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Abstract. The water balance of catchments will, in many
cases, strongly depend on its state in the recent past (e.g.
previous days). Processes causing significant hydrological
memory may persist at longer timescales (e.g. annual). The
presence of such memory could prolong drought and flood
risks and affect water resources over long periods, but the
global universality, strength, and origin of long memory in
the water cycle remain largely unclear. Here, we quantify an-
nual memory in the terrestrial water cycle globally using au-
tocorrelation applied to annual time series of water balance
components. These time series of streamflow, global grid-
ded precipitation, and GLEAM potential and actual evap-
oration, along with a GRACE (Gravity Recovery and Cli-
mate Experiment)-informed global terrestrial water storage
reconstruction, indicate that, at annual timescales, memory
is typically absent in precipitation but strong in terrestrial
water stores (root zone moisture and groundwater). Outgo-
ing fluxes (streamflow and evaporation) positively scale with
storage, and so they also tend to hold substantial annual
memory. As storage mediates flow extremes, such memory
often also occurs in annual extreme flows and is especially
strong for low flows and in large catchments. Our model
experiments show that storage–discharge relationships that
are hysteretic and strongly non-linear are consistent with
these observed memory behaviours, whereas non-hysteretic
and linear drainage fails to reconstruct these signals. Thus, a
multi-year slow dance of terrestrial water stores and their out-
going fluxes is common; it is not simply mirroring precipita-
tion memory and appears to be caused by hysteretic storage

and drainage mechanisms that are incorporable in hydrolog-
ical models.

1 Introduction

The temporal variability of weather, (subsurface) hydrologi-
cal processes, and land surface conditions can cause stream-
flow to vary by orders of magnitude over time, leading to
droughts and floods and affecting water resources for soci-
ety and ecosystems (Van Loon, 2015; Blöschl et al., 2020;
Berghuijs et al., 2017; Kreibich et al., 2022). Temporal au-
tocorrelation in streamflow time series tends to be strong
at short (e.g. daily) timescales because, often, streamflow
strongly depends on catchment storage (e.g. Kirchner, 2009;
Spence et al., 2010; McNamara et al., 2011; Riegger and
Tourian, 2014), which, compared to precipitation, changes
relatively gradually with time (e.g. Lischeid et al., 2021; Li
et al., 2024). At longer timescales (e.g. 1 year or longer),
streamflow can also be autocorrelated (e.g. Mudelsee, 2007;
Godsey et al., 2014). This autocorrelation may be interpreted
as evidence of the persistent influence of the prior hydrocli-
matic state of a catchment on current hydrologic conditions.
Signals of past climate, which are detectable in streamflow
records for long periods, are known as “catchment-state per-
sistence” or “catchment memory” (de Lavenne et al., 2022;
Orth and Seneviratne, 2013). Catchment memory has the po-
tential to prolong the risks of droughts (Sutanto and Van
Lanen, 2022), may lead to recorded flood-rich and flood-
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poor periods (Blöschl et al., 2020), and could affect water
availability for society and ecosystems (Klemeš et al., 1981).
These long- and short-term components of water storage of-
ten largely determine how streamflow responds to precipi-
tation and, for instance, may cause different hydrologic re-
sponses to the same precipitation amounts (e.g. Kirchner,
2024).

Long memory, defined here as a signal which persists for
more than 1 year, is not uncommon in streamflow records,
but it is unclear whether and to what extent this charac-
teristic is present across catchments. Following its discov-
ery in annual flow records of the Nile River (Hurst, 1951),
more widespread evidence of long memory in annual flows
has been reported for many rivers worldwide (e.g. Mudelsee
2007; Labat, 2008; Kantelhardt et al., 2006; Montanari,
2003; Markonis et al., 2018; Szolgayova et al., 2014; Milly
and Dunne, 2002; de Lavenne et al., 2022). Low flows and
floods have been reported to sometimes be significantly clus-
tered in time (Gudmundsson et al., 2011; Blöschl et al., 2020;
Lun et al., 2020; Sutanto and Van Lanen, 2022), suggest-
ing the possibility of memory effects, even for streamflow
extremes. However, globally, it remains mostly unquantified
how universal long memory is across the water cycle and to
what extent it occurs in extreme flows.

Mass conservation dictates that streamflow memory can-
not occur in full isolation but must interact with other water
balance components:

dS
dt
= P −Q−E. (1)

In this example catchment water balance (ignoring poten-
tial inter-basin groundwater flows or land–ocean transfers),
S is storage, P is precipitation, Q is streamflow, E is evap-
oration, and t is time. This continuity equation implies that
long memory in one component is physically connected with
other components. Such connections have also been demon-
strated previously. For example, Milly and Dunne (2002)
show that, for several catchments, interannual carry-over of
storage cascades into the memory of annual flows. God-
sey et al. (2014) show how, in several catchments, seasonal
low flows are significantly correlated with both the cur-
rent year’s and the previous year’s snowpacks. Yet, in most
cases, such connections remain largely unexplored as most
large-scale assessments of streamflow memory do not si-
multaneously analyse other water balance components (e.g.
Mudelsee 2007; Labat, 2008; Kantelhardt et al., 2006; Mon-
tanari, 2003; Markonis et al., 2018; Szolgayova et al., 2014).

Long memory in hydro-climatological variables has been
quantified beyond streamflow. For example, precipitation can
be affected by large-scale multi-year climate oscillations
(e.g. El Niño–Southern Oscillation (ENSO), North Atlantic
Oscillation, Pacific Decadal Oscillation) (Ropelewski and
Halpert, 1987; Jong et al., 2016). Such persistence of states
in the ocean–atmosphere system (e.g. ENSO, Pacific Decadal
Oscillation) can be a contributor to multi-annual persistence

in precipitation and streamflow (Verdon et al., 2004; McK-
erchar, and Henderson, 2003; Ward et al., 2014), but global
analysis suggests that significant memory in annual precip-
itation is uncommon (Sun et al., 2018). Instead, in regional
and semi-global studies, autocorrelation rapidly declines in
precipitation time series (Markonis and Koutsoyiannis, 2016;
Kantelhardt et al., 2006; Fraedrich and Blender, 2003; Potter,
1979). While evapotranspiration is the second-largest terres-
trial water flux (Dorigo et al., 2021), its long memory has not
been systematically quantified globally.

Terrestrial liquid-water storage mostly consists of ground-
water and soil moisture. Aquifers in arid regions can ex-
hibit long-term memory as they integrate precipitation vari-
abilities, the effects of which persist over long periods (e.g.
Opie et al., 2020). Groundwater often strongly fluctuates sea-
sonally (Strassberg et al., 2007), but long time series can
also exhibit multi-year drying or wetting trends (e.g. Rodell
et al., 2018; Jasechko et al., 2024) that likely hold signifi-
cant long memory. Furthermore, Gravity Recovery and Cli-
mate Experiment (GRACE) data can be used to forecast
trends in global land water storage for the following year
(Li et al., 2024), indicating significant long memory. Nev-
ertheless, long groundwater memory remains mostly undoc-
umented at global scales. Soil moisture storage memory has
mostly been analysed for shorter timescales (e.g. Orth and
Seneviratne, 2012; Martínez-Fernández et al., 2021), while
its long memory remains unclear globally.

Here, we simultaneously quantify the annual memory of
different water balance components to reveal where this
memory originates and how it cascades between processes.
We assess to what extent this memory occurs in global pre-
cipitation, temperature, soil moisture, total terrestrial water
storage, streamflow, and evaporation time series. We sub-
sequently use empirical and model tests to establish which
catchment factors shape the observed memory behaviours.

2 Methods

2.1 Global data

We use streamflow data from 15 029 catchments from the
Global Streamflow Indices and Metadata Archive (GSIM),
a worldwide collection of metadata and indices derived from
streamflow time series (Do et al., 2018a; Gudmundsson et al.,
2018). Gridded precipitation time series are from the Global
Precipitation Climatology Centre (GPCC) V7 0.5° data set
for 1981–2020 (Becker et al., 2013; Schneider et al., 2008),
and 2 m global land surface temperature data for the pe-
riod 1981–2020 at 0.5° are from the Global Historical Cli-
mate Network (GHCN) Climate Anomaly Monitoring Sys-
tem (CAMS) (Fan and van den Dool, 2008). We also use
0.25° GLEAM V3.8a estimates of actual evaporation, po-
tential evaporation, and root zone soil moisture over the pe-
riod 1981–2020 (Martens et al., 2017). In GLEAM, poten-
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tial evaporation is based on the Priestley and Taylor equa-
tion, and actual evaporation is based on potential evaporation
multiplied by an evaporative stress factor based on observa-
tions of microwave vegetation optical depth (VOD) and esti-
mates of root zone soil moisture (Martens et al., 2017). We
use long-term (i.e. 1981–2022) 0.25° resolution monthly ter-
restrial water storage estimates over the land surface from
GTWS-MLrec (Yin et al., 2023), which is a reconstruction
that uses a set of machine-learning models with several pre-
dictors and GRACE (Yin et al., 2023). We exclude data from
Greenland, Iceland, and Antarctica from our analysis due to
their unique climatic and environmental conditions, which
differ significantly from those of other regions.

2.2 Annual memory and autocorrelation

We quantify memory as the autocorrelation of annual values
(mean, minimum, maximum) of hydrological fluxes or stores
at a 1-year lag time (Fig. 1). To compute autocorrelation, we
linearly detrend time series of annual values and then calcu-
late autocorrelation ρy at lags of 1 year as follows:

ρy =
Cov(yt ,yt−1)√

Var(yt ) ·Var(yt−1)
. (2)

ρy measures the linear correlation between the detrended
time series of variable y at year t and at year t − 1. ρy can
range from −1 to 1, where larger positive values indicate a
stronger tendency for adjacent values to be similar. We cal-
culate ρy for time series with at least 20 years of continuous
data. We test the probability of accepting the null hypothe-
sis that the residuals yt are uncorrelated (p value< 0.1 for
statistical significance, consistently with Sun et al., 2018).

A strong autocorrelation may not be hydrologically signif-
icant if it is associated with small volumes of water relative
to other terms in the water balance. Therefore, we also ex-
press memory in terms of water volumes. These memory vol-
umes Vy can be calculated based on the autocorrelation ρy .
Specifically, ρy is essentially equivalent to the slope of a
linear regression between yt and yt−1 and thereby also ex-
presses an elasticity of yt to yt−1:

ρy =
Cov(yt ,yt−1)√

Var(yt ) ·Var(yt−1
≈

dyt
dyt−1

. (3)

Thus, ρy approximately expresses the unit change in yt as-
sociated with a unit change in yt−1. To calculate the mean
memory volume, we calculate the mean absolute annual
anomaly of a variable y and multiply this with the autocorre-
lation of ρy :

Vy = ρy · σzy , (4)

where Vy is the mean annual memory volume of process y,
and σzy is the standard deviation of the anomaly of process y.
Calculating Vy for several water balance components (e.g.

Figure 1. Example streamflow time series of the Kaap (Suidkaap)
River in South Africa (25.73° S, 30.98° E), highlighting the memory
in annual mean, minimum, and maximum flows. From these daily
time series, annual streamflow indices (mean, maximum, minimum)
are selected (a). The associated annual anomalies of these stream-
flow indices (i.e. annual deviations from their mean value) already
suggest that years with above- or below-average rates tend to fol-
low one another (b). Correlation coefficients between each year’s
streamflow indices and the previous year’s streamflow indices quan-
tify the autocorrelation of the mean (0.29), minimum (0.57), and
maximum (−0.05) annual flow rates. Note that these correlations
are based on linear regressions, but these linear regressions appear
to be non-linear on logarithmic axes. For this river, annual mean
and annual minimum flows hold substantial memory, whereas an-
nual maximum flows are largely uncorrelated (and even show some,
statistically insignificant, negative autocorrelation).
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S,P,E,Q) allows us to trace, in terms of water volumes,
how much long memory occurs on average in different com-
ponents of the water cycle.

2.3 Model experiments

To further understand catchment functioning, we test how
different model representations of drainage structures align
with empirically derived memory behaviours. Our model
experiments seek the most compact representation capable
of replicating emergent behaviour across the many catch-
ments. We examine different levels of model complexity and
evaluate when the model’s behaviour aligns broadly with
the observed memory signatures. These model experiments,
which rely on the empirical results, are discussed in detail in
Sect. 3.2.2.

3 Results and discussion

3.1 Memory of water balance components

Globally, terrestrial precipitation tends to have no significant
annual memory (Fig. 2a) as its autocorrelation is, on average,
weak (mean ρP= 0.006), and only 12 % of grid cells globally
have significant positive autocorrelation at a 90 % confidence
interval (i.e. p value< 0.10). This pattern of overall weak
autocorrelation is in line with earlier analysis that reports
autocorrelation as being statistically significant for ∼ 14 %
of the global land surface (Sun et al., 2018). The absence
of systematic long memory in precipitation time series does
not indicate that long memory never occurs as, for example,
the El Niño–Southern Oscillation (ENSO) has widespread
effects on regional precipitation (Ropelewski and Halpert,
1987). However, the effects of such multi-year climate cy-
cles appear to not result in widespread annual memory in
precipitation time series globally. Due to this weak precipi-
tation memory (Fig. 2a), the memory volume also tends to
be small (Fig. 2b). Memory volumes are below 5 mmyr−1 in
over 96 % of the grid cells, indicating that only a small wa-
ter volume statistically relates to the previous year’s precip-
itation rate. Thus, while precipitation is the water source of
other water balance components, its memory (as indicated by
both the weak autocorrelation and the small associated mem-
ory volumes) is unlikely to be the direct cause of systematic
annual memory elsewhere in the water cycle.

Annual memory in water balance components can also
originate from the memory of other atmospheric condi-
tions that drive evaporation, such as potential evaporation
or temperature; however, neither of these show particularly
strong long memory. GLEAM (Priestley–Taylor based) po-
tential evaporation tends to have some more memory (mean
ρEP = 0.09) than precipitation, and this memory is significant
for 26 % of the land surface (Fig. 2c). The annual variability
in potential evaporation tends to be relatively small (com-
pared to precipitation variability); thus, the potential water

volumes associated with it are also generally small in volume
(Fig. 2d). Air temperature tends to have weak autocorrelation
(mean ρT= 0.01; not shown here). The overall weaker mem-
ory in climatic forcing compared to evaporation and stream-
flow (shown below) suggests that annual memory elsewhere
in the water cycle does not simply mirror memory in forc-
ing time series and therefore also originates from other pro-
cesses.

More substantial annual memory arises globally once pre-
cipitation accumulates in storage. Both root zone soil mois-
ture (mean ρSM= 0.29) and terrestrial water storage (mean
ρTWS= 0.48) tend to be strongly autocorrelated. There are
distinct regional differences in the annual memory of these
storages (Fig. 2e–h), with stronger memory in the overall
store (terrestrial water storage) than in the relatively shal-
lower root zone (here 250 cm, but note that root zone esti-
mates vary strongly between studies, e.g. Wang-Erlandsson
et al., 2016; Stocker et al., 2023). Root zone soil moisture
is consistently autocorrelated and associated with larger vol-
umes of water that carry over to subsequent years (10.7 mm)
compared to precipitation and potential evaporation time se-
ries. The strength and associated storage volumes further in-
crease if we consider total terrestrial water storage, highlight-
ing the role of larger long-term fluctuations than typically
observed in the unsaturated zone. Terrestrial water storage
has mean memory volumes of 12.9 mm. Areas with nega-
tive autocorrelation in root zone storage frequently overlap
with regions of negatively autocorrelated precipitation and
grasslands. We hypothesize that the limited root zone stor-
age capacity in these regions is insufficient to buffer against
variability in precipitation patterns. As a result, the temporal
variability in precipitation is mirrored in the root zone stor-
age, allowing the precipitation’s negative autocorrelation to
propagate through the system.

Outgoing fluxes, streamflow and evaporation, also exhibit
substantial annual memory, although less strongly than stor-
age. GLEAM evaporation data indicate that positive auto-
correlation is also a common feature of evaporation globally
(Fig. 2i) as 79 % of grid cells have positive autocorrelation,
whereby 67 % of all cells are significant. The average au-
tocorrelation value (ρE= 0.16) and associated memory val-
ues (mean VE= 5.7 mm) are typically higher than in precip-
itation (and other forcing) time series but are lower than in
storage. Regional differences in GLEAM potential evapora-
tion memory are substantially correlated with regional dif-
ferences in the long memory of GLEAM evaporation (Spear-
man correlation coefficient rs= 0.62). However, evaporation
memory appears to be further mediated by storage as this is
also positively correlated with evaporation memory and be-
cause catchments with no potential evaporation memory still
exhibit substantial evaporation memory. The estimated lin-
ear relationship between evaporation memory as a function
of potential evaporation memory is ρE = 0.67ρEP + 0.090,
which shows that, for ρEP values equalling zero, ρE tends to
hold memory. Regional variations in root zone storage mem-
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Figure 2. Spatial and frequency distributions of annual memory in terrestrial water fluxes and stores (left column) and associated memory
volumes (right column). Memory is, on average, absent in precipitation time series (a, b) and weak in potential evaporation (c, d). Root zone
storage (e, f) and, in particular, terrestrial water storage (TWS) (g, h) exhibit strong memory. Outgoing fluxes still hold annual memory, both
in evaporation (i, j) and in streamflow (k, l). Density plots of the autocorrelation and memory volumes also indicate that most memory, both
in terms of volume and in terms of autocorrelation strength, tends to occur in terrestrial water storage (a–l).
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ory are correlated with regional differences in the memory
of GLEAM evaporation (rs= 0.35; estimated linear relation-
ship: ρE = 0.25ρSM+0.092). Thus, annual memory in actual
evaporation seems to be controlled both by memory in poten-
tial evaporation and by storage memory, reflecting the inter-
play between energy and water supply (e.g. Milly, 1994).

Streamflow records indicate that positive autocorrelation
is a common feature of streamflow globally (Fig. 2k). The
vast majority (79 %) of catchments show signs of positive
annual memory (i.e. positive autocorrelation). The average
autocorrelation value (ρQ= 0.16) indicates that annual flow
rates are often significantly related to their preceding year’s
values. The volumes of water associated with this are gener-
ally also smaller than in the storage memory volume (mean
VQ= 2.9 mm) (Fig. 2l). These patterns vary regionally, with
regions of stronger autocorrelation (e.g. western Europe,
Prairie Pothole region of the United States, eastern Australia,
most of Brazil and Russia, coastal western India) and regions
of weaker or negative autocorrelation (e.g. western Australia,
inland India) (Fig. 2k) and with large parts of Earth’s surface
having a few gauging stations where it remains unquantified
how common annual memory is.

Annual memory in outgoing fluxes also occurs in ex-
treme flows. Worldwide, memory is especially strong and
common for annual minimum daily flows (Fig. 3a). These
annual low flows have, on average, a stronger autocorrela-
tion (mean ρQmin = 0.23) than annual mean flows (Figs. 2k
and 3a). This relatively strong memory likely reflects the
fact that low flows tend to be more directly sourced from
groundwater-sustained baseflow and are relatively less influ-
enced by shorter-term precipitation variability (Van Loon,
2015). Therefore, they more directly represent the strongly
autocorrelated signal of terrestrial water storage. Autocorre-
lation is weakly present for annual maximum flows (Fig. 3b;
mean ρQmax = 0.07). Annual maximum flows almost always
arise through the co-occurrence of high precipitation (rain-
fall plus snowmelt) and baseflow or soil moisture (Berghuijs
et al., 2016, 2019; Berghuijs and Slater, 2023). While these
antecedent conditions tend to hold memory, this is less the
case for precipitation, resulting in relatively weak autocorre-
lation in annual maximum flows globally.

3.2 Physical controls on memory

The spatial patterns indicate that places with stronger mem-
ory in annual mean flows also tend to have stronger mem-
ory in annual low- and high-flow conditions (Figs. 2k, 3,
and 4). This relationship between the memory of different
flow extremes is further substantiated by the Spearman rank
correlation coefficients between the autocorrelation of annual
flows, which is especially strong for annual minimum flows
(rs= 0.54) but is also present for annual maximum flows
(rs= 0.36) (Fig. 4b; note that rank correlations of the plotted
binned points are visibly much stronger but vary depending
on the details of the binning – here, each bin contains 2 % of

the data). The consistent variation in memory between an-
nual mean, high, and low flows across different catchments
suggests that these memory effects are not happening inde-
pendently from one another but are (at least partly) under-
lain by similar driving mechanisms and, potentially, simi-
lar catchment attributes. In storage, the effects of (at annual
timescales, largely random) temporal variations in precipita-
tion (and outgoing fluxes) are integrated over time (Eq. 1).
The typically randomly varying precipitation inputs are inte-
grated into more predictable storage patterns that often per-
sist over longer timescales (Klemeš, 1974). The strong mem-
ory of storage subsequently leads to memory of outgoing
fluxes of evaporation and streamflow.

3.2.1 Empirical links to catchment attributes

Correlation analysis of the memory strength with catchment
attributes shows that larger catchments tend to have a sub-
stantially stronger long memory (Fig. 4c). This scaling effect
is not the only factor determining the strength of autocorrela-
tion (also indicated by relatively weak Spearman correlation
coefficients for mean flows (rs= 0.09, p value< 0.01), low
flows (rs= 0.06, p value< 0.01), and high flows (rs= 0.13,
p value< 0.01)); there is a clear tendency toward over-
all stronger memory for larger catchments. The 369 largest
catchments in the data set exceed sizes of 100 000 km2 and
cover almost 30 % of Earth’s land surface. In these large
catchments (Fig. 5), memory, on average, approximately
doubles compared to that which is typical for the smallest
catchments (Fig. 4c). This finding is consistent for annual
minimum, maximum, and mean flows. This growth in mem-
ory across larger catchments is empirically consistent with
earlier studies which attributed this to spatial aggregation ef-
fects (Mudelsee, 2007). Larger catchments often have more
substantial alluvial aquifers, potentially enhancing memory
effects.

Spearman correlations with several other catchment prop-
erties (Do et al., 2018a), such as dam number per unit area
(0.01; p value= 0.07), population density (rs=−0.003; p
value= 0.18), drainage density (rs=−0.04; p value< 0.01),
and slope (rs=−0.05; p value< 0.01), all exhibit weaker
correlations with long memory of annual mean flows. These
results indicate that links between, for example, drainage
structure and groundwater flow (e.g. Luijendijk, 2022) and
travel times of water and catchment slopes (e.g. Jasechko
et al., 2016; Cardenas 2007) affect long memory, but rig-
orously testing this requires more directed analyses and is
likely to be better explored at regional and local scales. Over-
all, from these generally weak correlations, it is hard to dis-
tinguish what catchment factors drive long memory, and the
results suggest that long memory can arise across a very wide
variety of catchment conditions.

The empirical patterns presented (Figs. 2–5) are subject to
observational and model uncertainties. Global precipitation
data sets often contain significant uncertainties, which prop-
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Figure 3. Spatial and frequency distributions of memory in annual extreme flows across the study catchments. Annual memory of annual
maximum flows (a) and annual minimum flows (b) is typically present but varies regionally. A 1-year-lag autocorrelation of annual minimum
flows is typically strong (mean ρQmin = 0.22) compared to annual maximum flows (mean ρQmax = 0.07) across the 15 209 study catchments.

agate to derived data products such as soil moisture storage
and evaporation (Khan et al., 2018). Storage time series from
GTWS-MLrec combine GRACE observational time series
with machine-learning models – partially trained on mete-
orological data – to extend terrestrial water storage estimates
to periods preceding satellite observations (Yin et al., 2023).
Streamflow time series, while relatively independent indica-
tors of long-term hydrological variability, may also partially
reflect processes like riverbed aggradation and degradation
(Slater et al., 2019), which likely exhibit long-term memory
effects. As a result, local-scale memory behaviour is likely to
carry considerable uncertainty. In the following sections, we
concentrate on the broader patterns that emerge across mul-
tiple catchments which are likely to be largely unaffected by
local data uncertainties.

3.2.2 Catchment functioning driving memory: model
experiments

To further understand the drivers of memory in catchments,
we consider the fact that the data have shown several key
memory signatures that represent typical catchment be-
haviour:

– Memory in annual mean streamflow arises despite no
annual memory in precipitation time series.

– Memory is stronger for annual minimum flows than for
annual mean flows.

– Memory is weaker for annual maximum flow conditions
than for annual mean flow

– Memory in storage is substantially stronger than in
streamflow.

We seek to explain how catchments function to be consis-
tent with these memory signatures and search for explana-
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Figure 4. Variations in annual memory are largely consistent across the flow regime and scale with catchment size. A 1-year-lag autocorre-
lation differs between mean and extreme flows (a). Memory of annual extreme flows is generally larger when the same catchment also has
stronger autocorrelation of annual mean flows (b), as shown by the binned plots (each bin contains 2 % of the data). Overall, memory grows
with catchment size: the largest catchments tend to have approximately twice as much memory as the smallest catchments (c). The error bars
display the standard error of the mean for each bin. Spearman rank correlations (rs) are shown for the unbinned values. The rank correlations
of the plotted binned points are visibly much stronger but vary depending on the details of the binning.

Figure 5. Spatial and frequency distribution of memory in annual low-flow rates across 369 catchments, whose total area exceeds
100 000 km2; 88 % of these larger catchments have positive autocorrelation, and this autocorrelation tends to be relatively strong on av-
erage (mean= 0.30).

tions constructed with the smallest set of elements that can
reproduce these signatures (i.e. we follow Occam’s razor).
In this search, we use synthetic model experiments that do
not aim to mimic the behaviour of any particular catchment
realistically but, instead, provide elementary representations
of catchment functioning that capture the typical behaviour
of catchments. By starting with the simplest model, we com-
bine a top-down modelling approach (Klemeš, 1983; Siva-
palan et al., 2003) with a search for model structures that are
consistent with emergent behaviour across many catchments,
consistently with the concept of “functional relationships”
proposed by Gnann et al. (2023). We explore various levels
of model complexity (Fig. 6) and test when the model be-
haviour becomes broadly consistent with the observed mem-

ory signatures. If a simple model can broadly explain the sig-
natures, we will deliberately ignore all the catchment hetero-
geneity and complexity that is ubiquitous in real-world catch-
ments but that appears not to be central in the key memory
behaviours.

The models we develop are forced by synthetic rain-
fall forcing without significant autocorrelation at annual
timescales. Synthetic 500-year randomized daily rainfall
time series vary in size at a daily scale according to a gamma
distribution (shape parameter= 0.2; scale parameter= 10).
In addition, annual precipitation rates vary randomly (nor-
mally distributed), with a standard deviation of 20 %. We ex-
clude, in the interest of simplicity, evapotranspiration from
the models (Fig. 6). We understand that real-world catch-
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Figure 6. Overview of catchment structures used in model experiments. The simplest model (linear drainage) (a) is expanded to include
drainage non-linearity (b) and hysteresis (c).

ments evaporate part (and often even most) of their incom-
ing precipitation (Budyko, 1974; Dorigo et al., 2021), but
streamflow memory arises across a broad range of climate
conditions (Figs. 2a and 3). This variety of climates – and,
thus, long-term water balances – suggests that no substan-
tial evaporation is needed to generate long memory. In ad-
dition, evaporative fluxes can be modelled using a variety of
representations (e.g. Zhao et al., 2013; Knoben et al., 2018).
Therefore, we do not explore its role in these experiments
but encourage using this as a potentially interesting avenue
for further studies on long memory.

Linear drainage

Arguably one of the simplest catchment representations is
linear drainage (Fig. 6), where

dQ
dt
=−αQ, (5)

Q= αS. (6)

A linear reservoir drains water at rate Q [LT−1], directly
proportional to its (effective) water storage S [L] but at a rate
dependent on the (fixed) drainage constant α [T−1].

Logically, linear reservoirs have been reported to yield
some memory effects, but these effects tend to occur at
shorter than annual timescales. Many real-world catchments
have linear drainage timescales of weeks (e.g. Beck et al.,
2013; Botter et al., 2013; Brutsaert et al., 2008), and vari-
ations in α can help, for example, to distinguish erratic
regimes (with enhanced intra-seasonal streamflow variabil-
ity) from persistent regimes (with more regular flow patterns)
(Botter et al., 2013). However, findings on the persistence of
flow regimes by Botter et al. (2013) represent memory ef-
fects of the system at sub-annual timescales. Our model ex-
periments indicate that linear drainage does not capture an-
nual streamflow memory unless drainage timescales become
much longer than the typically reported timescales of weeks
(Fig. 7). In addition, long memory does not vary substantially
across flow conditions and is not stronger in storage than in
streamflow because streamflow rates directly mirror storage

Figure 7. Example of the scaling of drainage timescales (x axis)
and 1-year-lag autocorrelation (y axis) for annual mean flow, annual
maximum flow, annual minimum flow, and annual mean storage for
linear drainage. The slow growth of autocorrelation with drainage
timescale indicates that it is only for much longer than typically ob-
served drainage timescales (e.g.> 100 d) that substantial (> 0.1) au-
tocorrelation is generated. In addition, long memory does not vary
substantially across flow conditions and is not stronger in storage
than in streamflow.

conditions (Fig. 7; Eq. 8). Thus, linear drainage (unsurpris-
ingly) fails to reproduce most of the identified key mem-
ory signatures. We also note that model experiments suggest
that absolute rates of autocorrelation can be sensitive to the
forcing pattern as results vary slightly between simulations.
This suggests that earlier reported local autocorrelation val-
ues (e.g. Figs. 2 and 3) are not an intrinsically stable metric
of catchment behaviour at the scale of an individual catch-
ment but will vary, even when forcing statistics appear to be
rather stable.
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Non-linear drainage

A catchment representation that is one step more complex
can also have non-linear drainage (e.g. Brutsaert and Nieber,
1977; Harman et al., 2009; Kirchner, 2009), where

dQ
dt
=−αQβ , (7)

Q= 2−β
√
(2−β)αS. (8)

Here, β [–] and α [L1−βTβ−2] are recession constants.
For β = 1, drainage behaviour is linear, and Eqs. (7) and (8)
would become equivalents to Eqs. (5) and (6). However, for
β > 1, which is commonly observed, drainage timescales be-
come longer at low flows compared to at high flows. For
β < 1, the opposite occurs, but this behaviour is less com-
monly observed in real-world catchments (e.g. Bogaart et al.,
2016; Berghuijs et al., 2016). Equation (7) can be rewritten
as follows:

dQ̂
dt
=−a0Q̂

β , (9)

where Q̂=Q/Q, and a0 [T−1] is the drainage constant at
the mean streamflow rate Q. This allows for the expression
of non-linear drainage in terms of a recession timescale 1/a0
[T] and drainage non-linearity β [–] (McMillan et al., 2014).

Our model experiments (Fig. 8) indicate that longer (nor-
malized) recession timescales (1/a0) lead to memory in an-
nual mean streamflow (Fig. 8a), largely independently of the
degree of drainage non-linearity (β). In addition, these simu-
lations show stronger memory in low flows than in mean and
high flows (Fig. 8a–c), whereby the low flows exhibit more
memory when drainage becomes more non-linear, whereas
high flows show decreasing memory under more non-linear
drainage. Memory in storage and streamflow is still nearly
equivalent (Fig. 8d). The latter is shown by the differences
between annual mean storage and annual mean flow all be-
ing very close to zero (Fig. 8d). Combinations of α and β that
are derived from streamflow time series across many catch-
ments (e.g. Bogaart et al., 2016; Berghuijs et al., 2016) tend
to be mostly outside the range expected to yield substantial
annual memory. These inferences suggest that drainage non-
linearity by itself is not yet a mechanism that can solely be
responsible for all the observed long-memory signatures.

Hysteretic drainage

Non-linearity can cause some annual memory (Fig. 8), but
the non-hysteretic catchment representations (i.e. with a
unique storage–discharge relationship) used thus far cause
storage and outflows to be similarly autocorrelated (Fig. 8d).
A model of two (in series) connected reservoirs that both
linearly drain water but at two different timescales results
in hysteretic drainage(e.g. Fovet et al., 2015; Gharari et al.,

2018), where

dQ
dt
= (−2α1+ a2)Q1−α2Q2, (10)

Q=Q1+Q2 = α1S1+α2S2. (11)

Drainage timescales of the upper reservoir (parameter-
ized by α1 [T−1]) broadly reflect (typically faster) runoff
generation in and over the unsaturated zone, whereas
drainage timescales from the lower reservoir (parameterized
by α2 [T−1]) broadly reflect (typically slower) groundwater
drainage. Recharge R1 [LT−1] from the upper box (where
all precipitation enters) toward the lower box is also set at
a rate of Q1 [LT−1], which means that half of the drainage
from the upper reservoir passes through the lower reservoir
before becoming streamflow. This simplified relationship is
broadly consistent with estimates that just over half of the
global river flow originates from groundwater (Xie et al.,
2024).

In this hysteretic (and, thus, non-linear) drainage setup,
a catchment can have a fast streamflow response in the
upper reservoir while also exhibiting an underlying lower-
frequency streamflow variation driven by the lower reservoir.
Half of the drainage from the upper reservoir passes through
the lower reservoir before becoming streamflow; therefore,
long-term averages of Q1 and Q2 must be similar. This also
implies that the mean storage volumes of the two reservoirs
are related to one another according to the ratio of the two
drainage timescales: S2 ≈

α1
a2
S1. Thus, when the lower reser-

voir has a substantially longer drainage timescale than the
upper reservoir, most water will be stored in the lower reser-
voir, and this storage will vary more slowly than the up-
per reservoir. Consequently, in this setup, memory can be-
come substantially stronger in overall storage (S1+ S2) than
in streamflow (Q1+Q2).

Our model experiments indicate that, especially for
sufficiently long drainage timescales of the lower reser-
voir, streamflow can exhibit annual memory in streamflow
(Fig. 9a). This memory in annual mean flows is largely in-
dependent of the faster-draining upper reservoir. When the
drainage in the upper reservoir is much faster than in the
lower reservoir, several other simulated memory signatures
also become consistent with the observations. Namely, mem-
ory becomes stronger for annual low flows than for annual
mean flows (Fig. 9a–c) because low flows are more deter-
mined by the slower lower reservoir. In addition, memory
is much weaker for annual maximum flow conditions than
for annual mean flow because high flows are more deter-
mined by the faster upper reservoir (which holds less mem-
ory). Furthermore, annual memory in storage is substantially
stronger than in streamflow because most storage is present
in the lower reservoir (Fig. 9d), and this storage varies across
longer timescales than overall streamflow (of which only
50 % originates from this slower reservoir).

Our simulations suggest that hysteresis is central to the ob-
served memory signatures. We acknowledge that these sim-
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Figure 8. Memory generated in non-linear drainage conditions as a function of the normalized drainage timescale (1/α0) and the drainage
non-linearity (β). Colours indicate 1-year-lag autocorrelation for annual mean flow (a); annual maximum flow (b); annual minimum flow (c);
and the memory of annual mean storage minus the memory of annual mean flows (d), which shows no substantial differences. The latter
emphasizes that there is no clear memory difference between storage and streamflow. Note that the y axes displaying the drainage timescale
are logarithmic.

Figure 9. Memory generated in hysteretic drainage conditions. The axes indicate variations in the drainage timescales of both reservoirs,
whereas colours indicate 1-year-lag autocorrelation for annual mean flow (a), annual maximum flow (b), annual minimum flow (c), and the
memory of annual mean storage minus that of annual mean flow (d). Note that the y axes are logarithmic.

ulations are overly simplified catchment representations and
do not constitute a detailed and accurate model for any spe-
cific catchment. However, they demonstrate how some ba-
sic mechanisms (which are also encodable in more complex
and detailed models) can lead to behaviour that is consistent
with the observed memory signatures. Bucket-type spatially
lumped models are widely employed in catchment modelling
(for a good overview, see Knoben et al., 2019). More com-
plex (spatially distributed) model structures could also be
explored to examine their degree of non-linearity and hys-
teresis. In addition, the model outcomes also reflect those
of detailed model implementations in real-world catchments
where the addition of a groundwater component that allowed
for very low-frequency fluctuations in groundwater flows
helped to simultaneously improve streamflow and water stor-
age predictions substantially (e.g. Hulsman et al., 2021).

4 Conclusions

Long memory was discovered decades ago in annual flow
records of the Nile River, and, later, more widespread evi-
dence of long memory in annual flows was reported for many
rivers worldwide. The presence of such memory could pro-
long drought and flood risks and affect water resources over
long periods, but the global universality, strength, and ori-

gin of long memory in the water balance components and
hydrological extremes remain largely unquantified. Here, we
quantified annual memory in the terrestrial water cycle using
autocorrelation applied to annual time series of water balance
components globally. The global gridded and catchment-
scale data sets used here indicate that annual memory is typ-
ically weak in incoming terrestrial fluxes and forcing but be-
comes strong in terrestrial water stores and cascades into
outgoing fluxes. Annual memory is not limited to annual
streamflow rates but often extends toward annual extreme
flows and is especially strong for low flows and in large
catchments. Our model experiments indicate that this mem-
ory arises with the increasing non-linearity of catchment re-
sponse, but storage–discharge relationships also need to ac-
count for hysteresis effects to produce all observed memory
signatures. Incorporating these dynamics may be important
to produce multi-year low-frequency variations in the terres-
trial water cycle, as recently demonstrated by Hulsman et al.
(2021), and could also have implications for our understand-
ing of other processes that may be affected by memory of
water stores and fluxes, such as vegetation dynamics (Koirala
et al., 2017) and atmospheric CO2 growth rates (Humphrey
et al., 2018).
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