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Abstract. We systematically investigate how the spacing and
type of point measurements impact the scale of subsurface
features that can be identified by groundwater flow model
calibration. To this end, we consider the optimal inference
of spatially heterogeneous hydraulic conductivity and head
fields based on three kinds of point measurements that may
be available at monitoring wells, namely head, permeabil-
ity, and groundwater speed. We develop a general, zonation-
free technique for Monte Carlo (MC) study of field recov-
ery problems, based on Karhunen–Loève (K–L) expansions
of the unknown fields whose coefficients are recovered by
an analytical, continuous adjoint-state technique. This tech-
nique allows for unbiased sampling from the space of all
possible fields with a given correlation structure and effi-
cient, automated gradient-descent calibration. The K–L ba-
sis functions have a straightforward notion of wavelength,
revealing the relationship between feature scale and recon-
struction fidelity, and they have an a priori known spectrum,
allowing for a non-subjective regularization term to be de-
fined. We perform automated MC calibration on over 1100
conductivity–head field pairs, employing a variety of point
measurement geometries and evaluating the mean-squared
field reconstruction accuracy, both globally and as a function
of feature scale. We present heuristics for feature-scale iden-
tification, examine global reconstruction error, and explore
the value added by both the groundwater speed measure-
ments and by two different types of regularization. We find
that significant feature identification becomes possible as
feature scale exceeds 4 times the measurement spacing, and

identification reliability subsequently improves in a power-
law fashion with increasing feature scale.

1 Introduction

In the following, we quantify the reliability of reconstruc-
tion of heterogeneous hydraulic conductivity field features
– meaning regions of locally similar hydraulic conductiv-
ity – of different scales, given different densities and kinds
of point hydraulic measurements. We study a basic ques-
tion that is inherent in all remote sensing: how much infor-
mation can be extracted and at what resolution? A rigorous
feature-scale perspective, which we have not seen before in
the context of the inverse problem of hydrogeology, is illumi-
nating, because model calibration may succeed in capturing
large-scale features of hydrogeological relevance, while the
L2 (integral square) error of the recovered field relative to
the true field remains misleadingly high. In the middle col-
umn of Fig. 1, we show two log-conductivity fields that have
been reconstructed using gradient-descent model calibration.
While both reconstructed fields qualitatively match the true
field, in both cases calibration was able to remove only 2/3
of the L2 error relative to the underlying field. However, the
remaining error pertains to higher wavenumber (i.e., spatial
frequency) features which may be of less importance.
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Figure 1. Examples of automated calibration (center column) of true fields lnK̃ and h̃ (left column) after 500 optimization steps starting
from an initially uncorrelated lnK field (right column), using the adjoint-state approach detailed in this paper. Color maps represent spatial
variation of field values: a higher value corresponds to a lighter color within a given map, but numeric interpretation of a given color varies
from map to map. Black dots in each image indicate the locations of simulated measurements. Two calibrations are shown, both featuring
the same underlying field and the same data weights, as defined in Eqs. (37)–(39), but differing in regularization approach: (a) regularization
employed with wR= 1/2 and (b) no regularization (wR= 0). 9 = 0.10 in both cases.

1.1 Detailed motivation

For many forms of groundwater modeling, it is common to
infer the spatially heterogeneous hydraulic conductivity and
head fields which together determine groundwater flow from
sparse, passively collected measurements at groundwater
wells. While significant high-resolution information about
heterogeneity may be obtained from a wide variety of inter-
ventions including geophysical measurements (Slater, 2007;
Szabó, 2015), hydraulic tomography (Illman et al., 2007),
and both push–pull (Hansen et al., 2017) and point-to-point
(Irving and Singha, 2010) tracer tests, such data are often un-
available at scales of interest. Due to their prevalence in prac-

tical, field-scale model calibration, we focus here on three
types of point information that are readily and commonly de-
termined at monitoring wells. These are hydraulic head, h̃,
obtained from direct piezometry; Darcy flux magnitude, q̃,
obtained from point dilution tests; and log of hydraulic con-
ductivity, lnK̃ , from slug tests or Kozeny–Carman core sam-
ple analyses. Calibrating a spatially nonuniform hydraulic
conductivity field at high resolution from sparse measure-
ments of these three types is generally a highly underdeter-
mined inverse problem that defies an exact solution.

Model calibration is premised on the assumption that fit-
ting the observable data will sufficiently constrain unob-
served underlying fields to enable useful conclusions, even
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given major uncertainty. However, given only point measure-
ments of a given resolution, it is not immediately clear how
accurate the estimated head and log of hydraulic conductiv-
ity fields will be. Recalling the well-known 1D result that the
drop in head along a streamline segment is determined by the
harmonic mean of the conductivities encountered, and not
their order, we see it is not possible to recover information
about small-scale variations from endpoint head, flux, and
conductivity. However, we may gain hope from knowledge
that the head field is generally much smoother than the un-
derlying conductivity field, and that a full suite of measure-
ments at each well will provide us with both the head, h̃, and
∇h̃: the first two terms of the Taylor expansion of this smooth
function around each well. To the extent that it is possible to
correctly reconstruct the head distribution at locations away
from the wells, we will be able to partially constrain the con-
ductivity and to identify its large-scale features – meaning
contiguous regions of similar hydraulic conductivity.

Additionally, it may be possible to employ regularization
techniques that do not depend on detailed site knowledge to
further improve the reconstruction quality. The question is,
how much can we learn and at which scales?

To our knowledge, the degree to which measurement den-
sity and type of measurement relate to the scale of features
that can reliably be recovered, as well as to the global error
of the recovered field, has not been examined systematically.
We seek to address these matters in two ways. Firstly, we aim
to derive a quantitative cutoff and scaling relationship relat-
ing feature-scale identifiability to measurement density. Sec-
ondly, we wish to make concrete, empirically grounded state-
ments about the relative value of the different types of point
data and regularization schemes for accurate inference of hy-
draulic conductivity and head fields using standard gradient-
descent model calibration.

1.2 Previous contributions

Being essential to reliable modeling, the inverse problem
of reconstructing hydraulic conductivity fields from incom-
plete data has long interested subsurface hydrologists. The
literature on this problem has become so extensive over the
decades that it even contains a substantial meta-literature of
review papers (e.g., Bagtzoglou and Atmadja, 2005; Carrera
et al., 2005; Hendricks Franssen et al., 2009; Zhou et al.,
2014). Interested readers are referred to these papers; we will
only briefly summarize some key developments that contex-
tualize our work.

From a purely mathematical standpoint, the hydraulic
problem is ill-posed, being non-unique, and additional con-
straints are required to regularize to a unique, physically
plausible solution. Neuman (1973) proposed a regulariza-
tion scheme employing explicit smoothness and bounded-
ness constraints on the conductivity field. Yoon and Yeh
(1976) proposed a similar scheme, in which the solution was
expressed as a superposition of finite-element shape func-

tions, with the boundedness constraints applied to the shape
functions themselves. An alternative dimension-reduction
approach based on zonation with fixed parameters in each
zone was proposed by Yeh and Yoon (1981). An alternative
two-stage approach, limited to small conductivity variances
(Zhou et al., 2014), was based on first identifying the geo-
statistical spatial correlations of head and permeability, fol-
lowed by co-kriging to estimate conductivity at locations of
interest (Kitanidis and Vomvoris, 1983; Hoeksema and Ki-
tanidis, 1984). In the context of the general nonlinear con-
ductivity calibration problem, where variance is not gener-
ally small and where an initial guess may be far from the true
solution, iterative variants on the geostatistical approach have
been proposed (Kitanidis, 1995; Yeh et al., 1995; Cardiff et
al., 2009). Explicitly, Bayesian approaches that view model
error as the key source of uncertainty (Carrera and Neu-
man, 1986b), in which regularization is viewed as coming
from a prior probability distribution (Kitanidis, 1986; Wood-
bury and Ulrych, 2000), have also been proposed. Analytical
covariance relationships between head and permeability are
valid for small perturbations. For work in large-dimensional
spaces (such as calibration of high-resolution conductivity
fields), reduction of non-uniqueness by use of principal com-
ponent dimension reduction has also been proposed (Tonkin
and Doherty, 2005; Kitanidis and Lee, 2014), representing a
sort of pre-regularization.

The relative performance of the various techniques has not
been studied much. Exceptions we are aware of include the
comprehensive numerical intercomparison studies of Zim-
merman et al. (1998) and Hendricks Franssen et al. (2009)
and the bench-scale study of Illman et al. (2010), which only
compared hydraulic tomography with simple averaging and
kriging. Hendricks Franssen et al. (2009) reported little per-
formance difference among the various techniques they com-
pared.

Additionally, researchers have tried approaches that im-
prove uniqueness by addition of other forms of physical data.
These include hydraulic tomography, in which the head field
is manipulated by pumping at wells surrounding the area of
interest (e.g., Gottlieb and Dietrich, 1995; Yeh and Liu, 2000;
Illman et al., 2007); use of transient head data (e.g., Carrera
and Neuman, 1986b; Zhu and Yeh, 2005); flux measurements
(Tso et al., 2016); and chemical (Wagner, 1992; Michalak
and Kitanidis, 2004; Xu and Gómez-Hernández, 2018; Delay
et al., 2019) and thermal (Woodbury et al., 1987) tracer data.
These are largely out of the scope of the present work, which
focuses on steady-state hydraulic inversion only, although we
will re-examine the use of local groundwater speed (i.e., flux)
information.

As inversion is typically performed via gradient descent,
it is necessary to estimate the gradient of the loss function
with respect to the parameters. Where the loss function is
expensive to compute and the parameter space has a high
number of dimensions, it is generally not feasible to esti-
mate the gradient naively via successive parameter pertur-
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bation. Various solutions exist, including automatic differen-
tiation (Elizondo et al., 2002; Sambridge et al., 2007; Wu
et al., 2023) and the adjoint-state method, which was ini-
tially applied to the groundwater inverse problem by Sykes et
al. (1985). Adjoint-state formulations for groundwater model
inversion commonly incorporate head data only (Sykes et al.,
1985; Carrera and Neuman, 1986a; Lu and Vesselinov, 2015;
Delay et al., 2019), although they have been formulated to in-
corporate other forms of information (Cirpka and Kitanidis,
2001). Both discrete and continuous adjoint-state formula-
tions have been studied by Delay et al. (2017) and Hayek
et al. (2019), with the former identifying advantages for the
continuous approach. We have not seen formulations for a
loss function that includes conductivity and speed measure-
ments or regularization.

1.3 Concrete goals and overview of contents

At a high level, our goals for the research are twofold. Pri-
marily, we aim to quantify the spatial scale at which it be-
comes possible to identify coherent conductivity field fea-
tures as a function of hydraulic point measurement spacing,
as well as how our ability to identify these features increases
with increasing measurement density. We do so in the con-
text of a paradigmatic steady-state 2D system, but we expect
that the results uncovered will be of more general applicabil-
ity. Secondarily, we aim to study the relative value of three
types of point measurement (conductivity, head, and ground-
water speed) and two types of empirically grounded regu-
larization schemes (Tikhonov and series truncation) on field
reconstruction performance.

To study the interrelation of measurement density, feature
scale, and identifiability, we develop an automated gradient-
descent calibration Monte Carlo (MC) framework with the
following properties:

1. It samples initial guesses in an unbiased fashion from
the space of possible conductivity fields.

2. It avoids arbitrary a priori zonation and structural con-
straints.

3. Its output is easily interpreted in terms of feature-scale
reconstruction reliability.

4. It has a sufficiently low computational cost.

We satisfy the first three properties by generating fields with
Karhunen–Loève (K–L) expansions and working directly
with their coefficients rather than creating a zonated domain
and calibrating constant conductivities for fixed regions. We
select a covariance kernel such that the K–L basis functions
can be determined analytically, and such that they each have
an obvious spectral interpretation. As the basis functions are
orthonormal, they admit a Fourier-type analysis of the re-
construction. The last property is satisfied by deriving a con-
tinuous adjoint-state sensitivity of the loss function to mea-
surements, reducing the computational cost to the size of the

measurement vector rather than the vector of K–L coeffi-
cients.

We stress that, although we develop a framework for quan-
tifying the amount of learning that occurs during model cal-
ibration, we are not adding to the literature of bespoke tech-
niques for the inverse problem of hydrogeology. Ultimately,
our calibration technique amounts to gradient-descent min-
imization of a squared-error objective function, which is a
standard approach in contemporary machine learning.

In Sect. 2, we derive the continuous adjoint-state form of
the optimization equations for the steady-state groundwater
flow equation subject to a loss function containing point data
about head, flux, and conductivity, as well as an arbitrary reg-
ularization term. In Sect. 3, we derive the K–L basis func-
tions and eigenvalues, present fitness metrics, discuss reg-
ularization, and formalize two MC studies. In Sect. 4, we
present results, derive a quantitative relation between mea-
surement density and feature reconstruction reliability, dis-
cuss global error, and numerically compare the utility of var-
ious types of measurements and regularization approaches.
In Sect. 5, we summarize our key conclusions and point to-
wards future work.

2 Derivation of continuous adjoint-state optimization
equations

We look to solve for a spatially distributed hydraulic con-
ductivity field K(x;p), which is defined by some parameter
vector p that exists throughout some domain � and where
x represents the spatial coordinate within �. Optionally, we
try to simultaneously solve for the specified-head boundary
condition h|∂�. We take for granted that our system obeys
the steady-state groundwater flow equation ∇ · (K∇h)= 0,
where h(x) represents hydraulic head and K , a scalar, rep-
resents an isotropic local hydraulic conductivity. We further
assume that we have accurate measurements of head, h̃(xj );
Darcy flux magnitude, q̃(xk); and log of hydraulic conduc-
tivity, lnK̃l , at a number of discrete points, xk , within �.

We will be obtaining K by gradient descent on some loss
function, J , representing the mismatch between model pre-
dictions and point measurements, as a function of a vector
of model parameters, p, meaning we require the sensitivity
vector ∂J

∂p
. However, because h is measured and will appear

explicitly in the formula for J , we expect that we will need to
determine ∂h

∂p
, which is computationally intractable for large-

dimensional p. Consequently, we aim to derive an adjoint
equation that, when satisfied, eliminates the dependence of
∂J
∂p

on ∂h
∂p

. We do this below.
We begin with the Dirichlet boundary value problem

(BVP) for the steady-state groundwater flow equation:

∇ · (K∇h)= 0 in �, (1)
h= g(x) on δ�, (2)

where g(x) is a known function.
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2.1 Loss function

We attempt to minimize J , which consists of as many as four
metrics:

1. the weighted square error of our modeled Darcy
speeds, K(xj ;p)

∥∥∇h(xj ;p)∥∥, relative to measure-
ments, q̃(xk), at the measurement locations, xj ;

2. the weighted squared error of our modeled heads,
h(xk), relative to our measurements, h̃(xk), at the mea-
surement locations, xk;

3. the weighted squared error of our modeled log of hy-
draulic conductivity, lnK(xl), relative to our measure-
ments, lnK̃(xk), at the measurement locations, xl ; and
optionally

4. a regularization term, R, based on prior notions of how
plausible a given underlying log-conductivity is.

This can be expressed mathematically as

J ≡
∑
j

wj
(
K(xj ;p)

∥∥∇h(xj ;p)∥∥− q̃(xj ))2
+

∑
k

wk

(
h(xk;p)− h̃(xk)

)2

+

∑
l

wl

(
lnK(xl;p)− lnK̃(xl)

)2

+R(K(x;p)) . (3)

Here we explicitly acknowledge the dependence of h and
K on a vector of model parameters, p, which generally en-
codes the model parameters and the boundary conditions.
The weights wj , wk , and wl , which may be zero, may reflect
the relative areas of the Voronoi regions associated with each
well, as well as a relative importance rating of the types of
measurement. The magnitude of the regularization function
may also vary by an arbitrary scalar to change its weight rela-
tive to measurement misfit. For simplicity, we will generally
not write this dependence explicitly.

2.2 Adjoint equation form

In Appendix A, we show the manipulations required to elim-
inate the sensitivity of h on each of the parameters defining
the flow field in Eq. (3). Inspired by Eq. (A11), we propose
to define φ∗ to solve the BVP:

∇ · (K∇φ∗)+ 2
∑
k

wk

(
h(xk)− h̃(xk)

)
= 0 in �, (4)

φ∗ = 0 on δ�, (5)

which we note is consistent with the adjoint BVP derived in
Sykes et al. (1985). When φ∗ is so defined, it eliminates two

of the boundary integral terms and one of the volume integral
terms in Eq. (A9), leaving the simplified sensitivity equation:

∂J

∂p

=

∫
�

2(K ‖∇h‖− q̃)
∂K

∂p
‖∇h‖

∑
j

wj δ(x− xj )dV

+

∫
�

2
K

∂K

∂p

(
lnK − lnK̃

)∑
l

wlδ(x− xl)dV +
∂R(K)

∂p

−

∫
�

∂K

∂p
∇h · ∇φ∗dV −

∫
δ�

Kφ∇φ∗ · dS . (6)

We show here the specific dependence of the regularization
term on the K field alone.

2.3 Sensitivity to specific parameters

The vector p may contain two types of parameters: those
defining the type I (specified head) boundary condition and
those defining field K(x), itself. We note that for any given
parameter, pi , the sensitivity expression, Eq. (6), simplifies.

For parameters, pi , defining the conductivity field, we ob-
serve that, because our domain has a specified-head bound-
ary condition which is governed by a different set of param-
eters, φi = 0 in the final term of Eq. (6). Thus,

∂J

∂pi

=

∫
�

2(K ‖∇h‖− q̃)
∂K

∂pi
‖∇h‖

∑
j

wj δ(x− xj ) dV

+

∫
�

2
K

∂K

∂pi

(
lnK − lnK̃

)∑
l

wlδ(x− xl)dV +
∂R(K)

∂pi

−

∫
�

∂K

∂pi
∇h · ∇φ∗dV . (7)

There are at least two convenient ways that the conductivity
field can be parameterized. The first way is that the domain
can be discretized, with pi representing the constant value of
K in some subdomain, �i . In this case, ∂K

∂pi
is 1 in �i and 0

outside. Thus,

∂J

∂pi
=

∫
�i

2(K ‖∇h‖− q̃)‖∇h‖
∑
j

wj δ(x− xj ) dV

+

∫
�i

2
K

(
lnK − lnK̃

)∑
l

wlδ(x− xl)dV

−

∫
�i

∇h · ∇φ∗dV +
∂R(K)

∂pi
, (8)

where only measurements inside the subdomain participate
in the sensitivity expression.
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The second convenient approach is to write lnK(x)=∑
i

pifi(x), where the functions fi(x) form an orthogonal

basis in �. This series type of representation has the ad-
vantage of being independent of any domain discretization.
Here, ∂

∂pi
{lnK} = fi(x), so we may adapt Eq. (7):

∂J

∂pi
=2
∑
j

wj
[
fi (K ‖∇h‖− q̃)K ‖∇h‖

] ∣∣∣∣
x=xj

+ 2
∑
l

wl

[
fi

(
lnK − lnK̃

)]∣∣∣∣
x=xl

−

∫
�

Kfi∇h · ∇φ
∗dV +

∂R(K)

∂pi
. (9)

For parameters defining the specified-head boundary con-
dition, it follows that ∂K

∂pi
= 0, so all but the final term of

Eq. (6) disappear. Invoking Eq. (A5), it follows immediately
that

∂J

∂pi
=−

∫
δ�

K
∂f

∂pi
∇φ∗ · dS. (10)

As in the case of the conductivity field, the controlling pa-
rameters may either specify constant heads along individ-
ual boundary segments or a series-type representation may
be used. If � is convex, it is convenient to use a classic
Fourier series, with an angular variable θ ∈ [0,2π) sweep-
ing the boundary like the hand of a clock.

3 Monte Carlo study of calibration

3.1 Overview

Using the sensitivity equation, Eq. (9), and adjoint BVP
equations, Eqs. (4)–(5), we study how well hydraulic conduc-
tivity and head fields can be reconstructed given point mea-
surements of conductivity, head, and (optionally) groundwa-
ter velocity using adjoint-based gradient-descent approaches,
in the context of a paradigmatic 2D steady-state system. We
aim to understand the relationship between the residual error
of the fitted model and the L2 (root integral square) error of
the reconstructed conductivity field, as well as the degree to
which this can be improved by the addition of (a) groundwa-
ter velocity information and (b) regularization based on sta-
tistical information about the conductivity field. In Sect. 4.4,
we discuss the potential for these results to generalize to
other systems.

We approach this question via a Monte Carlo study: we
generate many synthetic target true conductivity realizations,
and for each target realization, we perform gradient-descent
model calibration multiple times from different random ini-
tial guesses. In this way, we are able to assess the relative
performance of different calibration methods, as well as mea-
surement resolution.

We employ two specialized techniques: (i) series expan-
sion in K–L basis functions, which addresses the problem of
data generation as well as model-independent conductivity
field representation, and (ii) adjoint-state inversion by steep-
est descent from initial guesses generated using the approach
in (i). This addresses the issue of unbiased sampling of the
model space as well as the computational tractability, as the
computational cost of the adjoint-state approach is dictated
by the dimension of the observation space rather than the
(much larger) dimension of the model space for underdeter-
mined inverse problems.

Any Monte Carlo study must necessarily be simplified rel-
ative to reality. While we have simplified the problem to
make it more amenable to mathematical analysis, we ex-
pect the patterns that emerge to hold more broadly. Although
our mathematical analysis is fully general for steady-state
groundwater flow, we restrict the current study to reconstruc-
tion of two spatial dimensions and employ a separable expo-
nential covariance structure for which the K–L basis func-
tions may be analytically determined in closed form. Ex-
plicit expansion of the fields in these basis functions is ad-
vantageous, because it allows for straightforward spectral in-
terpretation. We also assume that head boundary conditions
are known, encoding a physically reasonable hydraulic gra-
dient in the x direction. We assume that a complete set of
error-free, uniformly spaced measurements are available, al-
lowing analysis to focus directly on the information content
of the measurements and error induced by aliasing of un-
resolved high-wavenumber features. We further assume that
true log-conductivity fields are Gaussian with a known corre-
lation structure (equivalently, semivariogram), although (ex-
cept when regularization was employed) the statistics are
only used for specification of initial guesses.

3.2 Representation of conductivity field and boundary
conditions

We employ a generalized Fourier series type of repre-
sentation of target log-conductivity fields as well as cali-
brated approximations to the target, meaning that fields are
represented as vectors of coefficients, and model calibra-
tion proceeds by iterative solution of Eqs. (4)–(5) and (9).
The analytic representation of the adjoint-state gradient-
descent equations combined with the series field represen-
tation means that any numerical discretization is completely
abstracted out of the analysis, and forward modeling can be
performed by a general finite-element solver – in our case the
FEniCS package for Python.

The actual orthonormal basis functions used are the K–L
basis functions corresponding to covariance kernel Eq. (11):

Cov(lnK(x1), lnK(x2))

= σ 2
lnK exp

(
−
|x1− x2|

ηx
−
|y1− y2|

ηy

)
, (11)
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where the position vectors are represented by xi = (xi,yi).
Use of K–L basis function expansion has been recommended
and previously employed successfully in the context of hy-
draulic inversion by Wang et al. (2021). On our 2D domain,
�= [0,Lx]× [0,Ly], and the nth such function may be de-
fined analytically (Zhang and Lu, 2004):

fn(x,y)

=
1√

(η2
xw

2
x,n+ 1)Lx/2+ ηx

[
ηxwx,n cos(wx,nx)+ sin(wx,nx)

]
(12)

×
1√

(η2
yw

2
y,n+ 1)Ly/2+ ηy

[
ηywy,n cos(wy,ny)+ sin(wy,ny)

]
, (13)

where wx,n and wy,n are respectively the nth positive solu-
tions to

(η2
xw

2
x,n− 1)sin(wx,nLx)= 2ηxwx,n cos(wx,nLx), (14)

(η2
yw

2
y,n− 1)sin(wy,nLy)= 2ηywy,n cos(wy,nLy). (15)

Viewing wx,nL as a single argument to both sine and cosine,
it is clear that there will be infinitely many solutions, with one
occurring in each interval (kπ,(k+ 1/2)π), where sine and
cosine must cross, regardless of vertical scaling (with one
extra solution occurring near 0). As wx,n grows, the solution
point where ηxwx,n sin(·)≈ 2cos(·) must, on scale grounds,
become very close to the zeroes of the sine function, namely
the positive integer multiples of π . A similar argument ap-
plies for wy,n. Thus, it makes sense to understand the K–L
basis functions as analogous to the basis functions of Fourier
series, with angular frequencies defined by wx,n and wy,n.
This makes it easy to interpret the several K–L basis func-
tion in terms of their corresponding feature scales.

K–L basis functions, by definition, form an orthonormal
basis so that

Lx∫
0

Ly∫
0

fm(x,y)fn(x,y)dydx = δmn (16)

and behave in such a way that any stochastic series

lnK̃ ≡
∞∑
n=1

ζn
√
λnfn(x,y), (17)

where ζn ∼N(0,1) and where eigenvalues λn are defined as

λn =
4ηxηyσ 2

lnK(
η2
xw

2
x,n+ 1

)(
η2
yw

2
y,n+ 1

) , (18)

represents an equally likely realization of a multivariate
Gaussian field with covariance structure Eq. (11). The eigen-
values, λn, decrease with increasing n, representing the de-
creasing importance of each subspace to explaining the vari-
ance of the Gaussian field.

For a truncated K–L series representation with largest co-
efficient N , we can derive an expression for the portion of

the variance, θ , accounted for as follows. We define the total
variance as the expected value of the integral of lnK̃ over the
entire domain. It follows from the definition of the pointwise
variance, σ 2

lnK , that

E

 Lx∫
0

Ly∫
0

(
lnK̃

)2
dyx

= LxLyσ 2
lnK . (19)

Substituting in series representation Eq. (17), changing sum-
mation and integration order, and applying Eq. (16) yields

Lx∫
0

Ly∫
0

(
lnK̃

)2
dydx

=

Lx∫
0

Ly∫
0

(
∞∑
n=1

ζn
√
λnfn(x,y)

)2

dydx (20)

=

∞∑
m=1

∞∑
n=1

ζmζn
√
λm
√
λn

Lx∫
0

Ly∫
0

fm(x,y)fn(x,y)dydx (21)

=

∞∑
n=1

ζ 2
nλn. (22)

Taking the expectation and observing that ζn ∼N (0,1)
yields a series expression for the total variance:

E

 Lx∫
0

Ly∫
0

(
lnK̃

)2
dydx

= ∞∑
n=1

λn. (23)

Thus, by truncating the right-hand side (RHS) of Eq. (23)
to N terms and normalizing it via the RHS of Eq. (19), we
arrive at the expression

θ =
1

LxLyσ
2
lnK

N∑
n=1

λn. (24)

Both target and initial guess fields are represented by
length-N coefficient vectors, containing the coefficients ζn
in Eq. (17). Because in our studies the only parameters be-
ing fit are the coefficients defining the log-conductivity field,
we can use the same K–L basis function expansion form to
explicitly represent our calibrated approximations of the true
lnK̃:

lnK(x)=
∑
n

pn
√
λifn(x). (25)

While all solutions are expressed in terms of the K–L func-
tions corresponding to the true covariance structure, this in
itself does not prejudice the solution, as these functions form
a complete basis. One may wonder if the initial guesses be-
ing drawn from the same distribution as the true field in some
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way biases them towards the correct field. However, we are
interested in how cost function J varies with L2 reconstruc-
tion error during calibration, not the absolute magnitude of
each, and the adjoint-state calibration equations, Eqs. (4)–
(5) and (9), do not make use of the correlation information.
This metric should not depend on the statistical structure of
the initial guesses, as long as they are uncorrelated with their
corresponding target field.

3.3 Bayesian selection of misfit and regularization
weights

The units of speed, conductivity, and head are incompati-
ble, so the sets of coefficients {wj }, {wk}, and {wl} implic-
itly have different units. It is necessary to select defensible
values for these and to select the regularization term R(p).
To select these optimally, we adopt a maximum a posteriori
Bayesian standpoint and imagine that the goal of our cali-
bration is to determine the most probable parameter vector
argmax

p
πP|M(p|m), where m is a vector of all point mea-

surements. Here, πP|M represents a conditional probability
density function, where P and M are understood as vector-
valued random variables with p andm as respective possible
values. We will use a similar notation for all probability den-
sity functions. It follows from Bayes’ formula that

πP|M(p|m)∝ πM|P(m|p)πP(p). (26)

The maximum probability vector, pmax, equivalently mini-
mizes the negative logarithm of the probability:

pmax
= argmin

p
− lnπP|M(m|p)− lnπP(p). (27)

The first term on the RHS, the likelihood, will give rise to the
weights wj , wj , and wk , and the second term, the prior, will
give rise to the regularization term. Let us consider it first.
By nature of the K–L expansion, all of the coefficients are
independent and identically distributed according to N (0,1),

πP(p)∝
∏
n

exp
(
−
p2
n

2

)
, (28)

− lnπP(p)=
∑
n

p2
n

2
+ constant , (29)

where the constant is irrelevant from the perspective of mini-
mization. We can adopt a similar approach for the likelihood
term, defining the misfit-to-measurement quantities:

1j ≡K(xj ;p)
∥∥∇h(xj ;p)∥∥− q̃(xj ), (30)

1k ≡ h(xk;p)− h̃(xk), (31)

1l ≡ lnK(xl;p)− lnK̃(xl). (32)

By a symmetry argument, all of these quantities are zero
mean before optimization and, in the absence of regulariza-
tion, remain so throughout optimization. This is seen via

the following argument: as of the initial guess, p0, they are
computed by applying some fixed deterministic function
to two independent, identically distributed random vectors
(p0 and ζ ) and taking the difference between them. The
expected value of this is zero. For any given pairing of
true coefficient vector ζ and initial guess vector p0, the
pairing −ζ and −p0 is equally probable. Because the loss
function only sees the squared deviation, it will respond
in a symmetrical way to the original pairing as to the
negated pairing: if ParamIterStep(ζ ,p0)→ p1,
then ParamIterStep(−ζ ,−p0)→−p1. Here,
ParamIterStep represents the algorithm employed
to iterate (improve) the parameter vector once by gradient
descent. Thus, the expected value of the update vector is the
zero vector. Inductively, the expected value of the deviations
remains zero after any number of steps. Only the directional
bias of a regularization term breaks the symmetry.

The variances of these quantities will vary in an unpre-
dictable manner over the course of model calibration. Before
calibration, by symmetry, we expect Var(1j )= 2Var(h̃).
After successful calibration, Var(1j )≈ 0. In general,
we approximate Var(1j )≈ σ 2

q̃
, Var (1k)≈ σ 2

h̃
, and

Var (1k)≈ σ 2
lnK̃

.
Assuming1j ,1k , and1l may be treated as Gaussian dis-

tributed, we write

πM|P(m|p)∝
∏
j

exp

(
−
12
j

2σ 2
q̃

)∏
k

exp

(
−
12
k

2σ 2
h̃

)
∏
l

exp

(
−

12
l

2σ 2
lnK̃

)
(33)

− lnπM|P(m|p) =
∑
j

12
j

2σ 2
q̃

+

∑
k

12
k

2σ 2
h̃

+

∑
j

12
j

2σ 2
lnK̃

+ constant. (34)

Combining Eqs. (26), (29), and (34) and inserting the defini-
tions for1j ,1k , and1l gives us the expression to minimize:

− lnπM|P(m|p)

=

∑
j

1
2σ 2
q̃

(
K(xj ;p)

∥∥∇h(xj ;p)∥∥− q̃(xj ))2
+

∑
k

1
2σ 2
h̃

(
h(xk;p)− h̃(xk)

)2

+

∑
j

1
2σ 2

lnK̃

(
lnK(xl;p)− lnK̃(xl)

)2

+

∑
n

1
2
p2
n+ constant. (35)

The constant is irrelevant from the perspective of minimiza-
tion. By comparison with loss function J defined in Eq. (3),
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we are thus motivated to define

R(p)≡ wR
∑
n

p2
n (36)

and to define the various weighting coefficients:

wj =
1

2σ 2
q̃

∀j, (37)

wk =
1

2σ 2
h̃

∀k, (38)

wl =
1

2σ 2
lnK̃

∀l, (39)

wR =
1
2
. (40)

The relevant variances were determined by generating an
ensemble of 20 realizations via K–L expansion, solving the
groundwater flow equation on them via Eqs. (1)–(2), and
then generating simulated measurements. At each location,
for each of the three types of measurement, the average value
was computed, and the ensemble variances, σ 2

lnK , σ 2
K||∇h||,

and σ 2
h , were computed for each value about its appropriate

mean value.

3.4 Mechanics of the Monte Carlo study

A standard rectangular field was employed for all simula-
tions, with dimensionsLx = 10 andLy = 5, and all simulated
K fields featured the same separable 2D correlation structure
as described in Sect. 3.2, with ηx = ηy = 2 and σ 2

lnK = 2, gen-
erated by K–L expansion. Enough basis functions were em-
ployed to account for 98.7 % of the variance: the 2000 K–L
basis functions with the largest eigenvalues were employed
to generate the random fields. Any given realization is com-
pletely represented by a 2000-component vector, ζ , contain-
ing its K–L coefficients. The length scales Lx and Ly are
artifacts of representing a conceptually infinite random field
on a computer, and we aimed to select them large enough so
that their values do not affect our conclusions about the in-
formation content of a given density of point measurements.
Apart from Lx and Ly , the only physically significant length
scales are the correlation lengths, ηx and ηy , and these are
used in our analysis.

For each realization, simulated measurements were com-
puted on uniformly spaced square lattices with point sep-
aration 1m by solution of Eqs. (1)–(2) using the FEniCS
finite-element system (Logg et al., 2012), employing a 100
by 50 finite-element grid with first-degree accurate square
finite elements. Measurement density relative to field corre-
lation length is represented by the dimensionless quantity

9 ≡
12
m

ηxηy
. (41)

We posit that effective measurement density controls our
ability to reconstruct features of various scales, and that mod-
erate, density-preserving perturbations in well locations will
not substantially alter our conclusions. To the extent this
is true, the idealization of uniformly spaced wells is harm-
less, and it provides a number of advantages for the study:
(i) measurement spacing is represented by a single quantity
rather than a distribution, (ii) the number of truly distinct
measurements equals the number of measurement locations,
and (iii) the need to quantify and sample over an additional
source of heterogeneity – well configuration – is avoided.

The main MC study explored field reconstruction for en-
sembles of fields corresponding to five different values of 9,
covering measurement spacings, 1m, ranging from dense to
sparse relative to field correlation length. This study used a
full complement of measurements, with values of speed, con-
ductivity, and head at each measurement location, and also
featured regularization. A second MC study was performed,
using only the intermediate value 9 = 0.1, which consid-
ered the impact of removing some information, with three
ensembles neglecting one of regularization (wR= 0), speed
(wj = 0), and conductivity (wl = 0), respectively. A straight-
forward regularization-by-truncation scheme in which only
leading (large eigenvalue) terms were calibrated and wR= 0
was also considered.

Each ensemble employed its own distinct set of 50 unique
true random K fields from which simulated measurements
were collected, and calibration was run for each from at least
two random initial parameter sets for each true random field,
resulting in at least 100 automated calibrations per ensemble.
The number of fields generated for each ensemble was ver-
ified to be adequate by comparing the results of the several
ensembles and noting quantitatively and qualitatively sim-
ilar results, despite each ensemble employing a unique set
of fields (see Sect. 4.3). Each calibration was performed by
iterative evaluation of Eqs. (4)–(5) and (9), over 500 steps
(counted by runs of the forward model), using a straightfor-
ward adaptive step size algorithm which was found to work
well: grow the step size by 10 % after each step-down gradi-
ent that successfully reduces the loss function, Eq. (3); oth-
erwise, halve it until descent along the gradient reduces the
loss function. So 500 steps were found to be sufficient for
gradient descent to achieve essentially all possible improve-
ments in the calibrated K field (see Sect. 4.1), regardless of
whether the objective function was locally minimized. For
sparse measurements, this reduced computational cost rela-
tive to more common termination conditions based on con-
vergence of the objective function. Each time the algorithm
achieved a new minimum of the loss function, its value was
stored, along with the parameter vector, pi , where i is the
parameter iteration index. Iterations were counted only when
there was a reduction in the loss function (once for each run
of the adjoint model), so typically slightly fewer than 500 pa-
rameter iterations were stored due to occasional step size cuts
that required additional forward model runs. The initial ran-
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dom parameter guess vector p0 was also stored for each cal-
ibration. The parameter vector corresponding to the smallest
loss function was given the symbol pfinal and used alongside
p0 to quantify the improvement in the coefficient of each K–
L basis function as a result of the automatic calibration. For
performance reasons, fewer K–L functions were used in cal-
ibration than were used to generate the measurements, with
the coefficients for the least significant (smallest eigenvalue)
K–L functions fixed at zero. We denote the number of co-
efficients actually calibrated by ν. Typically, ν = 1350 co-
efficients, representing 98.2 % of variance, were employed,
except in one trial, in which only ν = 12 coefficients, repre-
senting 62.7 % of variance, were calibrated. The motivation
for this selection depends on results from the main MC study
and is discussed in Sect. 4.

3.5 Scale and fitness metrics

To quantify the results of the parametric study, it is helpful
to define some quantities relating to feature scale and to the
accuracy of the reconstruction.

The eigenvalues, λn, are proxies for the significance of the
various basis functions in the K–L expansion but are difficult
to interpret physically. For analysis, we define “normalized
basis function wavelength” as the harmonic mean of the x-
and y-direction wavelengths, normalized to the measurement
spacing, 1m:

Tn =
1
1m

2
wx,n
2π +

wy,n
2π

. (42)

This quantity is a measure of feature scale associated with K–
L basis function φn(x,y) and was found to vary nearly mono-
tonically, though nonlinearly, with eigenvalue. Precisely, if
T2>T1, then λ2+ ε > λ1 for some small ε.

To quantify the reconstruction error, we will generally em-
ploy the L2 (root-mean-square) norm, || · ||2, to quantify the
distance between the true log-conductivity field, lnK̃ , and
the calibrated log-conductivity field, lnK:∥∥∥lnK̃ − lnK

∥∥∥
2

≡

√√√√√√ Lx∫
0

Ly∫
0

(
lnK̃(x,y)− lnK(x,y)

)2
dydx (43)

=

√∑
n

λi(ζn−pn)2, (44)

where the last equality follows from Parseval’s theorem. Im-
plications of the theorem are that we can work directly with
the coefficient vectors ζ and p, and that we can thereby quan-
tify the proportion of the error in the subspaces defined by a
given K–L basis function or collection of basis functions. As
we are especially interested in the reconstruction of features
with large scales, which are captured by basis functions with

large T (equivalently large eigenvalues, which have low in-
dexes, n), we define

L2
N ≡

√√√√ N∑
n=1

λi(ζn−pfinal
n )2 , (45)

where pfinal
n is the nth component of pfinal. Where all com-

ponents are employed (N = 2000), we sometimes drop the
subscript,N , for clarity. We also define a normalized form of
this quantity

L̂2
N ≡ L

2
N

√
LxLyσ

2
lnK∑N

n=1λn
(46)

which has the interpretation of root-mean-square error di-
vided by the proportion of the L2 norm of the entire log-
conductivity field, i.e., ‖ lnK‖2 included in the considered
subspace. We are also interested in the amount of learning
that occurs in the subspace defined by each K–L basis func-
tion over the course of calibration. We define

rn ≡

〈(
ζn−p

final
n

)2(
ζn,0−p0

n

)2
〉

G

, (47)

where p0
n is the nth component of initial coefficient vector

p0, and 〈·〉G represents the geometric mean over all the cali-
bration trials in an ensemble. If rn= 1, measurements on av-
erage provide no information about the coefficient for K–L
basis function fn(x,y), and if rn = 0, then perfect identifica-
tion occurs.

4 Results and discussion

4.1 Reduction in global L2 error by calibration

Because the loss function is based on point and/or proxy
measurements for the true fields of interest, the relationship
between reductions in the loss and improved accuracy of the
underlying lnK̃ field is only indirect. Head fields are gener-
ally smooth relative to their underlying conductivity fields,
observations are sparse, and conductivities along a stream-
line may be permuted without altering the effective conduc-
tivity along that streamline: permutation is detectable only
indirectly through the deformation of neighboring stream-
lines. Thus, it is not a priori obvious how well calibration
of point measurements (i.e., reducing loss function J ) will
succeed in constraining conductivity values remote from the
measurement locations. To examine this, we consider the
global L2 error of the entire reconstructed conductivity field,
lnK , relative to the known field, lnK̃ , from which the mea-
surements are generated. This metric weights accuracy at
all locations in the domain equally, so if reduction in the
loss function truly results in learning about the underlying
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Figure 2. Comparison of theL2 error of the reconstructed hydraulic
conductivity field versus the residual function, J , defined in Eq. (3)
for several different measurement densities, 9, in the main MC
study. Weights are as defined in Eqs. (37)–(40). Each ensemble is
plotted with a unique color, and within each ensemble, each param-
eter iteration for each calibration trial (i.e., unique pairing of ζ and
p0) is shown.

field, reduction in J should correspond to reduction in L2.
In Fig. 2, we present results comparing the global error, L2,
with J for each iteration in each automated calibration for
each of the five ensembles in the main MC study featuring
different measurement densities from 9 = 0.02 to 1.56. In
general, a steep decline was observed in L2 versus J for
early iterations, which plateaued in later iterations, as further
reduction in the objective function ceased to cause signifi-
cant improvements in model fidelity. The ultimate level of
L2 error at the plateau was found to increase with 9, as the
average distance to the nearest measurement point increased
and the measurement set contained less relevant information
to constrain the conductivity and head fields there.

4.2 Feature scale and information gain due to
calibration

A second illuminating analysis that can be performed on
the main MC study is to consider the average improvement
of each individual K–L coefficient, indexed by T , the basis
function wavelength normalized to the measurement spacing.
This allows us to determine the ability to identify features
of a particular scale by calibration and to determine a cut-
off beneath which small-scale variability is essentially invis-
ible to the calibration process. In Fig. 3, the average ratio of
squared coefficient error after vs. before calibration is shown

Figure 3. Geometric mean-squared relative coefficient error im-
provement, r , for each K–L basis function, fn(x), across all cali-
bration trials (i.e., unique pairing of ζ and p0) in each ensemble
(corresponding to a different value of 9) in the main MC study.
Each basis function is represented by its normalized wavelength, T ,
rather than its index. A dashed trend line scaling as T−2.5 is shown
in the long-wavelength region.

as a function of T for each calibrated K–L basis function,
for all five ensembles, each for a different value of 9. For
small T , we observe a relatively flat (relative to T ) regime
in which only minor improvement is observed. We attribute
the improvement to the wR regularization term, for reasons
discussed below. Around T = 4, we observe a sharp regime
change, in which r begins to rapidly decrease in a power-law
fashion with increasing T ; we identify the following empiri-
cal relation for this regime:

(1)

shown as the dotted line in Fig. 3. A consequence of this
analysis is that positive identification becomes possible only
once feature scale exceeds 4 times the measurement spac-
ing. We note good coherence between the various ensembles,
suggesting that T is an adequate metric for capturing relative
basis function scale.

4.3 Information gain due to velocity measurements and
regularization

In the second MC study, we fixed 9 = 0.10 but modified the
objective function in various ways to ascertain how the mod-
ifications affect the L2 accuracy of the ultimate reconstruc-
tion (L2

2000) and also the ability to calibrate large-scale fea-
tures in the 12-dimensional subspace spanned by the K–L
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Figure 4. Geometric mean-squared relative coefficient error im-
provement, r , across all calibration trials in each ensemble in the
second MC study. Results are presented as a function of normalized
K–L basis function wavelength, T , with each ensemble represent-
ing different terms present in the loss function. A dashed trend line
scaling as T−2.5 is shown in the long-wavelength region.

basis functions satisfying the previously identified criterion
T > 4 (L2

12). The specifics of the studies and the resulting
metrics are tabulated in Table 1. A visual representation of
the amount of learning that occurs about the coefficients of
each K–L basis function, sorted by T , analogous to the one
for the main study is shown in Fig. 4.

In this study, the base case (featuring all available infor-
mation) was shared with the main MC study. In this data set,
calibration was performed beginning from a pair of different
random p0 vectors for each true field vector, ζ . Visual exam-
ination of the calibrated head fields for this data set showed
that the fitted lnK and h fields were in all cases visually iden-
tical for both of the paired initial parameter guesses. This
suggests that the regularized objective function was convex,
and that the unique solution is essentially found in all cases,
with no influence of initial conditions. However, even when
the unique regularized solution is achieved, the remaining
relative error, L̂2

2000, is still 42 %, and it is 12 % in the sub-
space spanned by the most significant (longest wavelength)
basis functions. Figure 1a visually illustrates the results; note
how large-scale features are captured, but there is still signif-
icant infidelity between the smooth, regularized lnK and the
true lnK̃ . By calibration, L2 error is reduced to 32 % of its
value in the initial guess.

Where regularization is disabled, pairwise visual compar-
ison reveals some residual effect of initial guess vector, al-
though large-scale features of the true fields are plainly al-

ways captured. The unregularized calibrated L2 error was
only slightly worse than for regularized calibration in the
most significant subspace (again see Table 1), attributable
to the fact that the data are highly informative on these K–
L coefficients, and there is limited work for regularization
to accomplish. For the unregularized ensemble, we attribute
residual L2 error to errors in high-wavenumber subspaces
from the initial guess p0 that manifest at locations remote
from the measurements and which are left over after large-
scale features have been identified. This is an entirely dif-
ferent cause of errors than the smoothing which generates
unique solutions in the wR-regularized case. Figure 1b illus-
trates unregularized calibration using the same target field
and measurement data as used in panel (a). By calibration,
L2 error is reduced to 34 % of its value in the initial guess,
and the final absolute L2 error for panel (b) is 24 % higher
than for panel (a).

Without regularization from wR, r ≈ 1 in the T < 4 sub-
space corresponding to small-scale features, indicating that
the measurements provide no information about these coeffi-
cients. We attribute the improved performance with the reg-
ularization term to the fact that the coefficients of ζ and p0

are all independent identically distributed random variables
∼N (0,1); it is easy to show that Var(ζn−p0

n) > Var(ζn)= 1,
so by pulling each pn towards zero, the wR term in J de-
creases average square error of pn, even without any infor-
mation from the measurements regarding its value.

A previous study (Tso et al., 2016), performed using a
different co-kriging-based calibration approach, suggested
a significant gain in reconstruction reliability over use of
head–conductivity co-kriging. We tested whether groundwa-
ter speed would provide similar extra information in the con-
text of gradient-descent model calibration by performing a
calibration ensemble in which its weight was zero. We found
performance essentially identical to that for the base case.
Given that head and conductivity fields jointly determine the
flux everywhere, and regularization is sufficient to determine
a unique solution, the fact that speed information was found
to be redundant implies that the regularized solution correctly
identifies h̃ and K̃ at the measurement locations.

Given the idea that a correct speed and head field could
uniquely determine K̃ everywhere, we examined the ex-
tent to which speed measurements could substitute for hard-
to-determine point measurements of K̃ by eliminating the
weight on these measurements in J . This was found to be
possible to some extent, but performance was significantly
reduced relative to all other approaches, with identification
in the most significant long-wavelength subspaces, as mea-
sured by L2

12, significantly degraded. A possible explanation
for this result is that calibration of K̃ becomes sensitive to
errors in ∇h as well as h.

Finally, motivated by the idea that the long-wavelength
subspace (T > 4) is readily identifiable without regulariza-
tion, and that the measurements contain little or no infor-
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Table 1. Descriptive statistics of five ensemble calibration experiments in the second MC study, corresponding to 9 = 0.1.

wj wk wl wr ν L2
12 L̂2

12 L2
2000 L̂2

2000

Base case 2 225 0.25 0.25 1350 1.09 0.14 4.25 0.42
No regularization 2 225 0.25 0 1350 1.19 0.15 4.93 0.49
No q̃ information 0 225 0.25 0.25 1350 1.14 0.14 4.29 0.43
No lnK̃ information 2 225 0 0.25 1350 3.58 0.45 6.04 0.60
Truncated 2 225 0.25 0 12 1.68 0.21 6.19 0.62

mation about the small-T (small-scale feature) subspace, we
attempted a naive truncation-based regularization approach
in which only the most significant T > 4 K–L coefficients
are calibrated (the rest are fixed to 0), and no regulariza-
tion term is applied (i.e., ν= 12 and wR= 0 for this ensem-
ble). Performance of this approach was not as strong as the
other trials, with L̂2

12= 0.21, about 50 % greater than in the
base case, but identification of the large-scale subspace re-
mained respectable and still exceeded the regularized trial
with no lnK̃ measurements. When the K–L field represen-
tation is employed, ∂K/∂pn does not collapse to unity, so
there remains an expensive basis-function-specific integra-
tion in Eq. (9). Thus, the computational cost of computing
the gradient using naive truncation was reduced more than
100-fold in this ensemble relative to the base case, and this
approach merits further consideration.

4.4 Can we expect these results to generalize?

Both the identification cutoff of 4 times the measurement
scale and the observation of the power-law improvement of
identifiability with increased feature scale are empirical re-
sults of an MC study. As with any empirical investigation, it
is natural to wonder how general the results are, or whether
they are dependent in some way on the specific setting cho-
sen for the study. In our investigations, these relations were
found to be robust to changed point measurement resolution
and also to zero weighting of certain types of measurements
and different regularization schemes, suggesting robustness
to alteration of the objective function.

Regarding the specifics of correlation structure and aver-
age gradient, it is helpful to recall that the point measure-
ments functionally constrain a low-order 2D Taylor series
expansion of the head near each measurement location, and
that an accurate head field can be uniquely inverted to re-
cover the underlying conductivity field. It is thus reasonable
to attribute the weaker identification of smaller-scale features
to their proportionally larger impact on higher-order terms
of the head field, which do not impact the observed quan-
tities. The decreased visibility of smaller-scale features due
to non-unique impact on observables on this analysis is a di-
rect result of feature scale normalized to the measurement
scale (i.e., T ). Consequently, we do not expect the details of

correlation structure or large-scale flow regime to impact our
results.

By contrast, it is well documented that behavior of phys-
ical processes such as Darcy flow may be affected by sys-
tem dimension (e.g., Chiogna et al., 2014). So while we fol-
low the example of much previous research in focusing on
reconstruction of 2D conductivity (equivalently, transmissiv-
ity) fields, a valuable follow-up would consider identifiability
of full 3D conductivity fields.

5 Summary and conclusions

We computed the sensitivity of a loss function based on three
types of point hydraulic measurements and a general regular-
ization term to an underlying, heterogeneous hydraulic con-
ductivity field via a continuous adjoint-state approach. Us-
ing K–L expansion, we created a general, zonation-free tech-
nique for analyzing the quality of inversion from point data
to an underlying heterogeneous scalar field. Using K–L basis
functions which feature clearly defined wavelengths, we an-
alyzed how reliably conductivity and head fields were recov-
ered, both as a function of feature scale and globally, given
different densities and types of point measurements.

The following are our key conclusions:

– Substantially better than random identification accuracy
was observed onceK field feature scales exceed 4 times
the measurement spacing, with relative squared error af-
ter calibration scaling as T −2.5, where T is feature scale
normalized to measurement spacing. This relation pro-
vides a useful guideline for needed measurement den-
sity to achieve desired field reconstruction accuracy. For
higher-resolution characterization, non-point geophysi-
cal or tracer data may be required.

– Even at very coarse measurement resolutions relative to
K field correlation length, the pointwise loss function
was found informative globally (in an L2 sense) about
the underlying conductivity field, and calibration offers
better than random feature identification at all scales
when regularization is employed.

– Groundwater speed point measurements were found to
partially substitute for point conductivity measurements
but, contrary to the sequential linear estimation study of
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Tso et al. (2016), provide little additional information in
the context of regularized gradient-descent optimization
of point prediction errors, provided reliable head and
conductivity point measurements already exist.

– The gradient-descent calibration ultimate L2 error was
found to be dependent on measurement density and dis-
plays quickly diminishing returns on optimization. We
posit that large-scale features are identified quickly, and
that the loss function is less sensitive to point mismatch
remote from the measurement locations. Thus, later it-
erations tend to optimize field values near the well: K-
field infidelity remote from the measurement locations
that exists by the time large-scale features have been
identified tends to persist.

The approach adopted here has a number of useful fea-
tures that may be helpful for further investigations. The an-
alytical sensitivity expression for a loss function containing
many different types of data and regularization can be used
for model fitting, and its zonated form, Eq. (8), is particularly
efficient for use with finite-volume and finite-element codes.
Also, this sort of zonation-free K–L series Monte Carlo cal-
ibration study could be used to explore the identifiability of
other geophysical fields, beyond the hydraulic conductivity/-
transmissivity fields considered in this study. Naturally, as
the relations uncovered herein are empirically based, it is
possible they may depend in some way on the specific model
chosen for the study. Exploration in 3D may in particular be
profitable.

Appendix A: Adjoint sensitivity equation derivation

The sensitivity of J , Eq. (3), to any given model parameter,
pi , can be computed directly:

∂J

∂pi

=

∑
j

2wj
(
K(xj )

∥∥∇h(xj )∥∥− q̃(xj ))[
∂K

∂pi

∥∥∇h(xj )∥∥+K∇h · ∇φi
‖∇h‖

]
+

∑
k

2wkφi(xk)
(
h(xk)− h̃(xk)

)
+

∑
l

2wl
1

K(xl)

∂K

∂pi

(
lnK(xl)− lnK̃(xl)

)
+
∂R

∂pi
, (A1)

where we define the sensitivity φi ≡ ∂h/∂pi . Employing
the vector form and rewriting in terms of integrals over the

volume �:

∂J

∂p
=

∫
�

2(K ‖∇h‖− q̃)
∂K

∂p
‖∇h‖

∑
j

wj δ(x− xj )dV

+

∫
�

2(K ‖∇h‖− q̃)K
∇h · ∇φ

‖∇h‖

∑
j

wj δ(x− xj )dV

+

∫
�

2φ
(
h− h̃

)∑
k

wkδ(x− xk) dV

+

∫
�

2
1
K

∂K

∂p

(
lnK − lnK̃

)∑
l

wlδ(x− xl)dV

+
∂R

∂p
. (A2)

Simplifying the second integral by employing integration by
parts to remove the dependence on ∇φ and then employing
Eq. (1) yields

∂J

∂p
=

∫
�

2(K ‖∇h‖− q̃)
∂K

∂p
‖∇h‖

∑
j

wj δ(x− xj ) dV

−

∫
�

2φK∇h · ∇

[(
K −

q̃

‖∇h‖

)∑
j

wj δ(x− xj )

]
dV

+

∫
�

2φ
(
h− h̃

)∑
k

wkδ(x− xk) dV

+

∫
�

2
1
K

∂K

∂p

(
lnK − lnK̃

)∑
l

wlδ(x− xl) dV

+
∂R

∂p
. (A3)

A1 Weak-form equation for sensitivity

We may differentiate Eqs. (1)–(2) with respect to p so as to
generate a BVP for the sensitivity vector, φ:

∇ ·

(
∂K

∂p
∇h

)
+∇ · (K∇φ)= 0 in �, (A4)

φ =
∂f

∂p
on δ�. (A5)

The sensitivity equation, Eq. (A4), can be placed in the weak
form by expressing it as an integral with respect to φ∗, an
arbitrary smooth test function known as the adjoint:

∫
�

[
∇ ·

(
∂K

∂p
∇h

)]
φ∗ dV +

∫
�

[∇ · (K∇φ)]φ∗ dV = 0. (A6)
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We then integrate the first integral by parts once and the sec-
ond by parts twice to arrive at the five-term expression

0=
∫
δ�

∂K

∂p
∇hφ∗ · dS−

∫
�

∂K

∂p
∇h · ∇φ∗ dV

+

∫
δ�

K∇φφ∗ · dS−
∫
δ�

Kφ∇φ∗ · dS

+

∫
�

φ∇ · (K∇φ∗) dV. (A7)

A2 Removing derivatives of φ and simplifying

Our goal is to derive an equation for ∂J
∂p

that does not explic-
itly depend on φ. To this end, we add Eqs. (A3) and (A7) to
generate

∂J

∂p

=

∫
�

2(K ‖∇h‖− q̃)
∂K

∂p
‖∇h‖

∑
j

wj δ(x− xj ) dV

−

∫
�

2φK∇h · ∇

[(
K −

q̃

‖∇h‖

)∑
j

wj δ(x− xj )

]
dV

+

∫
�

2φ
(
h− h̃

)∑
k

wkδ(x− xk) dV

+

∫
�

2
K

∂K

∂p

(
lnK − lnK̃

)∑
l

wlδ(x− xl)dV +
∂R

∂p

+

∫
δ�

∂K

∂p
∇hφ∗ · dS−

∫
�

∂K

∂p
∇h · ∇φ∗ dV

+

∫
δ�

K∇φφ∗ · dS−
∫
δ�

Kφ∇φ∗ · dS

+

∫
�

φ∇ · (K∇φ∗) dV. (A8)

We ultimately want to remove the dependence on φ, so we
combine the volume integrals whose integrands are propor-

tional to it:

∂J

∂p

=

∫
�

φ

[
∇ · (K∇φ∗)− 2K∇h

· ∇

((
K −

q̃

‖∇h‖

)∑
j

wj δ(x− xj )

)

+ 2
(
h− h̃

)∑
k

wkδ(x− xk)

]
dV

+

∫
�

2(K ‖∇h‖− q̃)
∂K

∂p
‖∇h‖

∑
j

wj δ(x− xj ) dV

+

∫
�

2
K

∂K

∂p

(
lnK − lnK̃

)∑
l

wlδ(x− xl) dV +
∂R

∂p

−

∫
�

∂K

∂p
∇h · ∇φ∗ dV +

∫
δ�

∂K

∂p
∇hφ∗ · dS

+

∫
δ�

K∇φφ∗ · dS−
∫
δ�

Kφ∇φ∗ · dS. (A9)

The first integral (and its dependence on the φ) is removed if
the expression in the square brackets is zero, implying that∫
�

∇ · (K∇φ∗)

− 2K∇h · ∇

((
K −

q̃

‖∇h‖

)∑
j

wj δ(x− xj )

)

+ 2
(
h− h̃

)∑
k

wkδ(x− xk) dV = 0. (A10)

Applying integration by parts to the second term of the inte-
grand and then applying Eq. (1) allows for the simplification:∫
�

∇ · (K∇φ∗)+ 2
(
h− h̃

)∑
k

wkδ(x− xk) dV = 0 (A11)

This motivates solution of an adjoint problem in φ∗ to elim-
inate the dependence of Eq. (A9) on φ. See Sect. 2.2 for the
result.
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