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Abstract. Land surface modelling runs conducted with the
Community Land Model version 5.0 (CLM5) over Africa at
3 km resolution were carried out, and we assessed the impact
of different sources of soil information and different upscal-
ing strategies for the soil information, in combination with
different atmospheric forcings and different temporal resolu-
tions of those atmospheric forcings. FAO and SoilGrids250m
soil information was used. SoilGrids information at 250 m
resolution was upscaled to the 3 km grid scale by three dif-
ferent methods: (i) random selection of one of the small
SoilGrids250m grid cells contained in the model grid cell,
(ii) arithmetic averaging of SoilGrids soil texture values, and
(iii) selection of the dominant soil texture. These different
soil model inputs were combined with different atmospheric
forcing model inputs, which provide inputs at different tem-
poral resolutions: CRUNCEPv7 (6-hourly input resolution),
GSWPv3 (3-hourly), and WFDE5 (hourly). We found that
varying the atmospheric forcing influenced the states and
fluxes simulated by CLM5 much more than changing the
soil information. Varying the source of soil texture informa-
tion (FAO or SoilGrids250m) influences model water bal-
ance outputs more than the upscaling methodology of the
soil texture maps. However, for a high temporal resolution
of atmospheric forcings (WFDE5), the different soil texture
upscaling methods result in considerable differences in sim-
ulated evapotranspiration (ET), surface runoff, and subsur-
face runoff at the local and regional scales, which is related
to the higher-temporal-resolution representation of rainfall
intensity in the model. The upscaling methodology of fine-

scale soil texture information influences land surface model
simulation results but only when clearly in combination with
high-temporal-resolution atmospheric forcings.

1 Introduction

Understanding the intricate dynamics of land surface models
(LSMs) over Africa involves a detailed examination of soil
properties, which are indispensable yet steeped with uncer-
tainty. The heterogeneity and complexity of soil properties
(Vågen et al., 2016; Hengl et al., 2021) influence LSM sim-
ulations (Li et al., 2022), yet they often remain inadequately
described within LSMs (Xu et al., 2023) due to limited data
availability as a result of spatially insufficient measurements
(Dube et al., 2023). This inadequacy is further exacerbated
in LSMs by the need to represent the point-scale measure-
ments at a coarse spatial resolution for field-, regional-, or
continental-scale studies. Consequently, upscaling of soil in-
formation becomes a critical undertaking, aiming to bridge
the gap between the fine-scale variability of soil properties
and the broader scale at which LSMs usually operate (Van
Looy et al., 2017; Montzka et al., 2017).

The quality of input datasets, like atmospheric forcings,
soil physical properties, or land surface parameters, was
found to greatly impact land surface modelling. Vahmani
and Hogue (2014) compared remotely sensed green veg-
etation fraction (GVF) and impervious surface area (ISA)
with the default look-up-table-derived values of the same pa-
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rameters. The authors found that, using the remotely sensed
parameters, the model was able to replicate the observed
ET. This feat was attributed to capturing all year-round ir-
rigation by means of the remotely sensed data in the do-
main of interest. This highlights the importance of the source
of the datasets input into LSMs. The sensitivity of land
surface models to atmospheric forcings as exemplified by
Traore et al. (2014) over Africa was analysed with two at-
mospheric forcing datasets: Watch Forcing Data Era Interim
(WFDEI) and Watch Forcing Data (WFD). These two reanal-
ysis datasets were generated using the same methodologies
but with a slight difference in their source datasets (Wee-
don et al., 2014). The results showed that, although there
is a poor performance in terms of ET in Central African
forests, WFDEI was closer to eddy covariance measurements
than WFD, with correlations between 0.25 and 0.40. Lovat et
al. (2019) used the ISBA-TOP coupled system (Bouilloud et
al., 2010) over locations in the Mediterranean region at vary-
ing resolutions to assess river discharge and spatial runoff.
It was noted that soil texture influences river discharge and
runoff more than land cover does. Tafasca et al. (2020) used
the land surface model ORCHIDEE and various global soil
texture maps and noted that SoilGrids1km, upscaled to 0.5°
by selecting the dominant soil type, generated similar wa-
ter budgets as the 5 arcmin FAO Soil Map of The World
(Reynolds et al., 2000) and the 1° resolution Global Soil
Types map of Zobler (1986). The authors did, however, in-
dicate that the weak model sensitivity to the soil texture vari-
ation could have been caused by the coarse spatial resolu-
tion of 0.5° at which soil texture was discretized in the OR-
CHIDEE model.

These existing gaps in data and the critical impact of their
uncertainties on LSM performance highlight the need for de-
tailed studies. Studying how varying resolutions of soil and
atmospheric data affect high-resolution LSM outputs across
diverse African ecosystems could help in refining model pa-
rameters and improving prediction accuracy. Furthermore,
exploring new methods for effectively upscaling fine-scale
soil measurements to broader applications in LSMs could
provide insights into more robust upscaling strategies.

In this work, we are concerned with understanding the
role of high-resolution soil texture input (at 3 km horizon-
tal spatial resolution) and its upscaling in the Community
Land Model version 5.0 (Lawrence et al., 2019) (hereafter,
CLM5) simulations over the entire African continent. This
study investigates the impact of uncertainty in soil input vari-
ables and the upscaling method of soil texture information at
different spatial scales (from local to continental) and also
in combination with different temporal resolutions of atmo-
spheric forcings. The aim is not to compare simulations with
measurements but rather to detect model-internal sensitivi-
ties to (the upscaling of) soil texture information.

Twelve simulations combining four different soil texture
inputs (FAO (Global Soil Data Task, 2014) and three differ-
ently upscaled SoilGrids maps (Hengl et al., 2017) and three

different meteorological forcings were carried out, and re-
sults are analysed in this work at the continental, regional,
and point scale. We also compared our outputs with an ex-
ternal dataset, GLDAS-2.1 (Beaudoing and Rodell, 2020), to
assess the performance of the different upscaling methods.
The novelty of this work lies in the detection of the impact of
uncertainty in the (upscaling of) soil texture information, es-
pecially in combination with different temporal resolutions
of atmospheric forcings. The impact of uncertainties of at-
mospheric forcings on land surface model simulations over
Africa has been studied (Boone et al., 2009; Iyakaremye et
al., 2021), but its interaction with the uncertainties in soil in-
formation has not been studied over Africa at a high spatial
resolution.

This research therefore seeks to answer the following
questions: (1) are simulation results of CLM5 sensitive to
different soil texture inputs and the different upscaling meth-
ods applied to soil texture input? (2) What is the role of the
temporal resolution of atmospheric forcings in combination
with the different soil texture inputs?

2 Materials and methods

2.1 CLM5

CLM5 is a mechanistic land surface model which represents
land surface heterogeneity differently from most other land
surface models previously used over Africa in continental
simulations (Traore et al., 2014; Ghent et al., 2010; Weber
et al., 2009). While some of the models previously used over
Africa had a single-layered sub-grid system popularly known
as a mosaic system, CLM5 uses a multi-layered sub-grid
hierarchy. This means that, in CLM5, each grid cell repre-
sents multiple land units consisting of vegetated, lake, ur-
ban, and glacier areas. Each land unit represents multiple
columns which could have different soil profiles with au-
tonomously evolving vertical profiles of soil moisture con-
tent and temperature, and each column has multiple patches
of plant functional type (PFT) or crop functional type (CFT)
(Lawrence et al., 2019). Among the numerous improvements
in CLM5 compared to its predecessor are the inclusion of
a spatially variable soil depth, the replacement of the Ball–
Berry model with Medlyn stomatal conductance, and up-
dated irrigation scheduling (Lawrence et al., 2019). Consid-
ering Africa’s land surface heterogeneity, CLM5 has features
of great interest for land surface modelling over Africa at a
high spatial resolution.

CLM5 provides a framework for modelling the soil pro-
cesses necessary for understanding terrestrial hydrology.
This version of the model improves the representation of soil
porosity and pore size distributions considering both min-
eral and organic components of the soil (Lawrence et al.,
2019). Saturated hydraulic conductivity and soil matric po-
tential are calculated using the method of Cosby et al. (1984)
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for mineral soils, with modifications to accommodate the ef-
fects of organic matter based on its depth and content. De-
tailed equations are comprehensively provided in Lawrence
et al. (2019).

Furthermore, CLM5 employs the Brooks and Corey model
(Brooks and Corey, 1964) to associate soil moisture content
with water potential considering the variability in soil texture
using organic and mineral soil fraction parameters.

Bi =
(
1 − f{om,i}

)
·B{min,i}+ f{om,i} ·B{om} (1)

In the above, B{om} covers organic matter, f{om,i} represents
organic matter fraction, and

B{min,i} = 2.91 + 0.159 · (% {clay})i (2)

is for mineral soil, where (% {clay}) is the percentage of clay
in each grid cell at level i.

The full water balance equation now implies interactions
between canopy, surface, soil, and aquifer water and ice stor-
age, defining the model’s detailed approach to hydrologic
partitioning over varying temporal scales.

The water balance equation is represented by

1Sc, l+1Sc,sn+1Ssfc+1Ssn

+

∑Nlevso,i

i=1

(
θsliq,i + θsice,i

)
+1Sacq

=

(
qrn+ qsn−Ev−Eg− qover

− qsfcwat− qdr− qrgl− qsnsfc
)
1t, (3)

where 1Scl represents changes in canopy water, 1Scsn rep-
resents changes in canopy snow, 1Ssfc represents changes
in surface water, 1Ssn represents changes in surface snow,
and 1Sacq represents changes in water stored in the aquifer.
θsliq,i represents changes in soil water, and θsice,i represents
changes in soil ice at each soil level i. Nlevso,i refers to the
number of soil levels. On the right-hand side of the equa-
tion, qrn represents rainfall, qsn represents snowfall, Ev rep-
resents transpiration, and Eg represents evaporation, while
qover refers to surface runoff, qsfcwat refers to runoff from
surface water storage, qdr refers to drainage, qrgl refers to
glacier and lake runoff, and qsnsfc refers to snow-capped
surface runoff. Precipitation (qrn+ qsn) is intercepted by the
canopy, which is controlled by leaf area index. The moisture
input reaching the surface after evaporative losses from both
the vegetation and the surface (Ev, Eg) is then divided be-
tween surface runoff, surface water storage, and infiltration.
The unit for fluxes is kg m−2 s−1, while storage variables are
quantified in kg m−2, and 1t is in mm s−1. For a detailed
description of the mathematical formulations and their ap-
plications within CLM5, readers are referred to Lawrence et
al. (2019), where these processes are described in-depth.

Irrigation in CLM5 separates irrigated and rainfed crops
by assigning them to separate soil columns. Irrigation is ap-
plied daily at 06:00 (simulation local time per grid cell) based

on the difference between soil moisture content and target
soil moisture while also taking the crop leaf area index into
account. Irrigation decisions are guided by datasets detail-
ing areas equipped for irrigation according to Portmann et
al. (2010). To constrain CLM5 irrigation, irrigation water
is sourced from river storage, with provisions for supple-
ments from ocean reserves. Alternatively, in severe cases of
water scarcity, irrigation demand is dynamically adjusted to
conserve river water levels. The applied irrigation in CLM5
is hard-coded to bypass canopy interception, meaning it is
added directly to the ground surface. More details can be
found in Lawrence et al. (2019).

2.2 Soil texture information

Soil hydraulic and thermal properties are critical for flux and
state calculations in LSMs (Zhao et al., 2018). These values
are generally obtained from soil texture information through
pedotransfer functions, which is also the case for CLM5. Two
different soil texture datasets, the IGBP-DIS soil dataset and
the SoilGrids250m dataset, were used as input for CLM5
simulations over Africa. The IGBP-DIS soil dataset was gen-
erated using the linkage method, which is characterized by
lack of intra-polygonal variation. This soil texture dataset
constitutes the default soil texture information available in
CLM5. The soil texture dataset, which is at approximately
8 km resolution, provides information for the top 10 CLM5
soil layers at 0.0175, 0.0451, 0.0906, 0.1656, 0.2892, 0.493,
0.829, 1.3829, 2.2962, and 3.4332 m depth.

ISRIC’s SoilGrids250m (Hengl et al., 2017) was produced
by machine learning, and it is the successor of the Soil-
Grids1km product (Hengl et al., 2014). SoilGrids250m has
a spatial resolution of 250 m and is therefore considered be-
cause of its potential to better represent local-scale soil pro-
cesses as a result of the higher spatial resolution. When eval-
uated with soil profiles from WoSIS (World Soil Information
Service), SoilGrids250m has a higher accuracy than FAO,
with an RMSE of 18.6 % versus 26.3 % for the sand fraction
at 0–30 cm depth and 12.5 % versus 15.4 % for clay fractions
at this depth (Dai et al., 2019).

Improvements in SoilGids250m compared to its earlier
version, SoilGrids1km, include, for example, further soil
information for deserts and arid areas such as the Sa-
hara Desert, covering about 30 % of Africa’s land mass
(Tucker and Nicholson, 1999). About 150 000 soil profiles
were obtained globally across all continents from both ac-
tual observations and pseudo-observations. Actual obser-
vations were from in situ and remote sensing measure-
ments and values reported by national classification sys-
tems. Pseudo-observations came from expert assessment of
both restricted areas and places with extreme climate con-
ditions like deserts, glaciers, mountaintops, tropical forests,
and austere regions. SoilGrids250m provides global esti-
mates for soil texture fractions, organic carbon, bulk den-
sity, cation exchange capacity, pH, and coarse fragments.
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Compared to SoilGrids1km, SoilGrids250m records a rela-
tive improvement of over 60 % in sand, silt, and clay con-
tents, as explained by a 10-fold cross-validation exercise. The
Soilgrids250m, unlike the IGBP-DIS, was provided at seven
standard soil depths of 0, 0.05, 0.15, 0.30, 0.60, 1.00, and
2.00 m depth.

2.3 Upscaling of soil textural properties

Upscaling of soil hydraulic properties is needed when
the model resolution is coarser than the resolution of the
measurement-based product. SoilGrids250m soil texture in-
formation needs to be upscaled to the 3 km× 3 km resolution
of the CLM5 model for Africa. One CLM5 grid cell there-
fore contains 144 SoilGrids250m grid cells. Three upscaling
methods of soil texture information were compared in this
work:

i. The first method is simple averaging of the soil tex-
ture values for all the SoilGrids grid cells which are
contained in a larger CLM grid cell (e.g. Kochendor-
fer and Ramírez, 2010). Since information on both clay
and sand soil texture was provided as fractions per grid
cell, a simple averaging of the fractions was performed.

ii. The second method is selection of the dominant soil
type (according to USDA soil classification) in a CLM
grid cell and use of the soil texture values for that soil
type for the complete CLM grid cell. This method was,
for example, used in Tafasca et al. (2020). The dominant
soil type is any soil type with the highest representation
among the 144 SoilGrids grid cells.

iii. Finally, we conduct random selection of a single Soil-
Grids cell and use the soil texture values for this grid
cell for the complete 3 km× 3 km CLM model grid cell.
This method, which is a novelty of this work, creates a
chance for texture outliers to define the soil hydraulic
parameters. This ensures that, over larger regions, the
probability density function (PDF) of soil properties is
better reproduced by the model than by selecting the
dominant soil texture or average soil texture. It differs
from other upscaling methods as it avoids spatial av-
eraging or smoothing. Although it can introduce larger
local biases in the soil hydraulic parameters and thus
model output variables, it is not expected to induce
systematic biases at larger scales as local biases for
some grid cells will be cancelled out by biases at other
grid cells. In addition, as soil texture is not averaged
or smoothed before being processed through the non-
linear simulation model, it is expected that model output
variables, averaged over larger areas, are also unbiased.
We also specified a random-number generator (RNG)
seed, which makes the randomization reproducible in
other machines.

2.4 Meteorological forcing datasets and evaluation
dataset

In this work, the impact of three different meteoro-
logical forcing datasets with different temporal resolu-
tions, in combination with the different soil texture in-
put datasets, was investigated. We examined CRUNCEPv7
(Viovy, 2018), GSWP3 (Hyungjun, 2017), and WFDE5 (the
bias-corrected ERA5 dataset using the WATer and global
CHange (WATCH) Forcing Data methodology) (Cucchi et
al., 2020). These three forcings have been selected because
they possess all the atmospheric variables CLM5 requires
and have similar spatial resolutions and, in particular, vary-
ing temporal resolutions of 6 h (CRUNCEP), 3 h (GSWP),
and 1 h (WFDE5). The impact of the varying temporal res-
olutions was studied in combination with the different soil
texture inputs. GSWPv3 and CRUNCEPv7 have already
been used in the past in combination with CLM4, CLM4.5,
and CLM5 (Bonan et al., 2019). WFDE5 has been tested
at 13 globally spread FLUXNET2015 locations. Cucchi et
al. (2020) showed that WFDE5 has smaller mean absolute
errors and larger correlations of variables like precipitation,
global radiation, specific humidity, air temperature, and wind
speed with observations than the WFDEI (Watch Forcing
Data ERA Interim) dataset, which was used in Traore et
al. (2014) over Africa. For comparison and assessment of
the different upscaling-method performances, the GLDAS-
2.1 dataset was used. The dataset has been used over Africa
to train deep learning algorithms for modelling groundwa-
ter (Gaffoor et al., 2022), calculating drought recovery time
(Hao et al., 2022), and assessing the spatio-temporal patterns
of drought in East Africa (Liu et al., 2022). Our choice of the
GLDAS-2.1 dataset is motivated by the fact that it provides
soil moisture information from 0 to 200 cm.

i. CRUNCEPv7. CRUNCEPv7 dataset is a combination of
CRU (Climate Research unit Time Series) 3.24 (Har-
ris, 2013) and National Centre for Environmental Pro-
tection (NCEP) reanalysis (Kalnay et al., 1996). The
data are available for the period between 1901 and 2016
with a horizontal resolution of 0.5° and 6 hourly tem-
poral resolution. Precipitation, cloudiness, temperature,
and relative humidity were taken from CRU while wind
speed, pressure and long wave radiation were obtained
from NCEP.

ii. GWSP3. The Global Soil Wetness Project version 3
dataset is a 3-hourly atmospheric forcing product at 0.5°
horizontal resolution. The data are available for the pe-
riod between 1900 and 2014 and are based on NCEP’s
20th-century reanalysis project (Compo et al., 2011).
Though the 20th-century project dataset was published
at 2° horizontal resolution, the GSWP version 3 dataset
was downscaled to 0.5° horizontal resolution using a
spectral-nudging technique (Yoshimura and Kanamitsu,
2008). Four out of seven variables, namely air temper-
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ature, precipitation, and longwave and shortwave radi-
ation, were bias-corrected using the Climate Research
Unit’s CRU Tsv3.21 (Harris, 2013), the Global Precipi-
tation Climatology Centre’s GPCCv7 (Schneider et al.,
2014), and surface radiation budget datasets (Lawrence
et al., 2019). GSWP3 is the default forcing provided
with the CLM5 model (Lawrence et al., 2019). Since
both GSWP3 and CRUNCEPv7 datasets were provided
for use in CLM by the developers, there was no addi-
tional processing needed to use these datasets in CLM5.

iii. WFDE5. The WFDE5 dataset was created by us-
ing the WATer and global CHange (WATCH) Forc-
ing Data methodology to process near-surface fifth-
generation ECMWF (European Centre for Medium-
Range Weather Forecasts) Reanalysis (ERA5) vari-
ables. WFDE5 was provided globally on a regular long–
lat grid at 0.5°× 0.5° spatial resolution at hourly time
steps. It therefore has the highest temporal resolution
of the atmospheric forcing datasets considered in this
study. WFDE5 correlates better with FLUXNET2015
datasets at each site than WFDEI (Traore et al., 2014).
Another advantage WFDE5 has over the higher-spatial-
resolution ERA5 dataset is that the monthly precipita-
tion totals were bias-corrected using precipitation data
from the Climate Research Unit Time Series (CRU
TS) and the Global Precipitation Climatology Centre
(GPCC). This is important as precipitation has a large
impact on LSM simulations compared to other meteoro-
logical forcings (Bucchignani et al., 2016) over Africa.

iv. GLDAS-2.1. The GLDAS-2.1 dataset was used for ver-
ification purposes in this work. The Global Land Data
Assimilation System was originally developed to absorb
satellite- and ground-based observational data products
using advanced land surface modelling and data assimi-
lation techniques in order to generate fields of land sur-
face states and fluxes (Rodell et al., 2004). The GLDAS-
2.1 dataset, which was reprocessed in January 2020, de-
livers monthly 0.25° data produced by temporal aver-
aging of 3-hourly simulations using the Noah-MP land
surface model 3.6 (LIS, version 7). The GLDAS-2.1
simulations were driven by NOAA/GDAS atmospheric
fields, GPCP V1.3 precipitation data, and AGRMET
radiation variables from March 2001 onward. Table 1
summarizes the details regarding the different meteo-
rological forcing and evaluation datasets used in this
work.

2.5 Model setup and analysis

In this work, CLM5 was run in land-only mode; i.e. in-
stead of coupling CLM5 with an atmospheric model, atmo-
spheric reanalysis datasets are used as external forcings of
the land surface model. Atmospheric input into CLM5 in-

cludes precipitation, incoming shortwave radiation, air tem-
perature, surface air pressure, specific humidity, wind speed,
and incoming longwave radiation. These are available ev-
ery 6 h for CRUNCEP, every 3 h for GSWP, and hourly for
WFDE5. However, since the model time step is 30 min, pre-
cipitation is divided equally over the different model time
steps. For air temperature, surface air pressure, specific hu-
midity, and wind speed, all values are interpolated to model
time steps using the nearest-neighbour algorithm. For solar
radiation, the cosine of the solar zenith angle is used to en-
sure a smoother diurnal cycle while preserving the total radi-
ation from the atmospheric input data.

Sixteen plant functional types were activated alongside
transient CO2 and aerosol deposition rates. All 12 model sim-
ulations (Table 2) apply monthly leaf area index (LAI) as
observed from satellite phenology. A spatially varying soil
thickness dataset (Pelletier et al., 2016), with values ranging
from 0.4 to 8.5 m, was also applied. The land cover descrip-
tion is based on 1 km resolution Moderate Resolution Imag-
ing Spectroradiometer (MODIS) products. Land cover type
is from MCD12Q1 version 5, which provides annual land
cover intervals between 2000 and 2015.

Twelve simulations (three atmospheric forcings com-
bined with four soil texture maps) were performed over the
CORDEX Africa domain, which covers 45.76° S to 42.24° N
latitude and −24.64° W to 60.28° E longitude (results over
African continent only). The horizontal resolution for all
model simulations was approximately 0.027°, i.e. about
3 km. This discretization results in 10 033 920 grid cells. The
simulation period was from 1 January 2011 to 31 Decem-
ber 2014, and the results for the first 2 years were discarded
(spin-up period). Earlier works over the southern African
region, including Crétat et al. (2012), Ratna et al. (2014),
and Zhang et al. (2023), have employed spin-up times of 6
months or less using different land surface models, while
Zheng et al. (2017) employed 1 year for spin-up with a prede-
cessor of CLM5 over the Tibetan Plateau. We compared the
simulated water balance components in this work with wa-
ter balance components (evapotranspiration, surface runoff,
and soil water content) from a fresh simulation which had
11 years of spin-up time, and the results do not alter the
initial conclusion of this study (Figs. S54–56 in the Supple-
ment). Moreover, we evaluated the adequacy of the reference
period employed in this study. The continental annual aver-
age of the deepest soil moisture layer was calculated, a trend
line was fixed, and the statistical significance was calculated
to determine whether the slope of the trend differed signif-
icantly from zero. The resulting p value of 0.353 indicated
that the trend in soil moisture over the 3-year period was not
statistically significant based on a 95 % confidence interval
(Fig. S57 in the Supplement), suggesting that extending the
study period will not alter the current outcome.

Although the model time step size was 30 min, most
results are presented as monthly sums (at regional and
local scales). For continental-scale results, annual mean
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Table 1. Main properties of the reanalysis datasets CRUNCEPv7, GSWPv3, WFDE5, and GLDAS-2.1 used in this work.

Properties CRUNCEPv7 GSWP3 WFDE5 GLDAS-2.1

Spatial resolution 0.5° 0.5° 0.5° 0.25°
Temporal resolution 6-hourly 3-hourly 1-hourly Monthly

of evapotranspiration (ET), surface runoff, and subsurface
runoff were computed, along with the seasonal mean of the
weighted average of the top 2 m soil moisture content. The
weights for calculating the weighted average of soil moisture
content were defined according to the thickness of each soil
layer in CLM5.

To further substantiate the role of soil texture input into
CLM5, a new set of simulations was conducted. To ensure
comparability with CRUNCEP (6-hourly) and GSWP (3-
hourly), the hourly WFDE5 forcings were aggregated to 6
and 3 h, respectively. The model was then run with the soil
texture information. This was conducted to identify discrep-
ancies between the simulation outcomes of WFDE5 at hourly
and 3 and 6 h temporal resolutions. Furthermore, a compar-
ison was made with the results obtained by CRUNCEP and
GSWP. The results were also analysed at the monthly level
in addition to the regional and local time series.

A metric termed “average margin” was introduced to
quantify the impact of the temporal resolution of atmospheric
forcings in combination with soil texture map variation. The
four soil texture maps were considered, each providing a
unique output at every time step within the time series. The
average margin for a simulated variable for a certain at-
mospheric forcing and/or soil texture map combination at
a given time step is denoted by M1(t), M2(t), M3(t), and
M4(t). The difference in terms of the maximum and mini-
mum simulated value for the variable between the soil texture
maps at a given time step is then computed as

D(t)=max(M1(t),M2(t),M3(t),M4(t))

−min(M1(t),M2(t),M3(t),M4(t)) , (4)

and the average margin is given by

A=
1
T

∑T

t=1
D(t) , (5)

where T represents the total number of time steps in the time
series, and t denotes the time step.

A one-way analysis of variance (ANOVA) was conducted
to ascertain whether the outputs of the four soil maps for
each atmospheric forcing group exhibited significant varia-
tion. Firstly, the mean of the four soil map outputs was calcu-
lated, and the deviation of each map’s output from the mean
was obtained. The resulting deviations were subsequently ex-
pressed as percentages relative to the mean output, thus pro-
viding a normalized measure of the deviation for each soil
map, which could then be compared with results for other at-
mospheric forcings. The data were subsequently transformed

into a long format suitable for ANOVA, in which the percent-
age deviations for each soil map were compared. The depen-
dent variables were the obtained percentage deviations, while
the independent variables were the categorical variable defin-
ing the compared groups (FAO, dominant, mean, and ran-
dom). Subsequently, an analysis of variance (ANOVA) was
conducted to ascertain whether there were statistically sig-
nificant discrepancies between the models’ percentage devi-
ations. The results of the ANOVA analysis yielded a p-value
statistic, which was used to determine the significance of the
observed variations in soil texture map outputs at the 95 %
confidence interval. For further details on the ANOVA frame-
work, we direct the reader to the works of Fisher (1925) and
Brandt (2014).

Finally, we compared the different soil texture map out-
comes with the GLDAS-2.1 dataset as a benchmark to com-
pare CLM5 model outputs to an established external dataset.
We compared ET, surface runoff and soil moisture content
using the Pearson correlation (Pearson and Henrici, 1997)
to measure the strength of the relationship between the
datasets and the root mean square error (RMSE). More de-
tails about the RMSE and its proper use are described by
Hodson (2022). For the reference study period, for every grid
cell and all time steps, the calculated water balance compo-
nents were compared with the ones from the GLDAS-2.1
dataset. This comparison was performed on a grid-cell-by-
grid-cell basis, resulting in a complete continental assess-
ment of the water balance components.

2.6 Definition of regions

Iturbide et al. (2020) updated the IPCC climate reference
regions for subcontinental analysis based on, amongst oth-
ers, the coherence of climate variables. The new refer-
ence regions for Africa include the Mediterranean, Sahara,
West Africa, northeastern Africa, Central Africa, central East
Africa, southwestern Africa, and southeastern Africa. Here,
we combined southeastern Africa and Madagascar into one
region. Figure S1 shows the African sub-regions. The eight
regions are used as a basis to calculate region-specific water
balance components.
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Table 2. Summary of CLM5 experiments in this study combing dif-
ferent soil texture input information and atmospheric forcings.

Experiment Soil texture Forcing

FAO_CRU FAO CRUNCEP
SGd_CRU SoilGrids (dominant) CRUNCEP
SGm_CRU SoilGrids (mean) CRUNCEP
SGr_CRU SoilGrids (random) CRUNCEP
FAO_GSW FAO GSWP
SGd_GSW SoilGrids (dominant) GSWP
SGm_GSW SoilGrids (mean) GSWP
SGr_GSW SoilGrids (random) GSWP
FAO_WFD FAO WFDE5
SGd_WFD SoilGrids (dominant) WFDE5
SGm_WFD SoilGrids (mean) WFDE5
SGr_WFD SoilGrids (random) WFDE5
FAO_WFD FAO WFDE5-3H
SGd_WFD SoilGrids (dominant) WFDE5-3H
SGr_WFD SoilGrids (random) WFDE5-3H
FAO_WFD FAO WFDE5-6H
SGd_WFD SoilGrids (dominant) WFDE5-6H
SGr_WFD SoilGrids (random) WFDE5-6H

3 Results and discussion

3.1 Comparison of simulated water balance
components with GLDAS-2.1 datasets

To assess the agreement between the CLM5-simulated water
balance components and a reference dataset, a comparison
was conducted with the outputs of GLDAS-2.1. We acknowl-
edge that, while the GLDAS-2.1 serves as a benchmark for
comparison, the extent to which it accurately represents ac-
tual conditions remains uncertain.

3.1.1 Evapotranspiration

The correlation of CLM5-simulated ET with GLDAS (Fig. 1)
shows a clear spatial gradient across Africa. Strong positive
correlations above 0.75, as referenced in hydrology studies
over Africa (Scanlon et al., 2022; Larbi et al., 2020), are
mainly seen in the equatorial region and in parts of East
Africa, southern Africa, and Madagascar, indicating accept-
able model performance in these regions. Northern Africa,
some parts of Central Africa, and the cape of South Africa
tend to show moderate to weak positive correlations, with
some areas having negative correlations (down to around
−0.79). The mean correlation values hover around 0.64–
0.70, reflecting relatively moderate agreement with GLDAS
across the continent. The RMSE for ET (Fig. S50) displays a
concentration of lower errors in the moisture-deficient north-
ern and southern parts of Africa, while the moisture-richer
central and eastern regions show higher RMSE values. This
suggests that, while CLM5-simulated ET corresponds well
with GLDAS in the equatorial zones, there is higher variabil-

ity and model uncertainty in the arid and semi-arid regions.
It is important to note, however, that RMSE scores are mag-
nitude dependent as they increase or decrease with the mag-
nitude of evaluated variables.

3.1.2 Surface runoff

Surface runoff correlations (Fig. 2) over Africa exhibit wide
variability, with very high positive correlations (up to 1.0) in
savannah regions of West Africa, including parts of Namibia,
Zambia, and Mozambique. There are, however, areas with
low to strongly negative correlations, particularly in Mauri-
tania, Mali, Algeria, Libya, Egypt, and Sudan, where cor-
relation values are as low as −1.0. This high variability re-
sults in an average continental correlation of 0.50–0.58. The
RMSE for surface runoff over Africa (Fig. S52) shows mini-
mal errors in water-scarce northern and southwestern Africa,
with the highest RMSE values ranging from 0 to 11 mm per
month. Central Africa and western African regions show rel-
atively higher RMSE values. The high RMSE values sug-
gest substantial discrepancies in surface runoff simulation
between CLM5 and GLDAS, especially in equatorial areas.

3.1.3 Soil moisture

Soil moisture correlations with GLDAS (Fig. 3) show a
slightly different spatial pattern compared to ET. The highest
correlations (strong positive) are generally observed above
the Equator, in the top fringes of southern Africa, and in
northern Madagascar. However, strong negative correlations
are found in parts of the Sahara, specifically Mauritania,
Mali, Algeria, Egypt, and Sudan, where certain grid cells
exhibit correlations as low as −0.79. Overall, the average
correlations for soil moisture are lower than for ET, with
a range of 0.56–0.67, indicating less correlation across the
continent compared to ET. The RMSE map for soil moisture
(Fig. S51) exhibits average values ranging between 0.05–
0.06 cm3 cm−3. There is slightly higher RMSE in parts of
Central Africa specifically, in the Democratic Republic of
Congo, where errors peak around 0.26–0.27 cm3 cm−3. This
RMSE pattern suggests that the CLM5-simulated soil mois-
ture maintains a relatively stable agreement with GLDAS,
having minimal extreme errors across the continent.

3.2 Continental simulated water balance components

3.2.1 Evapotranspiration

Figure 4 shows actual ET estimates over Africa for the dif-
ferent soil texture maps used in this study and the different
atmospheric forcings. Continental average ET and local ET
maxima were estimated for all 12 simulations for the refer-
ence period of 2013–2014.

The soil texture map has, in general, only a limited im-
pact on simulated ET. For CRUNCEP-forced simulations,
the yearly ET varies among the soil maps between 452.9
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Figure 1. Temporal correlation maps of simulated evapotranspiration compared with the Global Land Data Assimilation System (GLDAS-
2.1) dataset over Africa for three different atmospheric forcing datasets (CRUN, GSWP, and WFDE5) and four soil texture maps (FAO and
SoilGrids (dominant – SGDom; mean – SGMean; and random – SGRan)). Top row: correlation maps for the CRUNCEP dataset using the
FAO, SGDom, SGMean, and SGRan soil texture maps. Middle row: correlation maps for the GSWP dataset using the same four soil texture
maps. Bottom row: correlation maps for the WFDE5 dataset using similar maps.

and 454.4 mm yr−1, with the lowest ET for the FAO soil
texture map and slightly higher ET for the SoilGrids tex-
ture maps. Also, for GSWP-forced simulations, we find
the lowest simulated ET for the FAO soil texture map
(438.7 mm yr−1), while the highest simulated ET is only
slightly higher (439.6 mm yr−1). Simulated ET is highest for
the SoilGrids soil map, which is randomly upscaled. Also,
for the WFDE5 simulations, differences in simulated ET
are very small and vary between 442.5 mm yr−1 (FAO) and
443.5 mm yr−1 (SoilGrids, randomly upscaled). These num-
bers also illustrate that the impact of variations in soil texture
input is much smaller than that of variations in atmospheric
forcings. While the four different soil texture maps result in
maximum variations in average yearly ET over the African
continent of only ∼ 1 mm for a given atmospheric forcing,
the variations in atmospheric forcing result in maximum vari-
ations in average yearly ET over the African continent of

around 14 mm yr−1 for a given soil texture dataset. Specif-
ically, the upscaling procedure of the soil texture informa-
tion exhibits negligible effects on the mean annual estimates
of evapotranspiration over Africa. Also, the maximum simu-
lated ET for a grid cell over Africa is hardly affected by the
soil texture map input (< 1 mm yr−1), with even smaller vari-
ations among soil texture maps than the continental average.
On the other hand, variations in atmospheric forcings affect
the local maximum simulated yearly ET more strongly, with
variations among forcings of ∼ 36 mm yr−1.

3.2.2 Surface runoff

Also, the continental surface runoff is not strongly affected
by variations in the soil texture map (Fig. 5). For all three
atmospheric forcings, the average surface runoff over the
African continent is almost the same for the four differ-
ent soil texture maps, and differences in surface runoff are
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Figure 2. Temporal correlation maps of simulated surface runoff compared with the Global Land Data Assimilation System (GLDAS-2.1)
dataset over Africa for three different atmospheric forcing datasets (CRUN, GSWP, and WFDE5) and four soil texture maps (FAO, SGDom,
SGMean, and SGRan). Top row: correlation maps for the CRUNCEP dataset using the FAO, SGDom, SGMean, and SGRan soil texture
maps. Middle row: correlation maps for the GSWP dataset using the same four soil texture maps. Bottom row: correlation maps for the
WFDE5 dataset using similar maps.

never larger than 0.3 mm yr−1 for a given atmospheric forc-
ing. When examining the influence of soil texture maps on
surface runoff, it becomes evident that the disparities be-
tween the various SoilGrids maps, generated using different
upscaling methods, are minimal. The maximum difference
in continental averages of surface runoff between the Soil-
Grids soil texture maps with the highest and lowest values is
only 0.01–0.02 mm yr−1, depending on the atmospheric forc-
ing. However, slightly larger differences are observed when
comparing the FAO soil texture map with the SoilGrids tex-
ture maps, with a maximum variation of 0.20–0.26 mm yr−1,
again depending on the atmospheric forcing. These findings
indicate that, while the upscaling process of soil texture maps
does not substantially impact simulated surface runoff with
CLM5, the source and type of soil texture maps employed
do have a small, yet perceivable, influence on the results.

On the other hand, the atmospheric forcing shows a much
larger impact on average surface runoff over Africa, with a
value of approximately 94 mm yr−1 for CRUNCEP (6-hourly
temporal resolution), 114 mm yr−1 for GSWP (3-hourly tem-
poral resolution), and 122 mm yr−1 for WFDE5 (hourly reso-
lution). Spatial details can be found in Fig. 2. The substantial
difference of 28 mm yr−1 in average annual surface runoff
between WFDE5 and CRUNCEP potentially contributes to
higher ET estimates for CRUNCEP at 11 mm yr−1. The in-
creased surface runoff in the WFDE5-forced simulations re-
duces the availability of water for ET processes, especially
after runoff events.

The differences in surface runoff could be related to the
temporal resolution of the atmospheric forcings. A higher
temporal resolution of the atmospheric forcings, as for
WFDE5, will result in higher peaks of precipitation intensity,
whereas a coarser temporal resolution of 6 h, like for CRUN-
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Figure 3. Pearson correlation maps of simulated soil water content compared with the Global Land Data Assimilation System (GLDAS-2.1)
dataset over Africa for three different atmospheric forcing datasets (CRUN, GSWP, and WFDE5) and four soil texture maps (FAO, SGDom,
SGMean, and SGRan). Top row: correlation maps for the CRUNCEP dataset using the FAO, SGDom, SGMean, and SGRan soil texture
maps. Middle row: correlation maps for the GSWP dataset using the same four soil texture maps. Bottom row: correlation maps for the
WFDE5 dataset using similar maps.

CEP, will average out intensive precipitation over longer time
periods, with fewer high peaks in precipitation intensity. As
surface runoff is generated under conditions of (very) high
precipitation intensity, it can be expected that the temporal
resolution of the atmospheric forcings will affect the simu-
lated amount of surface runoff.

3.2.3 Subsurface runoff

Simulated subsurface runoff across the African continent
(Fig. 6) is, in general, low in most regions and across all
simulation scenarios, typically below 250 mm yr−1. The es-
timation of subsurface runoff is more influenced by soil tex-
ture variations and the upscaling of soil texture properties
compared to ET and surface runoff simulations. The most
substantial differences in simulated subsurface runoff among
soil texture inputs are between the FAO soil map and the Soil-
Grids250m maps, while the disparities among the upscaled

SoilGrids250m maps are smaller, especially with GSWP and
CRUNCEP forcings. For CRUNCEP forcings, the difference
between the maximum and minimum simulated subsurface
runoff among the soil texture maps (averaged over Africa) is
11.3 mm yr−1, whereas it is 2.1 mm yr−1 among the upscaled
SoilGrids maps. For GSWP, these differences are 11.6 and
2.4 mm yr−1, respectively, while for WFDE5, they are 26.0
and 14.5 mm yr−1, respectively. Notably, for WFDE5 (with
1-hourly forcings), the differences in simulated subsurface
runoff among the different upscaled SoilGrids maps are con-
siderably larger than for the other forcings. The variations in
maximum subsurface runoff values among soil texture maps
are more pronounced than for the mean subsurface runoff,
particularly for CRUNCEP and WFDE5, where the differ-
ences among upscaled SoilGrids maps are also substantial.

On the other hand, the spatially averaged subsurface runoff
over Africa showed considerable variations among atmo-
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Figure 4. Spatial distribution of simulated mean annual evapotranspiration over Africa. Upper row: CRUNCEP-forced simulations with,
from left to right, FAO, dominant, mean, and random upscaled soil texture map inputs. Middle row: like the upper row but for GSWP-forced
simulations. Bottom row: like the upper row but for WFDE5-forced simulations.

spheric forcings: 17–29 mm yr−1 for CRUNCEP, between 36
and 48 mm yr−1 for GSWP, and 42–68 mm yr−1 for WFDE5.
Like surface runoff patterns, WFDE5 has the highest values,
followed by GSWP, while CRUNCEP simulations yield the
lowest subsurface runoff estimates. This discrepancy can be
attributed to the higher average precipitation in WFDE5 over
Africa (see Fig. 2).

In summary, for subsurface runoff simulation, variations
in both atmospheric forcings and soil texture, including dif-
ferent upscaling methods, play an important role.

3.2.4 Soil moisture content

Soil moisture content estimates were obtained by calculating
the weighted average of soil moisture content over the top
2 m of the soil profile in CLM5. Mean annual maxima and
averages have also been analysed for each season as seasonal
analysis of soil moisture content reflects seasonal changes
in hydrological processes (Myeni et al., 2019) and allows

a better understanding of the relationship between vegeta-
tion and water availability (Huber et al., 2011). Specifically,
for the boreal summer season (JJA), the average simulated
soil moisture content across the African continent varies be-
tween 0.02 cm3 cm−3 in the Sahara and 0.54 cm3 cm−3 in
both Equatorial Guinea and along the coasts of Sierra Leone
among the 12 simulations (Fig. 7). The upscaled soil texture
maps all give very similar continental averages of soil mois-
ture content for the summer season. The source of the soil
texture maps (FAO vs. SoilGrids) resulted in some variation
in the continental soil moisture content averages. A differ-
ence map showing the difference between the SGMean (Soil-
Grids, mean) and the three other soil texture maps (FAO and
SoilGrids, dominant (SGDom) and random (SGRan)) for the
same season (Fig. S2) also clearly shows that, while there is
a 0.0 cm3 cm−3 continental mean difference among the up-
scaled SoilGrids maps, there is an maximum difference of
0.19 cm3 cm−3, a minimum difference of −0.19 cm3 cm−3,
and a mean continental difference of 0.01 cm3 cm−3 between
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Figure 5. Spatial distribution of simulated mean annual surface runoff over Africa. Upper row: CRUNCEP-forced simulations with, from
left to right, FAO, dominant, mean, and random upscaled soil texture map inputs. Middle row: similar to the upper row but for GSWP-forced
simulations. Bottom row: similar to the upper row but for WFDE5-forced simulations.

FAO and SGMean. This suggests that the source of a soil tex-
ture map could influence the soil moisture content estimates
of a land surface model more than the upscaling procedure
of the soil texture information. The WFDE5 atmospheric
forcings are associated with more variation in simulated soil
moisture content among the four soil texture maps than the
other atmospheric forcings. The mean soil moisture content
and the difference maps for other seasons can be found in
Figs. S3–8.

Like for ET and surface runoff, varying the atmo-
spheric forcing impacted the continental maximum of soil
moisture content more than variations in soil texture in-
put. CRUNCEP-forced simulations (6-hourly time steps)
gave lower maximum soil moisture content values (0.46–
0.47 cm3 cm−3) than GSWP-forced simulations (3-hourly
time steps; 0.51–0.53 cm3 cm−3) and WFDE5-forced sim-
ulations (hourly time steps; 0.50–0.54 cm3 cm−3). This dif-
ference is likely to be attributable to lower precipitation
amounts in the CRUNCEP-forced simulations combined

with slightly higher ET values in comparison to simulations
with the other forcings.

3.3 Regional results

We present results for two regions (the Sahara and Central
Africa) based on their moisture availability contrast.

3.3.1 Sahara region

The Sahara region is generally the most moisture-deficient
region in Africa. Rainfall over the region was highest in Au-
gust 2013 (around 30 mm per month) and was near 0 mm per
month for many other months, especially in the winter season
(see Fig. 8, upper row).

Simulated ET and surface runoff differed little among the
different soil texture maps for the different atmospheric forc-
ings. The average margin in actual ET among soil texture
maps is only 0.4 mm per month for both the CRUNCEP and
GSWP forcings and 0.8 mm per month for the WFDE5 forc-
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Figure 6. Spatial distribution of simulated mean annual subsurface runoff over Africa. Upper row: CRUNCEP-forced simulations with, from
left to right, FAO, dominant, mean, and random upscaled soil texture map inputs. Middle row: like the upper row but for GSWP-forced
simulations. Bottom row: like for the upper row but for WFDE5-forced simulations.

ing. ET simulated by the CLM5 model varied more as func-
tion of the atmospheric forcing and can, for a given soil tex-
ture map, vary by up to a few millimetres per month between
different atmospheric forcings.

Simulated surface runoff exhibits similar patterns for all
soil texture maps, with minimal surface runoff and slight in-
creases during months with higher precipitation. The average
monthly differences in surface runoff between the different
soil texture maps are smaller than 0.1 mm per month. Subsur-
face runoff shows a decreasing trend, which is attributed to
initially higher groundwater levels. While subsurface runoff
is generally small in absolute terms, the different soil tex-
ture maps result in significantly varying relative amounts
of subsurface runoff. Simulated average soil moisture con-
tent over the Sahara region is consistently low, with values
around 0.12 cm3 cm−3. These significantly different values,
which are not extremely low despite very limited precipita-
tion, could be attributed to the amount of loamy soil over the
region (Fig. S10), with higher residual soil moisture content

than in sandy soils. Differences in simulated soil moisture
content among the soil texture maps are primarily influenced
by the variations in soil properties used in each map.

The different soil texture inputs into the WFDE5-forced
simulations result in larger differences in simulated ET and
surface runoff (though these are not significant according to
ANOVA) compared to the other atmospheric forcings for re-
gions with low soil moisture content like the Mediterranean
(Fig. S12) and southwestern Africa (Fig. S16). The higher
temporal resolution (1 h) of the WFDE5 atmospheric forcing
leads to varying surface runoff compared to forcings with
lower temporal resolutions (3 h or 6 h).

Overall, these findings over the Sahara and other low-
moisture regions like the Mediterranean and southwestern
Africa highlight some influence of atmospheric forcing and
its temporal resolution; soil texture map variations; and their
interactions in the simulation of ET, surface runoff, subsur-
face runoff, and soil moisture content across different regions
of Africa.
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Figure 7. Spatial distribution of simulated soil moisture content in the JJA season over Africa. Top row: CRUNCEP-forced simulations with
FAO and dominant, mean, and random upscaled soil texture map inputs. Middle row: like the top row but for GSWP-forced simulations.
Bottom row: like the top row but for WFDE5-forced simulations.

3.3.2 Central Africa

Central Africa encompasses the Congo rainforest, the
second-largest rainforest in the world, consisting of ever-
green and semi-evergreen deciduous forests (Aloysius and
Saiers, 2017), and stands out as one of the most moisture-
rich regions in Africa, characterized by a regional mean rain-
fall ranging from 50 to 200 mm per month. The proximity to
the Equator results in frequent rainfall events due to recur-
rent convective precipitation events. The dense vegetation in
Central Africa contributes to high transpiration rates, which
are supported by the substantial amounts of rainfall.

Once again, we observe that only the WFDE5 atmospheric
forcings exhibit a variation (not significant) in ET values
across different soil texture maps, as shown in Fig. 9. On av-
erage (over the years 2013 and 2014), the soil texture maps
with the highest and lowest monthly averaged ET differ by
0.5 mm per month for CRUNCEP and GSWP but by 5.8 mm
per month for WFDE5. The monthly averaged surface runoff

values for CRUNCEP and GSWP show little variation among
different soil texture maps. However, for WFDE5, the Soil-
Grids map upscaled with random selection results, on av-
erage, in a significantly higher surface runoff (6.7 mm per
month) than the other soil texture maps. Regarding subsur-
face runoff, GSWP and CRUNCEP simulations exhibit, at
most, a 0.4 mm per month difference in average monthly sub-
surface runoff among different soil texture maps, whereas
WFDE5 shows a significant difference of 7.0 mm per month.
The soil moisture content maps display nearly similar aver-
age values across all atmospheric forcings and soil texture
maps, with no significant differences.

Other moisture-rich regions including West Africa
(Fig. S13), northeastern Africa (Fig. S14), central East Africa
(Fig. S15), and southeastern Africa (Fig. S17) also show
that WFDE5-forced simulations resulted in clear differences
which are mostly closer to significance than GSWP and
CRUNCEP in terms of simulated ET, surface runoff, and
subsurface runoff for the different soil texture inputs. On the
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Figure 8. Monthly regional mean of water balance components over the Sahara. The p values indicate the statistical significance of the
variations observed in the model outputs. The first to the fifth rows show precipitation, actual ET, surface runoff, subsurface runoff, and soil
moisture content, respectively. Left, middle, and right columns show the same variables for CRUNCEP, GSWP, and WFDE5 atmospheric
forcings, respectively. The lines in the figures represent results for different soil textures as input. Red line: FAO; green line: SoilGrids
(dominant); blue line: SoilGrids (mean); and purple line: SoilGrids (random).

other hand, soil moisture content did not show clear signifi-
cant differences for the different soil texture maps in all re-
gions.

3.4 Local results

We now look at the results at the local scale (grid scale)
to analyse further the impact of the variation in soil tex-
ture maps and atmospheric forcings on simulation out-

comes. We selected one location for each of the eight
climate regions: Cairo (Egypt, Mediterranean), Agadez
(Niger, Sahara), Abuja (Nigeria, West Africa), Addis Ababa
(Ethiopia, northeastern Africa), Salong (Democratic Repub-
lic of Congo, Central Africa), Dar es Salaam (Tanzania, cen-
tral East Africa), Windhoek (Namibia, southwestern Africa),
and Maseru (Lesotho, southeastern Africa). Two of the eight
locations are discussed due to their contrasting moisture

https://doi.org/10.5194/hess-29-1659-2025 Hydrol. Earth Syst. Sci., 29, 1659–1683, 2025



1674 B. Oloruntoba et al.: High-resolution land surface modelling over Africa

Figure 9. Monthly regional mean of water balance components over Central Africa. The p values indicate the statistical significance of the
variations observed in the model outputs. Left, middle, and right columns show the same variables for CRUNCEP, GSWP, and WFDE5
atmospheric forcings, respectively. The lines in the figures represent results for different soil textures as input. Red line: FAO; green line:
SoilGrids (dominant), blue line: SoilGrids (mean); and purple line: SoilGrids (random).

availability, while other locations are available in the Sup-
plement.

3.4.1 Agadez

Agadez, situated at 16.97° N and 7.98° E, experienced its
highest precipitation of 125 mm per month in August 2013
and received no rainfall during several winter months within
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our reference period. The grid cell in focus is also domi-
nated by sandy and loamy soils according to all four soil
texture maps. The results for Agadez indicate a close asso-
ciation between ET peaks and precipitation peaks as ET in
this region, the Sahara, is limited by water availability. De-
spite a 5-month period without rainfall from September 2013
to January 2014, ET values in Agadez remained at nonzero
(1.5 mm per month) between January 2014 and April 2014.
This can be attributed to irrigation practices automatically
applied to sustain irrigated crops when the soil moisture con-
tent falls below a critical threshold within CLM5.

The WFDE5-forced simulations for Agadez (Fig. 10)
show that different (upscaled) soil texture maps yield vary-
ing monthly ET, surface runoff, and subsurface runoff values.
On average (over the years 2013 and 2014), the soil texture
maps with the highest and lowest monthly averaged ET dif-
fer by 0.7 mm per month for CRUNCEP, 0.9 mm per month
for GSWP, and 1.8 mm per month for WFDE5 (though this is
not significant according to ANOVA). This can be attributed
to low rainfall. Model simulations driven by CRUNCEP or
GSWP show no variation in surface runoff as function of the
soil texture map, while slight but insignificant variations in
surface runoff are found for WFDE5. A similar pattern is ob-
served for subsurface runoff. Although the texture class for
the dominant and mean SoilGrids is loamy sand (LS) and
that for FAO and the random SoilGrids is sandy loam (SL)
for the grid cell in question (Table S17), statistically signif-
icant differences in soil water content are observed among
the four soil texture maps. These differences arise because,
although the soil texture classes are similar, the proportions
of clay, sand, and silt vary among the four maps, resulting in
different hydraulic conductivities.

Overall, the results for Agadez demonstrate the influence
of soil texture map variation on ET, surface runoff, and sub-
surface runoff, with WFDE5 simulations exhibiting more
pronounced variations compared to CRUNCEP and GSWP
forcings. These findings underscore the importance of soil
texture representation and the temporal resolution of the at-
mospheric forcing in capturing the hydrological processes in
Agadez and similar locations.

3.4.2 Abuja

Abuja, situated in Nigeria at coordinates of 9.07° N, 7.30° E,
exhibits a distinct yearly precipitation cycle characterized by
high rainfall during the summer months, with precipitation
exceeding 200 mm per month. Conversely, the winter season
is dry, with months devoid of any rainfall (Fig. 11). ET peaks
in Abuja typically occur approximately 1 month or more af-
ter the peak of rainfall, as observed in 2014.

Simulated ET, surface runoff, and subsurface runoff in
Abuja demonstrate variations across different soil texture
maps, although these are not statistically significant; these
are particularly noticeable with the high-temporal-resolution
atmospheric forcings provided by WFDE5. In terms of ET,

WFDE5 displays the highest mean margin differences among
soil texture maps (10.4 mm per month), followed by GSWP
(1.4 mm per month) and CRUNCEP (1.0 mm per month). Re-
garding surface runoff, WFDE5 also yields the highest mean
margin (7.5 mm per month), while CRUNCEP and GSWP
exhibit negligible differences (< 0.2 mm per month). Simi-
larly, the ranking of differences in subsurface runoff follows
the same pattern, with WFDE5 showing the largest dispar-
ities (7.7 mm per month), followed by GSWP (0.4 mm per
month) and, finally, CRUNCEP (0.0 mm per month). No-
tably, the FAO soil texture map consistently results in slightly
higher soil moisture content (SWC) compared to the Soil-
Grids soil texture maps for all atmospheric forcings (as de-
picted in the lower row of Fig. 8). However, these differ-
ences in SWC do not exceed 0.01 cm3 cm−3 across all at-
mospheric forcings and are valued as insignificant according
to ANOVA.

Similar patterns are observed for other locations, including
Cairo (Fig. S18), Addis Ababa (Fig. S19), Salong (Fig. S20),
Dar es Salaam (Fig. S21), Windhoek (Fig. S22), and Maseru
(Fig. S23). WFDE5-forced simulations exhibit larger varia-
tions in simulated ET, surface runoff, and subsurface runoff
among different soil texture maps compared to the other at-
mospheric forcings. Simulated soil moisture content shows
minimal variations among the different soil texture maps for
a given atmospheric forcing.

3.4.3 Aggregation of WFDE5 to 3-hourly and 6-hourly
resolutions

To further validate the role of the temporal resolution of at-
mospheric forcings, WFDE5 forcing was aggregated (from
hourly data) to 3-hourly and 6-hourly resolutions so that it
varied temporally only on a 3-hourly and 6-hourly basis, like
GSWP and CRUNCEP. Simulations were performed to ex-
amine the impact of the new temporal resolution on ET, sur-
face runoff, subsurface runoff, and soil moisture content both
regionally and locally. We compare CRUNCEP (6-hourly),
6H-WFDE5 (6-hourly), 3H-WFDE5 (3-hourly), GSWP (3-
hourly), and WFDE5 (1-hourly).

Table 3 shows the impact of varying soil texture map in-
puts on different water balance component for West Africa.
Simulated variables show much less variation as a function
of soil texture map input for CRUNCEP, GSWP, 6-hourly ag-
gregated WFDE5 forcings, and 3-hourly aggregated WFDE5
forcings compared to 1-hourly WFDE5 forcings. Similar
results are found for Abuja (Table 4), where CRUNCEP,
GSWP, 6H-WFDE5, and 3H-WFDE5 forcings produce vari-
ations between 0.02 and 2.0 mm per month in ET, surface
runoff, and subsurface runoff as a function of the soil tex-
ture map, while WFDE5 produces variations between 7.43
and 9.93 mm per month among soil texture maps. A similar
observation was also made for other regions (Tables S1, S2,
S4, S5, S6, S7, and S8) and locations (grid cells) (Tables S9,
S10, S11, S12, S13, S14, S15, and S16).
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Figure 10. Monthly local estimates of water balance components over Agadez. The p values indicate the statistical significance of the
variations observed in the model outputs. Left, middle, and right columns show the same variables for CRUNCEP, GSWP, and WFDE5
atmospheric forcings, respectively. The lines in the figures represent results for different soil textures as input. Red line: FAO; green line:
SoilGrids (dominant); blue line: SoilGrids (mean); and purple line: SoilGrids (random).

3.5 Discussion

The simulation results over Africa suggest that the atmo-
spheric forcings exert an important control on the ET esti-
mates, while soil texture is important for simulating surface

and subsurface runoff. The simulation results also suggest
that the temporal resolution of atmospheric forcings influ-
ences the simulation outcomes, especially surface and sub-
surface runoff, and the interaction with soil texture seems
to play a role here. These findings agree with the work of
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Figure 11. Monthly local estimates of water balance components over Abuja. The p values indicate the statistical significance of the vari-
ations observed in the model outputs. Left, middle, and right columns show the same variables for CRUNCEP, GSWP, and WFDE5 atmo-
spheric forcings, respectively. The lines in the figures represent results for different soil textures as input. Red line: FAO; green line: SoilGrids
(dominant); blue line: SoilGrids (mean); and purple line: SoilGrids (random).

Zhang et al. (2023) on the role of soil texture and the work
of Beusekom et al. (2022) on the impact of temporal forcing
aggregation on land surface model outputs.

The analysis of water budget components shows differ-
ences in simulated ET, surface runoff, and subsurface runoff

for the different upscaled soil texture maps in combination
with WFDE5-forced simulations but not in combination with
other atmospheric forcings with more coarse temporal res-
olutions. We observed for ET and surface runoff across all
regions that a higher temporal resolution led to higher differ-
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Table 3. Mean margin of simulated variables among soil texture maps for CRUNCEP (6-hourly), GSWP (3-hourly), 6H-WFDE5 (6-hourly),
3H-WFDE5 (3-hourly), and WFDE5 (1-hourly).

Variable CRUNCEP GSWP 6H-WFDE5 3H-WFDE5 WFDE5

Evapotranspiration (mm per month) 0.59 0.60 0.61 0.61 4.34
Surface runoff (mm per month) 0.06 0.07 0.08 0.09 2.68
Subsurface runoff (mm per month) 0.49 0.48 0.56 0.59 3.00
Soil moisture content (cm3 cm−3) 0.00 0.00 0.00 0.00 0.00

Table 4. Mean margin of simulated variables among soil texture maps for CRUNCEP (6-hourly), GSWP (3-hourly), 6H-WFDE5 (6-hourly),
3H-WFDE5 (3-hourly), and WFDE5 (1-hourly).

Variable CRUNCEP GSWP 6H-WFDE5 3H-WFDE5 WFDE5

Evapotranspiration (mm per month) 0.91 1.33 1.70 2.00 9.93
Surface runoff (mm per month) 0.03 0.15 0.19 0.21 7.43
Subsurface runoff (mm per month) 0.02 0.41 0.59 0.63 7.70
Soil moisture content (cm3 cm−3) 0.01 0.01 0.01 0.01 0.01

ences in ET and surface runoff between soil texture map out-
comes, with the largest differences for WFDE5 (hourly reso-
lution), followed by GSWP (3-hourly resolution) and CRUN-
CEP (6-hourly resolution). For subsurface runoff, a higher
temporal resolution did not result in such a systematic pat-
tern in moisture-rich regions with rainfall above 200 mm per
month. However, in moisture-deficient regions, a higher tem-
poral resolution of the atmospheric forcing is associated with
more variation in subsurface runoff for different soil texture
maps. The temporal resolution of the atmospheric forcings
did not result in different soil moisture content results for
each soil texture map, but in all regions, it was observed
that the FAO soil texture map resulted in different soil mois-
ture content than the SoilGrids250m soil texture maps, par-
tially confirming the findings of Tafasca et al. (2020), which
showed that soil mapping had a stronger influence on soil
moisture content compared to fluxes.

3.5.1 The role of temporal resolution in rainfall
intensity representation

We investigated whether the higher temporal resolution of
simulations influenced the rainfall partitioning into surface
runoff and infiltration. The absolute monthly (Figs. S26
and S27) and annual (Fig. S9) precipitation amounts over
the continent vary only slightly among CRUNCEP, GSWP,
and WFDE5. The spatial averages for annual precipitation
are 608, 638, and 666 mm yr−1 for CRUNCEP, GSWP, and
WFDE5 respectively. These differences in rainfall amount do
not explain why only WFDE5 soil texture variations result in
larger runoff and evapotranspiration variations. We also anal-
ysed the number of precipitation events with a rainfall inten-
sity above 3 mm h−1 for each of the three atmospheric forc-
ings and eight selected locations. We found that WFDE5 had
a much higher number of precipitation events with rainfall

intensity greater than 3 mm h−1 than both CRUNCEP and
GSWP at all eight locations (see Table S17), indicating a bet-
ter representation of rainfall intensity. GSWP and CRUNCEP
had more rainfall events with much lower intensities. This in-
dicates that rainfall intensity representation and its impact on
the partitioning between infiltration and surface runoff in the
land surface model is a likely reason for the higher sensitiv-
ity of model outcomes to soil texture input in WFDE5-forced
simulations than in GSWP- and CRUNCEP-forced simula-
tions.

3.5.2 The role of soil texture in water balance
components

Rainfall intensity has a stronger influence on surface runoff
generation than rainfall amount (e.g. Jungerius and ten
Harkel, 1994; Yao et al., 2021), and surface runoff is, on the
other hand, also strongly influenced by the hydraulic con-
ductivity, with lower conductivity supporting higher surface
runoff (Suryatmojo and Kosugi, 2021; Ow and Chow, 2021;
Chandler et al., 2018). Therefore, for WFDE5 forcings, there
are potentially more situations with surface runoff, such that
the role of different soil properties can come into play. We
analysed this for all eight locations (Fig. S53) by calculating
the standard deviation of the fraction of precipitation turned
into surface runoff among the four soil texture maps for each
atmospheric forcing. For the WFDE5 atmospheric forcings,
this standard deviation varies between 1.2 % of rainfall for
Dar es Salaam and 10.1 % of rainfall in Addis Ababa, while
the standard deviations are less than 0.4 % for both CRUN-
CEP (6-hourly) and GSWP (3-hourly) atmospheric forcings
for all locations. This identified impact of surface runoff
agrees with Mizuochi et al. (2021) for the ORCHIDEE model
and with Fersch et al. (2020) for the WRF-Hydro model. This
shows that the soil texture information has a control over the
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partitioning of fluxes for higher-temporal-resolution atmo-
spheric forcings (Shuai et al., 2022). Since surface runoff and
infiltration are sensitive to rainfall intensity (Mertens et al.,
2002) and since soil texture determines saturated hydraulic
conductivity, the timings of runoff (Hammond et al., 2019),
surface runoff, and subsurface runoff vary as a function of
soil texture inputs into the WFDE5 simulations (mainly at
the local and regional scales).

3.5.3 Implications for land surface modelling and
community impact

This work demonstrates the critical role that high-resolution
soil texture information and higher-temporal-resolution forc-
ing datasets play in simulating water balance components. It
highlights the need to use higher-resolution soil texture infor-
mation in land surface model simulations to improve the cap-
turing of grid- and sub-grid-scale land surface heterogeneity.
It is also necessary to provide better pedotransfer functions
which link soil texture and soil hydraulic parameters which
ultimately control infiltration. The higher temporal resolu-
tion of atmospheric forcing (hourly) in this work has also
captured water balance dynamics differently compared to
coarse-temporal-resolution atmospheric forcing, which indi-
cates a need for the community to further strengthen research
to improve the temporal resolution of atmospheric forcings,
especially over Africa. There have been advances in improv-
ing the spatial resolution of atmospheric forcings (e.g. Funk
et al., 2015), but this work serves as an indicator that higher-
temporal-resolution atmospheric forcings are also needed.
The works of Hersbach et al. (2020) and Cucchi et al. (2020)
must be complemented in producing a higher temporal reso-
lution of atmospheric forcings. This advancement can elimi-
nate the need for temporal disaggregation of precipitation, as
done in this work. This work showed that soil texture infor-
mation is important in combination with a high temporal res-
olution of atmospheric forcings as it impacts the division of
rainfall into surface runoff and infiltration. Ultimately, land
surface models also need to be better tuned to correctly re-
produce this division in the context of the higher temporal
resolution of atmospheric input data and the higher spatial
resolution of information on soil hydraulic properties.

4 Conclusions

Community Land Model version 5 (CLM5) model runs over
the African continent were performed at a high spatial res-
olution of approximately 3 km, with four different soil tex-
ture maps and three different atmospheric forcings. The four
different soil texture inputs included the FAO soil map and
three differently upscaled SoilGrids250 maps. The three dif-
ferent atmospheric forcings were CRUNCEPv7, GSWP3,
and WFDE5. The most important findings were as follows:
average evapotranspiration and surface runoff simulated by

CLM5 over the African continent show a limited sensitivity
to variations in the soil texture input. The source of soil tex-
ture information (FAO versus SoilGrids) results only in mi-
nor variations in the continental average ET or surface runoff
(0.3 % variations around mean), and the impact of differ-
ent upscaling approaches of soil texture information is even
smaller. This sensitivity to soil texture input is much smaller
than the sensitivity to the different atmospheric forcings (3 %
variation for mean ET and 26 % variation for surface runoff).
Average subsurface runoff and average soil moisture at the
continental scale are both as sensitive to variations in atmo-
spheric forcings as they are to variations in soil texture infor-
mation.

Although average surface runoff at the continental scale
shows a limited sensitivity to soil texture input, at the re-
gional and, especially, the local scale, this sensitivity is much
higher, but this is mainly so in combination with the higher
temporal resolution of WFDE5 forcings (hourly). The higher
temporal resolution of WFDE5 forcings (hourly) compared
to the other atmospheric forcings resulted in larger variations
not only in simulated surface runoff but also in ET and sub-
surface runoff for the different soil texture maps. This points
to the fact that the impact of soil texture becomes more im-
portant in combination with the higher temporal resolution of
atmospheric forcings. We explain this with the impact of the
temporal resolution of atmospheric forcings on the rainfall
intensity and the partitioning of rainfall into surface runoff,
which is also determined by the hydraulic conductivity of the
soil. This, in turn, also affects the amount of water available
for evapotranspiration and drainage.

This study therefore recommends further advances in
the provision of both higher-temporal-resolution climate
datasets and higher-spatial-resolution soil information over
Africa. With higher-spatial-resolution soil information, sub-
grid-scale land surface heterogeneity will be handled with
more accuracy. Also, higher-temporal-resolution climate
datasets at less than 1 h time steps will not only eliminate
the need for temporal disaggregation in land surface model
applications but will also ensure that more accurate atmo-
spheric variables are supplied to the land surface model at
each time step.

This study also highlights specific implications for the
simulation of surface runoff by land surface models. A higher
spatial resolution of soil texture data or of soil hydraulic
properties at finer spatial scales will potentially allow for
a better modelling of surface runoff and, subsequently, of
other water balance components in each grid cell. In ad-
dition, higher-temporal-resolution atmospheric forcing cap-
tures high-intensity rainfall events that can produce more sur-
face runoff in a short period of time, especially on soils with
low hydraulic conductivity, leading to a more accurate esti-
mate of surface runoff in each affected grid cell.

It is assumed in this work that model shortcomings (for ex-
ample, those related to the representation of yearly vegetation
cycles and the representation of different crop types) do not
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substantially affect the differences in the simulation results.
Furthermore, the release of CLM5 as used in this work as-
sumes 16 plant functional types for the African continent by
default, which does not represent all vegetation types. Also,
irrigation is hard-coded into the surface datasets. Future work
should reduce these limitations.
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