-Chanf 616 2463 6.1 795800 165910 1645 7.09 4.26 

2467 Saane - Gümmenen 1881 1131 0.1 585100 199240 473 11.61 5.35 

2473* (2112) Rhein - Diepoldsau, 
Rietbrücke 6299 1771 0.7 766280 250360 410 9.49 3.91 

2485* (2432) Allaine - Boncourt, 
Frontière 212 562 0 567830 261200 366 12.82 4.22 

2493 Promenthouse - 
Gland, Route Suisse 120 1027 0 510080 140080 394 10.93 3.70 

2604* (2112) Biber - Biberbrugg 31.9 1003 0 697240 223280 825 9.88 6.14 

2608* (2369) Sellenbodenbach - 
Neuenkirch 10.4 608 0 658530 218290 515 11.75 5.51 

2612 Riale di Pincascia - 
Lavertezzo 44.5 1705 0 708060 123950 536 8.98 5.78 

2617 Rom - Müstair 128 2184 0 830800 168700 1236 7.50 3.37 

2623 Rhone - Oberwald 93.3 2466 19.3 669870 154080 1368 5.25 2.42 
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Table S2: Hyperparameters of the deep learning models, the explored hyperparameter space, and their tuned values. Hyperparameter 
names agree with the PyTorch Forecasting documentation (https://pytorch-forecasting.readthedocs.io/en/stable/models.html). 

Model Hyperparameter Tunning space Tuned value 

RNNED hidden_size 32 – 128 116 
 rnn_layers 1 – 4 1 
 gradient_clip_val 0.1 – 0.3 0.144 

  dropout 0 – 0.3 0.276 

TFT hidden_size 32 – 128 60 
 hidden_continuous_size 8 – 32 12 
 lstm_layers 1 – 4 2 
 attention_head_size 1 – 4 1 
 gradient_clip_val 0.1 – 0.3 0.204 
 learning_rate 0.001 – 0.1 0.0033 

  dropout 0 – 0.3 0.222 

NHITS hidden_size 32 – 128 51 
 num_blocks 1 – 3 3 
 num_stacks 1 – 3 3 
 gradient_clip_val 0.1 – 0.3 0.105 
 learning_rate 0.001 – 0.1 0.0033 
 dropout 0 – 0.3 0.173 
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Table S3: Hyperparameter influence on the prediction skill of the RF and MLP models (ARX has no hyperparameters). The analysed RF 
hyperparameters are: num.trees (number of trees), mtry (number of variables to possibly split at in each node), and min.node.size (minimal 35 
node size to split at). The analysed MLP hyperparameters are: n.hidden (number of hidden nodes), iter.max (maximum iterations of the 
optimization algorithm), and n.trials (number of repeated trials used to avoid local minima). The prediction skill is evaluated as the average 
CRPS over the 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022. Overall, there is little variability of the CRPS for 
the different hyperparameter settings, so the default option (in bold) is used throughout the manuscript. *Here we use only 25 members 
instead of the 51 members of the ensemble forecasts to reduce computing time, which is why the RF has a slightly different CRPS value 40 
than that reported in Fig. 4. 

Model Hyperparameters Average CRPS* 

RF 500 trees, 2 mtry, 5 minimum node size 0.810 
 100 trees, 2 mtry, 5 minimum node size 0.811 
 1000 trees, 2 mtry, 5 minimum node size 0.809 
 500 trees, 1 mtry, 5 minimum node size 0.840 
 500 trees, 5 mtry, 5 minimum node size 0.807 
 500 trees, 2 mtry, 2 minimum node size 0.809 

  500 trees, 2 mtry, 10 minimum node size 0.811 

MLP 2 hidden nodes, 5000 max iterations, 5 trials 0.808 
 5 hidden nodes, 5000 max iterations, 5 trials 0.788 
 10 hidden nodes, 5000 max iterations, 5 trials 0.790 
 2 hidden nodes, 1000 max iterations, 5 trials 0.804 
 2 hidden nodes, 10000 max iterations, 5 trials 0.800 
 2 hidden nodes, 5000 max iterations, 1 trials 0.805 
 2 hidden nodes, 5000 max iterations, 10 trials 0.805 



6 
 

 
Table S4: List of start dates of the 90 forecasts during 2022 that are used for model evaluation. Forecasts are generated twice per week, 
with data missing for 2022-06-30, 2022-07-04, 2022-09-08, 2022-09-12, and 2022-10-03. For each of these 32-day forecasts the modelled 
water temperature at each station is compared against observations. 45 

Number Forecast start date Number Forecast start date Number Forecast start date 

1 2022-01-03 31 2022-04-18 61 2022-08-08 

2 2022-01-06 32 2022-04-21 62 2022-08-11 

3 2022-01-10 33 2022-04-25 63 2022-08-15 

4 2022-01-13 34 2022-04-28 64 2022-08-18 

5 2022-01-17 35 2022-05-02 65 2022-08-22 

6 2022-01-20 36 2022-05-05 66 2022-08-25 

7 2022-01-24 37 2022-05-09 67 2022-08-29 

8 2022-01-27 38 2022-05-12 68 2022-09-01 

9 2022-01-31 39 2022-05-16 69 2022-09-05 

10 2022-02-03 40 2022-05-19 70 2022-09-15 

11 2022-02-07 41 2022-05-23 71 2022-09-19 

12 2022-02-10 42 2022-05-26 72 2022-09-22 

13 2022-02-14 43 2022-05-30 73 2022-09-26 

14 2022-02-17 44 2022-06-02 74 2022-09-29 

15 2022-02-21 45 2022-06-06 75 2022-10-06 

16 2022-02-24 46 2022-06-09 76 2022-10-10 

17 2022-02-28 47 2022-06-13 77 2022-10-13 

18 2022-03-03 48 2022-06-16 78 2022-10-17 

19 2022-03-07 49 2022-06-20 79 2022-10-20 

20 2022-03-10 50 2022-06-23 80 2022-10-24 

21 2022-03-14 51 2022-06-27 81 2022-10-27 

22 2022-03-17 52 2022-07-07 82 2022-10-31 

23 2022-03-21 53 2022-07-11 83 2022-11-03 

24 2022-03-24 54 2022-07-14 84 2022-11-07 

25 2022-03-28 55 2022-07-18 85 2022-11-10 

26 2022-03-31 56 2022-07-21 86 2022-11-14 

27 2022-04-04 57 2022-07-25 87 2022-11-17 

28 2022-04-07 58 2022-07-28 88 2022-11-21 

29 2022-04-11 59 2022-08-01 89 2022-11-24 

30 2022-04-14 60 2022-08-04 90 2022-11-28 
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Figure S1: Model comparison of predictive skill when omitting the uncertainty of meteorological forecasts. The mean absolute error 
(MAE) of each model is shown as a function of (a) lead time averaged over all stations and forecasts, (b) station averaged over all lead 
times and forecasts, and (c) forecast start date averaged over all lead times and stations. The legend indicates the different models and their 
average MAE over all 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022. 55 
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 60 
Figure S2: Model comparison of predictive skill when omitting the uncertainty of meteorological forecasts. The root mean squared error 
(RMSE) of each model is shown as a function of (a) lead time averaged over all stations and forecasts, (b) station averaged over all lead 
times and forecasts, and (c) forecast start date averaged over all lead times and stations. The legend indicates the different models and their 
average RMSE over all 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022. 
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 65 
Figure S3: Model predictive skill per station when omitting the uncertainty of meteorological forecasts. Stations are sorted in ascending 
fashion according to (a) catchment area, (b) mean catchment elevation, (c) station elevation, and (d) glacierized fraction when omitting the 
uncertainty of meteorological forecasts. The CRPS is averaged over all lead times and forecasts. 
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Figure S4: TFT predictive skill per forecast start date and station when omitting the uncertainty of meteorological forecasts. The CRPS is 
averaged over all lead times. 
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Figure S5: Water temperature forecast bias when omitting the uncertainty of meteorological forecasts. (a) Model comparison of forecast 
bias as a function of station averaged over all lead times and forecast start dates. (b) TFT forecast bias per forecast start date and station 
averaged over all lead times.   85 
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Figure S6: Model predictive skill per station when including the uncertainty of meteorological forecasts. Stations are sorted in ascending 
fashion according to (a) catchment area, (b) mean catchment elevation, (c) station elevation, and (d) glacierized fraction when omitting the 
uncertainty of meteorological forecasts. The CRPS is averaged over all lead times and forecasts. 
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Figure S7: TFT predictive skill per forecast start date and station when including the uncertainty of meteorological forecasts. The CRPS is 95 
averaged over all lead times. 

 

 

 

 100 

 



14 
 

 

 

 

 105 

 

 
Figure S8: TFT predictive skill per lead time and forecast start date when including the uncertainty of meteorological forecasts. The CRPS 
is averaged over all stations. 
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Figure S9: Comparison of TFT predictive skill per station if we use catchment average AT, P, and SD as predictors (orange) instead of 
their values at the single grid cell where the station is located as in Fig. 4 (green). Here we include the uncertainty of meteorological 120 
forecasts when estimating the predictive skill. The cumulative rank probability score (CRPS) is averaged over all lead times and forecasts. 
The legend indicates the average CRPS over all lead times, forecasts, and stations.  
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Figure S10: Model comparison of predictive skill when including the uncertainty of meteorological forecasts. The mean absolute error 
(MAE) of each model is shown as a function of (a) lead time averaged over all stations and forecasts, (b) station averaged over all lead 
times and forecasts, and (c) forecast start date averaged over all lead times and stations. The legend indicates the different models and their 130 
average MAE over all 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022. 

 



17 
 

 

 

 135 

 
Figure S11: Model comparison of predictive skill when including the uncertainty of meteorological forecasts. The root mean squared error 
(RMSE) of each model is shown as a function of (a) lead time averaged over all stations and forecasts, (b) station averaged over all lead 
times and forecasts, and (c) forecast start date averaged over all lead times and stations. The legend indicates the different models and their 
average RMSE over all 32 lead times, 54 stations, and 90 forecasts distributed over the year 2022. 140 
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Figure S12: TFT static feature importance. (a) Feature importance averaged over 10 random seeds and 54 stations. (b) Glacierized 145 
fraction importance per station, with stations sorted according to the glacierized fraction of their catchments. (c) Catchment elevation 
importance per station, with stations sorted according to their mean catchment elevation. 
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Figure S13: RF feature importance. The importance is deduced from the decrease in accuracy when randomly permuting the values of a 
feature. The larger the accuracy decrease, the higher the importance of the feature. Here the feature importance weights are obtained with 
the data from 2012 to 2021used for training the RF model.   
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Figure S14: TFT average feature importance variability across 10 models trained with different random seeds. Results are shown for (a) 
static features, (b) encoder features, and (c) decoder features. Boxplots indicate the minimum, median, maximum, and interquartile range 
of the average importance across time steps, stations and forecast start dates. 
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Figure S15: TFT attention variability across 10 models trained with different random seeds as a function of encoder time step. Boxplots 165 
indicate the minimum, median, maximum, and interquartile range of the average attention across stations and forecast start dates.  

 
 


