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S1.  Pareto-front normalisation 1 

Given the dimensional disparity between the two objectives (SSD, SVD), transforming the Pareto front can offer 2 
advantages, and normalisation is considered the most robust approach (Marler and Arora, 2004). Therefore, before 3 
applying each MCDM method, we normalized the Pareto-front. Among the numerous normalisation methods, we 4 
applied the widely used Min-max method. This method holds advantages in preserving the relationships among 5 
the original data (Han et al., 2012) and has demonstrated good performance, particularly in the SAW method 6 
(Mathew et al., 2017; Vafaei et al., 2022). Although this method is known for its sensitivity to outliers in extreme 7 
data (Han et al., 2012), the Pareto front generated from Eqs. 5 and 6 consists of continuous points without outliers. 8 
It performs a linear transformation on the original data and confines each objective in the range 0 to 1 as described 9 
by the following equation: 10 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =  
𝑥 – min (𝑥)

max (𝑥) – min (𝑥)
         (S1) 11 

where 𝑥, min (𝑥)  and max (𝑥)  represent a point, minimum and maximum point within the Pareto fronts, 12 
respectively. 13 

S2. Multi-Criteria Decision-Making method 14 

The SAW method, which is one of frequently employed methods in decision-making (Arsyah et al., 2021), ranks 15 
the alternatives based on their weighted sum performance (Fishburn, 1967). Given our aim to minimize SSD and 16 
SVD, the selected compromise solution is the one with the smallest weighted sum, as expressed below: 17 

𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑆𝐴𝑊 = min(𝑤𝑆𝑆𝐷  ×  𝑆𝑆𝐷𝑖 +  𝑤𝑆𝑉𝐷  ×  𝑆𝑉𝐷𝑖)     (S2) 18 

where, 𝑤𝑆𝑆𝐷  and 𝑤𝑆𝑉𝐷 are the weights for supply and storage. 𝑆𝑆𝐷𝑖  and 𝑆𝑉𝐷𝑖  represent the normalized objectives 19 
at the ith point within the Pareto front (i = 1, … ,100). In this study, we consider the ‘balanced’ method where 20 
equal weights are assigned to each objective (𝑤𝑆𝑆𝐷 =  𝑤𝑆𝑉𝐷 = 0.5), as well as the ‘storage-prioritised’ and 21 
‘supply-prioritised’ methods, which prioritise storage ( 𝑤𝑆𝑆𝐷 = 0.4, 𝑤𝑆𝑉𝐷 = 0.6 ) and supply (𝑤𝑆𝑆𝐷 = 0.6,22 
𝑤𝑆𝑉𝐷 = 0.4), respectively.  23 

The ‘variable weighting’ method, which uses again Eq. S2 but assigns different weights according to the storage 24 
volume at the time when the decision is taken. We applied this method in two ways: the ‘simple selective’ method, 25 
which adopts the same weights as in the SAW methods but varying them depending on storage status, and the 26 
‘multi-weight’ method, which applies more detailed procedure to allocate weights based on storage status. In 27 
doing so, we analysed around 20 years of historical storage records to divide the storage into multiple ranges, then 28 
specified a method or weight for each range (see Figure S1). 29 
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 30 

Figure S1: (a) Simple selective method: the storage ranges and applied SAW method in each range. (b) Multi-weight 31 
method: the storage ranges and applied weight in each range. The blue lines represent the daily reservoir operation 32 
records for Soyanggang-Chungju (top row) and Andong-Imha (bottom row) reservoir systems. 33 

The reference point method identifies the compromise solution on a Pareto front by measuring the distance from 34 
a reference point. In this study, we applied three versions of this approach: ‘utopian point’, ‘knee point’, and 35 
‘TOPSIS’ methods. Application examples of these methods are illustrated in Figure S2.  36 

 37 

Figure S2: An example of the reference point method, including (a) Utopian Point, (b) Knee Point, and (c) TOPSIS 38 
method, generated for June 2014 with a 4-month lead time using different flow forecasts (WCD: yellow, 20YD: blue, 39 
ESP: pink, SFFs: green). 40 

The utopian point method selects the solution on the Pareto front that minimizes the Euclidean distance from the 41 
utopian (or ideal) point, which represents the theoretical perfect solution (Lu et al., 2011). The knee point method 42 
selects the knee point, which is a point where the curvature of the Pareto front is maximum (Das, 1999). Among 43 
various methods for detecting the knee point, we adopted the approach based on Minimum Manhattan Distance 44 
from the utopian point (Chiu et al., 2016). This approach has been demonstrated to be both simple and robust in 45 
the literature (Li et al., 2020). Compromise solutions from these two methods are computed as: 46 

𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑈𝑡𝑜𝑝𝑖𝑎𝑛 = min(√(𝑆𝑆𝐷𝑖 − 𝑆𝑆𝐷𝑢𝑡𝑜𝑝𝑖𝑎𝑛)
2

+  (𝑆𝑉𝐷𝑖 − 𝑆𝑉𝐷𝑢𝑡𝑜𝑝𝑖𝑎𝑛)
2

)  (S3) 47 
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𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐾𝑛𝑒𝑒 = min(|𝑆𝑆𝐷𝑖 − 𝑆𝑆𝐷𝑢𝑡𝑜𝑝𝑖𝑎𝑛| +  |𝑆𝑉𝐷𝑖 − 𝑆𝑉𝐷𝑢𝑡𝑜𝑝𝑖𝑎𝑛|)   (S4) 48 

where 𝑖 = 1, … ,100 is the number of points (each corresponding to a Pareto-optimal release schedule) on the 49 
Pareto front. 𝑆𝑆𝐷𝑖  and 𝑆𝑉𝐷𝑖  denote a normalized point of each objective at the 𝑖th point (see Eqs. 5 and 6 in main 50 
manuscript). 𝑆𝑆𝐷𝑢𝑡𝑜𝑝𝑖𝑎 and 𝑆𝑉𝐷𝑢𝑡𝑜𝑝𝑖𝑎 are the utopian points of each objective, which are equal to [0, 0]. 51 

The TOPSIS method, developed by Hwang and Yoon (1981), is a widely chosen method for MCDM (Tzeng and 52 
Huang, 2011; Wang and Rangaiah, 2017) and is recommended by the United Nations Environmental Program 53 
(Chen, 2000; Zhu et al., 2015). It selects a point with the shortest Euclidian distance from the ideal point [0, 0] 54 
and the longest distance from the anti-ideal point [1, 1] as the compromise solution (Hwang and Yoon, 1981; Liu, 55 
2009). This can be expressed as: 56 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
𝑖𝑑𝑒𝑎𝑙 = √(𝑆𝑆𝐷𝑖 − 𝑆𝑆𝐷𝑖𝑑𝑒𝑎𝑙)2 +  (𝑆𝑉𝐷𝑖 − 𝑆𝑉𝐷𝑖𝑑𝑒𝑎𝑙)2     (S5) 57 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
𝑎𝑛𝑡𝑖−𝑖𝑑𝑒𝑎𝑙 = √(𝑆𝑆𝐷𝑎𝑛𝑡𝑖−𝑖𝑑𝑒𝑎𝑙 − 𝑆𝑆𝐷𝑖)2 + (𝑆𝑉𝐷𝑎𝑛𝑡𝑖−𝑖𝑑𝑒𝑎𝑙 − 𝑆𝑉𝐷𝑖)2    (S6) 58 

𝐶𝐶𝑖 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑎𝑛𝑡𝑖−𝑖𝑑𝑒𝑎𝑙

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
𝑖𝑑𝑒𝑎𝑙+ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑎𝑛𝑡𝑖−𝑖𝑑𝑒𝑎𝑙        (S7) 59 

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
𝑖𝑑𝑒𝑎𝑙  and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑎𝑛𝑡𝑖−𝑖𝑑𝑒𝑎𝑙  are the Euclidian distances from ideal and anti-ideal points to 𝑖th 60 
point and 𝐶𝐶𝑖 is the closeness coefficient of the ith point. Since a higher closeness coefficient indicates a better 61 
solution, the point with the highest 𝐶𝐶𝑖 is selected as the compromise solution.  62 
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S3.  Supplementary figures 63 

 64 

Figure S3: (a) Concept of conjunctive reservoir operations. (b) Daily reservoir operation records from October 2013 65 
to September 2014 for Soyangang reservoir alone (first row), Chungju reservoir alone (second row) and their 66 
conjunctive operation (third row). 67 

 68 

Figure S4: Conceptual examples of our continuous reservoir simulation with different experimental choices. 69 
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 70 

Figure S5: Historical relationship between annual supply deficit (y-axis) and (a) initial storage at the beginning of new 71 
hydrological year (October 1st) or (b) annual total flow into reservoir over a hydrological year from 2011 to 2020. Frist 72 
and second rows represent Soyanggang-Chungju and Andong-imha reservoir systems, respectively. 73 
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 74 

Figure S6: (a) Mean Error of monthly flow (optimised – observed) for 2-month lead time. (b) CRPSS at lead time 2, 4 75 
and 6 months (line plot) and overall skill which represents the frequency of SFFs outperforming ESP (table, bottom 76 
right). From top to bottom, the rows represent Soyanggang-Chungju for 2014-2016, Andong-Imha for 2014-2016, 77 
Soyanggang-Chungju for 2001-2002 and Andong-Imha for 2008-2009. 78 

 79 

Figure S7: Cumulative flow observation (black dashed line) for Soyanggang-Chungju reservoir system during the 2014-80 
16 drought event, compared to cumulative flows for different flow scenarios/forecasts (all with 2-month lead time).  81 
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 82 

 83 
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 84 

Figure S8: Simulated reservoir operation results for (1) Andong-Imha from June 2014 to September 2016, (2) 85 
Soyanggang-Chungju from June 2001 to September 2002 and (3) Andong-Imha from June 2008 to September 2009, in 86 
terms of (a) are storage volume and (b) cumulative squared supply deficit. From top to bottom, the rows represent 87 
simulation results generated by using WCD (orange), 20YD (blue), ESP (pink), and SFFs (green), respectively. Each 88 
sub-figure has 48 simulated results (coloured lines, 3 lead times × 8 MCDM methods × 2 decision-making time steps) 89 
and a single historical operation (black line). The numbers indicated at the right end of Figure S8(a) represent the 90 
mean storage volume (million m3) across all 48 simulations. 91 

 92 

Figure S9: (a) Cumulative flow observation (black square) and forecasts for Soyanggang-Chungju from June to July 93 
2016, using WCD (orange diamond), 20YD (blue diamond), and SFFs (ensemble: hollow green circle, median: red 94 
circle). The black square represents the observed cumulative inflow during the same period. (b) Weekly demand 95 
(red) and release schedule generated by the multi-objective optimisation fed by the different flow scenarios/forecasts. 96 
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 97 

Figure S10: Difference in SSD (x-axis) and SVD (y-axis) between historical operation (black cross) and simulate 98 
operations using different flow scenarios/forecasts (coloured circles) in (first row) Andong-Imha during 2014-2016 99 
drought, (second row) Soyanggang-Chungju during 2002-2003 drought and (third row) Andong-Imha during 2008-100 
2009 drought, respectively. Performances are calculated on September 30th in (first row) 2014 (X), 2015 (Y), 2016 (Z) 101 
and (second row) 2001 (J), 2002 (K) and (third row) 2008 (L), 2009 (M). Each sub-figure shows 48 points for each flow 102 
scenario/forecast (WCD, 20YD, ESP, SFFs), resulting from different combinations of key experimental choices (3 lead 103 
times × 8 MCDM methods × 2 decision-making time steps).   104 
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 105 
Figure S11: Examples of the Pareto front generated by the reservoir operations optimiser for (a) Soyanggang-Chungju 106 
and (b) Andong-Imha in June 2014. A distinct trend can be seen whereby the selected solutions always appear in the 107 
same ranking moving from left to right of the horizontal axis: first the Supply-prioritised approach, followed by the 108 
Knee point, Balanced, TOPSIS, Utopian point and, finally, the Storage-prioritised approach. The variable weighting 109 
methods (Simple Selective, Multi Weighting) do not show such clear pattern and thus are not depicted in this figure for 110 
simplicity of e illustration.  111 

 112 

Figure S12: Top row: Forecast value (y-axis) against key experimental choices: (a) forecast lead time, (b) MCDM 113 
method, (c) decision-making time step and (d) type of flow forecast/scenario for Soyanggang-Chungju reservoir system 114 
on September 30th, 2016. (i.e. Same figure plots as in bottom row of Figure 8). Bottom row: Forecast value generated 115 
using 3000 bootstrap resamples, each with a size of 20. The MCDM methods are ordered from left to right with 116 
increasing importance to storage availability (see Figure S11), along with two variable weighting methods (SS and 117 
MW). 118 
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 119 

Figure S13: Conceptual illustration of the flow forecasts and release decision-making using a perfect forecast (upper 120 
row) and SFFs (lower row) at time t (a) and t + Δt (b). 121 

 122 

Figure S14: Relationship between forecast accuracy (mean error of monthly flow, mm, x-axis) and value tallied over 8 123 
MCDM methods (number of experiments outperforming historical operations, y-axis) at the end of the simulation 124 
period for different drought events (2002, 2009 and 2016) at Soyanggang-Chungju and Andong-Imha reservoir 125 
systems. For each event and system, the figure shows five points corresponding to simulated forecast-informed 126 
operations using different scenarios/forecasts (orange: WCD, blue: 20YD, pink: ESP, green: SFFs, red: perfect 127 
forecast). Here, green symbols with (without) outlines represents bias corrected (non-bias corrected) SFFs, respectively. 128 
The perfect forecast scenario was generated using actual flow observations as future forecasts. The direction of the 129 
blue arrows indicates higher performance (high value, low error), and the grey dashed lines represent the general 130 
expectation on the relationship between forecast accuracy and value.  131 
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