
Hydrol. Earth Syst. Sci., 29, 1241–1258, 2025
https://doi.org/10.5194/hess-29-1241-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Critical soil moisture detection and water–energy limit shift
attribution using satellite-based water and carbon
fluxes over China
Yi Liu1, Jingfeng Xiao2, Xing Li3, and Yue Li4
1School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire,
Durham, NH 03824, USA
3School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
4Department of Earth and Environmental Sciences, Indiana University Indianapolis, Indianapolis, IN 46202, USA

Correspondence: Yi Liu (liuyi.15b@igsnrr.ac.cn)

Received: 7 April 2024 – Discussion started: 10 April 2024
Revised: 9 January 2025 – Accepted: 10 January 2025 – Published: 6 March 2025

Abstract. Critical soil moisture (CSM), a tipping point of
soil moisture (SM) at which surface fluxes shift from the
energy-limited regime to the water-limited regime, is es-
sential for the vegetation state and the corresponding land–
atmosphere coupling. However, detecting CSM and attribut-
ing water–energy limit shifts to climate and ecosystem vari-
ables are challenging as in situ observations of water, carbon
fluxes, and soil moisture (SM) are sparse. In this study, CSM
was assessed over China using two satellite-based methods:
(i) the difference between the correlation between SM and
evapotranspiration (ET) and the correlation between vapor
pressure deficit (VPD) and ET and (ii) the covariance be-
tween VPD and gross primary production (GPP). ET and
GPP products were based on the Penman–Monteith–Leuning
(PML) ET and GPP, Global LAnd Surface Satellite (GLASS)
ET and GPP, Collocation-Analyzed Multi-source Ensembled
Land Evapotranspiration (CAMELE) ET, Surface Energy
Balance Algorithm for Land (SEBAL) ET, two-leaf light
use efficiency (TL-LUE) GPP, and solar-induced chlorophyll
fluorescence (SIF)-based (GOSIF) GPP. At flux sites, ET
and GPP products were evaluated by eddy-covariance-based
measurements; CSM values using two satellite-based meth-
ods were assessed using the soil moisture–evaporative frac-
tion method. Their consistency at site scales demonstrated re-
liable results and applicability to regional scales. Through in-
tercomparison, the spatial pattern of CSM from multi-source
ET and GPP datasets was consistent and robust in eastern
and southern China. Generally, CSM decreased from south

to north. The Pearl River basin and Southeastern River basin
displayed a relatively high CSM for clay-rich soils (e.g.,
0.39 m3 m−3 using PML ET and 10 cm depth SM) and forests
(e.g., 0.35 m3 m−3 using PML ET and 10 cm depth SM).
Since CSM values were higher than the average SM at four
soil layers, grassland and clay were water-limited. Thus, with
increased water demand, western grasslands were more sus-
ceptible to water stress. These findings highlight the variabil-
ity in CSM and the primary determinants of water–energy
limit shifts, offering valuable insights into the potential wa-
ter limitations on ecosystems under comparable SM circum-
stances.

1 Introduction

Critical soil moisture (CSM) serves as an indicator of shifts
in the relationship between water and energy availability
(Schwingshackl et al., 2017; Denissen et al., 2020) and is es-
sential in shaping regional climates. Plants adjust their stom-
atal resistance in response to changes in soil moisture (SM)
and vapor pressure deficit (VPD) (Grossiord et al., 2020;
F. Li et al., 2023). Above CSM, there is no alteration in water
stress with SM increases (Rodriguez-Iturbe, 2000; Senevi-
ratne et al., 2010; Akbar et al., 2018); plants are primar-
ily controlled by VPD. Warm and dry air above the canopy
(Grossiord et al., 2020; X. Li et al., 2023) leads to a de-
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crease in both the transpiration process as the largest part
of evapotranspiration (ET) (Good et al., 2015) and gross
primary production (GPP) coupled with the ET process via
plant leaf stomata (Gentine et al., 2019; Liu et al., 2020). A
decrease in ET, in turn, results in elevated surface tempera-
ture and VPD (Gentine et al., 2019) and leads to increased
atmospheric aridity on a large spatial scale, thereby inten-
sifying SM depletion. Below CSM, surface fluxes are pri-
marily influenced by SM availabilities in conditions of re-
stricted water supply. During this period, a decrease in SM
results in a reduction in latent heat flux (LE) and an increase
in sensible heat flux (H ) (Rodriguez-Iturbe, 2000); SM and
leaf conductance follow a positive linear relationship (Laio
et al., 2001; Porporato et al., 2002). Previous studies have
examined land–atmosphere feedbacks using different metrics
and both observation and simulation data (Seneviratne et al.,
2006; Koster et al., 2009; Teuling et al., 2009). They found
that water and energy limit shifts may be further strengthened
by the interaction between the land and atmosphere, particu-
larly with positive feedback mechanisms, known as the “dry-
gets-dryer” effect (Seneviratne et al., 2010; Gentine et al.,
2019). Over extended temporal periods, this phenomenon
may lead to the persistence of arid and high-temperature con-
ditions (Zhang et al., 2020). Consequently, it is necessary to
quantify the CSM characteristics and the influencing envi-
ronmental factors of water and energy limit shifts.

Traditionally, under the framework based on the ratio of
LE to the total of LE and H (Haghighi et al., 2018; Fu
et al., 2022a), sparse eddy covariance observations (Feld-
man et al., 2019; Fu et al., 2022b) pose challenges in ad-
equately capturing comprehensive regional- or continental-
scale CSM and its variations (Dong et al., 2023; Hsu and
Dirmeyer, 2023a). In recent years, the feasibility of conduct-
ing large-scale analyses has been enhanced by the growing
accessibility of multi-source remotely sensed datasets (Liu
et al., 2012). Globally, some studies used the ratio of LE to
net radiation (Seneviratne et al., 2010; Schwingshackl et al.,
2017), surface temperature diurnal amplitude (Feldman et al.,
2019; Fu et al., 2024), and LE (Hsu and Dirmeyer, 2023b;
Duan et al., 2023). In addition, the advancement of global
remote sensing technology has facilitated the generation of
reliable GPP products (Yuan et al., 2014; Li and Xiao, 2019;
Zhang et al., 2019; Bi et al., 2022; He et al., 2022; F. Li et
al., 2023) and ET products (Yao et al., 2013; Yao et al., 2014;
Zhang et al., 2019; Cheng et al., 2021; He et al., 2022; C. Li
et al., 2022; F. Li et al., 2023) for CSM detection. Denissen
et al. (2020) proposed a new tipping-point metric, the dif-
ference between the correlation between SM and ET and the
correlation between VPD and ET, to directly determine CSM
at continental scales. Fu et al. (2022b) first demonstrated that
the covariance between GPP and VPD indirectly quantifies
CSM. The point at which the covariance between GPP and
VPD transitions from positive to negative during a period of
soil drying is denoted as CSM. However, a source of consid-
erable uncertainty when considering only a single data source

and estimation approach exists at a large spatial scale. There
are significant differences among satellite-based ET and GPP
datasets, and CSM varies with different methods, leading to
uncertainty as to whether the CSM of carbon flux is the same
as that of water flux.

Chinese land surfaces frequently experience water and en-
ergy limit shifts (Xiao, 2014; Zhu et al., 2023). Diagnos-
ing large-scale CSM helps to understand water- and energy-
limited regimes determined by distinct flora and soil types
(Homaee et al., 2002; Hsu and Dirmeyer, 2023b). The asso-
ciation between water, energy, and flux helps to define water
and energy limit shifts. As such, this study uses two inno-
vative metrics and eight satellite-based products to diagnose
CSM and water and energy limit shifts across China. The
goal of this study is to (1) assess the consistency of different
methods in calculating CSM at flux sites; (2) examine CSM
variations across land cover types, soil textures, and water re-
source subregions; and (3) investigate dominant factors from
hydrological, meteorological, and ecological variables that
influence water and energy limit shifts.

2 Material and methods

2.1 Data

Eddy covariance flux datasets were compared with eight
satellite-based ET and GPP datasets in Sect. 3.1. Then, CSM
derived from the relationship between SM and evaporative
fraction (EF) was used to evaluate the performance of CSM
derived from the covariance and correlation difference meth-
ods in Sect. 3.2. Layer-wise SM and satellite-based ET and
GPP were used for the large-scale detection of CSM. Land
cover types, soil textures, and water resource subregions
were used to examine CSM variations in Sect. 3.3. SM,
ET, GPP, and meteorological data were used to investigate
dominant factors influencing water and energy limit shifts in
Sect. 3.4. All energy, vegetation, and water variables were
resampled or combined to 0.1°-8 d resolution. The period,
limited by the temporal availability of data sources, covered
2001–2018.

2.1.1 Evapotranspiration and gross primary
production

Figure 1 illustrates the locations of 21 flux sites, and
Table 1 shows the detailed information on flux sites.
Eddy-covariance-derived measurements were applied to
evaluate the performance of satellite-based ET and GPP.
Given the fact that Huazhaizi, Dashalong, Luodi, Arou,
Guantao, Huailai, Miyun, and Daxing did not have GPP
data, the REddyProc website (https://www.bgc-jena.mpg.de/
5622399/REddyProc/, last access: 16 July 2023) was used to
calculate GPP. REddyProc imported half-hourly net ecosys-
tem exchange, LE, H , and meteorological measurements to
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partition net ecosystem exchange into GPP and ecosystem
respiration.

Table 2 contains a list of all spatial datasets used in
this study. Eight satellite-based ET and GPP products are
included. The Penman–Monteith–Leuning (PML) product
integrates the stomatal conductance theory to relate ET
and GPP processes (Zhang et al., 2019; He et al., 2022)
and applies daily meteorological data, land surface tem-
perature from ERA5, enhanced Whittaker-filtered MODIS
leaf area index (LAI), albedo, and emissivity. The inter-
dependency and mutual restrictions between GPP and ET
considerably improve the simulation accuracy. The Global
LAnd Surface Satellite (GLASS) ET integrates the MOD16,
a revised remote-sensing-based Penman–Monteith product;
the Priestley–Taylor Jet Propulsion Laboratory, a modi-
fied satellite-based Priestley–Taylor product; and the Semi-
Empirical Algorithm of the University of Maryland using the
Bayesian model averaging approach (Yao et al., 2013, 2014).
The GLASS GPP algorithm incorporates the effects of at-
mospheric carbon dioxide content, radiation components,
and VPD based on the eddy covariance–light use efficiency
model introduced by Yuan et al. (2007). It is founded on two
underlying assumptions: the fraction of absorbed photosyn-
thetically active radiation has a linear relationship with the
normalized difference vegetation index, and constant light
use efficiency is governed by either air temperature or soil
moisture, depending on which component imposes the great-
est limitation.

In addition, Collocation-Analyzed Multi-source Ensem-
bled Land Evapotranspiration (CAMELE) provides long-
term (1981–2020) ET, employing ERA5, FLUXCOM, PML,
GLDAS, and GLEAM (C. Li et al., 2022), at 0.1° 8 d and
0.25° daily resolutions. Surface Energy Balance Algorithm
for Land (SEBAL) ET focuses on 1 km daily resolution dur-
ing 2001–2018. This product integrates GMAO’s meteoro-
logical data and NASA’s MOD43A1 daily surface albedo,
the MOD11A1 daily surface temperature, and the MOD13
vegetation index (Cheng et al., 2021). Two-leaf light use
efficiency (TL-LUE) GPP offers comprehensive worldwide
GPP, shaded GPP, and sunlit GPP covering the period from
1992 to 2020. This model applies recent data inputs such
as the GLOBMAP LAI, CRUJRA meteorological data, and
ESA-CCI land cover information (Bi et al., 2022). Global Or-
biting Carbon Observatory-2 SIF (GOSIF) GPP spans from
2000 to 2020. A total of eight SIF–GPP relationships, includ-
ing both universal and biome-specific formulations, are used
to estimate GPP from SIF on a per-pixel basis and are exam-
ined with and without intercept terms to account for the un-
certainty in converting SIF into GPP estimates (Li and Xiao,
2019).

2.1.2 Layer-wise soil moisture and meteorological data

Given the recent availability of state-of-the-art gridded SM
in China as released by Q. Li et al. (2022), CSM can now

be investigated in the context of the SM state. Gridded SM
reaches 100 cm soil depth with 10 cm intervals at 1 km daily
resolution during 2000–2020. It is trained by predictors of
ERA5-Land time series, leaf area index (LAI), land cover
type, topography, and in situ observed soil attributes at 1789
stations throughout China using the robust random forest ma-
chine learning technique. Based on the findings of Q. Li et
al. (2022), the product demonstrates notable benefits over
both ERA5-Land and SMAP-L4 datasets, especially in terms
of a superior quality level compared to the SoMo.ml dataset
at soil depths of 10, 20, 80, and 100 cm. Thus, this study uti-
lized the SM of these layers.

Yang et al. (2010) and He et al. (2020) put forth a compre-
hensive dataset for Chinese regional surface meteorological
forcing. This dataset encompasses air temperature, air pres-
sure, specific humidity, wind speed, downward shortwave ra-
diation, downward longwave radiation, and precipitation. It
is presented in NetCDF format with a spatiotemporal resolu-
tion of 0.1° and 3 h during 1979–2018. The primary input
includes Princeton University’s global land surface model
data, GLDAS, GEWEX-SRB radiation, TRMM precipita-
tion, and China Meteorological Administration observations.
Data quality control techniques include the elimination of
physically implausible values and statistical interpolation us-
ing ANU-Spline. This dataset demonstrates precision levels
that lie between those of site-based observation and satellite-
based estimation and, therefore, exceed the accuracy of cur-
rent international reanalysis datasets. In this study, VPD was
computed based on specific humidity and air temperature;
VPD, air temperature, precipitation, and downward short-
wave radiation were employed in water–energy limit shift
attribution.

2.1.3 Land cover types, soil textures, and water
resource subregions

Land cover types, soil textures, and water resource subre-
gions influence CSM. Land cover types (2020) are created
by human visual interpretation relying on Landsat satel-
lite remote sensing images. The categorization scheme in-
cludes cropland, forests, grassland, water, ice, urban, and bar-
ren. Soil textures, expressed as sand, silt, and clay content
within each grid cell, are compiled from the 1 : 1000000
soil type map and the Second National Soil Survey. Water
resource subregions are divided according to the China Ge-
ological Survey, including the Zhungaer basin, Pearl River
basin, Yangtze River basin, Southwestern River basin, Tarim
basin, Songhua River basin, Changthang region, Inner Mon-
golian Plateau region, Liaohe River basin, Yellow River
basin, Huaihe River basin, Hexi Corridor region, Haihe River
basin, Southeastern River basin, and Qaidam basin. Water re-
source subregions are based on the principles of groundwater
systems and water cycles and are focused on the inherent fea-
tures of groundwater resources within distinct natural units.
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Figure 1. (a) Flux site locations, land cover types (2020), and water resource subregions of China. Distributions of (b) clay, (c) silt, and
(d) sand content (1995). ZGE: Zhungaer basin, PR: Pearl River basin, YTR: Yangtze River basin, SWR: Southwestern River basin, TR:
Tarim basin, SR: Songhua River basin, CT: Changthang region, NM: Inner Mongolian Plateau region, LR: Liaohe River basin, YR: Yellow
River basin, HR: Huaihe River basin, HC: Hexi Corridor region, HAR: Haihe River basin, SER: Southeastern River basin, QB: Qaidam
basin.

2.2 Determination of CSM

CSM derived by the SM and EF method was used to assess
the CSM using ET and GPP at the flux site. There must be
both positive and negative metrics from the covariance and
correlation difference methods. For each grid cell and the
entire period per year, negative metrics are displayed when
SM is less than CSM, and positive metrics are shown when
SM is greater than CSM. The data are taken into account
only when the temperature surpasses 10 °C (Denissen et al.,

2020) to avoid the influence of ice and snow, and the co-
variance between VPD and GPP must exhibit a minimum of
seven covariance values within 9 d moving windows, with a
minimum of 15 data points (Fu et al., 2022b). Hence, we con-
centrated on the warm season, June–September, which in-
cludes 16 data points each year, with eight covariance values
within 9 d moving windows. CSM was considered in each
grid cell using satellite-based ET and GPP over the period
2001–2018.
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Table 1. Flux site information used in this study.

Site Land cover types Latitude Longitude Time span Source

CN-Sw2 Grassland 41.79 111.89 2011 FLUXNET
CN-Du2 42.04 116.28 2006–2008 FLUXNET
CN-Du3 42.05 116.28 2009–2010 FLUXNET
CN-Cng 44.59 123.51 2007–2010 FLUXNET
Damshung 30.49 91.06 2004–2010 ChinaFLUX
Xilingele 43.53 116.67 2004–2010 ChinaFLUX
Haibei 1 37.37 101.18 2003–2010 ChinaFLUX
Dashalong 38.84 98.94 2013–2015 TPDC
Arou 38.04 100.46 2013–2015 TPDC

Daxing Cropland 39.62 116.43 2008–2010 TPDC
Miyun 40.63 117.32 2008–2009 TPDC
Huailai 40.35 115.79 2014–2018 TPDC
Guantao 36.52 115.13 2008–2009 TPDC
Yucheng 36.82 116.57 2003–2010 ChinaFLUX

Xishuangbanna Evergreen broadleaf forests 21.92 101.26 2003–2010 ChinaFLUX
Dinghushan 23.16 112.53 2003–2010 ChinaFLUX

Qianyanzhou Evergreen needleleaf forests 26.74 115.05 2003–2010 ChinaFLUX

Changbaishan Mixed forests 42.40 128.09 2003–2010 ChinaFLUX

Haibei 2 Wetland 37.66 101.33 2004–2009 ChinaFLUX

Huazhaizi barren 38.76 100.32 2013–2015 TPDC
Luodi 41.99 101.13 2014–2015 TPDC

TPDC: National Tibetan Plateau Data Center.

2.2.1 Soil moisture–evaporative fraction method

Investigating the relationship between SM and EF in the dry
period can isolate the transition from energy limitation to wa-
ter limitation (Feldman et al., 2019). CSM captures the inter-
connectedness between SM and EF. If SM is greater than or
less than CSM, the relationship between SM and EF appears
as a flat line or a positive slope line. A linear-plus-plateau
model characterizes the relationship precisely (Seneviratne
et al., 2010; Schwingshackl et al., 2017):

EF=
{

EFmax+ S (SM−CSM) , if SM < CSM
EFmax, if SM≥ CSM , (1)

where EF is the evaporative fraction, defined as
LE / (LE+H); EFmax represents the maximum EF in
the energy-limited stage; and S is the gradient in the
water-limited stage. Here, specific estimated CSM was
simultaneously estimated by the Monte Carlo method. For
a set of optimal parameters, a Nash–Sutcliffe efficiency
(Nash and Sutcliffe, 1970) above 0.5 was considered to be
satisfactory (Herman et al., 2018). Thus, only eight sites,
including Xilingele in 2004, Damshung in 2004, CN-Sw2 in
2011, CN-Du2 in 2007, CN-Cng in 2010, Miyun in 2009,
Huailai in 2015, and Qianyanzhou in 2010, were chosen
for CSM detection. In addition, the Bayesian information
criterion (BIC) (Schwarz, 1978) was used to select the best

fit among three segmented regression candidates (the flat
line, the positive slope line, and the linear-plus-plateau).
If the flat-line regression or the positive-slope regression
outperformed the linear-plus-plateau regression, CSM was
considered to be unidentified.

2.2.2 Covariance method

The covariance method presents a novel method for assessing
ecosystem water stress in direct correlation with GPP, as il-
lustrated by Fu et al. (2022b). It serves to quantify CSM over
large areas. Positive covariances between VPD and GPP in-
dicate that energy limits GPP. Negative covariances indicate
that water limitation has a larger impact on GPP. VPD is de-
termined by the disparity between the saturation vapor pres-
sure (es) and the actual vapor pressure (ea). Bolton (1980)
posits that the calculation of ea involves specific humidity
(SH) and surface pressure (Pr):

ea =
SH×Pr

SH× 0.378+ 0.622
. (2)

2.2.3 Correlation difference method

Another novel correlation difference metric, proposed by
Denissen et al. (2020), evaluates water-limited condi-
tions versus energy-limited conditions using the detrended
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Table 2. Spatial gridded datasets used in this study.

Variable Dataset Spatial resolution Temporal resolution Unit Time span Reference

Soil moisture SMCI1.0 0.1° 1 d 0.001 m3 m−3 2000–2020 Q. Li et al. (2022)

Evapotranspiration GLASS 0.05° 8 d Wm−2 2000–2018 Yao et al. (2013, 2014)

PML 500 m 1 d 0.01 mm 2000–2020 Zhang et al. (2019),
He et al. (2022)

CAMELE 0.1° 8 d kgm−2 s−1 2001–2019 C. Li et al. (2022)

SEBAL 1 km 1 d mm 2001–2018 Cheng et al. (2021)

GLASS 0.05° 8 d 1982–2018 Yuan et al. (2014)

Gross primary PML 500 m 1 d 2000–2020 Zhang et al. (2019),
production gCm−2 He et al. (2022)

GOSIF 0.05° 8 d 2000–2021 Li and Xiao (2019)

TL 0.05° 8 d 1992–2020 Bi et al. (2022)

Specific humidity kgkg−1

Air temperature K

Downward shortwave – 0.1° 3 h Wm−2 1979–2018 Yang et al. (2010),
radiation He et al. (2020)

Precipitation mmh−1

Land cover – 1 km – – 2020 http://www.resdc.cn/ (last
access: 16 December 2022)

Soil texture – 1 km – – 1995 http://www.resdc.cn/ (last
access: 28 August 2023)

anomaly of VPD, ET, and SM:

1corr= corr(ET,VPD)− corr(ET,SM). (3)

MATLAB’s corr tool calculates this metric, which uses
Kendall’s rank correlation (corr) rather than assuming lin-
ear correlations between variables (van Doorn et al., 2018).
If 1corr > 0 then the grid cell is under an energy-limited
regime, and vegetation anomalies (i.e., ET) correlate more
strongly with energy anomalies (i.e., VPD) than with water
anomalies (i.e., SM). In contrast, if 1corr < 0 then the grid
cell is under a water-limited regime. When 1corr≈ 0, SM
is labeled as CSM, indicating that water- and energy-limited
regimes are transitioning.

2.3 Evaluation criteria

The correlation coefficient was applied to evaluate the perfor-
mance of satellite-based ET from CAMELE, GLASS, PML,
and SEBAL and GPP from GOSIF, GLASS, PML, and TL
compared to the eddy-covariance-observed in situ ET and
GPP. A point-to-pixel evaluation was carried out to evalu-
ate the overestimation or underestimation of ET and GPP
for each land cover type from all 21 flux sites. We summed
8 d ET and GPP in grassland, evergreen broadleaf forests, ev-

ergreen needleleaf forests, mixed forests, cropland, wetland,
and barren land.

The alignment of CSM obtained by different methods was
determined using the chi-square test (McHugh, 2013; Hsu
and Dirmeyer, 2023a). CROSSTAB in MATLAB was used
to perform the chi-square test. SM values were divided into
two groups, below and above CSM. In this case, categorical
data were tagged as a binary variable of 0 for drier than CSM
and 1 for wetter than CSM. If there were significant differ-
ences with a 95 % confidence level, CSM was different.

2.4 Partial least square regression

Partial least square regression has been widely acknowl-
edged as a viable approach for mitigating collinearity issues
among independent variables (Karthikeyan et al., 2020) and
has been used extensively in quantifying interannual impacts
of climate and plant growth variations on water and energy
dynamics. Here, performances of the partial least square re-
gression model were assessed by 5-fold cross-validation us-
ing the mean absolute percentage error. The dominant fac-
tor (precipitation, temperature, incoming shortwave radia-
tion, VPD, ET, GPP, or SM) of 1corr was identified by the
largest variable importance in projection scores.
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Figure 2. Correlation coefficients between daily eddy covariance observations and satellite-based (a) ET and (b) GPP products and average
(c) ET and (d) GPP across land cover types. The bars show 95 % confidence intervals. GL: grassland, EBF: evergreen broadleaf forests, ENF:
evergreen needleleaf forests, MF: mixed forests, CL: cropland, WL: wetland.

3 Results

3.1 Consistency of ET and GPP

Figure 2a and b show good agreement between daily
satellite-based products and site observations in most land
cover types. Across all sites, correlation coefficients obtained
from CAMELE, GLASS, PML, and SEBAL ET were 0.74,
0.65, 0.78, and 0.59, respectively; correlation coefficients
obtained from GLASS, TL, GOSIF, and PML GPP were
0.75, 0.71, 0.77, and 0.74, respectively. For ET, the highest
correlation coefficient occurred between GLASS and eddy
covariance observations in mixed forests (0.96), while the
lowest value was between SEBAL and site observations in
barren land (0.47). For GPP, the highest correlation coeffi-
cient was found between TL and site measurements in mixed

forests (0.97), while the lowest value was between GLASS
and site-based data in barren land (0.32). In general, no sin-
gle product consistently outperformed others over all land
cover types. As shown in Fig. 2c and d, ET had the high-
est value in evergreen needleleaf forests and was the low-
est in barren land, while GPP peaked in evergreen broadleaf
forests and was the lowest in wetland. In these land cover
types, ET and GPP derived from satellite-based products
were also substantially different and varied quite a bit be-
tween different products. Especially in evergreen broadleaf
forests, ET derived from GLASS (3.37 mm) and CAMELE
(3.05 mm) and GPP derived from GOSIF (7.55 gCm−2 d−1)
and TL (7.59 gCm−2 d−1) were higher than site observations
of 1.74 mm and 5.26 gCm−2 d−1, respectively. If satellite-
based ET and GPP were around± 10 % of site-observed val-
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Figure 3. Variations in soil moisture and evaporative fraction at (a) Xilingele in 2004, (c) Damshung in 2004, (e) CN-Sw2 in 2011, (g) CN-
Du2 in 2007, (i) CN-Cng in 2010, (k) Miyun in 2009, (m) Huailai in 2015, (o) Qianyanzhou in 2010. Variations in covariance (referred to as
Cov) between vapor pressure deficit (VPD) and gross primary production (GPP) and correlation difference metric (referred to as 1corr) at
(b) Xilingele in 2004, (d) Damshung in 2004, (f) CN-Sw2 in 2011, (h) CN-Du2 in 2007, (j) CN-Cng in 2010, (l) Miyun in 2009, (n) Huailai
in 2015, (p) Qianyanzhou in 2010.

ues, they were termed as satisfactory; otherwise, they were
either overestimated or underestimated. CAMELE, GLASS,
PML, and SEBAL ET and GLASS, TL, GOSIF, and PML
GPP met satisfactory values in one, one, three, and one and
two, one, three, and two land cover types, respectively. PML
ET provided the most satisfactory estimates in evergreen
broadleaf forests, cropland, and barren land, with an aver-
age bias of 1.05 %, 1.13 %, and 1.34 %, respectively; GOSIF
GPP provided the most satisfactory estimates in grassland,
evergreen needleleaf forests, and mixed forests, with an av-

erage bias of 4.31 %, 9.14 %, and 4.29 %, respectively. Al-
though discrepancies existed among multi-source remotely
sensed products across flux sites, they offered an opportunity
to quantify characteristics of large-scale CSM and to exam-
ine uncertainties from single-source data.

3.2 Consistency of CSM

Variations in SM and EF were depicted in Fig. 3 for eight
sites. Fitted lines represented controlling mechanisms in var-
ious evaporative regimes. Overall, the linear-plus-plateau re-
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gression with the lowest BIC outperformed the flat line and
the positive-slope line in the study period. Specifically, the
CN-Du2 and Qianyanzhou sites showed a great slope at low
SM values, with BIC values of −80.29 and −98.64, respec-
tively. We also found that grassland CSM in different regions
varied greatly. For example, grassland at Xilingele had the
lowest CSM of 0.079 m3 m−3, with SM ranging from 0.06 to
0.20 m3 m−3; CSM at Damshung in southwestern China was
0.175 m3 m−3, with SM ranging from 0.14 to 0.26 m3 m−3;
CSM at CN-Cng in northeastern China was 0.457 m3 m−3,
with high SM ranging from 0.30 to 0.70 m3 m−3. Ranges
of SM determined CSM value. Moreover, vertical lines of
different colors represented CSM derived from 1corr using
the correlation difference method and covariance between
VPD and GPP. To explore the performance of both meth-
ods at different sites and whether they can be used on a
large scale, the data applied to both methods were averaged
for 8 d, consistently with gridded data. For the CN-Du2 and
Qianyanzhou sites, only positive or negative VPD–GPP co-
variance and 1corr were found. For the Damshung, CN-Cng,
and Huailai sites, we found more than one SM value where
VPD–GPP covariance or 1corr was zero. Along with sur-
face soil wetting, there was a change in VPD–GPP covari-
ance and 1corr from positive to negative at these sites, incon-
sistently with the transition from water to energy limitation,
indicating that CSM was not identifiable. Differently from
the above, VPD–GPP covariance had the optimal CSM value
that agreed best with the EF–SM-derived CSM at the Xilin-
gele and CN-Sw2 sites. Through another technique, 1corr
was better than VPD–GPP covariance at the Miyun site. At
these sites, VPD–GPP covariance and 1corr changed from
negative (water limit) to positive (energy limit). Therefore,
VPD–GPP covariance and 1corr had the potential to obtain
large-scale CSM.

3.3 Spatial pattern of CSM

The number of wet binary bits was used to quantify the
agreement among eight ET- and GPP-based models at 10 cm
soil depth. If CSM was identified, SM wetter than CSM was
represented as 1, and 0 was used for others. If CSM was not
identified within a year, digits of the mode were treated as 0.
If CSM was not detected for all 18 years, it was displayed as
empty. The intercomparison provided helpful insights to ex-
amine consistency and discrepancies between multi-source
ET and GPP products in depicting the spatial distribution of
CSM. Figure 4 shows strong disparities in northern and cen-
tral China, especially in the Inner Mongolian Plateau region,
Songhua River basin, Yangtze River basin, and Yellow River
basin. In these regions, the chi-square test showed signifi-
cant differences among GPP-based models due to their large
number of wet binary bits. In addition, TL GPP displayed no
CSM value in northwestern China. Note that the SM wetter
than CSM showed agreement in eastern and southern basins,
such as the Huaihe River basin, Liaohe River basin, South-

eastern River basin, and Pearl River basin, indicating that ET-
and GPP-based models were consistent in these basins.

Figure 5 shows the spatial distribution of CSM obtained
from the covariance between VPD and GOSIF, GLASS,
PML, and TL GPP; the correlation difference metric with
Kendall’s rank correlation between the detrended anomaly
of CAMELE, GLASS, PML, and SEBAL ET; and 10 cm soil
depth SM and the correlation between the detrended anomaly
of ET and VPD. Geographically, these spanned large swaths
of land through water-scarce desert regions and lush, rainy
forests. Overall, spatial patterns of CSM obtained through
four ET products were consistent with those from four GPP
products, showing a decreasing variation from south to north.
Specifically for water resource subregions, CSM in the semi-
humid Huaihe River basin, Haihe River basin, and Yellow
River basin was about 0.3 m3 m−3 and increased to approxi-
mately 0.4 m3 m−3 in the Southeastern River basin and Pearl
River basin. In addition, Table 3 shows the comparison of
site-based CSM from EF–SM-based and grid-based CSM. It
was found that gridded CSM values at the CN-Cng, Miyun,
and Huailai sites were generally consistent with site-based
values. Gridded data had spatial continuity, while site ob-
servations showed significant differences in CSM, even be-
tween adjacent sites (e.g., CN-Du2 value of 0.113 m3 m−3

and Miyun value of 0.274 m3 m−3), resulting in inconsistent
CSM between satellite- and site-based values.

Furthermore, large-scale CSM depended on roots pulling
water out of the unsaturated soil matrix (Feldman et al.,
2019) and varied across vegetation types and soil textures
at four soil layers (Fig. 6). With shorter root systems and less
vegetation, barren areas showed low CSM. Forest regions
displayed a relatively high CSM (e.g., 0.18 m3 m−3 using
PML ET and 10 cm depth SM). As for soil textures, sand cov-
ering the large area was further divided into contents of less
than 60 %, 60 %–70 %, 70 %–80 %, 80 %–90 %, and higher
than 90 %. Soil with a majority of clay had a wetter CSM
than others (e.g., 0.38 m3 m−3 using PML ET and 10 cm
depth SM); this was to be expected given the fact that clay
had a larger negative matric potential compared to coarse
soil textures dominated by sand and silt. In summary, fine
soils and luxuriant vegetation had wetter CSM. Additionally,
a layer-wise CSM analysis was conducted to highlight varia-
tions in SM properties for different soil layers. It was evident
that there were variations in the CSM behavior across lay-
ers with higher SM and CSM at 20 cm soil depth. We also
found that CSM for grassland and clay was higher than av-
erage SM at all four layers, which led to the identification of
a large range of SM within water-limited regimes. However,
for cropland and forests, differences existed in CSM among
four ET-based methods, with higher CSM from GLASS and
SEBAL than from others.
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Figure 4. Spatial pattern of wet binary bit number at 10 cm depth using covariance between vapor pressure deficit (VPD) and gross primary
production (GPP) from (a) GOSIF, (b) GLASS, (c) PML, and (d) TL. Spatial pattern of wet binary bit number at 10 cm depth using correlation
difference metric with Kendall’s rank correlation between the detrended anomaly of soil moisture (SM) and evapotranspiration (ET) from
(e) CAMELE, (f) GLASS, (g) PML, and (h) SEBAL and the correlation between the detrended anomaly of VPD and those ET products.
(i) Disparity of soil moisture regimes among all methods and (j) percentage of area with p < 0.05. ZGE: Zhungaer basin, PR: Pearl River
basin, YTR: Yangtze River basin, SWR: Southwestern River basin, TR: Tarim basin, SR: Songhua River basin, CT: Changthang region, NM:
Inner Mongolian Plateau region, LR: Liaohe River basin, YR: Yellow River basin, HR: Huaihe River basin, HC: Hexi Corridor region, HAR:
Haihe River basin, SER: Southeastern River basin, QB: Qaidam basin.
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Figure 5. Spatial pattern of critical soil moisture (CSM) at 10 cm depth using covariance between vapor pressure deficit (VPD) and gross
primary production (GPP) from (a) GOSIF, (b) GLASS, (c) PML, and (d) TL and CSM using correlation difference metric with Kendall’s
rank correlation between the detrended anomaly soil moisture (SM) and evapotranspiration (ET) from (e) CAMELE, (f) GLASS, (g) PML,
and (h) SEBAL and the correlation between the detrended anomaly VPD and those ET products. (i–w) The basin-average values. ZGE:
Zhungaer basin, PR: Pearl River basin, YTR: Yangtze River Basin, SWR: Southwestern River Basin, TR: Tarim Basin, SR: Songhua River
basin, CT: Changthang region, NM: Inner Mongolian Plateau region, LR: Liaohe River basin, YR: Yellow River basin, HR: Huaihe River
basin, HC: Hexi Corridor region, HAR: Haihe River basin, SER: Southeastern River basin, QB: Qaidam basin.

3.4 Attribution of water and energy limit shifts

We assessed the spatial pattern of multi-annual average
1corr at 10 cm soil depth over the period 2001–2018. PML
ET was used for 1corr given the fact that it had the
best performance (Sect. 3.1). As shown in Fig. 7a, water-

limited regimes were most common in dry and semi-arid
areas. Western and northern regions were generally water-
limited, while southern regions were energy-limited. The
cross-validation using partial least square regression shows
that the variance in 1corr was explained by precipitation,
temperature, incoming shortwave radiation, VPD, ET, GPP,
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Table 3. Site-based CSM from EF–SM and grid-based CSM using satellite-based ET and GPP and 10 cm depth SM.

Site CSM from CSM using CSM using CSM using CSM using CSM using CSM using CSM using CSM using
EF–SM GOSIF GPP GLASS GPP PML GPP TL GPP CAMELE ET GLASS ET PML ET SEBAL ET

Xilingele 0.079 0.249 0.263 0.250 0.251 0.266 0.303 – 0.296
Damshung 0.175 0.381 0.383 0.383 0.383 – 0.364 0.375 0.403
CN-Sw2 0.132 0.238 0.286 0.218 0.238 – 0.290 0.233 -
CN-Du2 0.113 0.275 0.300 0.252 0.277 0.260 0.299 – 0.292
CN-Cng 0.457 0.339 0.369 0.325 0.341 0.376 0.386 0.292 0.304
Miyun 0.274 0.315 0.336 0.294 0.331 0.304 0.322 0.311 0.316
Huailai 0.195 0.258 0.278 0.228 0.259 0.221 – – 0.324
Qianyanzhou 0.138 0.452 0.407 0.327 0.418 – – – –

Figure 6. Soil moisture (SM) at 10, 20, 80, and 100 cm soil depths and critical soil moisture (CSM) derived from CAMELE, GLASS, PML,
and SEBAL ET at corresponding soil depths for (a) cropland; (b) forests; (c) grassland; (d) water; (e) ice; (f) urban; and (g) barren soils
with a majority of (h) clay, (i) silt, and sand and with contents (j) less than 60, (k) between 60 % and 70 %, (l) between 70 % and 80 %,
(m) between 80 % and 90 %, and (n) higher than 90 %.

and SM, ranging from 73.34 % in the Yangtze River basin to
99.95 % in the Haihe River basin (Fig. 7b).

Variations in dominant factors underlined the relevance of
hydrological, meteorological, and ecological variables in in-
ducing interannual changes in 1corr. As shown in Fig. 8,
blue pixels represented the significant decrease in 1corr, in-
dicating increased water stress and correlation between ET
and SM. Several typical regions had relatively large areas
of significant decreases in 1corr, such as the Changthang
region (2.62 %) and the Tarim basin (3.49 %). ET was the
most important predictor across 42 % of the Changthang re-
gion and 24 % of the Tarim basin, which confirmed that in-
creasing ET pushed increased water stress in these regions.
In addition, a significant increase in VPD in the west might
cause drought, especially in the Tarim basin, where VPD was
the most important predictor across 19 % of the area. For the

Haihe River basin, decreasing SM contributed to increased
water limitation. On the contrary, 4.29 % of the Hexi Corri-
dor region showed significant increases in 1corr; increasing
SM contributed to decreased water stress. A total of 16.65 %
of the Songhua River basin showed significant increases in
1corr; decreased water limitation was associated with in-
creasing GPP (greening) in these regions. Moreover, ET and
VPD played the most important role in 30 % and 24 % of
the Pearl River basin, respectively; the significant decrease
in VPD mitigated drought in these regions.

4 Discussion

Analysis of the spatial patterns of CSM using multi-source
satellite-based water and carbon fluxes (Fig. 2) derived from
different methods (Fig. 3) further enables us to effectively re-
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Figure 7. Spatial pattern of (a) 1corr derived from PML ET and 10 cm soil depth soil moisture and (b) the mean absolute percentage error
based on partial least square regression for 1corr estimations. ZGE: Zhungaer basin, PR: Pearl River basin, YTR: Yangtze River basin, SWR:
Southwestern River basin, TR: Tarim basin, SR: Songhua River basin, CT: Changthang region, NM: Inner Mongolian Plateau region, LR:
Liaohe River basin, YR: Yellow River basin, HR: Huaihe River basin, HC: Hexi Corridor region, HAR: Haihe River basin, SER: Southeastern
River basin, QB: Qaidam basin.

flect variations from energy to water limitation in spatiotem-
porally continuous grid cells. To address the question of how
soil textures and plant features define constraints imposed by
water supply and energy availability, there has been a grow-
ing focus on CSM from site to continental scales. For in-
stance, northern California exhibits CSM of 0.15 m3 m−3 in
semi-arid grassland at the site scale (Baldocchi et al., 2004);
CSM using satellite-based surface temperature diurnal am-
plitude in the semi-arid grassland of Africa has been reported
to be 0.12 m3 m−3 at the continental scale (Feldman et al.,
2019). For specific plants, CSM is around 0.238 m3 m−3 us-
ing PML ET in the Inner Mongolian Plateau region (Fig. 5),
where grass is abundant. This is in line with the grassland
CSM of 0.214 m3 m−3 from the covariance approach across
195 global sites from the Integrated Carbon Observation Sys-
tem, AmeriFlux, and FLUXNET2015 (Fu et al., 2022a). An-
other study based on the correlation difference method using
SM from the European Space Agency Climate Change Initia-
tive program and ET from FLUXCOM reported large-scale
CSM of around 0.21 m3 m−3 throughout Europe across all
grid cells (Denissen et al., 2020). Researchers also found that
plants exhibit a great vertical water uptake range to alleviate
the impact of water stress (Gallego-Elvira et al., 2016), with
water uptake extending to below 50 cm (Case et al., 2020)
or 1–2 m (Tumber-Davila et al., 2022). Low CSM may be
attributed to shorter rooting systems in water-limited envi-
ronments (Konings and Gentine, 2017), while locations with
high humidity, such as tropical West Africa and the south-
ern part of the Congo Basin (Feldman et al., 2022), exhibit

high CSM. Deep-rooted forests can better regulate their re-
sponse to drought with high CSM among soil layers, which
means that root systems of plants play a key part in deter-
mining water- and energy-limited regimes and may help us
understand regional- or continental-scale water- and energy-
limited regimes that arise from different vegetation and soil
conditions. To comprehend the underlying factors driving
CSM, it is necessary to do a more comprehensive analysis
of climate and ecosystem conditions: CSM detection shows
that grassland had a large range of SM within water-limited
regimes (Fig. 6), where CSM was higher than average SM,
probably because of shallow root systems affected by mois-
ture; therefore, facing decreased 1corr (Fig. 8), the grassland
located in the northwestern arid region was more vulnera-
ble. Further, water-limited regions exhibit great sensitivity
in hydrologic cycles to variations in vegetation functioning,
climate variability, and catchment physical conditions. Con-
sequently, water-limited vegetation exhibits a higher degree
of sensitivity to surface disturbances compared to locations
with higher levels of precipitation. In this scenario, the effect
of ET is more pronounced, resulting in a decline in energy
limitation, such as in the Tarim basin. However, this study
focusing on a specific time of year may not be enough to
explain the critical value that may be shown throughout the
rest of the year. Since CSM values in some grids are not de-
tected by the eight products considered here, further research
is needed for the CSM that may appear throughout the rest of
the year in different regions. In addition, to compare the per-
formance of multi-source remotely sensed water and carbon
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Figure 8. Spatial pattern of significance (p < 0.05) of (a) 1corr, (b) precipitation (P), (c) incoming shortwave radiation (SRa), (d) GOSIF
gross primary production (GPP), (e) PML evapotranspiration (ET), (f) soil moisture (SM), (g) temperature (Ta), and (h) vapor pressure deficit
(VPD) during the period of 1corr detection using the Mann–Kendall test (Mann, 1945; Kendall, 1948). “De.” means “decreasing” and “In.”
means “increasing”. (i) Attribution of 1corr variations. Colors indicate the variable that best predicts 1corr dynamics. ZGE: Zhungaer
basin, PR: Pearl River basin, YTR: Yangtze River basin, SWR: Southwestern River basin, TR: Tarim basin, SR: Songhua River basin, CT:
Changthang region, NM: Inner Mongolian Plateau region, LR: Liaohe River basin, YR: Yellow River basin, HR: Huaihe River basin, HC:
Hexi Corridor region, HAR: Haihe River basin, SER: Southeastern River basin, QB: Qaidam basin.

fluxes, all data are unified into the 8 d resolution. Therefore,
a more refined timescale, such as a 1 d scale study, is also
needed.

Multiple factors contribute to inherent constraints in iden-
tifying different regimes associated with the utilization of
multi-source satellite-based ET and GPP. For example, ET

and GPP exhibit great uncertainties (Liu et al., 2021) in ar-
eas with barren land, as indicated in Sect. 3.1. In eastern and
southern regions, where satellite-based methods were more
reliable, the eight considered satellite-based SM regimes
were in good agreement (Fig. 4). Since the CAMELE ET
was combined with PML ET, they showed consistency in
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cropland and forests, with a lower CSM than GLASS and
SEBAL (Sect. 3.3). By considering variations in energy and
water limitations in terrestrial ecosystems (Sect. 3.4), there
is potential to improve the water and carbon flux estimation
in turn. In addition, SM from ground samplings and gridded
sources (Koster et al., 2009) contributes to the uncertainty
in characterizing CSM, as discussed in Sect. 3.3. For grid-
ded SM, surface climate shows a significant effect on the
upper-soil-layer SM modeling, while the background arid-
ity leads to low variability in the deeper-layer SM (Q. Li et
al., 2022). Besides, external forcings seem to be responsi-
ble for a shift towards enhanced land–atmosphere coupling
(Zhang et al., 2020). It should be noted that the South–North
Water Transfer Project and the Pinglu Canal Project in China
will result in significant modifications to SM characteristics,
which are fundamental components of the concept known as
CSM. Water management measures may reduce water stress
in grasslands affected by climate change and make south-
ern coastal clay areas more resistant to possible disturbances.
Overall, our research can inform large-scale water conser-
vancy projects for better water resource allocation from the
perspective of the critical effect of SM.

5 Conclusion

Our main accomplishment is observing and identifying water
and energy limit shifts using multi-source satellite-based wa-
ter and carbon fluxes over China. These shifts show which
areas are more likely to be affected by climate change. To
do this, we first examined the consistency of ET and GPP
derived from the site- and satellite-based grid observations
and the consistency of CSM derived from the EF–SM, co-
variance, and correlation difference methods. CSM detected
by the covariance between VPD and GPP and CSM using
the correlation difference metric using VPD, ET, and SM
matched well with CSM using the EF–SM method at the site
scale, suggesting that these methods could detect large-scale
CSM. According to satellite-based CSM from four ET prod-
ucts, four GPP products, and the latest SM dataset, surface
water- and energy-limited regimes varied among land cover
types, soil textures, and water resource subregions; soil tex-
tures of clay and land cover types of grassland had a large
range of SM within water-limited regimes. Based on the spa-
tial pattern of CSM, we further identified the dominant fac-
tor of 1corr and discovered that VPD was the most important
predictor across 24 % of the Pearl River basin and 19 % of the
Tarim basin. However, unlike the declining VPD in the Pearl
River basin, the increasing VPD aggravated the water stress
in the Tarim basin, especially for the more fragile grassland
in these areas. As environmental change and extreme dis-
turbances affect CSM, future research directions will aim to
consider the impact of hydraulic projects such as inter-basin
water transfers on CSM, the impact of extreme disturbances

such as tropical cyclones and wildfires on CSM, and possible
changes in CSM.

This study used multi-source satellite-based water and car-
bon fluxes and different methods to detect CSM, and more
efforts were put into the evaluation and validation of CSM.
Datasets covering 18 years, as used for CSM, were quite
typical of the long-term climatology of continental wetness.
Since CSM, an emerging property, is generated by multiple
processes occurring on the land surface, in the atmosphere,
and at the interface between them, uncertainties in ET and
GPP from the algorithm, uncertainties in SM from ground
sampling, and enhanced land–atmosphere coupling due to
external forcing all contribute to CSM uncertainties. We em-
phasize that SM behavior below and above CSM determines
ET and GPP and that water-limited regimes of the SM range
depend on CSM. Water and carbon fluxes are vulnerable to
the sensitivity of 1corr to hydrological, meteorological, and
ecological predictors. Accordingly, the water and carbon al-
gorithm should consider water–energy limit shifts to improve
the simulation accuracy. Thus, applying our new understand-
ing of 1corr and CSM under changing land–atmosphere con-
ditions will provide a more complete perspective of the evo-
lution of regional terrestrial ecosystems over extended peri-
ods.

Data availability. PML ET and GPP data can be found on the
TPDC website. GLASS ET and GPP data are provided by
Yunjun Yao (Beijing Normal University) and Wenping Yuan
(Peking University). CAMELE ET data are available on Zenodo
at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021). SE-
BAL ET data are publicly accessible from the Zenodo reposi-
tory at https://doi.org/10.5281/zenodo.10803216 (Cheng, 2024a)
and https://doi.org/10.5281/zenodo.10803553 (Cheng, 2024b). TL
GPP data are available at https://doi.org/10.5061/dryad.dfn2z352k
(Bi and Zhou, 2022). GOSIF GPP data are obtainable at
http://globalecology.unh.edu/data/GOSIF-GPP.html (Global Ecol-
ogy Group Data Repository, 2025). Gridded soil moisture and me-
teorological data are available from TPDC.

Flux data, land cover types, and soil textures from this study can
be obtained from the authors upon request.

Author contributions. YiL: investigation, methodology, formal
analysis, conceptualization, writing (original draft and review and
editing); JX: supervision, writing (review and editing); XL: writing
(review and editing); YuL: writing (review and editing).

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-

https://doi.org/10.5194/hess-29-1241-2025 Hydrol. Earth Syst. Sci., 29, 1241–1258, 2025

https://doi.org/10.5281/zenodo.6283239
https://doi.org/10.5281/zenodo.10803216
https://doi.org/10.5281/zenodo.10803553
https://doi.org/10.5061/dryad.dfn2z352k
http://globalecology.unh.edu/data/GOSIF-GPP.html


1256 Y. Liu et al.: Critical soil moisture detection and water–energy limit shift attribution

ery effort to include appropriate place names, the final responsibility
lies with the authors. Regarding the maps used in this paper, please
note that Figs. 1, 4, 5, 7, and 8 contain disputed territories.

Financial support. Yi Liu was supported by the Guangxi Natu-
ral Science Foundation under grant no. 2024GXNSFBA010180.
Jingfeng Xiao was supported by the Iola Hubbard Climate Change
Endowment managed by Earth Systems Research Center, Univer-
sity of New Hampshire.

Review statement. This paper was edited by Adriaan J. (Ryan)
Teuling and reviewed by Hsin Hsu and Jingwei Zhou.

References

Akbar, R., Gianotti, D. J. S., McColl, K. A., Haghighi, E.¸Salvucci,
G. D., and Entekhabi, D.: Estimation of Landscape Soil Wa-
ter Losses from Satellite Observations of Soil Moisture, J. Hy-
drometeorol., 19, 871–889, https://doi.org/10.1175/JHM-D-17-
0200.1, 2018.

Baldocchi, D. D., Xu, L. K., and Kiang, N.: How plant functional-
type, weather, seasonal drought, and soil physical proper-
ties alter water and energy fluxes of an oak-grass savanna
and an annual grassland, Agr. Forest Meteorol., 123, 13–39,
https://doi.org/10.1016/j.agrformet.2003.11.006, 2004.

Bi, W. and Zhou, Y.: A global 0.05° dataset for gross primary pro-
duction of sunlit and shaded vegetation canopies (1992–2020),
Dryad [data set], https://doi.org/10.5061/dryad.dfn2z352k, 2022.

Bi, W., He, W., Zhou, Y., Ju, W., Liu, Y., Liu, Y., Zhang, X., Wei, X.,
and Cheng, N.: A global 0.05 degrees dataset for gross primary
production of sunlit and shaded vegetation canopies from 1992
to 2020, Scientific Data, 9, 213 https://doi.org/10.1038/s41597-
022-01309-2, 2022.

Bolton, D.: The computation of equivalent potential
temperature, Mon. Weather Rev., 108, 1046–1053,
https://doi.org/10.1175/2008MWR2593.1, 1980.

Case, M. F., Nippert, J. B., Holdo, R. M., and Staver,
A. C.: Root-niche separation between savanna trees and
grasses is greater on sandier soils, J. Ecol., 108, 2298–2308,
https://doi.org/10.1111/1365-2745.13475, 2020.

Cheng, M.: Long time series (2001-2018) of daily evapotranspira-
tion in China generated based on SEBAL: Part 1, Version v3,
Zenodo [data set], https://doi.org/10.5281/zenodo.10803216,
2024a.

Cheng, M.: Long time series (2001-2018) of daily evapotranspira-
tion in China generated based on SEBAL: Part 2, Version v2,
Zenodo [data set], https://doi.org/10.5281/zenodo.10803553,
2024b.

Cheng, M., Jiao, X., Li, B., Yu, X., Shao, M., and Jin, X.: Long
time series of daily evapotranspiration in China based on the SE-
BAL model and multisource images and validation, Earth Syst.
Sci. Data, 13, 3995–4017, https://doi.org/10.5194/essd-13-3995-
2021, 2021.

Denissen, J. M. C., Teuling, A. J., Reichstein, M., and Orth,
R.: Critical Soil Moisture Derived from Satellite Observations

Over Europe, J. Geophys. Res.-Atmos., 125, e2019JD031672,
https://doi.org/10.1029/2019JD031672, 2020.

Dong, J., Akbar, R., Feldman, A. F., Gianotti, D. S., and Entekhabi,
D.: Land Surfaces at the Tipping-Point for Water and Energy
Balance Coupling, Water Resour. Res., 59, e2022WR032472,
https://doi.org/10.1029/2022wr032472, 2023.

Duan, S. Q., Findell, K. I., and Fueglistaler, S. A.: Co-
herent Mechanistic Patterns of Tropical Land Hydrocli-
mate Changes, Geophys. Res. Lett., 50, e2022GL102285,
https://doi.org/10.1029/2022gl102285, 2023.

Feldman, A. F., Gianotti, D. J. S., Trigo, I. F., Salvucci, G. D.,
and Entekhabi, D.: Satellite-Based Assessment of Land Surface
Energy Partitioning-Soil Moisture Relationships and Effects of
Confounding Variables, Water Resour. Res., 55, 10657–10677,
https://doi.org/10.1029/2019WR025874, 2019.

Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G.
D., and Entekhabi, D.: Observed Landscape Responsiveness
to Climate Forcing, Water Resour. Res., 58, e2021WR030316,
https://doi.org/10.1029/2021WR030316, 2022.

Fu, Z., Ciais, P., Feldman, A. F., Gentine, P., Makowski, D.,
Prentice, I. C., Stoy, P. C., Bastos, A., and Wigneron, J.-
P.: Critical soil moisture thresholds of plant water stress
in terrestrial ecosystems, Science Advances, 8, eabq7827,
https://doi.org/10.1126/sciadv.abq7827, 2022a.

Fu, Z., Ciais, P., Makowski, D., Bastos, A., Stoy, P. C., Ibrom,
A., Knohl, A., Migliavacca, M., Cuntz, M., Sigut, L., Peichl,
M., Loustau, D., El-Madany, T. S., Buchmann, N., Gharun, M.,
Janssens, I., Markwitz, C., Gruenwald, T., Rebmann, C., Molder,
M., Varlagin, A., Mammarella, I., Kolari, P., Bernhofer, C., He-
liasz, M., Vincke, C., Pitacco, A., Cremonese, E., Foltynova, L.,
and Wigneron, J.-P.: Uncovering the critical soil moisture thresh-
olds of plant water stress for European ecosystems, Glob. Change
Biol., 28, 2111–2123, https://doi.org/10.1111/gcb.16050, 2022b.

Fu, Z., Ciais, P., Wigneron, J. P., Gentine, P., Feldman, A. F.,
Makowski, D., Viovy, N., Kemanian, A. R., Goll, D. S., Stoy,
P. C., Prentice, I. C., Yakir, D., Liu, L., Ma, H., Li, X., Huang,
Y., Yu, K., Zhu, P., Li, X., Zhu, Z., Lian, J., and Smith, W. K.:
Global critical soil moisture thresholds of plant water stress, Nat.
Commun., 15, 4826–4826, https://doi.org/10.1038/s41467-024-
49244-7, 2024.

Gallego-Elvira, B., Taylor, C. M., Harris, P. P., Ghent, D.,
Veal, K. L., and Folwell, S. S.: Global observational
diagnosis of soil moisture control on the land surface
energy balance, Geophys. Res. Lett., 43, 2623–2631,
https://doi.org/10.1002/2016GL068178, 2016.

Gentine, P., Green, J. K., Guerin, M., Humphrey, V., Seneviratne, S.
I., Zhang, Y., and Zhou, S.: Coupling between the terrestrial car-
bon and water cycles-a review, Environ. Res. Lett., 14, 083003,
https://doi.org/10.1088/1748-9326/ab22d6, 2019.

Global Ecology Group Data Repository: http://globalecology.unh.
edu/data/GOSIF-GPP.html, last access: 27 February 2025.

Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity
constrains partitioning of global terrestrial water fluxes, Science,
349, 175–177, https://doi.org/10.1126/science.aaa5931, 2015.

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poul-
ter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.:
Plant responses to rising vapor pressure deficit, New Phytol.,
226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020.

Hydrol. Earth Syst. Sci., 29, 1241–1258, 2025 https://doi.org/10.5194/hess-29-1241-2025

https://doi.org/10.1175/JHM-D-17-0200.1
https://doi.org/10.1175/JHM-D-17-0200.1
https://doi.org/10.1016/j.agrformet.2003.11.006
https://doi.org/10.5061/dryad.dfn2z352k
https://doi.org/10.1038/s41597-022-01309-2
https://doi.org/10.1038/s41597-022-01309-2
https://doi.org/10.1175/2008MWR2593.1
https://doi.org/10.1111/1365-2745.13475
https://doi.org/10.5281/zenodo.10803216
https://doi.org/10.5281/zenodo.10803553
https://doi.org/10.5194/essd-13-3995-2021
https://doi.org/10.5194/essd-13-3995-2021
https://doi.org/10.1029/2019JD031672
https://doi.org/10.1029/2022wr032472
https://doi.org/10.1029/2022gl102285
https://doi.org/10.1029/2019WR025874
https://doi.org/10.1029/2021WR030316
https://doi.org/10.1126/sciadv.abq7827
https://doi.org/10.1111/gcb.16050
https://doi.org/10.1038/s41467-024-49244-7
https://doi.org/10.1038/s41467-024-49244-7
https://doi.org/10.1002/2016GL068178
https://doi.org/10.1088/1748-9326/ab22d6
http://globalecology.unh.edu/data/GOSIF-GPP.html
http://globalecology.unh.edu/data/GOSIF-GPP.html
https://doi.org/10.1126/science.aaa5931
https://doi.org/10.1111/nph.16485


Y. Liu et al.: Critical soil moisture detection and water–energy limit shift attribution 1257

Haghighi, E., Gianotti, D. J. S., Akbar, R., Salvucci, G.
D., and Entekhabi, D.: Soil and Atmospheric Controls on
the Land Surface Energy Balance: A Generalized Frame-
work for Distinguishing Moisture-Limited and Energy-Limited
Evaporation Regimes, Water Resour. Res., 54, 1831–1851,
https://doi.org/10.1002/2017WR021729, 2018.

He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li,
X.: The first high-resolution meteorological forcing dataset
for land process studies over China, Scientific Data, 7, 25,
https://doi.org/10.1038/s41597-020-0369-y, 2020.

He, S., Zhang, Y., Ma, N., Tian, J., Kong, D., and Liu, C.: A
daily and 500 m coupled evapotranspiration and gross primary
production product across China during 2000–2020, Earth Syst.
Sci. Data, 14, 5463–5488, https://doi.org/10.5194/essd-14-5463-
2022, 2022.

Herman, M. R., Nejadhashemi, A. P., Abouali, M., Hernandez-
Suarez, J. S., Daneshvar, F., Zhang, Z., Anderson, M. C.,
Sadeghi, A. M., Hain, C. R., and Sharifi, A.: Evaluating the
role of evapotranspiration remote sensing data in improving
hydrological modeling predictability, J. Hydrol., 556, 39–49,
https://doi.org/10.1016/j.jhydrol.2017.11.009, 2018.

Homaee, A., Feddes, R. A., and Dirksen, C.: Simulation of root
water uptake II. Non-uniform transient water stress using dif-
ferent reduction functions, Agr. Water Manage., 57, 111–126,
https://doi.org/10.1016/S0378-3774(02)00071-9, 2002.

Hsu, H. and Dirmeyer, P. A.: Soil moisture-evaporation coupling
shifts into new gears under increasing CO2, Nat. Commun., 14,
1162, https://doi.org/10.1038/s41467-023-36794-5, 2023a.

Hsu, H. and Dirmeyer, P. A.: Uncertainty in Projected Critical Soil
Moisture Values in CMIP6 Affects the Interpretation of a More
Moisture-Limited World, Earths Future, 11, e2023EF003511,
https://doi.org/10.1029/2023ef003511, 2023b.

Karthikeyan, L., Chawla, I., Mishra, A. K.: A review of remote sens-
ing applications in agriculture for food security: Crop growth
and yield, irrigation, and crop losses, J. Hydrol., 586: 124905,
https://doi.org/10.1016/j.jhydrol.2020.124905, 2020.

Kendall, M. G.: Rank Correlation Methods, Hafner,
https://doi.org/10.1017/S0020268100013019, 160 pp., 1948.

Konings, A. G. and Gentine, P.: Global variations in ecosystem-
scale isohydricity, Glob. Change Biol., 23, 891–905,
https://doi.org/10.1111/gcb.13389, 2017.

Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell,
K., and Puma, M. J.: On the Nature of Soil Mois-
ture in Land Surface Models, J. Climate, 22, 4322–4335,
https://doi.org/10.1175/2009JCLI2832.1, 2009.

Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.:
Plants in water-controlled ecosystems: active role in hydro-
logic processes and response to water stress – II. Probabilis-
tic soil moisture dynamics, Adv. Water Resour., 24, 707–723,
https://doi.org/10.1016/S0309-1708(01)00005-7, 2001.

Li, C., Yang, H., Yang, W., Liu, Z., Jia, Y., Li, S., and
Yang, D.: CAMELE: Collocation-Analyzed Multi-source En-
sembled Land Evapotranspiration Data, Version 4.0, Zenodo,
https://doi.org/10.5281/zenodo.6283239, 2021.

Li, C., Yang, H., Yang, W., Liu, Z., Jia, Y., Li, S., and Yang,
D.: CAMELE: Collocation-Analyzed Multi-source Ensembled
Land Evapotranspiration Data, Earth Syst. Sci. Data Discuss.
[preprint], https://doi.org/10.5194/essd-2021-456, 2022.

Li, F., Xiao, J., Chen, J., Ballantyne, A., Jin, K., Li, B., Abraha,
M., and John, R.: Global water use efficiency saturation due
to increased vapor pressure deficit, Science, 381, 672–677,
https://doi.org/10.1126/science.adf5041, 2023.

Li, Q., Shi, G., Shangguan, W., Nourani, V., Li, J., Li, L., Huang,
F., Zhang, Y., Wang, C., Wang, D., Qiu, J., Lu, X., and Dai, Y.:
A 1 km daily soil moisture dataset over China using in situ mea-
surement and machine learning, Earth Syst. Sci. Data, 14, 5267–
5286, https://doi.org/10.5194/essd-14-5267-2022, 2022.

Li, X. and Xiao, J.: Mapping Photosynthesis Solely from Solar-
Induced Chlorophyll Fluorescence: A Global, Fine-Resolution
Dataset of Gross Primary Production Derived from OCO-2, Re-
mote Sens.-Basel, 11, 2563, https://doi.org/10.3390/rs11212563,
2019.

Li, X., Ryu, Y., Xiao, J., Dechant, B., Liu, J., Li, B., Jeong, S.,
and Gentine, P.: New-generation geostationary satellite reveals
widespread midday depression in dryland photosynthesis dur-
ing 2020 western US heatwave, Science Advances, 9, eadi0775,
https://doi.org/10.1126/sciadv.adi0775, 2023.

Liu, W., Mo, X., Liu, S., Lin, Z., and Lv, C.: Attributing the
changes of grass growth, water consumed and water use ef-
ficiency over the Tibetan Plateau, J. Hydrol., 598, 126464,
https://doi.org/10.1016/j.jhydrol.2021.126464, 2021.

Liu, Y., Mo, X., Hu, S., Chen, X., and Liu, S.: Attribution analy-
ses of evapotranspiration and gross primary productivity changes
in Ziya-Daqing basins, China during 2001–2015, Theor. Appl.
Climatol., 139, 1175–1189, https://doi.org/10.1007/s00704-019-
03004-6, 2020.

Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M.,
Wagner, W., McCabe, M. F., Evans, J. P., and van Dijk, A. I. J.
M.: Trend-preserving blending of passive and active microwave
soil moisture retrievals, Remote Sens. Environ., 123, 280–297,
https://doi.org/10.1016/j.rse.2012.03.014, 2012.

Mann, H. B.: Non-parametric test against trend, Econometrica, 13,
245–259, https://doi.org/10.2307/1907187, 1945.

McHugh, M. L.: The Chi-square test of independence, Biochem.
Medica, 23, 143–149, https://doi.org/10.11613/bm.2013.018,
2013.

Nash, J. E., Sutcliffe, J. V.: River flow forecasting through concep-
tual models part I – a discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Porporato, A., D’Odorico, P., Laio, F., Ridolfi, L., and Rodriguez-
Iturbe, I.: Ecohydrology of water-controlled ecosystems, Adv.
Water Resour., 25, 1335–1348, https://doi.org/10.1016/S0309-
1708(02)00058-1, 2002.

Rodriguez-Iturbe, I.: Ecohydrology: A hydrologic perspective of
climate-soil-vegetation dynamics, Water Resour. Res., 36, 3–9,
https://doi.org/10.1029/1999WR900210, 2000.

Schwarz, G.: Estimating the Dimension of a Model, Ann. Stat., 6,
461–464, https://doi.org/10.1214/aos/1176344136, 1978.

Schwingshackl, C., Hirschi, M., and Seneviratne, S. I.: Quanti-
fying Spatiotemporal Variations of Soil Moisture Control on
Surface Energy Balance and Near-Surface Air Temperature,
J. Climate, 30, 7105–7124, https://doi.org/10.1175/JCLI-D-16-
0727.1, 2017.

Seneviratne, S. I., Luethi, D., Litschi, M., and Schaer, C.: Land–
atmosphere coupling and climate change in Europe, Nature, 443,
205–209, https://doi.org/10.1038/nature05095, 2006.

https://doi.org/10.5194/hess-29-1241-2025 Hydrol. Earth Syst. Sci., 29, 1241–1258, 2025

https://doi.org/10.1002/2017WR021729
https://doi.org/10.1038/s41597-020-0369-y
https://doi.org/10.5194/essd-14-5463-2022
https://doi.org/10.5194/essd-14-5463-2022
https://doi.org/10.1016/j.jhydrol.2017.11.009
https://doi.org/10.1016/S0378-3774(02)00071-9
https://doi.org/10.1038/s41467-023-36794-5
https://doi.org/10.1029/2023ef003511
https://doi.org/10.1016/j.jhydrol.2020.124905
https://doi.org/10.1017/S0020268100013019
https://doi.org/10.1111/gcb.13389
https://doi.org/10.1175/2009JCLI2832.1
https://doi.org/10.1016/S0309-1708(01)00005-7
https://doi.org/10.5281/zenodo.6283239
https://doi.org/10.5194/essd-2021-456
https://doi.org/10.1126/science.adf5041
https://doi.org/10.5194/essd-14-5267-2022
https://doi.org/10.3390/rs11212563
https://doi.org/10.1126/sciadv.adi0775
https://doi.org/10.1016/j.jhydrol.2021.126464
https://doi.org/10.1007/s00704-019-03004-6
https://doi.org/10.1007/s00704-019-03004-6
https://doi.org/10.1016/j.rse.2012.03.014
https://doi.org/10.2307/1907187
https://doi.org/10.11613/bm.2013.018
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/S0309-1708(02)00058-1
https://doi.org/10.1016/S0309-1708(02)00058-1
https://doi.org/10.1029/1999WR900210
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1175/JCLI-D-16-0727.1
https://doi.org/10.1175/JCLI-D-16-0727.1
https://doi.org/10.1038/nature05095


1258 Y. Liu et al.: Critical soil moisture detection and water–energy limit shift attribution

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M.,
Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling,
A. J.: Investigating soil moisture-climate interactions in a
changing climate: A review, Earth-Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.

Teuling, A. J., Uijlenhoet, R., van den Hurk, B., and Seneviratne, S.
I.: Parameter Sensitivity in LSMs: An Analysis Using Stochastic
Soil Moisture Models and ELDAS Soil Parameters, J. Hydrom-
eteorol., 10, 751–765, https://doi.org/10.1175/2008JHM1033.1,
2009.

Tumber-Davila, S. J., Schenk, H. J., Du, E., and Jackson,
R. B.: Plant sizes and shapes above and belowground and
their interactions with climate, New Phytol., 235, 1032–1056,
https://doi.org/10.1111/nph.18031, 2022.

van Doorn, J., Ly, A., Marsman, M., and Wagenmak-
ers, E.-J.: Bayesian Inference for Kendall’s Rank
Correlation Coefficient, Am. Stat., 72, 303–308,
https://doi.org/10.1080/00031305.2016.1264998, 2018.

Xiao, J.: Satellite evidence for significant biophysical conse-
quences of the “Grain for Green” Program on the Loess
Plateau in China, J. Geophys. Res.-Biogeo., 119, 2261–2275,
https://doi.org/10.1002/2014JG002820, 2014.

Yang, K., He, J., Tang, W., Qin, J., and Cheng, C. C.
K.: On downward shortwave and longwave radiations
over high altitude regions: Observation and modeling in
the Tibetan Plateau, Agr. Forest Meteorol., 150, 38–46,
https://doi.org/10.1016/j.agrformet.2009.08.004, 2010.

Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang,
X., Jia, K., Zhao, X., Qing, Q., Zhao, B., Han, S., Zhou,
G., Zhou, G., Li, Y., and Zhao, S.: MODIS-driven estimation
of terrestrial latent heat flux in China based on a modified
Priestley–Taylor algorithm, Agr. Forest Meteorol., 171, 187–202,
https://doi.org/10.1016/j.agrformet.2012.11.016, 2013.

Yao, Y., Liang, S., Li, X., Hong, Y., Fisher, J. B., Zhang,
N., Chen, J., Cheng, J., Zhao, S., Zhang, X., Jiang, B.,
Sun, L., Jia, K., Wang, K., Chen, Y., Mu, Q., and Feng,
F.: Bayesian multimodel estimation of global terrestrial la-
tent heat flux from eddy covariance, meteorological, and satel-
lite observations, J. Geophys. Res.-Atmos., 119, 4521–4545,
https://doi.org/10.1002/2013JD020864, 2014.

Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi,
D., Bernhofer, C., Gholz, H., Goldstein, A. H., Goulden, M. L.,
Hollinger, D. Y., Hu, Y., Law, B. E., Stoy, P. C., Vesala, T., Wofsy,
S. C., and AmeriFlux, C.: Deriving a light use efficiency model
from eddy covariance flux data for predicting daily gross primary
production across biomes, Agr. Forest Meteorol., 143, 189–207,
https://doi.org/10.1016/j.agrformet.2006.12.001, 2007.

Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold,
L., Law, B., Arain, A., Beringer, J., Bernhofer, C., Black, A.,
Blanken, P. D., Cescatti, A., Chen, Y., Francois, L., Gianelle,
D., Janssens, I. A., Jung, M., Kato, T., Kiely, G., Liu, D., Mar-
colla, B., Montagnani, L., Raschi, A., Roupsard, O., Varlagin,
A., and Wohlfahrt, G.: Global comparison of light use efficiency
models for simulating terrestrial vegetation gross primary pro-
duction based on the La Thuile database, Agr. Forest Meteorol.,
192, 108–120, https://doi.org/10.1016/j.agrformet.2014.03.007,
2014.

Zhang, P., Jeong, J.-H., Yoon, J.-H., Kim, H., Wang, S. Y.
S., Linderholm, H. W., Fang, K., Wu, X., and Chen, D.:
Abrupt shift to hotter and drier climate over inner East
Asia beyond the tipping point, Science, 370, 1095–1099,
https://doi.org/10.1126/science.abb3368, 2020.

Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R.,
Zhang, Q., and Yang, Y.: Coupled estimation of 500 m and 8-
day resolution global evapotranspiration and gross primary pro-
duction in 2002–2017, Remote Sens. Environ., 222, 165–182,
https://doi.org/10.1016/j.rse.2018.12.031, 2019.

Zhu, W., Wang, Y., and Jia, S.: A remote sensing-based
method for daily evapotranspiration mapping and parti-
tioning in a poorly gauged basin with arid ecosystems
in the Qinghai-Tibet Plateau, J. Hydrol., 616, 128807,
https://doi.org/10.1016/j.jhydrol.2022.128807, 2023.

Hydrol. Earth Syst. Sci., 29, 1241–1258, 2025 https://doi.org/10.5194/hess-29-1241-2025

https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1175/2008JHM1033.1
https://doi.org/10.1111/nph.18031
https://doi.org/10.1080/00031305.2016.1264998
https://doi.org/10.1002/2014JG002820
https://doi.org/10.1016/j.agrformet.2009.08.004
https://doi.org/10.1016/j.agrformet.2012.11.016
https://doi.org/10.1002/2013JD020864
https://doi.org/10.1016/j.agrformet.2006.12.001
https://doi.org/10.1016/j.agrformet.2014.03.007
https://doi.org/10.1126/science.abb3368
https://doi.org/10.1016/j.rse.2018.12.031
https://doi.org/10.1016/j.jhydrol.2022.128807

	Abstract
	Introduction
	Material and methods
	Data
	Evapotranspiration and gross primary production
	Layer-wise soil moisture and meteorological data
	Land cover types, soil textures, and water resource subregions

	Determination of CSM
	Soil moisture–evaporative fraction method
	Covariance method
	Correlation difference method

	Evaluation criteria
	Partial least square regression

	Results
	Consistency of ET and GPP
	Consistency of CSM
	Spatial pattern of CSM
	Attribution of water and energy limit shifts

	Discussion
	Conclusion
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

