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Abstract. The consistency of hydrological models, i.e. their
ability to reproduce observed system dynamics, needs to
be improved to increase their predictive power. As using
streamflow data alone to calibrate models is not sufficient
to constrain them and render them consistent, other strate-
gies must be considered, in particular using additional types
of data. The aim of this study was to test whether si-
multaneous calibration of dissolved organic carbon (DOC)
and nitrate (NO−3 ) concentrations along with streamflow
improved the hydrological consistency of a parsimonious
solute-transport model. A multi-objective approach with four
calibration scenarios was used to evaluate the model’s predic-
tions for an intensive agricultural headwater catchment. After
calibration, the model reasonably simultaneously reproduced
the dynamics of discharge and DOC and NO−3 concentra-
tions in the stream of the headwater catchment from 2008–
2016. Evaluation using independent datasets indicated that
the model usually reproduced dynamics of groundwater level
and soil moisture in upslope and riparian zones correctly for
all calibration scenarios. Using daily stream concentrations
of DOC and NO−3 along with streamflow to calibrate the
model did not improve its ability to predict streamflow for
calibration or evaluation periods. The approach significantly
improved the representation of groundwater storage and to
a lesser extent soil moisture in the upslope zone but not in
the riparian zone. Parameter uncertainty decreased when the
model was calibrated using solute concentrations, except for
parameters related to fast and slow reservoir flow. This study
shows the added value of using multiple types of data along
with streamflow, in particular DOC and NO−3 concentrations,

to constrain hydrological models to improve representation
of internal hydrological states and flows. With the increasing
availability of solute data from catchment monitoring, this
approach provides an objective way to improve the consis-
tency of hydrological models that can be used with confi-
dence to evaluate scenarios.

1 Introduction

Hydrological models are important tools for short-term fore-
casting of river flows and long-term predictions for strategic
water management planning, as well as for improving un-
derstanding of hydrological processes and the complex inter-
actions of water storage and release processes at the catch-
ment scale (Bouaziz et al., 2021; Lan et al., 2020; Minville et
al., 2014). In the wide spectrum of modelling, which ranges
from simple to complex (Adeyeri et al., 2020; Gharari et
al., 2014; Hrachowitz and Clark, 2017), conceptual models
are widely used to simulate hydrological dynamics of catch-
ments. In these models, only the dominant processes are rep-
resented, and/or several processes may be lumped into a sin-
gle expression (Pettersson et al., 2001). Conceptualizing the
system as a set of storage components connected by flows
representing the perceived dominant processes of a catch-
ment provides a certain degree of flexibility. The ability to
customize these models to the environmental conditions in a
given catchment can ensure an appropriate level of complex-
ity to reproduce response patterns of hydrology and water
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quality (Hrachowitz et al., 2016). Major advantages of con-
ceptual models include their relatively low data and compu-
tational requirements, which makes them suitable for studies
at different scales or for catchments about which little in-
formation is available (Gharari et al., 2014; Huang and Bar-
dossy, 2020). However, ad hoc implementation of concep-
tual models frequently lacks a plausible theoretical basis and
thus a meaningful connection of model structure and param-
eters to observable quantities when representing integrated
system processes (Clark et al., 2016). As such, the ability
of models, including conceptual ones, to reproduce a sys-
tem’s dynamics is also undermined, not only by random un-
certainties in the data but also by epistemic or ontological
uncertainties and thus by limited knowledge of the phys-
ical processes that underlie the system’s response (Beven,
2013; Beven and Westerberg, 2011; Gupta et al., 2012).
These uncertainties and the few observations in a continu-
ous spatial domain make such models ill-posed inverse prob-
lems (Beven, 2006; Hrachowitz et al., 2014; Pettersson et al.,
2001). In hydrology, these insufficient model constraints can
result in many equally good alternative model solutions, fre-
quently referred to as equifinality (Beven, 2006). Hydrolog-
ical models with many parameters thus tend to adapt to er-
rors and to compensate for inadequate representation of pro-
cesses through the model parameters (Wang et al., 2012). For
example, well-predicted river discharge is often associated
with poorly predicted evaporation flows because evaporation
compensates for errors and closes the hydrological balance
(Minville et al., 2014). Thus, deceptively high calibration ac-
curacy may reflect mathematical fitting of an often overpa-
rameterized model, which may generate undesirable internal
dynamics that decrease accuracy in independent evaluation
periods (Fovet et al., 2015a; Hrachowitz et al., 2014). Robust
model calibration and evaluation procedures are thus needed
to address issues of parameter identifiability (Beven, 2006;
Guillaume et al., 2019) and transferability (Hartmann and
Bárdossy, 2005; Kreye et al., 2019; Minville et al., 2014) and
to avoid models that act as “mathematical marionettes” danc-
ing to match the calibration data (Kirchner, 2006) but often
fail to reproduce internal system dynamics.

Recently, a trend toward more comprehensive assessment
of the structural adequacy of models has emerged during
the calibration process (Rakovec et al., 2016; Yen et al.,
2014), with the overall goal of improving the representa-
tion of multiple hydrological processes in a model (Clark
et al., 2011; Euser et al., 2015; Gupta et al., 2012). The ra-
tionale behind this goal is the need to obtain the “right an-
swers for the right reasons” (Blöschl, 2001; Kirchner, 2006),
which goes beyond simply comparing model predictions to
observed streamflow or associated signature measurements
(Euser et al., 2013; Fovet et al., 2015a; Rakovec et al., 2016).
Indeed, reflecting the results of many studies, Rakovec et
al. (2016) showed that streamflow data are necessary but not
sufficient to warrant constraining model components by di-
viding incoming precipitation among storage, evaporation,

and drainage (Bouaziz et al., 2021). Thus, multiple strate-
gies have been developed to improve the physical realism of
conceptual models (i.e. model consistency) (Efstratiadis and
Koutsoyiannis, 2010), including using additional data that
represent internal hydrological states and flows other than
streamflow when estimating parameters. Treating the sys-
tem more holistically (i.e. forcing models to simulate multi-
ple response variables adequately) has considerable potential
to improve model accuracy (Hrachowitz et al., 2014). The
value of such multi-variable and/or multi-objective strategies
has been demonstrated using groundwater levels (Fenicia et
al., 2008; Freer et al., 2004; Giustolisi and Simeone, 2006;
Molenat et al., 2005), near-surface soil moisture (Brocca et
al., 2010; Kunnath-Poovakka et al., 2016; López López et al.,
2017; Rajib et al., 2016; Sutanudjaja et al., 2014), saturated
contributing areas (Blazkova et al., 2002; Franks et al., 1998;
Güntner et al., 1999), snow cover (Bennett et al., 2019; Gao
et al., 2017; Riboust et al., 2019), evaporation (Bouaziz et al.,
2018; Demirel et al., 2018; Hulsman et al., 2020), streamflow
at subcatchment outlets (Moussa et al., 2007), satellite-based
total water storage anomalies (Werth and Güntner, 2010;
Yassin et al., 2017), and tracer data (Birkel et al., 2011, 2015;
Capell et al., 2012; Kuppel et al., 2018a; Piovano et al., 2019;
Stadnyk and Holmes, 2023). Alternately, one may seek to ex-
tract more information from the available data, for example
by developing signatures that represent different aspects of
the data (Euser et al., 2013; Fenicia et al., 2018; Gharari et
al., 2014), and then compare the signatures of the observed
and simulated time series. For streamflow, the hydrological
signatures can include quantiles of the streamflow distribu-
tion (values of the flow duration curve – FDC), the base flow
index, the flashiness index, and many others (e.g. Kavetski et
al., 2018).

Simultaneously calibrating hydrological models with
streamflow and tracer or other solute concentrations in the
stream may decrease their uncertainty and increase their
physical plausibility because of the need to reproduce both
hydrological and biogeochemical dynamics (Birkel et al.,
2017; Fovet et al., 2015b; Pesántez et al., 2023; Pettersson et
al., 2001; Strohmenger et al., 2021; Woodward et al., 2013).
The value of this strategy has been demonstrated, for ex-
ample using concentrations of chloride (Hrachowitz et al.,
2013) or nitrate (NO−3 ) and sulfate (Hartmann et al., 2013;
Pettersson et al., 2001). As the movement of water and so-
lutes through the landscape is inherently coupled (Knapp
et al., 2020), using time series of multiple elements along
with streamflow during calibration may provide additional
insights into the flow paths of water through the catchment
(Strohmenger et al., 2021). This potential may be particularly
high when using solutes that differ in their sources and flow
paths across spatial and temporal scales in a catchment. Cali-
bration that includes streamflow along with solutes that have
distinct dynamics, as frequently observed with dissolved or-
ganic carbon (DOC) and NO−3 (Inamdar and Mitchell, 2006;
Taylor and Townsend, 2010), such as in headwater agricul-
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tural catchments (Aubert et al., 2013; Strohmenger et al.,
2020; Thomas et al., 2016), thus has high potential to con-
strain models to adequately reproduce water storage dynam-
ics and flow paths.

The objective of this study was thus to test the hypotheses
that, by including daily in-stream DOC and NO−3 concentra-
tions simultaneously in a parsimonious conceptual model in
a multi-objective and multi-variable calibration and evalua-
tion strategy, we could (1) increase the model’s ability to pre-
dict streamflow for calibration or evaluation periods, (2) in-
crease the model’s internal consistency, and (3) reduce the
uncertainty in hydrological parameters.

2 Materials and methods

2.1 Study site

The Kervidy–Naizin catchment is located in western France
(48°0′ N; 2°5′W) (Fig. 1) and forms part of the Agro-Hydro
Systems (AgrHyS) Critical Zone Observatory (Fovet et al.,
2018). It is a 4.82 km2 headwater catchment of the 12 km2

Naizin catchment (Fig. 1), which is drained by a second-
Strahler-order intermittent stream that frequently dries up
from July to October. The climate is temperate oceanic,
with a mean± standard deviation of annual temperature of
11±0.6 °C, annual cumulative rainfall of 894±170 mm yr−1,
and specific discharge of 350± 140 mm yr−1 from 2008–
2016. The topography is relatively flat, with few slopes
reaching a gradient of 5 %, and an elevation range of 98–
140 m a.s.l. (above sea level). The soil is a silty loam 0.5–
1.5 m deep, with well-drained Cambisols in the upslope zone
and poorly drained Epistagnic Haplic Luvisols and Albelu-
visols in the downslope riparian zone (FAO classification;
WRB, 2006). At the global scale, Kervidy–Naizin is repre-
sentative of headwater catchments underlain by bedrock in
temperate climates. The bedrock consists of impervious, lo-
cally fractured Brioverian schists and lies below a fissured
and fractured weathered layer of variable thickness 1–30 m
deep (Molenat et al., 2005). A shallow, perennial ground-
water body develops in the soil and weathered bedrock. In
the upland domain, consisting of well-drained soils, the wa-
ter table remains below the soil surface throughout the year,
varying in depth from 1–5 m (Molenat et al., 2005). In the
wetland domain, developed near the stream and consisting
of hydromorphic soils (hereafter “riparian zone”), the water
table is shallower, remaining near the soil surface generally
from October to April/May each year. The seasonal fluctua-
tion of the water table in this catchment has been described
as a succession of three hydrological periods (Aubert et al.,
2013; Lambert et al., 2013): (i) rewetting of riparian wetland
soils after the dry summer season, (ii) rise of groundwater
in the upland domain that leads to prolonged waterlogging
of wetland soils and establishes a marked hydraulic gradi-
ent in groundwater between upland and wetland domains,

and (iii) drawdown of groundwater that leads to drying of
the stream (Humbert et al., 2015).

The land use of Kervidy–Naizin consists mainly of agri-
culture with intensive mixed crop–livestock farming, with
maize (36 % of the area), cereals (32 %), and grasslands
(13 %) and a high density of livestock (i.e. dairy cattle, pigs
and poultry) of five livestock units ha−1 (Benoit and Veysset,
2021) according to farm surveys performed in 2008 and 2013
and annual land-use surveys (Casal et al., 2018, 2019; Vi-
aud et al., 2018). From 2002–2015, mean N inputs on the
catchment equalled 257 kg ha−1 yr−1, coming from slurry
and manure fertilization (69 %), inorganic fertilization (21 %,
mainly ammonium nitrate), cattle excretion in pastures (5 %),
and nitrogen (N) fixation (5 %) (Casal et al., 2019). Kervidy–
Naizin is representative of intensive agricultural areas that
have an excess of reactive N due to the application of live-
stock waste and inorganic fertilizers in excess of crop re-
quirements.

In this landscape, most DOC and NO−3 accumulate in
riparian-zone soils and groundwater, respectively (Aubert et
al., 2013; Strohmenger et al., 2020). Using end-member mix-
ing analysis to identify DOC sources and quantify their con-
tributions to the DOC stream in Kervidy–Naizin, Morel et
al. (2009) estimated that 64 %–86 % of the DOC that en-
tered the stream during storms, when much of the DOC ex-
port from soils to streams and rivers occurs (Lambert et al.,
2014), came from riparian wetland soil. This result confirmed
previous studies that found that riparian soils are the main
source of DOC in most headwater catchments (Lambert et
al., 2013). Morel et al. (2009) also demonstrated that this
riparian wetland zone in Kervidy–Naizin behaved as non-
limiting storage of DOC during flushing. Hillslope soils in
this catchment also contribute to stream DOC export, but
dissolved organic matter (DOM) in upland soils is supply-
limited and seasonally depleted after groundwater rises. Up-
land DOC contribution decreases from ca. 30 % of the stream
DOC flow at the beginning of the high-flow period to< 10 %
later in this period (Lambert et al., 2013, 2014). In addition,
in a high-frequency, multi-solute 10-year monitoring (2000–
2010) study of Kervidy–Naizin, Aubert et al. (2013) identi-
fied that NO−3 accumulated in groundwater at a concentration
of ca. 20.7 mg N–NO3 L−1 compared to 1.6 mg N–NO3 L−1

in riparian wetland.
Long-term analysis of the dynamics of nutrient concentra-

tions and hydroclimatic variables at multiple timescales in
Kervidy–Naizin highlighted contrasting dynamics of DOC
and NO−3 concentrations due to opposition in their spatial
sources. DOC concentrations peaked under wet or storm
flow conditions, when NO−3 concentrations were lowest. In
contrast, NO−3 concentrations peaked under high-water-table
and drier conditions, when DOC concentrations were low-
est. This opposition between maxima and minima of daily
DOC and NO−3 concentrations can be interpreted as the re-
sult of relative mixing contributions of soil-surface riparian
flows (i.e. DOC-rich and NO3-poor) and upslope groundwa-
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Figure 1. Map of the nested Kervidy–Naizin and Naizin catchments (4.82 and 12.00 km2, respectively), in western France. Data from the
weather station and Toullo station, which lie outside Kervidy–Naizin but inside Naizin, were used in this study.

ter flows (i.e. NO3-rich and DOC-poor) (Strohmenger et al.,
2020).

2.2 Data monitoring

We used daily aggregated meteorological and streamflow
measurements collected from 2002–2017. The weather
station in Kervidy–Naizin (Cimel Enerco 516i), located
ca. 1 km from the outlet of the catchment (Fig. 1), records
hourly rainfall, air and soil temperatures, air humidity, global
radiation, wind direction, and wind speed, which allowed for
calculation of potential evapotranspiration using the Penman
equation (Penman, 1956). Stream level was recorded every
minute at the outlet using a float-operated shaft-encoder level
sensor and a data logger (Thalimedes OTT) and then con-
verted to streamflow using a rating curve (Carluer, 1998).

Stream water was manually sampled daily at ca. 17:00 LT
at the outlet station. These instantaneous grab samples were
immediately filtered (pore size: 0.22 µm) on site and stored
in the dark at 4 °C in propylene bottles. Analyses were per-
formed within a maximum of 2 weeks. NO−3 concentrations
were measured by ionic chromatography (DIONEX DX 100;
ISO 10304, 2007, precision:±2.5 %). DOC was estimated as
total dissolved carbon (C) minus dissolved inorganic C, both

measured using a C analyser (Shimadzu TOC 5050A, preci-
sion: ±5 %).

Shallow-groundwater data were collected by a piezometer
at mid-slope point (PG5, Fig. 1). The groundwater level at
PG5, which has been measured every 15 min (Orpheus OTT)
since 2000 using pressure probes, was used because its vari-
ations are representative of mean variations in the shallow
groundwater in Kervidy–Naizin. The volumetric soil water
content was measured in upland and riparian zones of the
catchment using time domain reflectometry (TDR) probes.
In the upland zone (Toullo station, Fig. 1), it was measured
at three depths (i.e. 5, 20, and 50 cm), with three replicates
per depth, at 30 min intervals from 1 January 2016 to 1 Jan-
uary 2019; these data were first averaged by depth and then
aggregated into daily values. Although the Toullo station
lies outside Kervidy–Naizin, we assumed that it could repre-
sent Kervidy–Naizin’s soil moisture conditions in the upland
zone. This assumption is supported by the fact that Kervidy–
Naizin and Naizin are nested and have similar characteristics,
such as soil types, slopes, and elevation (Matos-Moreira et
al., 2017; Sorel et al., 2010). In the riparian zone (point PG2,
Fig. 1), the volumetric soil water content was measured at a
depth of 5 cm, with three replicates, at 30 min intervals from
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3 December 2013 to 1 January 2017; these data were also
averaged and then aggregated into daily values.

2.3 Rationale for the solute-transport model

We used a parsimonious semi-distributed solute-transport
model, implemented in Python, that was iteratively cus-
tomized and tested within the DYNAMITE modular mod-
elling framework (Fovet et al., 2015a; Hrachowitz et al.,
2014, 2021). The processes are represented by linear or non-
linear equations that connect the flows to model reservoirs
(Beven, 2012). This representation of storage–discharge re-
lationships directly connects water flows to biogeochemical
processes, which facilitates simultaneous simulation of both
water and solute flows (Birkel et al., 2017).

2.3.1 Hydrology

The model spatially distinguishes two functionally distinct
response units: hillslope and riparian zones. It represents
them as two parallel suites of reservoirs connected by a com-
mon groundwater reservoir (Fig. 2). The hillslopes are repre-
sented as two reservoirs: the rooting-zone reservoir (SU) [L]
and a fast-responding reservoir (SF) [L] (e.g. preferential
flow structures). As riparian zones often have a distinct hy-
drological function (Molenat et al., 2005; Seibert et al.,
2003, 2009), the model also represents them as two reser-
voirs: an unsaturated-zone reservoir (SUR) [L] and a fast-
responding reservoir (SR) [L]. The two parallel suites are
connected by a slow groundwater reservoir (SS) [L], char-
acterized by a threshold from which the groundwater feeds
the SUR reservoir that represents a groundwater mixing vol-
ume (SS_mix) [L]. See Table 1 for the relevant model equa-
tions. More detailed model description and justifications for
the processes modelled can be found in previous studies
(Hrachowitz et al., 2013, 2014, 2015).

The rainfall-runoff model uses daily rainfall (P ) [L T−1]
and potential evapotranspiration (EP) [L T−1] to simulate
daily specific discharge at the outlet (QT) [L T−1]. Upon
reaching the soil, P is divided into water that infiltrates into
SU (RU, Table 1) and excess water by a hillslope runoff-
generation coefficient (CH,R) routed to SF (RF) and SS (RP).
CH,R is estimated by a logistic function representing the
catchment-wide soil-water-holding capacity in the rooting
zone (SU_max), which roughly reflects soil water content at
field capacity, and a shape factor (βH). Percolation of wa-
ter from SU to SS (RSS) is estimated by a linear function of
the water storage in SU and a maximum percolation capac-
ity (Pmax). Evapotranspiration from SU (EU) is estimated by
a linear function of the relative soil moisture and a transpi-
ration threshold (LP), which is the fraction of SU_max below
which potential evapotranspiration (EP) is constrained by the
water available in SU.

Fast reservoir SF receives water (RF) from SU (Table 1,
Eq. 8) and drains into reservoir SUR according to a lin-

ear storage–discharge relationship that is controlled by pa-
rameter kF. Slow reservoir SS is recharged by RSS and RP
from SU and slowly drains according to a linear storage–
discharge relationship that is controlled by parameter kS.
The water drained from SS is redistributed between SUR and
the stream according to parameter fSUR. Deep-infiltration
losses from SS, represented by calibration parameter QL,
are used to explicitly represent inter-catchment groundwater
flows (i.e. groundwater flows that cross topographic divides),
implying that precipitation that falls in one catchment influ-
ences the streamflow in another catchment (Bouaziz et al.,
2018). Analysis of the long-term water balance of a head-
water catchment with similar physiography in Brittany re-
vealed a large deficit (Hrachowitz et al., 2014). There is ev-
idence that many catchments have such deficits, which are
caused, at least in part, by large inter-catchment groundwater
flow (Hrachowitz et al., 2014; Le Moine et al., 2007), al-
though this cannot be verified completely, as highlighted by
Beven (2001). In addition, data from 58 catchments in the
Meuse basin indicated that large net inter-catchment ground-
water flows likely existed, mainly in small headwater catch-
ments underlain by fractured aquifers (Bouaziz et al., 2018),
such as Kervidy–Naizin. The parameter for deep-infiltration
losses is also used to reproduce the zero flow at the outlet and
groundwater dynamics with a long recession observed dur-
ing the summer, regardless of the piezometer (Humbert et al.,
2015). Consequently, we explicitly modelled inter-catchment
groundwater flows for Kervidy–Naizin. Common conceptual
models rarely include deep-infiltration losses, which may not
prevent them from simulating streamflow accurately but may
cause them to misrepresent the natural system, particularly
by overestimating actual evaporation rates in compensation
(Bouaziz et al., 2018). In the present study, in the absence
of detailed knowledge of the underlying processes, deep-
infiltration losses from Kervidy–Naizin were conceptualized
as a loss term QL from SS.

Riparian reservoir SUR receives water from SF, SS, and
rainfall (Table 1, Eq. 13). Excess water, estimated using a
runoff-generation coefficient (CR,R), is routed to SR (RR).
The water that remains in SUR is available for transpira-
tion (EUR, Table 1, Eq. 14). SR drains into the stream ac-
cording to a linear storage–discharge relationship that is con-
trolled by parameter kR (Table 1, Eq. 18). The total simulated
stream discharge equals the sum of slow and fast contribu-
tions from SS and SR, respectively (Table 1, Eq. 19).

2.3.2 Nitrate transfer and transformation

N inputs to reservoirs SU and SUR are the daily N sur-
plus (kg N ha−1), which correspond to soil N balances. N in-
puts consist of inorganic and organic fertilizers (i.e. slurry
and manure), biological N fixation, and atmospheric N de-
position. N outputs equal the sum of N exported by each
crop type. In this study, the N surplus was considered as a
net (N inputs−N outputs) diffuse N source for the catch-
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Figure 2. Conceptual model structure used to represent the Kervidy–Naizin catchment. S is storage components, R is recharge flows between
reservoirs,Q is liquid flows that leave the system, and E is evaporative flows that leave the system. Dark-blue and light-blue arrows represent
water flows and water with solutes, respectively. Biochemical parameters are shown in red for each reservoir. See Table 2 for definitions of
the parameters and Table A1 for definitions of the variable abbreviations.

ment (Dupas et al., 2020). Farm surveys performed in 2008
and 2013 led to estimates of a mean annual surplus over the
study period (2002—2017) of ca. 90 kg N ha−1 y−1 (Casal,
2018). Given the uncertainty in the estimated N surplus, we
considered it as a calibration parameter (surplus N, Table 2).

Due to the lack of relevant studies, the period with the
highest heterotrophic denitrification rate is unknown for
Kervidy–Naizin. In agricultural headwaters, denitrification
rates are usually low at the end of winter, increase in spring,
peak in summer, and decrease in autumn before reaching
their lowest in the middle of winter (Anderson et al., 2014).
In agricultural landscapes where N availability exceeds plant
requirements, denitrification is mainly limited by C avail-
ability, O2 concentration, and temperature (Barton et al.,
1999). Riparian zones of these landscapes often contain large
amounts of C. Thus, denitrification rates are expected to be
highest from late spring to early autumn, when temperatures
are highest and, as long as soils remain wet, O2 concentra-
tions are lowest (Anderson et al., 2014). We also had no
observations of biological transformation of NO−3 through
consumption by aquatic primary producers, although we as-
sumed that it was highest in spring and summer. Thus, in the
absence of detailed knowledge of the temporal pattern of bio-
logical NO−3 removal in Kervidy–Naizin, we represented bi-
ological transformation of NO−3 as a constant annual amount
of NO−3 removal (Rc) (kg N ha−1 yr−1) from reservoir SR
(Table 2). We assumed that if this constant overestimated
the biological NO−3 removal usually observed in agricultural
landscapes in winter, it would influence NO−3 concentration

little given the Kervidy–Naizin’s high NO−3 load in winter.
Thus, representing biological removal as a constant was as-
sumed to be reasonable in a parsimonious model approach
(Fovet et al., 2015b).

Denitrification can be a sink for NO−3 in streams, particu-
larly small (low-order) ones (Böhlke et al., 2009). However,
methods for measuring in-stream denitrification are difficult
and have high uncertainty, and the controlling variables are
not known well enough to make reliable predictions for tar-
geted management decisions (Böhlke et al., 2009). Given the
lack of in-stream denitrification observations and the low po-
tential for in-stream NO−3 removal (estimated at ca. 4 % per
year; Salmon-Monviola et al., 2013) in Kervidy–Naizin, we
did not model it and thus assumed zero in-stream denitrifica-
tion.

2.3.3 Dissolved organic carbon transfer and
transformation

The conceptualization of biogeochemical processes used
to simulate DOC dynamics, similar to that of Birkel et
al. (2014), is based on a simple production-loss mass balance
and transport along the main flow pathways to the stream.
The DOC mass balance (1MDOCi [M]) during time step
1t [T] (1t = 1 d, in this study) of each reservoir i (i.e. SU,
SUR and SS) differs from more complex C-process models
by being simplified into a grouped representation of DOC
production (PDOCi [M]) (processes that transform C were
not distinguished) and loss (LDOCi [M]) (processes that con-
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Table 2. Definitions and uniform prior distributions of the parameters of the solute-transport model.

Module Parameter Unit Initial Definition
range

Rainfall– SU_max [mm] [50–1000] Storage capacity of the hillslope unsaturated zone
runoff CP [–] [0.005–1.0] Preferential recharge coefficient

βH [–] [0.01–4] Hillslope runoff coefficient
Pmax [mm d−1

] [0.1–6] Percolation capacity
LP [–] [0.01–0.8] Transpiration threshold
kF [d−1

] [0.001–1] Storage coefficient of the fast reservoir
kS [d−1

] [0.02–0.06] Storage coefficient of the slow reservoir
SS_mix [mm] [500–9000] Groundwater mixing volume in the slow reservoir
fSUR [–] [0.00001–0.2] Proportion of water flow from reservoir SS that passes through reservoir SUR
QL [mm d−1

] [0.05–1] Deep infiltration loss
f [–] [0.15–0.30] Proportion of the catchment covered by the riparian zone
SUR_max [mm] [50, 500] Storage capacity in the riparian unsaturated zone
βR [–] [1–7] Riparian runoff coefficient
kR [d−1

] [0.04–2] Storage coefficient of the riparian reservoir

Nitrate surplus N [kg N ha−1 yr−1
] [50–95] Nitrogen surplus

Rc [kg N ha−1 yr−1
] [25–40] Amount of nitrate removed

Dissolved kDOCSU mg L−1
[15–35] DOC concentration at which daily DOC is produced in unsaturated storage

organic kDOCSUR mg L−1
[15–35] DOC concentration at which daily DOC is produced in riparian storage

carbon EA [–] [1.0–1.2] Energy parameter
(DOC) lDOCSU [–] [0–1] DOC loss in unsaturated storage

lDOCSS [–] [0–1] DOC loss in slow storage
lDOCSUR [–] [0–1] DOC loss in riparian storage

sume, retain, and mineralize DOC were not distinguished)
(Di Grazia et al., 2023; Koch et al., 2013):

1MDOCi = PDOCi −LDOCi . (1)

DOC production (PDOCi [M]) of reservoir i is calculated by
multiplying DOC concentration ([DOC]i [M L−1]) with the
total water stored (Si [L]) at the beginning of each time step.
DOC production was assumed to increase as temperature and
soil water content increased (Birkel et al., 2020):

[DOC]i = kDOCi ·
Si

Si_max
·E(T−T )a , (2)

where kDOCi [M L−1] is the concentration at which DOC is
produced daily in a reservoir i; EA (dimensionless) is a cal-
ibrated temperature-dependent activation energy; T [°C] is
the observed daily air temperature; T [°C] is the mean an-
nual air temperature for the study period; and Si_max and
Si are the capacity [L] and total water stored [L], respec-
tively, of reservoir i. DOC was assumed not to be produced
in the groundwater reservoir (SS), as deeper mineral hori-
zons in soil are considered to be DOC sinks instead (Kalb-
itz and Kaiser, 2008), and low DOC concentrations have
been observed in Kervidy–Naizin’s groundwater (mean of
ca. 1 mg L−1; Aubert et al., 2013). However, DOC can ac-
cumulate in SS due to recharge from the hillslope reser-
voir (SU).

Potential DOC losses (LDOCi [M]) in the form of mineral-
ization (Köhler et al., 2002), absorption, or consumption in
reservoirs SU, SUR, and SS are calculated using a loss coef-
ficient (lDOCi ) (dimensionless) (Table 2) applied to the DOC
mass of reservoirs at the beginning of each time step.

We assumed that in-stream processes have negligible in-
fluence on DOC concentrations. Some studies found that
agricultural land use can increase the production of au-
tochthonous DOM in streams (Shang et al., 2018). For ex-
ample, in an agricultural catchment (Lower Austria, 66 ha),
one large DOC source was the stream itself, as in-stream pro-
cesses caused 37 % of the total DOC load measured at the
catchment outlet during base flow conditions from November
to May (Eder et al., 2022). Nevertheless, end-member mixing
analysis of DOC in Kervidy–Naizin found that stream DOC
dynamics during winter storm events could be explained by
catchment processes, with little contribution from in-stream
sources (Morel et al., 2009). These results confirmed that
most of the DOC in streams that drain headwater catchments
is likely to be of external origin (i.e. allochthonous), resulting
from interactions between biogeochemical and hydrological
processes in soils, at least during the wet season (Dalzell et
al., 2007; Fovet et al., 2020; Lambert et al., 2013, 2014; Ray-
mond and Saiers, 2010). This is also consistent with the the-
ory of DOM transformation along a fluvial continuum (Creed
et al., 2015) and the dynamics of DOM fluorescence ob-
served, for example, by Shang et al. (2018), who found an
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increasing contribution of protein-like autochthonous DOM,
accompanied by a decreasing contribution of allochthonous
DOM, from low-order to high-order systems. For Kervidy–
Naizin, these results are supported by two arguments. First,
some processes associated with DOC production in summer
are unlikely to occur in Kervidy–Naizin’s stream, which fre-
quently dries up from July to October. Second, riparian veg-
etation is dense and covers the entire length of Kervidy–
Naizin’s network, which decreases primary production of
DOC. Thus, we considered the assumption regarding the
negligible influence of in-stream processes on DOC concen-
trations to be valid for Kervidy–Naizin.

The daily solute (NO−3 or DOC) concentration at the out-
let (Coutsolute [M L−1]) is then calculated according to the rel-
ative contribution of reservoirs SS and SR:

Coutsolute =
CsoluteSS

·QS+CsoluteSR
·QR

QT
. (3)

2.3.4 Mixing assumption

Each reservoir in the model is assumed to be completely
mixed to simulate solute dynamics. This approach, used in
most studies based on conceptual models (Birkel et al., 2020;
McMillan et al., 2012; Pesántez et al., 2023), assumes instan-
taneous and complete mixing of the incoming water and so-
lute masses in each reservoir, according to a solute-balance
equation:

d(ci · Si)
dt

=

∑
j

cI,j · Ij −
∑
k

cO,k ·Ok, (4)

where Si is the amount of water stored in reservoir i [L], ci is
the associated solute concentration [M L−1], I is the j water-
inflow [L T−1] to a given reservoir (e.g. RSS and RP from SU
to SS) (Fig. 2) with the corresponding solute-inflow concen-
trations cI,j [M L−1], and O is the k water-outflow [L T−1]
from a given reservoir with the corresponding solute-outflow
concentrations cO,k [M L−1] (e.g. RSR and QS from SS)
(Fig. 2).

The model tracks the distribution of ages of the water out-
flow (pOutflow(T , t), where T is the transit time at time t)
(Benettin et al., 2022) using a time stamp for each daily
incoming and outflowing water flow in reservoirs, similar
to the approach of Birkel and Soulsby (2016). The distri-
bution of ages of water in a reservoir (pS(T , t)) can be
derived in a similar way to tracking the ages of water in
outflow (pOutflow(T , t)), as they are related by a StorAge-
Selection (SAS) function developed by Botter et al. (2011):

ωOutflow(T , t)=
pOutflow(T , t)

pS(T , t)
. (5)

The SAS function can be considered a statistical summary
of the transport behaviour of a hydrological system that quan-
tifies the release of water of different ages from a reservoir

to an outflow (Rinaldo et al., 2015). According to the com-
plete mixing assumption of the model, the age distributions
of storage and flow are identical to each other (i.e. the out-
flow composition perfectly represents the storage composi-
tion) (Benettin et al., 2022). Thus, the solute concentration of
outflow equals the solute concentration of the reservoir. This
“well-mixed” situation corresponds to uniform sampling in
which ωOutflow(T , t)= 1 and implies that water storage is
uniformly sampled by an outflow (Benettin et al., 2013).

2.4 Sensitivity analysis of the solute-transport model

Global sensitivity analysis (GSA) was carried out to deter-
mine the effect of the model calibration scenarios on the
most sensitive hydrological parameters. GSA allows us to
identify the extent to which changes in different parameters
influence changes in the hydrological model output and to
determine the most important parameters (i.e. that need to
be calibrated) and the least important parameters (i.e. that
can be fixed as constants) (Reusser et al., 2011; Wang and
Solomatine, 2019). GSA, which ranks the relative influence
of model parameters on model output (Sun et al., 2022), is
generally recommended for hydrological models due to its
advantages over local sensitivity analysis methods. Indeed,
GSA can consider the influence of input parameters over
their entire range of variation and is suitable for non-linear
and non-monotonic models, providing results that are inde-
pendent of modeller bias and a particular site (Song et al.,
2015). Among the GSA methods widely applied to hydro-
logical models, we chose a variance-based method as it can
provide the most accurate and robust sensitivity indices for
complex non-linear models (Reusser et al., 2011; Song et al.,
2015; Wang and Solomatine, 2019). Variance-based methods
assume that a parameter’s influence can be measured by the
contribution of the parameter itself or its interactions with
two or more other parameters to the variance of the output.
The main advantage of variance-based methods is that they
can calculate the main and higher-order effects of parame-
ters, which identifies which ones strongly influence the out-
put on their own and which ones strongly influence the out-
put due to their interactions with other parameters (Wang and
Solomatine, 2019). We used the Fourier amplitude sensitivity
test (FAST) (Saltelli et al., 1999) from the SPOTPY Python
framework (Houska et al., 2015) to calculate variance-based
sensitivity indices that ranged from 0–1. FAST calculates a
first-order sensitivity index (Si), which measures the effect
of each parameter on the output, and a total sensitivity in-
dex (STi ), which measures the effect of each parameter and
its interactions with the other parameters on the output (Shin
and Kim, 2017). Because STi provides more reliable results
than Si when investigating the overall influence of each pa-
rameter on the output (Saltelli et al., 2009), we used it to
investigate parameter sensitivity, as defined by Saltelli and
Annoni (2010):
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STi =
EX∼i ·

(
VXi (Y |X∼i)

)
V (Y )

, (6)

where Xi is the ith parameter, and X∼i is the vector of all
parameters except Xi .

The variance between parentheses in the numerator de-
notes that the variance of Y , the value of the scalar objec-
tive function, is considered over all possible values of Xi
while keeping X∼i fixed. The expectation operator outside
the parentheses is considered over all possible values of X∼i ,
while the variance V (Y ) in the denominator is the total (un-
conditioned) variance (Shin and Kim, 2017). The numerator
represents the expected variance if all parameters except Xi
are fixed (Saltelli and Annoni, 2010).

Calculating STi for a single parameter requires n×(p+2)
model runs, where n is the sample size and p is the number
of parameters (Saltelli, 2002). To determine an appropriate
sample size for this GSA, we relied on the experiment of
Nossent et al. (2011), in which the sensitivity index did not
converge until n= 12000; thus, with 14 hydrological param-
eters, we performed 192 000 model runs. In this GSA, the
Nash–Sutcliffe model efficiency coefficient (Nash and Sut-
cliffe, 1970) was used to assess daily streamflow output, as
suggested by Nossent et al. (2011).

2.5 Model calibration and evaluation

To limit adverse effects of equifinality and ensure robust pos-
terior parameter distributions to represent processes mean-
ingfully, extensive multi-objective and multi-variable cali-
bration was performed by calibrating hydrological and bio-
geochemical model predictions simultaneously. When using
multi-objective optimization to calibrate a model, the goal is
to find a set of solutions that simultaneously optimize several,
potentially conflicting, objective functions that measure indi-
vidual processes. The interaction of multiple objectives leads
to a set of compromised solutions known as Pareto-optimal
front (Mostafaie et al., 2018). As none of the solutions can
be considered superior when there is more than one objec-
tive to optimize, Pareto-optimal solutions (hereafter “Pareto
front”) are also called non-dominated solutions (Yeste et al.,
2023) with equally good parameter sets, which provides an
uncertainty boundary of the predictive model. The caRamel
algorithm (Monteil et al., 2020) used in this approach com-
bines the multi-objective evolutionary annealing-simplex al-
gorithm (Efstratiadis and Koutsoyiannis, 2008) and the non-
dominated sorting genetic algorithm II (Reed and Devireddy,
2004). The caRamel algorithm produces an ensemble of pa-
rameter sets (i.e. a “generation”) to run the model, down-
scales the generation to the parameter sets that optimize the
objective functions, and generates a new parameter set that
produces more accurate results.

The research hypotheses of this study were tested using
a stepwise strategy with four model calibration scenarios

based on different combinations of model-performance met-
rics (Table 3):

– scenario 1 (S1) – only data on streamflow used for cal-
ibration, with six metrics used to describe the predicted
streamflow signatures;

– scenario 2 (S2) – data on streamflow and stream DOC
concentration used for calibration, with two metrics in-
cluding the mean of the metrics in S1 and the Kling–
Gupta efficiency (Gupta et al., 2009) used to assess the
predicted DOC concentrations;

– scenario 3 (S3) – same as S2 but the solute was NO−3
instead of DOC;

– scenario 4 (S4) – data on streamflow and stream DOC
and NO−3 concentrations used for calibration, with three
metrics including the mean of the metrics in S1 and
the Kling–Gupta efficiency used to assess the predicted
DOC and NO−3 concentrations.

The calibration period was set from 1 January 2013 to
1 September 2016, while the evaluation period was set from
1 August 2008 to 31 December 2011, each simulated after
3 years of initialization. These periods, the same as those of
Strohmenger et al. (2021), were chosen to be able to com-
pare model performance to two approaches to solute mod-
elling. The hydrological year 2012 was excluded from these
periods due to a problem with laboratory analysis of NO−3
concentrations that year. The uniform prior parameter distri-
butions were based on previous studies of headwater catch-
ments in similar physiographic contexts (Fovet et al., 2015a;
Hrachowitz et al., 2015) (Table 2). The prior distribution of
storage coefficient kS had been narrowly constrained based
on previous baseflow-recession analysis using a correlation
method (Yang et al., 2018). Three prior parameter constraints
(Gharari et al., 2014; Hrachowitz et al., 2014) were added to
the calibration algorithm to reduce parameter uncertainties:
kS < kF, kF < kR, and SUR_max < SU_max.

Up to 70 000 model runs were used for each calibration
scenario, with several successive optimizations to confirm
reproducibility of the results, as recommended by Monteil et
al. (2020). All parameter sets that belonged to the final Pareto
fronts (hereafter, “envelope”) were retained as feasible solu-
tions for each calibration scenario (Table 3). To illustrate the
results for the predicted discharges and solute concentrations,
a “best-compromise” set was selected from the Pareto front
that minimized the Euclidean distance to the optimal point
in the multi-objective space of each calibration scenario. All
simulated discharges and concentrations using all parameter
sets of the Pareto front provided information about the un-
certainty in the model’s output.

In the later evaluation step, observed soil water content
and groundwater level measurements were used as indepen-
dent data to assess the consistency of internal processes of
the best-compromise model for each scenario.
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Table 3. Signatures for streamflow, dissolved organic carbon (DOC), and nitrate (NO−3 ) and the associated performance metrics used for
model calibration scenarios and evaluation. The size of the Pareto front was the number of solutions. NSE – Nash–Sutcliffe model efficiency
coefficient, KGE – Kling–Gupta efficiency.

Calibration Variables/signatures Abbreviation Performance metrics Size References
scenario of the

Pareto
front

S1: streamflow Time series of streamflow Q NSEQ, KGEQ

280

Gupta et al. (2009), Nash and Sutcliffe (1970)
only log(Q) NSElogQ

Flow duration curve FDC NSEFDC Jothityangkoon et al. (2001), Sawicz et al. (2011)
Runoff ratio RUNOFF NSERUNOFF Sawicz et al. (2011), Yadav et al. (2007)
Volumetric efficiency VE VEQ Criss and Winston (2008)

S2: streamflow Streamflow Q Mean of metrics of S1
180

and DOC DOC DOC KGEDOC Gupta et al. (2009)

S3: streamflow Streamflow Q Mean of metrics of S1
110

and NO−3 NO−3 NO−3 KGENO3 Gupta et al. (2009)

S4: streamflow, Streamflow Q Mean of metrics of S1
270DOC and NO−3 DOC DOC KGEDOC Gupta et al. (2009)

NO−3 NO−3 KGENO3 Gupta et al. (2009)

Soil moisture is a key variable for the energy and water
balance at the land surface. It affects the partitioning of solar
radiation into latent and sensible heat as well as the partition-
ing of precipitation into direct runoff and catchment storage
(Duethmann et al., 2022). Accurate prediction of soil mois-
ture is thus essential for simulating streamflow, evapotran-
spiration, and percolation (Rajat and Athira, 2021; Rajib et
al., 2016) and for constraining the parameters of hydrolog-
ical models. The role of groundwater in the seasonal and
multi-year dynamics of streamflow is also essential: in many
temperate catchments, groundwater stores water during wet
periods and releases it throughout the year, thus contributing
greatly to low flows (Pelletier and Andréassian, 2022). These
variables are important for characterizing the internal hydro-
logical dynamics of a catchment and are therefore relevant
for assessing the internal consistency of the model.

The data observed for soil water content at Toullo and
PG2 were normalized (from 0–1) as a function of their min-
imum and maximum values over all of the periods studied.
All normalized data observed at Toullo station and point PG2
were compared to the normalized simulated water content in
the hillslope reservoir (SU) and riparian reservoir (SUR), re-
spectively. To compare to the observed groundwater level,
the simulated groundwater level was estimated from simu-
lated water storage in the groundwater reservoir (SS) (Seib-
ert, 2000) using the exponential function z=−eA·SS+B ,
where SS is water storage in the slow reservoir, and z is the
groundwater level. Coefficients A and B were determined
by linear regression between the simulated water storage and
the observed groundwater level. The non-parametric Mann–
Whitney U test was used to test whether model predictions
of calibration scenarios S2, S3, and S4 differed significantly
(p < 0.05) from those of the baseline scenario S1.

3 Results

3.1 Global sensitivity analysis of parameter influence
on streamflow

The hydrological parameters that influenced predicted
streamflow the most were related to recharge (CP; ST =

0.59), deep-infiltration losses (QL; ST = 0.25), percolation
capacity (Pmax; ST = 0.18), storage capacity of the hills-
lope unsaturated zone (SU_max; ST = 0.15), and storage co-
efficient of the fast-responding reservoir in the riparian-zone
reservoir (kR; ST = 0.14) (Fig. 3). The strong influence of CP
was logical, as it determines the recharge from SU to SS
and SUR to SR (i.e. how water from runoff is redistributed
between the riparian zone and groundwater). Parameters re-
lated to the area of the riparian zone (f ) and the transpiration
threshold (LP) had less influence.

3.2 Prediction of streamflow and solute concentrations

Overall, the model reproduced the main features of the ob-
served hydrological response (Fig. 4) in both the calibration
(NSEQ, NSElogQ, and KGEQ > 0.8) and evaluation (NSEQ,
NSElogQ, and KGEQ > 0.7) periods for all scenarios. The
predicted streamflow reproduced the seasonal dynamics ob-
served during the wetting-up (rising limb of the hydrograph),
wet, and recession periods. The high flow variations as-
sociated with storm events were usually represented rela-
tively well (NSEQ > 0.75) in calibration and evaluation pe-
riods, with good synchronicity, particularly in winter 2010
and 2014. Overall, model performances for the evaluation
period were only slightly lower than those for the calibra-
tion period for all four scenarios (Figs. 4 and A1). Perfor-
mance of the best-compromise model was slightly higher
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Figure 3. Total sensitivity indices estimated using the Fourier amplitude sensitivity test of the influence of hydrological parameters on
predicted streamflow. The dashed red line represents the minimum total sensitivity index.

for S1 than for the other scenarios, for both calibration
and evaluation periods (Fig. 4). The difference in perfor-
mance between S1 and S2 was smaller. The uncertainty in
predicted streamflow estimated from the envelope was low
for the calibration and evaluation periods but appeared to
peak during low flow periods. The calibrated model pro-
vided similarly reasonable representations of DOC (Fig. 5)
and NO−3 (Fig. 6) concentrations. Predicted DOC concen-
trations for the calibration period were slightly more ac-
curate for S2 (Fig. 5a) than for S4 (Fig. 5b). Predicted
NO−3 concentrations for the calibration period were slightly
more accurate for S3 (Fig. 6a) than for S4 (Fig. 6b). The
model reproduced the contrasting dynamics of stream DOC
and NO−3 (Aubert et al., 2013; Strohmenger et al., 2020),
with maximum DOC and minimum NO−3 concentrations oc-
curring in autumn. During this period, the median simu-
lated DOC concentration was ca. 8.7 mg L−1, while that of
NO−3 concentration was ca. 11 mg N–NO3 L−1. During the
wetting-up period, DOC concentrations decreased to a me-
dian of 2.5–3.5 mg L−1, while NO−3 concentrations increased
to a median of 14–16 mg N–NO3 L−1. These concentrations
remained relatively stable during the wet and recession peri-
ods. At the end of the recession period, DOC concentration
increased slightly to a median of ca. 5.5–6 mg L−1, while
NO−3 concentration decreased to a median of ca. 12 mg N–
NO3 L−1. The model simulated high NO−3 concentrations in
summer, when streamflow and NO−3 concentrations had not
been observed. During summer dry periods, the stream effec-

tively dries up, and no water flows at the outlet, which made
it more difficult to calibrate the model to predict their solute
concentrations. The model simulated near-zero water flow
during dry periods but occasionally simulated flow on cer-
tain days when zero flow had been observed, which yielded
relatively high simulated NO−3 concentrations. The lack of
observed NO−3 concentrations during dry periods also pro-
vided no constraints that could help the model represent NO−3
concentrations realistically.

The simulated hydrological signatures for all solutions
on the Pareto front provide evidence that including solute
data in the calibration improves the ability of the model
to reproduce certain streamflow characteristics. While the
performance based on median hydrological metrics (NSEQ,
NSElogQ, KGEQ, VEQ, NSEFDC) was lower overall for S2
and S4 than for S1 for both calibration and evaluation pe-
riods (Fig. 7), the median NSE runoff ratio (NSERUNOFF)
was significantly higher for S4 than for S1 for the evalua-
tion period (Fig. 7b). In contrast, the performance was signif-
icantly higher for S3 than for S1 based on median NSElogQ
and VEQ metrics for the calibration period and on median
NSEQ, NSElogQ, VEQ, and NSERUNOFF metrics for the eval-
uation period. These results suggest that simultaneously eval-
uating model predictions of streamflow and NO−3 concentra-
tion improves the model’s ability to reproduce streamflow,
especially low flows, due to the improvement in NSElogQ.
Compared to S1, the model’s hydrological performance de-
creased the most for S2 and the least for S3. The hydrological
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Figure 4. Observed and simulated flows for the calibration and evaluation periods according to the four scenarios: (a) S1 (streamflow only),
(b) S2 (streamflow+ dissolved organic carbon (DOC)), (c) S3 (streamflow+ nitrate (NO−3 )), and (d) S4 (streamflow+DOC+NO−3 ). The
simulated data for each scenario correspond to the best-compromise simulated discharge of the set of optimal solutions. “Envelope” refers to
the simulated discharge envelope using all parameter sets on the Pareto front. See Table 3 for definitions of model-performance metrics.
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Figure 5. Observed and simulated dissolved organic carbon (DOC) concentrations for the calibration and evaluation periods according
to two scenarios: (a) S2 (streamflow+DOC) and (b) S4 (streamflow+DOC+NO−3 ). The mean (± standard deviation) observed DOC
concentration was 4.8± 3.5 and 4.5± 3.1 mg DOC L−1 for the calibration and evaluation period, respectively. The simulated data for each
scenario correspond to the best-compromise simulated DOC concentration of the set of optimal solutions. “Envelope” refers to the simulated
DOC concentration envelope using all parameter sets on the Pareto front. KGE – Kling–Gupta efficiency, RMSE – root-mean-square error.
See Table 3 for definitions of model-performance metrics.

metrics for S2 also had wider ranges than those for the other
scenarios.

Including DOC concentration with streamflow in the cali-
bration showed lower performance for S4 than for S2, while
that using NO−3 concentration showed lower performance
for S4 than for S3 (Fig. 7). These results, consistent for
both calibration and evaluation periods, supported the obser-
vations (Figs. 5 and 6), which suggests that calibrating the
model with each solute individually with streamflow better
reproduced solute concentrations than calibrating the model
with all solutes and streamflow simultaneously.

3.3 Effects on the distribution of hydrological
parameters

Overall, the posterior distribution of hydrological parameters
differed among the four calibration scenarios (Fig. 8), except
for fSUR and kR, which were less sensitive to the calibra-
tion method (i.e. similar optimal values and distributions),
indicating that they had been identified well (Fig. 8i and n).
For some parameters, the distributions differed only for one
scenario, such as SU_max for S3 (Fig. 8a) and Pmax for S3
(i.e. smaller values and a narrower range of uncertainties
compared to other scenarios, considering both the interquar-
tile range and the total whisker range) (Fig. 8d). The latter
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Figure 6. Observed and simulated nitrate (NO−3 ) concentrations for the calibration and evaluation periods according to two scenarios: (a) S3
(streamflow+NO−3 ) and (b) S4 (streamflow+DOC+NO−3 ). The mean (± standard deviation) observed NO−3 concentration was 13.4±2.7
and 16.6± 2.8 mg N–NO3 L−1 for the calibration and evaluation period, respectively. The simulated data for each scenario correspond to
the best-compromise simulated NO−3 concentration of the set of optimal solutions. “Envelope” refers to the simulated NO−3 concentration
envelope using all parameter sets on the Pareto front. KGE – Kling–Gupta efficiency, RMSE – root-mean-square error. See Table 3 for
definitions of model-performance metrics.

suggests that calibration using NO−3 concentration strongly
influenced soil parameters, decreasing percolation of water
from SU to SS. Similarly, the distribution of SUR_max for S2
differed from other scenarios and had a narrower range of
uncertainties, considering both the interquartile range and
the total whisker range. This suggests that calibration us-
ing DOC concentration improved identification of SUR_max
(Fig. 8l) and that reservoir SUR needs a lower capacity to
reproduce both streamflow and DOC concentrations. In ad-
dition, for S4, distributions of the most influential hydrologi-
cal parameters (i.e. CP and QL) (Fig. 8b and j), as well as of
groundwater parameters kS and SS_mix, differed from those of

the other scenarios. Comparing distributions of the ground-
water mixing volume in the slow reservoir (SS_mix) for S2
and S3 showed that its size could be decreased by a factor of
ca. 3 when calibrating using NO−3 concentrations instead of
DOC concentrations (Fig. 8h).

Overall, all parameters except for kF and kS had lower un-
certainty when the model was calibrated using solute concen-
trations, whether simultaneously or separately (Fig. 8). More
specifically, the uncertainty in βH, fSUR, SS_mix, and kR de-
creased for S2, S3, and S4. The uncertainty in CP, βR, and
SUR_max decreased for S2 and S3, while that in Pmax and
Lp decreased for S3 and S4. The uncertainty in SU_max de-
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Figure 7. Box plots of performance metrics for predictions of hydrological and solute concentration according to four scenarios: S1 (stream-
flow only), S2 (streamflow+DOC), S3 (streamflow+NO−3 ) and S4 (streamflow+DOC+NO−3 ) for the (a) calibration period and (b) eval-
uation period. Whiskers represent 1.5 times the interquartile range. Black circles indicate the best-compromise solution of the Pareto front.
The box plots of KGENO3 for scenarios S1 and S2 are not shown, as their values were negative (median=−1) because the model was not
calibrated to represent NO−3 concentrations in these scenarios. An asterisk above a box plot indicates values significantly (p < 0.05) larger
than those for scenario S1 (one-sided Mann–Whitney test). See Table 3 for definitions of model-performance metrics.

Figure 8. Box plots of hydrological parameters values for the four scenarios: S1 (streamflow only), S2 (streamflow+DOC), S3 (stream-
flow+NO−3 ), and S4 (streamflow+DOC+NO−3 ). Whiskers represent 1.5 times the interquartile range. The circle on each box plot indicates
the parameter’s value in the best-compromise set on the Pareto front for each scenario.
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creased only for S2, while that in f decreased only for S3.
For deep-infiltration losses (QL), only calibration using DOC
and NO−3 concentrations simultaneously (S4) decreased its
uncertainty compared to those for other scenarios (Fig. 8j).

3.4 Internal model states and consistency

3.4.1 Groundwater level

Overall, the calibration that included solute concentrations
with streamflow (S2, S3 and S4) significantly improved sim-
ulation of groundwater level compared to S1 (Fig. 9). In
S1, performance metrics NSE and KGE were indeed the
lowest, and PBIAS (percent bias; Moriasi et al., 2007) and
RMSE were the highest. S3 and S4 reproduced groundwa-
ter levels (NSE= 0.92 and 0.93, respectively) better than S2,
while S3 reproduced best the low groundwater levels in 2009,
2011, and 2013. However, for S3 and S4, the model tended
to slightly overestimate the low groundwater levels in 2010
and 2015. Overall, the model reproduced the observed mag-
nitude and seasonality of the groundwater level relatively
well (NSE= 0.76–0.93, depending on the scenario). PBIAS
values were negative for all scenarios, indicating that the
model tended to underestimate groundwater level.

3.4.2 Soil moisture

Overall, calibrating the model with streamflow and solute
concentrations simultaneously did not improve simulation of
soil moisture dynamics in the riparian zone compared to S1
(Fig. 10a). The calibration that included DOC concentrations
with streamflow (S2) had significantly lower performance
to reproduce normalized soil moisture at PG2 (NSE= 0.58
and KGE= 0.74) compared to S1. The model reproduced
observed soil moisture better when it was calibrated using
DOC and NO−3 simultaneously (S4, with NSE= 0.73 and
KGE= 0.78) than when using only one solute (S2 or S3,
with NSE= 0.58 and 0.69, respectively, and KGE= 0.74
and 0.75, respectively). The model reproduced major fea-
tures of the observed dynamics of normalized soil moisture
at PG2 (i.e. the riparian zone) (NSE= 0.58–0.79, depending
on the scenario). It also reproduced drying rates at the end
of the summer and wetting rates well overall. However, the
model tended to slightly underestimate soil moisture in sum-
mer 2015 and winter 2016. PBIAS values were negative for
all scenarios, indicating that the model tended to underesti-
mate normalized soil moisture at PG2.

Only S2 reproduced soil moisture in the upslope zone sig-
nificantly better than S1 did (NSE= 0.94 and 0.92, respec-
tively) (Fig. 10b). For S3 and S4, the model did not repro-
duce the wetting rate well at the beginning of 2017, when
it overestimated soil moisture. S3 and S4 had significantly
lower performance than S1 did. Overall, the model repro-
duced the observed dynamics of normalized soil moisture at

Toullo (i.e. the upslope zone) (NSE= 0.79–0.94, depending
on the scenario).

3.5 Water balances

Calibrating the model with DOC and NO−3 concentrations
along with streamflow data influenced water-balance com-
ponents and changed the storage in reservoirs SU, SS,
and SUR. The median simulated total evaporative flow (EU
and EUR) was highest for S1 (470 mm yr−1) and lowest
for S4 (372 mm yr−1) (Fig. 11a). Median deep-infiltration
losses (QL) were highest for S4 (128 mm yr−1) and low-
est for S3 (54 mm yr−1). The median contribution of SR
to discharge (QR) was slightly but significantly higher
for S3 and S4 (108 and 109 mm yr−1, respectively) than
for S1 (100 mm yr−1). The median contribution of SS to dis-
charge (QS) was significantly higher for S2 (293 mm yr−1)
than for S1 (242 mm yr−1). SS and SUR stored water during
the simulation, while SU lost water. SS tended store signif-
icantly more water for S4 (2.7 mm yr−1) than it did for S1
(1.2 mm yr−1) (Fig. 11b). SU lost significantly more water
for S3 (−21 mm yr−1) than for S1 (−12 mm yr−1) and lost
the least for S4 (−10.6 mm yr−1).

4 Discussion

4.1 Effect on streamflow, groundwater and soil
moisture

The parsimonious solute-transport model reasonably repro-
duced simultaneously the dynamics of discharge, DOC and
NO−3 concentrations in the stream of the Kervidy–Naizin
catchment for all scenarios. Model predictions based on inde-
pendent data indicated that the model generally reproduced
the dynamics of groundwater level and soil moisture in up-
slope and riparian zones for all scenarios. Including solute
(DOC and NO−3 ) data along with streamflow data in a multi-
objective calibration strategy improved the representation of
groundwater storage and soil moisture in the upslope zone
(Figs. 9 and 10b). The improvement in the representation
of groundwater level was significant and relatively large for
scenarios S2, S3, and S4 compared to S1 (Fig. 9). In con-
trast, the improvement in the representation of soil moisture
in the upslope zone was significant but relatively small only
for scenario S2 compared to S1 (Fig. 10b). Thus, only sce-
nario S2 improved the representation of both groundwater
and soil moisture in the upslope zone.

Studies have shown that using additional information
to constrain hydrological models usually improves spatial
and/or temporal patterns of internal state variables and flows
but does not necessarily improve the accuracy of predicted
runoff (López López et al., 2017; Tong et al., 2021). Wood-
ward et al. (2013) developed a catchment simulation model
that predicted streamflow and water chemistry by connecting
a model of soil water balance to two groundwater reservoirs.
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Figure 9. Observed and simulated groundwater levels for the four scenarios: S1 (streamflow only), S2 (streamflow+DOC), S3 (stream-
flow+NO−3 ) and S4 (streamflow+DOC+NO−3 ). NSE – Nash–Sutcliffe model efficiency coefficient, KGE – Kling–Gupta efficiency,
PBIAS – percent bias, RMSE – root-mean-square error, S – significance level. An asterisk in the significance level column indicates val-
ues that differed significantly (p < 0.05) from those for scenario S1 (two-sided Mann–Whitney test). See Table 3 for definitions of the
performance metrics.

They found that calibrating the model using daily streamflow
and monthly NO−3 data simultaneously from a small low-
land milk-production-oriented catchment improved hydro-
logical understanding and estimated catchment NO−3 flows
relatively well. In particular, they were able to infer daily
contributions of near-surface water; fast shallow groundwa-
ter; and slower, deeper groundwater to water and NO−3 dis-
charge. However, including NO−3 data in the calibration over-
predicted low flows compared to calibration using stream-
flow data alone. Yen et al. (2014) used regional estimates of
annual denitrification mass and the percentage of NO−3 load
at the catchment outlet that had come from groundwater as
soft data to constrain water-flow partitioning, which yielded
realistic internal catchment behaviour but decreased the ac-
curacy of predicted streamflow. In this study, when consid-
ering only the best-compromise model for each scenario, the
use of solute data improved the representation of groundwa-
ter storage (S2, S3 and S4, Fig. 9) and soil moisture in the
upslope zone (S2, Fig. 10b) but slightly decreased the accu-
racy of predicted streamflow in both calibration and evalua-
tion periods (Fig. 4). In contrast, considering all hydrological
signatures for discharge obtained from the envelope, S3 im-
proved the model’s ability to reproduce streamflow charac-
teristics, especially low flows (Fig. 7) and groundwater level
(Fig. 9).

We included solutes (DOC and NO−3 ) that have opposite
dynamics and whose conceptual models had been success-
fully tested in the literature (Birkel et al., 2014; Fovet et al.,
2015b), with the aim of adding useful constraints to the hy-
drological modelling. However, none of the scenarios that
included DOC and/or NO−3 improved both the model’s rep-
resentation of streamflow dynamics and internal consistency
in representing groundwater level and soil moisture in the ri-
parian and upslope zones. Given the limits of this study, it

remains uncertain whether including solutes with streamflow
in calibration only improved the representation of hydrolog-
ical states and flows of specific reservoirs or also improved
the model’s overall internal consistency. The first limit came
from comparing point-scale in situ observations to simu-
lated soil moisture and groundwater levels that represented
catchment-scale storage, as these observations may not have
represented the actual dynamics of groundwater and soil stor-
age. Furthermore, although the dynamics of DOC and NO−3
concentrations in the stream were represented well, the con-
ceptualization of biogeochemical processes and transport of
these solutes may remain too simple to represent internal
state variables and flows of solutes. The model represents the
hydrological and biogeochemical processes that are assumed
to dominate, and these assumptions are limited by incom-
plete knowledge. In addition, the representation of reactive
solutes increased the number of parameters and the com-
plexity of the model. Consequently, it would be interesting
to compare this approach to the use of non-reactive solutes
in calibration, such as natural tracers that are assumed to be
conservative, including chloride (Cl−) and stable isotopes of
water (18O and 2H) (Kirchner et al., 2010), to assess whether
the model can reproduce the dynamics of both soil moisture
and groundwater better.

The factors that improve internal hydrological consis-
tency when solute data are included are not well understood.
Streamflow aggregates information from many catchment-
scale processes, but this information is too ambiguous to
determine the exact catchment configuration (Kuppel et al.,
2018b) or flow pathways that produced the observed sig-
nal (Woodward et al., 2017). This is because streamflow ag-
gregates downstream along a convergent network towards a
single outlet, but the divergent nature of an upstream net-
work makes it impossible to uniquely backtrack the loca-
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Figure 10. (a) Normalized observed (point PG2) and simulated soil moisture in the SUR reservoir and (b) normalized observed (Toullo point)
and simulated soil moisture in the SU reservoir for four calibration scenarios: S1 (streamflow only), S2 (streamflow+DOC), S3 (stream-
flow+NO−3 ), and S4 (streamflow+DOC+NO−3 ). NSE – Nash–Sutcliffe model efficiency coefficient, KGE – Kling–Gupta efficiency,
PBIAS – percent bias, RMSE: root-mean-square error, S – significance level. An asterisk in the significance level column indicates val-
ues that differed significantly (p < 0.05) from those for scenario S1 (two-sided Mann–Whitney test). See Table 3 for definitions of the
performance metrics.

tions where the flow was generated (Kirchner et al., 2001).
Thus, streamflow can be simulated well with many alterna-
tive model parameterizations, whether or not they are phys-
ically consistent (Kirchner, 2006). Results of the present
study thus suggest that if streamflow alone is used for cali-
bration, the model predicts discharge correctly for the wrong
reason, as internal consistency, especially the representation
of groundwater level, is not guaranteed. The model thus sim-
ulates water pathways and storage dynamics that do not rep-
resent those in the actual catchment. Consequently, it ap-
pears that the hydrological behaviour of the catchment re-
quired to reproduce the observed DOC and NO−3 concen-
trations in the stream is different from that required to re-
produce only the observed discharge. This hypothesis is sup-
ported by the fact that the calibration scenarios influenced the
main components of the water balance differently. For ex-
ample, S3 yielded better representation of the groundwater
reservoir, with good reproduction of the groundwater level

(Fig. 9) but lower evapotranspiration and higher water loss
from the SU reservoir than S1 (Fig. 11b). In comparison,
S2 yielded better representation of upslope soil water stor-
age (Fig. 10b) and a higher contribution of SS to discharge
than S1 (Fig. 11a). The large amount of information in the
solute time series thus constrained internal reservoirs and wa-
ter flows more than a streamflow-only approach, which in-
creased internal consistency of the hydrological model. This
occurs because a hydrological model only needs to represent
an input–output response, whereas when biogeochemistry is
included, a model needs to represent both residence-time dis-
tributions and biogeochemical processing to reproduce the
observed stream concentrations (Medici et al., 2012) and the
decrease in solute-input signals. The use of solute time se-
ries, which mitigates the equifinality problem, thus excluded
infeasible model configurations that would have also yielded
high performance (Dimitrova-Petrova et al., 2020; Kuppel et
al., 2018b; Yen et al., 2014).
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Figure 11. (a) Box plots of simulated annual water budgets for all Pareto fronts of each scenario (S1–S4) during the calibration and evaluation
periods combined (1 August 2008–1 September 2016). (b) Box plots of changes in simulated storage of the main reservoirs of the model
for all Pareto fronts of each scenario during the period. Whiskers represent 1.5 times the interquartile range. An asterisk above a box plot
indicates values that differed significantly (p < 0.05) from those for scenario S1 (two-sided Mann–Whitney test).

An additional step is needed to understand the benefits of
including solute data for internal hydrological consistency by
analysing effects of including DOC and NO−3 concentration
data on the storage dynamics (state and flows) of model com-
ponents. For example, the simulations showed that includ-
ing NO−3 data decreased kS and SS_mix (Fig. 8g and h), sug-
gesting that simulations of NO−3 dynamics were optimized
at a lower groundwater mixing volume and lower flow rate
in SS. However, it is important to go further to understand
why including NO−3 concentration data improved simulation
of groundwater level (Fig. 9) and low flow (Fig. 7). In this
landscape, most of the NO−3 leached from the unsaturated
reservoir accumulates in the shallow groundwater (Aubert et
al., 2013; Strohmenger et al., 2020). The groundwater, with
a legacy mass storage of NO−3 (Basu et al., 2010; Molenat et
al., 2008), thus contributes water to the stream that sustains
the base flow and export of NO−3 (Aubert et al., 2013; Mole-
nat et al., 2008). Given these characteristics, good reproduc-
tion of NO−3 concentrations and flows in the stream, mainly
supplied by groundwater, can be assumed to constrain the
model sufficiently to yield good reproduction of water flows
from the groundwater to the stream and thus good represen-
tation of groundwater level.

4.2 Effects on parameter uncertainties

Using a parsimonious hydrochemical model without explicit
biogeochemical processes, Strohmenger et al. (2021) found
that overall parameter uncertainties were higher when cali-
brating using solute data (DOC, NO−3 ) along with streamflow

data than when calibrating using streamflow data alone. They
assumed that DOC and NO−3 sources behave as infinite pools
with a fixed concentration in each reservoir contributing to
the stream. The modelling approach in the present study was
relatively similar but explicitly represented biochemical pro-
cesses related to DOC and NO−3 . This approach resulted in
decreased parameter uncertainty when solute concentrations
were included in calibration, except for storage coefficients
of the fast (kF) and slow reservoirs (kS) (Fig. 8). Compar-
ing the results of these two studies suggests that the infinite-
solute-pool assumption is sufficient to reproduce annual and
storm-event dynamics of discharge and DOC and NO−3 con-
centrations in the stream but is insufficient in calibration to
constrain the model to adequately reproduce water storage
dynamics and flow paths and to reduce uncertainties in hy-
drological parameters. In the infinite-solute-pool assumption,
hydrological parameters are indeed less sensitive to solute
concentrations than they are in models that explicitly repre-
sent biogeochemical processes and dynamic solute concen-
trations in reservoirs. Notably, the results of this study high-
light that S4, which considered all constraints (i.e. stream-
flow and DOC and NO−3 concentrations), greatly influenced
the distributions of the most influential hydrological param-
eters, specifically QL and CP, whose values were among the
highest or lowest, respectively (Fig. 8b and j), and repro-
duced groundwater levels the best (Fig. 9). This highlights
the importance of parameters QL and CP, which determine
inter-catchment groundwater flows and the recharge from SU
to SS and SUR to SR, respectively, in ensuring that the model
reproduced the observed groundwater dynamics. Based on
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these results, for the model to best reproduce the dynamics of
streamflow, concentrations (DOC, NO−3 ), and groundwater,
recharge should be decreased and inter-catchment ground-
water flow should be increased to ca. 0.35 mm d−1 (best-
compromise parameter value for S4, Fig. 8j). This value
is consistent with the values found in modelling studies
of a similar physiographic headwater catchment in Brittany
(Fovet et al., 2015a; Hrachowitz et al., 2014).

The model conceptualizes biogeochemical processes for
DOC and NO−3 in a relatively simple way but has reduced the
uncertainties of the parameters. An additional step in future
studies will be to analyse whether more complex represen-
tation of biogeochemical processes in the model can further
reduce uncertainties in hydrological parameters. Results of
the present study are consistent with those of other studies, in
which inclusion of additional variables in multiple-objective
calibration generally reduced parameter uncertainty (Tong
et al., 2021). For example, Yen et al. (2014) found that in-
cluding data related to water quality yielded lower param-
eter uncertainties than calibration using streamflow alone,
especially for hydrological parameters that strongly influ-
ence denitrification. Silvestro et al. (2015) demonstrated that
the equifinality of soil parameters was reduced by including
satellite-derived soil moisture when calibrating a process-
based, spatially distributed hydrological model. Similarly,
Rajib et al. (2016) found that including satellite-derived soil
moisture, especially that in the rooting zone, reduced param-
eter uncertainties, particularly for parameters related to sub-
surface hydrological processes.

4.3 Comparability of point-scale in situ measurements
to catchment-scale storage

A remaining issue is the limited comparability of point-
scale in situ measurements and simulated soil moisture and
groundwater level to catchment-scale storage. In situ volu-
metric soil moisture was calculated as the mean of several
TDR probes, which reduces uncertainty at the point scale, but
upscaling these point measurements to a reservoir that repre-
sents a hillslope or riparian zone is associated with uncertain-
ties. Consequently, we considered normalized soil moisture
as a proxy for dynamics of unsaturated storage in hillslope
and riparian zones. Similarly, we used the daily mean nor-
malized water level at point PG5 as a proxy for groundwater
storage dynamics. An additional step in future studies will
be to determine how point measurements can be upscaled to
areal-mean point-scale soil moisture and groundwater mea-
surements compatible with catchment-scale storage. A com-
plementary approach is to include other promising methods,
such as remote sensing, to estimate the spatial distribution
of storage in catchments, especially of soil moisture (Dueth-
mann et al., 2022; Tong et al., 2021). The high spatial reso-
lution, worldwide spatial coverage, and increasing availabil-
ity of remotely sensed data may provide ample opportunities
to further constrain hydrological models and their parame-

ters (Bouaziz et al., 2021; Duethmann et al., 2022; Gomis-
Cebolla et al., 2022; Nijzink et al., 2018; Tong et al., 2021).
Recent soil moisture data from satellite-derived soil-moisture
products (e.g. SMAPL3E, SCATSAR, ASCAT DIREX SWI)
with high spatial and temporal resolutions (e.g. 0.5–9.0 km
and 1–3 d, respectively) (Duethmann et al., 2022) would
help constrain the model of the Kervidy–Naizin catchment.
Other promising methods include cosmic-ray neutron-sensor
probes to estimate dynamics of near-surface soil water stor-
age (Dimitrova-Petrova et al., 2020) and geodesy and geo-
physical methods (Fovet et al., 2015a). Additional data can
be used to assess the internal representation of evapotran-
spiration, which has a wide spatial and temporal distribution
at the catchment scale, to provide more confidence in simu-
lation of the partitioning of water between soil storage and
groundwater recharge (Moazenzadeh and Izady, 2022). For
example, using spatially and temporally gridded remotely
sensed evapotranspiration data to calibrate the Soil and Water
Assessment Tool (SWAT) hydrological model decreased the
equifinality of the calibrated parameters compared to cali-
bration using only streamflow data (Shah et al., 2021). These
results demonstrate the benefit of using increasingly avail-
able open-access remotely sensed evapotranspiration data to
improve calibration of hydrological models. These methods
provide a spatially aggregated overview of catchment water
content and go beyond traditional methods of direct storage
observations at the point scale that are limited to a single
reservoir (Dimitrova-Petrova et al., 2020).

4.4 Implications

This study’s results indicate that solute data are important
for improving the internal consistency of hydrological mod-
els, which can help guide collection of field data and mod-
elling (Stadnyk and Holmes, 2023). When collecting field
data for model calibration, it may be important to collect so-
lute data along with streamflow data. These data can then
be used in a hydrological model to which simple representa-
tions of biogeochemical processes are added to improve the
representation of internal behaviour of the catchment by cal-
ibrating streamflow and solutes simultaneously. The type of
solute measured is also important, as calibration using NO−3
improved the internal consistency of the groundwater reser-
voir, while that using DOC improved the internal consistency
of soil water storage in the upslope zone. With the increas-
ing availability of solute data from catchment monitoring,
this approach provides an objective way to improve repre-
sentation of complex hydrological systems when information
about their internal functioning is insufficient. A catchment
model that represents observed behaviour of the system more
accurately can then be used with confidence when assessing
scenarios, such as those of nutrient remediation or climate
change. If the internal behaviour of the hydrological system
is not represented correctly, predicting streamflow acceptably
is pointless and perhaps counter-productive, leading to erro-
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neous conclusions and potential mismanagement of catch-
ment resources. For example, Yen et al. (2014) showed that a
lack of constraints to realistically represent the internal func-
tioning of a catchment can lead to misleading assessments
of pollution-control scenarios, even when typical streamflow
performance criteria are satisfied.

The ability to apply this modelling approach to other
catchments with different physiography will depend on the
model’s ability to represent dominant sources and pathways
of DOC and NO−3 concentrations that differ from those
of Kervidy–Naizin. To address this question, we analysed
the response of stream water chemistry to changes in dis-
charge observed in this catchment and how the model rep-
resents it. Changes in solute concentrations as a function of
discharge (i.e. concentration–discharge (CQ) relationships)
(Appendix B) provide insight into how catchments store and
release water and solutes and can therefore be considered
a “fingerprint” of catchment transport, mixing, and reaction
processes (Godsey et al., 2009; Knapp et al., 2020). Long-
term seasonal CQ slopes for NO−3 in Kervidy–Naizin gener-
ally indicated a chemostatic NO−3 export regime (Fig. B1a).
Indeed, this pattern often emerges in catchments with a spa-
tially uniform distribution of abundant solute sources, such
as NO−3 in agricultural areas, which leads to a relatively con-
stant release of solutes to the stream network (Bieroza et
al., 2018). In contrast, in the winter of a few years (2010,
2012 and 2014), the CQ slope indicates instead a slightly
more chemodynamic export regime with a dilution pattern.
Long-term seasonal CQ slopes for DOC indicate a chemo-
dynamic export regime with an accretion pattern that changes
to a chemostatic export regime in autumn (Fig. B1b). The
model reproduced the differing export regime of each so-
lute from 2008–2016 relatively well (Fig. B1). Model per-
formance was slightly lower for DOC (RMSE= 0.13–0.27)
than for NO−3 (RMSE= 0.08–0.21). For a few years, the
model did not represent the export regime accurately. The
export regime for NO−3 observed in winter 2008 and 2009
was chemostatic, but the model simulated a chemodynamic
export regime with a dilution pattern. The export regime for
DOC observed in autumn 2011 and 2014 and summer 2012
and 2014 was an chemostatic export regime, but the model
simulated a more chemodynamic export regime with an ac-
cretion pattern. As the model simulated hydrological dy-
namics relatively well during these periods (Fig. 4), it was
likely overpredicting DOC. Analysis of the CQ relation-
ships observed and simulated in Kervidy–Naizin highlighted
two important points: (i) each solute in this catchment did
not have a single pattern but instead seasonal and interan-
nual differences in export regimes, and (ii) the parsimonious
solute-transport model was able to reproduce different ex-
port regimes. Thus, this modelling approach may be appli-
cable, in particular due to its flexible structure, to headwater
catchments, whose characteristics and export regimes differ
from those of Kervidy–Naizin. Applying the model to catch-
ments whose streams can be intermittent would first require

solving the methodological issue of high NO−3 concentra-
tions in summer, when no observed data are available, to
prevent overpredicting concentrations and risk overestimat-
ing NO−3 flows in summer. The model can also be adapted
to represent catchments whose hydrological and biochemi-
cal patterns differ from those of Kervidy–Naizin, where most
DOC accumulates in the soils of the riparian zone and NO−3
accumulates in the groundwater. For example, the reservoirs
in which DOC is produced or lost can be modified easily.
In addition, more complex models of biogeochemical pro-
cesses can also be considered. While we represented het-
erotrophic denitrification as a constant, dynamic equations
(Heinen, 2006) could easily be incorporated to represent the
seasonality of this process.

5 Conclusion

The model reasonably reproduced the dynamics of discharge
and solute (DOC and NO−3 ) concentrations in the stream of
the headwater catchment simultaneously for all scenarios.
Model predictions based on independent data indicated that
the model generally reproduced the dynamics of groundwa-
ter level and soil moisture in upslope and riparian zones for
all scenarios. Given the performance of the best-compromise
model for each scenario, the results of this study tend to re-
ject the first hypothesis, as using daily stream DOC and NO−3
concentrations along with streamflow data to calibrate the
model did not improve the model’s performance for simu-
lated streamflow for the calibration or evaluation period com-
pared to calibration with streamflow alone. In contrast, con-
sidering all hydrological signatures for discharge obtained
from the envelope, the scenario that included NO−3 along
with streamflow improved the model’s ability to reproduce
streamflow, especially low flows. For the second hypoth-
esis, including solute data along with streamflow data in
a multi-objective calibration strategy significantly improved
the representation of groundwater storage and soil moisture
in the upslope zone. The improvement in the representa-
tion of groundwater level was significant and relatively large
for all scenarios when using one or both solutes along with
streamflow for calibration compared to using only stream-
flow. In contrast, the improvement in the representation of
soil moisture in the upslope zone was significant but rela-
tively small only when using DOC concentration along with
streamflow for calibration compared to using only stream-
flow. None of the scenarios that included solutes improved
both the model’s representation of streamflow dynamics and
internal consistency in representing groundwater level and
soil moisture in the riparian and upslope zones. Based on
these results, it remains uncertain whether including solutes
with streamflow in calibration improved only the represen-
tation of hydrological states and flows of specific reservoirs
or also improved the model’s overall internal hydrological
consistency. For the third hypothesis, explicitly modelling
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biochemical processes for DOC and NO−3 reduced the un-
certainty in hydrological parameters, except the storage co-
efficients of the fast and slow reservoirs, compared to an
approach in which sources of DOC and NO−3 were treated
as infinite pools with fixed concentrations. The simultane-
ous inclusion of daily in-stream DOC and NO−3 concentra-
tions in the calibration strategy influenced the distribution of
the most influential hydrological parameters of the model.
Differences among the calibration scenarios also influenced
the main components of the water balance. Calibrating the
model with streamflow and solute concentrations simultane-
ously reduced predictions of evapotranspiration. Compared
to calibration using streamflow alone, the inclusion of DOC
increased the predicted contribution of groundwater to dis-
charge, while the inclusion of NO−3 increased the predicted
loss of water from the rooting-zone reservoir. This modelling
study demonstrated that including the large amount of infor-
mation in solute time series in hydrological models provided
an objective way to improve the representation of complex
hydrological systems for which information about internal
functioning was insufficient.

Appendix A: Definitions of variables and relationship
between observed and simulated streamflow

Table A1. Symbols and definitions of variables in the hydrological model.

Symbol Definition Symbol Definition

CH,R Hillslope runoff coefficient [–] QT Total outflow [L T−1
]

CP Preferential recharge coefficient [–] RF Recharge of fast reservoir [L T−1
]

CR,R Riparian runoff coefficient [–] RFR Recharge of SUR from SF [L T−1
]

EA Actual evaporation [L T−1
] RP Preferential recharge of the slow reservoir [L T−1

]

EP Potential evaporation [L T−1
] RR Recharge of the riparian-zone reservoir [L T−1

]

EU Transpiration from SU [L T−1
] RSR Recharge of SUR from SS [L T−1

]

EUR Transpiration from SUR [L T−1
] RSS Recharge of the slow reservoir [L T−1

]

f Proportion of the catchment covered by the riparian zone [–] RU Infiltration into the unsaturated reservoir [L T−1
]

fSUR Proportion of water flow from SS that passes through SUR [–] SF Storage in the fast reservoir [L]
kF Storage coefficient of the fast reservoir [T−1

] SR Storage in the riparian reservoir [L]
kR Storage coefficient of the riparian-zone reservoir [T−1

] SS Storage in the slow reservoir [L]
kS Storage coefficient of the slow reservoir [T−1

] SS_mix Groundwater mixing storage in the slow reservoir [L]
LP Transpiration threshold [–] SU Unsaturated storage [L]
P Rainfall [L T−1

] SU_max Storage capacity of the hillslope unsaturated zone [L]
Pmax Percolation capacity [L T−1

] SUR Unsaturated storage in the riparian zone [L]
QL Deep infiltration loss [L −1

] SUR_max Storage capacity in the riparian unsaturated zone [L]
QR Runoff from the riparian-zone reservoir [L T−1

] βH Hillslope coefficient [–]
QS Runoff from the slow reservoir [L T−1

] βR Riparian coefficient [–]
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Figure A1. Relationship between observed and simulated streamflow for calibration and evaluation periods for four calibration scenarios:
(a) S1 (streamflow only), (b) S2 (streamflow+DOC), (c) S3 (streamflow+NO−3 ), and (d) S4 (streamflow+DOC+NO−3 ). The dashed
blue line is the 1 : 1 line. The light-green or orange lines are linear regressions for the calibration or evaluation period, respectively. All
relationships were statistically significant (p < 0.001).

Appendix B: Concentration–discharge relationship

In general, the concentration–discharge (CQ) relationship
allows three export regimes to be distinguished: (i) chemo-
dynamic with an accretion pattern, (ii) chemodynamic with
a dilution pattern, or (iii) chemostatic (Godsey et al., 2009;
Musolff et al., 2017; Winter et al., 2021). “Chemodynamic”
means that the variability in a solute’s concentration is simi-
lar to or higher than that in Q, with concentrations either in-
creasing (accretion) or decreasing (dilution) as Q increases
(Winter et al., 2021). In contrast, chemostatic regimes have
constant in-stream nutrient concentrations that are not sig-
nificantly correlated with Q and have much lower variability
(Bieroza et al., 2018). The slope of the linear relationship
between ln(C) and ln(Q) (CQ slope) determines the export

regime: (i) chemodynamic with an accretion pattern when
greater than 0.1, (ii) chemodynamic with a dilution pattern
when less than −0.1, and (iii) chemostatic from −0.1 to 0.1
(Winter et al., 2021). The thresholds of −0.1 and 0.1 for
the chemostatic regime were chosen according to Bieroza et
al. (2018) and Winter et al. (2021).
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Figure B1. (a) Slope ln([N−NO3])− ln(Q) for simulated nitrate (NO−3 ) data from scenario S3 (streamflow and stream NO−3 concentration
used for calibration). (b) Slope ln([DOC])− ln(Q) for simulated DOC data from scenario S2 (streamflow and stream DOC concentration
used for calibration). Horizontal grey lines identify the boundary between a chemodynamic regime with a dilution pattern and a chemostatic
regime (−0.1) and that between a chemostatic regime and a chemodynamic regime with an accretion pattern (0.1). RMSE: root-mean-square
error.
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