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Abstract. Convection-permitting climate models (CPMs)
are becoming increasingly used in climate change studies.
These models show greatly improved convective rainfall
statistics compared to parameterized-convection regional cli-
mate models (RCMs), but are they also more reliable in a cli-
mate change setting? Increases in rainfall extremes are gen-
erally considered to be caused by increases in absolute hu-
midity, primarily following from the Clausius–Clapeyron re-
lation, while the influence of relative humidity changes is
uncertain and not systematically explored. Quantifying these
humidity dependencies in the present-day climate may help
the interpretation of future changes, which are driven by in-
creases in absolute humidity but also decreases in relative
humidity in most continental areas in summer. Here, we sys-
tematically analyse hourly rainfall extremes and their depen-
dencies on 2 m dew point temperature (absolute humidity)
and dew point depression (relative humidity) in seven RCM
and five CPM simulations for the present-day climate. We
compare these to observations from the Netherlands (a mod-
erate moist climate) and southern France (a warmer and drier
climate). We find that the RCMs display a large spread in out-
comes, in particular in their relative humidity dependence,
with a strong suppression of hourly rainfall extremes in low
relative humidity conditions. CPMs produce better overall
rainfall statistics, show less inter-model spread, and have ab-
solute and relative humidity dependencies more consistent
with the observations. In summary, our results provide evi-

dence that future changes in convective rainfall extremes in
CPMs are more reliable compared to RCMs, whereas the dis-
cussed dependencies also provide a metric to evaluate and
further improve model performance as well as improving
convection schemes.

1 Introduction

In recent years, climate modelling has rapidly progressed to-
wards higher resolution with so-called convection-permitting
climate models (CPMs) that explicitly resolve the largest
convective motions in the atmosphere (Stevens et al., 2019;
Prein et al., 2020; Schär et al., 2020; Ban et al., 2021;
Kendon et al., 2021b; Pichelli et al., 2021; Lucas-Picher et
al., 2021). These models typically run at <4–5 km grid spac-
ing, with non-hydrostatic dynamics, which allows them to
explicitly resolve deep convection without the need for a
convection parameterization. As computational demands are
high, CPMs can only be applied for relatively short time peri-
ods; on regional domains typically 10–30 years is simulated.
In recent years, large efforts have been made to produce a
number of these CPM runs, for instance the international co-
ordinated action CORDEX flagship pilot study over the Eu-
ropean Alpine region (Coppola et al., 2020; Ban et al., 2021;
Pichelli et al., 2021) and a 12-member ensemble for 100-
year projections from 1980 to 2080 produced as part of the
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UK national climate scenarios (Kendon et al., 2020, 2021a,
2023).

The primary reason to run CPMs at kilometre scales is
their improved representation of convective processes, which
give rise to locally intense convective rainfall on sub-daily
timescales that, for example, can lead to flash floods and de-
bris flows. In recent years, knowledge on these type of ex-
tremes, and how they could be affected by climate change,
has advanced considerably based on observational evidence,
process understanding, and high-resolution modelling such
as with CPMs (Fowler et al., 2021a, b). Convection param-
eterization schemes have been identified as being responsi-
ble for substantial biases in convective rainfall statistics in
coarser-resolution climate models, causing rainfall intensi-
ties that are too low and too frequent and a triggering that is
too early during the day (Kendon et al., 2012; Ban et al.,
2021). CPMs improve the frequency and diurnal cycle of
rainfall, as well as the distribution of the extremes and rain-
fall spatial patterns (Kendon et al., 2012; Ban et al., 2020,
2021; Berthou et al., 2020; Fumière et al., 2020). CPMs
have also been evaluated for process-based metrics such as
intensity–duration characteristics and cell-size distribution
(Kendon et al., 2012), assessing the reliability of the under-
lying rainfall processes. Finally, rain cell tracking has been
used to investigate the life cycle of convective rainfall events,
providing additional information on how organized convec-
tive systems behave in CPMs versus radar data (Purr et al.,
2019, 2021; Müller et al., 2023).

Limited evidence exists that the improved representation
of convective cloud processes in CPMs, as compared to re-
gional climate models (RCMs), leads to more certain esti-
mates of future extreme rainfall changes (Fosser et al., 2020,
2024). Indeed, when future changes are dominated by simple
thermodynamic factors (when increases from moisture domi-
nate dynamical changes or when dynamical changes occur at
scales well resolved by the RCMs), then CPMs often project
similar changes to RCMs (Ban et al., 2020). Despite their
improved behaviour, CPMs are not without faults: at 2–3 km
resolution, important parts of the physics and dynamics of
convective clouds are still not (well) resolved, e.g. convective
plumes, entrainment processes at the cloud interface, detailed
boundary layer cold pool dynamics, and cloud microphysical
processes (Prein et al., 2021; Lochbihler et al., 2021; Li et al.,
2018). Therefore, it is important to establish the trustworthi-
ness of these models using measures that relate to climate
change. Here, we study the dependency of extreme rainfall
on measures of absolute and relative humidity – key drivers
of future changes, as explained below.

The intensification of rainfall extremes due to global
warming is to first order explained by increases in absolute
humidity following from the Clausius–Clapeyron (CC) rela-
tion (Pall et al., 2006; Trenberth, 2011; Fischer and Knutti,
2016). The Clausius–Clapeyron relation governs the increase
in the water vapour holding capacity of the air as a func-
tion of temperature and near to the surface gives a rate of

increase of 6 %–7 % per degree of warming. Evidence from
observations suggests that the rate of change of precipitation
extremes with absolute humidity could be much stronger.
In observations, so-called scaling rates of precipitation ex-
tremes on near-surface point temperatures up to 12 %–14 %
per degree (2×CC) have been found (Lenderink and van
Meijgaard, 2008, 2010; Lenderink et al., 2011; Fowler et al.,
2021a; Ali et al., 2022) as well as strong rainfall intensifi-
cation beyond a critical value of the integrated water vapour
path (Neelin et al., 2022). Scaling rates beyond the CC re-
lationship are commonly denoted as super-CC scaling. But
scaling rates also differ for different areas of the globe and
depend on the temperature measure used (Lenderink et al.,
2018; Bui et al., 2019). It is not always straightforward to
connect the temperature measure used to the humidity of the
air in which a rain shower develops. In this paper, we use dew
point temperature, which directly measures absolute humid-
ity.

Several explanations have been proposed to explain ob-
served super-CC scaling. These range from systematic sta-
tistical shift in the rainfall type with temperature (Haerter
and Berg, 2009; Fowler et al., 2021a; Molnar et al., 2015)
to positive feedback mechanisms from physical processes.
Latent heat release in the cloud could invigorate updraft mo-
tions, leading to more condensation of moist updraft air and
stronger precipitation rates (Loriaux et al., 2013). Stronger
sub-cloud cold pool dynamics with warming could lead to
stronger cloud organization and larger moisture availabil-
ity at the cloud condensation level (Haerter and Schlemmer,
2018; Lochbihler et al., 2021). Deeper warm cloud levels be-
low the freezing level could lead to more efficient warm rain
processes (Prein and Heymsfield, 2020). Finally, large-scale
dynamical adjustments to latent heating could also lead to
enhanced moisture convergence and destabilization of the at-
mosphere (Lenderink et al., 2017; Nie et al., 2018).

We do not aim here to further study the causes of super-
CC behaviour. Instead, we conjecture that reproducing the
observed near-surface dew point temperature dependence in
a model is an essential prerequisite for confidence in its fu-
ture projections. Nonetheless, we acknowledge that the re-
lation between present-day-derived scaling rates and future
projection of changes in rainfall extremes is rather complex
(Lenderink and Attema, 2015; Bao et al., 2017; Zhang et al.,
2017; Lenderink et al., 2019, 2021; Fowler et al., 2021a).
One major complication is that co-varying atmospheric vari-
ables with (dew point) temperature – such as for example,
large-scale circulation or atmospheric stability – may have a
different correlation in day-to-day variability as compared to
long-term climate change (Lenderink et al., 2017; Fowler et
al., 2021a). Thus, although it is important to reproduce ob-
served scaling rates, it is not a sufficient requirement.

In contrast to the anticipated increase in rainfall extremes
due to absolute humidity change, the sign of the extreme
rainfall response due to relative humidity change is very un-
certain (Fowler et al., 2021a, b). This is important as the sum-
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mer season, in which most of the convective extremes oc-
cur in mid-latitudes, is expected to see substantial reductions
in relative humidity in a warmer future climate (Lenderink
and Attema, 2015; Byrne and O’Gorman, 2018; Williams
and O’Gorman, 2022; Zhou et al., 2023). Even more so, de-
creases in relative humidity are already widely observed over
the land, even outside predicted model changes (Vicente-
Serrano et al., 2018; Simpson et al., 2024). Links to relative
humidity can be very complex. Reductions of relative hu-
midity may lead to a smaller number of showers (Dai et al.,
2020), for instance because (near-surface) air needs to rise
to higher levels to reach saturation reducing the cases where
convection is triggered. In addition, low relative humidity in
the cloud layer leads to a strong dilution of convective up-
drafts by entrainment processes (Derbyshire et al., 2004),
possibly leading to weaker convection and reductions in rain-
fall extremes. However, lower RH is also connected to larger
values of convective inhibition, leading to a longer build-up
of convective instability and therefore stronger updraft mo-
tions (Rasmussen et al., 2020). Enhanced warming of the sur-
face layer before convection is triggered could compensate
for the stabilization (in the dry lapse rate) of the atmosphere
due to enhanced warming of the upper air; this stabilization
occurs as a consequence of a (partly) moist adiabatic adjust-
ment of the atmosphere (Loriaux et al., 2013; Attema et al.,
2014). In addition, the stronger evaporation of rain in a drier
and deeper atmospheric boundary layer may lead to stronger
cold pool dynamics, promoting larger and more organized
convective cloud systems (Lochbihler et al., 2021). Finally,
deeper and drier boundary layers could lead to wider updrafts
at the cloud base, eventually leading to stronger convection
(Mulholland et al., 2021). It is therefore important that the
dependency of precipitation extremes on relative humidity is
well understood and modelled.

Within the context of absolute and relative humidity
changes, this paper aims to answer the following questions:

– What is the relationship between absolute and relative
humidity and precipitation extremes? And how can we
establish these relationships with simple measures?

– How do these relationships in parameterized-convection
and convection-permitting models compare to observa-
tions? Are convection-permitting models substantially
better?

– How can we use this information to enhance our (confi-
dence in) future projections of extreme rainfall?

We use data from the Netherlands – a relatively mild and
humid climate – and the southern part of France – warmer
with lower relative humidity – to study these questions. We
also specifically examine commonalities and differences be-
tween these two regions. This is potentially interesting since
the future climate of the Netherlands is projected to be more
like the present-day climate of southern France, with higher

temperatures, lower relative humidity, and likely decreases
in rainfall frequency (Lenderink et al., 2014; Aalbers et al.,
2023). We perform a series of analyses to answer the ques-
tions above, using scaling on dew point temperature and then
further stratifying the data on dew point temperature depres-
sion. To complement these analyses, we also examine the
distributions of absolute and relative humidity conditional on
different rainfall intensity classifications (Lenderink and van
Meijgaard, 2010; Lenderink et al., 2011).

2 Methods

2.1 Observations and models

Two observational data sets are used, both with hourly accu-
mulated rainfall and hourly temperature and humidity mea-
surements. For the Netherlands (NL), we use 33 automatic
weather stations distributed rather evenly over the country
and operated by the Royal Netherlands Meteorological In-
stitute from 1991 to 2020. Most stations have almost com-
plete time series (25 stations with >90 % data). For southern
France (SFR), 59 stations are used that have at least 10 years’
data coverage in the period 1991–2020. These stations are
also selected based on their altitude below 400 m to limit
orographic effects. In earlier work we found that scaling re-
lations of hourly extremes derived from these lower altitude
stations are quite robust and not dependent on either the time
period or region analysed within western Europe (Lenderink
et al., 2021), which is reaffirmed here by considering the dif-
ferences between central France and the Netherlands. On av-
erage the stations in SFR contain 16 years of data, with a
maximum of 25 years. Since we pool station data together
(and do not examine stations individually), the data set is
large, containing over 900 years of data.

We use outputs from seven RCMs: CLMcom, HadRM3,
RACMO, RCA4, HIRHAM5, REMO, and ALADIN. Refer-
ences for these models can be found in the Supplement. All
models have been run at 12 km grid spacing, and we anal-
yse the period from 1991–2010. All models use a convection
parameterization, for both deep and shallow clouds.

We use four different CPMs: HCLIM, AROME, COSMO,
and UKMO-UM. These simulations are performed on a do-
main extending sufficiently north to cover the Netherlands.
Typically, the runs are 10–12 years, with at least the pe-
riod 2000–2009 covered in all models (see Supplement for
details). For HCLIM two runs are analysed: HCLIM-ALP
covers a large domain around the Alps (as prescribed in
the CORDEX-FPS study) for the period 1999–2010, and
HCLIM-NWE covers a large domain in north-west Europe
for the period 2008–2018. All models run without a deep
convection parameterization, but some keep a convection pa-
rameterization for shallow convective clouds. The resolution
of the models is 2.2 km for COSMO and 2.5 km for the other
models. With this resolution, the CPMs are expected to have
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Figure 1. Map of the stations used in the study. The colour scale
indicates the number of total years of valid data for each of the
stations.

substantially improved (non-hydrostatic) mesoscale dynam-
ics compared to RCMs (see discussion in Prein et al., 2015).

All model runs are driven by ERA-Interim reanalysis
data (Dee et al., 2011), providing realistic atmospheric forc-
ing boundary conditions. For the CPMs, UKMO is directly
nested into ERA-Interim, but the other models use an RCM
as an intermediate nest, providing boundary conditions at
high spatial and temporal resolution.

2.2 Analysis

All analysis uses data pooled over many stations (or grid
points for model data). Data are pooled for the Netherlands
over all stations (NL). For southern France (SFR), we sepa-
rate the data set into 25 stations close to the Mediterranean
coast (lat <43.8° N, long > 3.8° E; labelled SFR-med) and
34 stations more inland, labelled SFR-cent (Fig. 1).

We mainly show results for the summer period from May
to September (MJJAS) in which most of the convective
extremes occur in the Netherlands and SFR-cent. But we
also briefly look at the spring–mid-summer period, April to
July (AMJJ), and the late-summer–autumn period, August
to November (ASON). Results for SFR-cent and NL are
very robust, with very distinct scaling behaviour only (very)
weakly dependent on the season analysed. In contrast, re-
sults from SFR-med reveal how a more complex meteorol-
ogy, with influences from the Mediterranean Sea as well as
the nearby orography, affects the results.

For the CPMs, we first re-grid the hourly data based on
blocks of 5× 5 grid points. For these 5× 5 grid blocks, we
compute the mean (Pmean5×5) and take the value from the
point centred in the middle of the 5× 5 box (Psample5×5,

called sample as it samples the 25 grid points in the block).
By comparing Pmean5×5 with Psample5×5 we can establish
the dependency on spatial scale, and the scale of Pmean5×5
is approximately comparable to RCM grid box scale. Here,
we use Psample5×5, which is most representative of the lo-
cal station observation. However, we note that very similar
results are obtained using Pmean5×5, with dependencies not
strongly dependent on spatial scale (Figs. S19–S20).

The closest grid point to the station location is used, with-
out spatial interpolation. For the model results we take the
complete time series, and we do not correct for missing ob-
servational data by neglecting the same hours from the model
results.

Uncertainties in the observations are computed using a
bootstrap procedure. We take 10 random years from the
1991–2020 period and calculate all analysis statistics on the
10-year sampled data. We note that we take 10 years as com-
parison to CPM model simulations with a ∼ 10-year length.
We take 100 bootstrap samples and plot the 5 %–95 % range
of samples. Since the data in France contain more missing
data, this implies that uncertainties in the observations for
this area are somewhat larger than in the models, yet experi-
menting with 15-year bootstrap samples only gave small dif-
ferences.

In this study we use the atmospheric temperature T , dew
point temperature TD, and dew point depression, DPD= T−

TD, all near the surface at 2 m. The dew point is defined
as the temperature at which an air parcel reaches saturation
(100 % relative humidity) when cooled adiabatically and at
constant pressure; TD is therefore a measure of absolute hu-
midity, and each degree rise in TD reflects an increase of
6 %–7 % in the humidity of the air following the CC relation.
The dew depression is a good measure of relative humidity,
which follows from the fact that the saturation-specific hu-
midity varies approximately exponentially with temperature
(according to the CC relation). Each degree of DPD increase
represents an approximately 4 %–6 % drop in relative humid-
ity.

Dependencies on TD (absolute humidity) and DPD (rela-
tive humidity) are computed from two procedures (following
Lenderink and van Meijgaard, 2010). For both procedures
we first pair the instantaneous values of dew point tempera-
ture to the precipitation 4 h later (or closest to that). We note
that some models only provide 3-hourly (dew point) temper-
ature; hence, using a temperature 4 h prior guarantees that the
(dew point) temperature is taken before the precipitation, so
it is not likely strongly affected by the rainfall event itself.
Using a lag of 4 h also provided the most robust results in
earlier scaling analyses based on observations and, in physi-
cal terms, limits the influence of showers themselves on the
surface temperature by cold (and dry) downdrafts (Lenderink
et al., 2011). All further analysis is done on this paired data
set (precipitation on a wet hour paired with temperature at
4 h preceding the hour with rainfall).
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We first compute TD and DPD statistics conditional on
rainfall intensity. We sub-select pairs based on rainfall inten-
sity, taking all hours including those without rain (all); all
hours with rain exceeding 0.1 mm h−1 (wet); and hours with
rain exceeding the 50, 90, 95, 99, 99.5, and 99.9th percentiles
of rain (with the percentile computed from wet hours only).
Subsequently, we compute various statistics from the selec-
tion of TD and DPD, for instance, the median TD.

For the scaling analysis, we compute rainfall intensity con-
ditional on TD. First, the pooled data are divided into 2° wide
TD bins. As in previous studies we use overlapping bins with
steps of 1°. Conditional percentiles (90, 99, 99.9th) are com-
puted for each bin, taking only hours with rainfall exceeding
a threshold of 0.1 mm h−1. Besides binning on TD only, we
also distinguish between different relative humidity classes
based on DPD, with DPD <3 °C marking high relative hu-
midity, DPD from 3 to 6 °C marking medium relative humid-
ity, and DPD >6 °C marking low relative humidity. This pro-
cedure divides the data into three approximately equal parts,
although obviously the drier climate in SFR leads to more
data in the low relative humidity class.

Finally, in some figures with many lines from different
models, results are slightly smoothed using a LOESS filter
(Chan et al., 2016) in order to make the figures less cluttered
and easier to understand (this is mentioned in the figure cap-
tion). Bootstrap uncertainties are only given when the statis-
tics can be derived in more than 90 % of the bootstrap sam-
ples. Percentiles are only computed when there are more than
20, 200, and 2000 data points for the 90, 99, and 99.9th per-
centiles, respectively. The distributions of dew point and dew
point depression based on rain intensity class are only com-
puted when there are more than 100 paired data points. Some
statistics are plotted outside the range for which the bootstrap
uncertainty could be established (note that the bootstrap uses
only 10 years instead of the 30 years in the full data set), but
obviously the values in this case are very uncertain.

An earlier analysis for the data from the Netherlands
showed that the far majority of extreme rainfall measure-
ments are connected to relatively large-scale events, where
rainfall occurs at many neighbouring stations (Lenderink et
al., 2017). Yet, small-scale events appear to have similar sta-
tistical distributions (see Fig. 3 of that paper). It is the fact
that there are many more hours with rainfall in large rainfall
events, which causes the domination of the type of convec-
tive events in the overall extreme statistics. In addition, most
rainfall extremes occur in conditions with substantial large-
scale rising motions, indicative of substantial synoptic-scale
forcings.

3 Results

3.1 Extreme statistics

Before analysing temperature and humidity dependencies,
we first examine the rainfall distribution derived from the
pooled data set for both regions in southern France, SFRA-
cent and SFR-med, and the Netherlands, NL. Plotted in Fig. 2
is the probability of exceedance derived from the pooled data
set over all stations and all time steps (including hours with-
out rainfall). The most striking result is that the ensemble of
RCMs has a much larger spread than the CPM ensemble. All
of the RCMs underestimate hourly rainfall for NL up to mod-
erate intense events (10 mm h−1). In the extreme tail, about
half of the models still substantially underestimate, whereas
the others catch up, even leading to an overestimation for
HIRHAM5. We note that these high extremes in the RCMs
could be related to unphysical grid-point storms (Chan et al.,
2014). In RACMO, however, we also observe that the re-
solved dynamics produce a convective-system-like up- and
downdraft when the atmosphere is very moist, producing a
convective rain system that is too large scale and too persis-
tent (see Fig. S8). For SFRA-cent, the situation is similar,
yet one model (HadRM3) appears to be surprisingly good,
except for a very few high-intensity events (>50 mm h−1).

CPMs generally show much more consistent results, with
the majority of the models close to the observations for inten-
sities below 20 mm h−1. However, except for UKMO-UM,
they appear to underestimate the extreme tail of the rainfall
distribution in SFRA-cent and SFR-med, a behaviour that is
also apparent for NL, with models not exceeding 50 mm h−1,
with the exception again of UKMO-UM, which is now too
extreme. The overestimation from UKMO-UM could be due
to overcompensation by resolved convection, resulting from
the absence of a shallow convection scheme. Summarizing,
in line with previous studies, CPM results show more con-
sistent behaviour across the multi-model ensemble, with ex-
treme rainfall distributions closer to the observations than for
the RCMs.

3.2 Dependencies conditional on rain intensity

Before discussing dependencies on rainfall intensity, we first
look at the climatological distribution of TD and DPD. Re-
sults for NL and SFR-cent are shown here in Fig. 3 (left
point labelled with “all” in graph). Since CPMs and RCMs
are, except for higher resolution, not fundamentally differ-
ent in many aspects of the parameterized processes in the
soil and in clouds, we do not necessarily expect better be-
haviour from the CPMs here. In addition, the larger inter-
mittency and higher rainfall intensity in CPMs may lead to
more runoff and drier soils (Berthou et al., 2020). This could
lead to negative biases in dew point temperature and positive
biases in dew point depression. Indeed, looking at the me-
dian TD for all hours and the median TD for wet events in
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Figure 2. Probability of exceedance derived from the pooled data of all stations for MJJAS. Grey bands around the observations for 1991–
2020 are 90 % uncertainty ranges estimated from bootstrapping.

SFR-cent, CPMs do not show better behaviour than RCMs,
with both HCLIM and UKMO-UM showing a dry bias cor-
responding to the low end of the RCM ensemble (Fig. 3).
This dry bias is fairly constant across the full TD distribution
in most, but not all, models, indicating that the variability in
TD is approximately correct (Fig. S2, panels on the left).

As expected, higher-intensity rainfall events occur on av-
erage with higher TD, gradually increasing with the extrem-
ity of the rainfall event; see Fig. 3 (left panel), showing the
median TD for different rainfall intensity classes. CPMs and
RCMs display rather similar behaviour in this respect. Typ-
ically, the slope of the line is parallel to the observed slope,
showing that a model with a dry mean bias typically also
produces extreme rainfall at too low an absolute humidity,
and vice versa. This general behaviour is also obtained by
investigating the full distributions of TD, instead of only the
median shown in Fig. 3 (see Fig. S2). There appear to be no
substantial systematic shifts in the anomaly of TD in the two
model ensembles with rainfall intensity class (all, wet, and
99th percentile). Thus, the differences in the extreme rainfall

statistics (Fig. 2) between the RCMs and CPMs cannot be
easily explained by differences in absolute humidity alone.

The observed dew point depression, DPD, shows a mod-
erate increase with rainfall intensity class for NL and a more
pronounced increase for SFR-cent, revealing that more in-
tense rain occurs on average at lower values of relative hu-
midity (Fig. 3). Both median and 80th percentile of the distri-
bution of DPD show similar results (middle and right panels).
For SFR-med (Fig. S1) there is almost no dependency, which
may be related to the more complex meteorology connected
to rainfall extremes in this region (Duffourg and Ducrocq,
2013). The CPM ensemble represents this dependency rather
well. But, particularly for SFR-cent, the spread is consid-
erable and outside of the observed uncertainty ranges, with
most CPMs simulating too high a DPD (too low a relative hu-
midity). The RCMs are clearly biased. Except for HadRM3,
they all require values of DPD that are too low (relative hu-
midity too high) to produce extreme events. This is the case
for all three regions studied (Figs. 3 and S1). Potential causes
of this behaviour – related to how these models represent
convection – will be elaborated on in the discussion.
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Figure 3. Median dew point temperature, TD, conditional on hourly rainfall intensity (left) and median (middle) and 80th percentile (right) of
the dew point depression, DPD: for all hours (that is, climatology, including dry hours); wet hours; and those with hourly rainfall exceeding
the conditional 50, 90, 95, 99, 99.5, and 99.9th percentiles. First two rows show results for NL, and last two rows show results for SFR-cent;
results of the CPMs are in the first and third row and RCMs in the second and fourth row. We use paired precipitation and TD time series (TD
is 4 h prior to rainfall). Statistics are only computed with more than 100 paired measurements, causing the shorter 10-year bootstrap samples
to give no data for the 99.9th percentile rain intensity class.
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To further investigate the robustness of this result, Fig. 4
shows the full distribution of the DPD anomaly compared
to the observations for rainfall events exceeding the 99th
percentile. The difference between the RCMs and CPMs is
again obvious; the RCMs are almost all substantially below
the zero line, reflecting the occurrence of rainfall extremes
at predominantly too high a relative humidity. The CPMs,
however, do not show this behaviour, and many of them even
seem to display a reversed dependency; they tend to produce
heavy rainfall at too low a relative humidity.

Understanding the underlying causes of the differences be-
tween the model-derived dependencies and observations is
difficult with such a statistical analysis. A model bias in the
DPD distribution for extreme events could be related to a bias
in the DPD climatology of the model but could also reflect
differences in how convective rainfall responds to relative hu-
midity. As an example, it could be that convective rainfall in
a model is only triggered in case the boundary layer is close
to saturation due to convection parameterization (Hoheneg-
ger et al., 2009). In this case, a model could have a mean bias
with too low a relative humidity but still too high a relative
humidity for extreme rainfall events.

Thus, we argue that by considering how the anomaly in
dew point and dew point depression depends on rainfall in-
tensity class we can get a hint towards the causal mecha-
nisms. Our conjecture is that when these anomalies depend
strongly on the intensity class, the role of parameterization
and convection-related mesoscale processes is important. In
contrast, when it is mainly independent, then other mecha-
nisms – for example, related to soil memory and runoff pro-
cesses – could be more relevant. But because a large fraction
of the total rainfall falls as “extreme” and because runoff is
a function of rainfall intensity, these two effects are intrinsi-
cally intertwined.

Acknowledging the subtleties in the interpretation de-
scribed above, the RCMs show a very clear shift to high rel-
ative humidity (low values of the dew point depression) for
high-intensity rainfall events (Figs. 3 and S1–S3). This be-
haviour is most strongly present in SFR-cent but also visible
for NL and SFR-med (Figs. 4 and S1–S3). There is one re-
markable exception to these results: the Met Office model
(HadRM3) is almost bias-free in this respect. For the CPMs,
however, we do not observe such a dependence on rainfall in-
tensity, suggesting that general model climatological biases,
for instance due to dry soils, are more important.

3.3 Dependencies conditional on absolute and relative
humidity

Humidity dependencies are studied in more detail using a
scaling analysis. Figure 6 shows that the highest percentiles,
the 99 and 99.9th, clearly reveal close to 2CC dependen-
cies (13 % per degree) on TD for the observations in NL and
SFR-cent. This behaviour is surprisingly robust for both ar-
eas, with almost the same behaviour obtained by analysing

the spring–mid-summer period (AMJJ) and late-summer–
autumn period (ASON) (Fig. S4). Following earlier stud-
ies, we use conditional percentiles – investigating rainfall in-
tensity preconditioned on the occurrence of rain – as these
show the most consistent behaviour; e.g. results show larger
bootstrap uncertainty bands and less consistent scaling rates
across the TD range using absolute percentiles. This is con-
sistent with rainfall intensity rather than rainfall frequency
being related to the moisture availability in the atmosphere.
But we note that the results using absolute percentiles are
quite similar, with only somewhat worse behaviour for the
lowest percentiles (Fig. S5; and see results in the discussion).

For the SFR-med, positive dependencies on dew point
temperature are obtained, but these dependencies are less ro-
bust, and there are quite strongly varying scaling rates with
dew point temperature (Fig. 5) as well as seasonality effects
(Fig. S4). The indicates that local near-surface humidity is
not the main source of moisture (or not correlated well with
it) for rainfall (e.g. moisture at higher levels may be more im-
portant), or other factors (e.g. specific dynamical circulation
patterns) are important for controlling rainfall intensity. This
may reflect the more complex topography and associated me-
teorology of the region. Given the less reliable scaling results
for SFR-med, we hereafter focus our analysis on results from
NL and SFR-cent.

For further investigation and comparison of model results
to the observations, we use the 99th percentile, which is a
compromise between analysing sufficiently extreme events
and still containing sufficient data for a robust estimate. For
this percentile we further classify the rainfall data based on
DPD as a measure of relative humidity (see methods). In gen-
eral, scaling rates – the rate of increase in intensity per degree
of TD – are rather similar for the different DPD classes. Re-
sults for SFR-cent (Fig. 6) and NL (Fig. S10) all show a de-
pendency close to the 2CC rate, with only small variations
with dew point temperature.

The CPMs generally reproduce the observed dependen-
cies rather well (Fig. 6, upper panels, and Fig. S10). Most
CPMs tend to overestimate the rainfall intensities for SFR-
cent and NL; this is most prominent for high relative humidi-
ties. The RCMs reveal much more diversity in scaling be-
haviour (Fig. 6, lower panels). Generally, their hourly rain-
fall amounts are substantially too low. But some model re-
sults appear to be reasonable; for example, HadRM3 overall
shows good comparison with observations. Yet, other RCMs
show very divergent behaviour. HIRHAM5 is an (extreme)
example. The model has reasonable dew point temperature
scaling for high relative humidity but is far off for low rela-
tive humidity (consistent with the erroneous relative humid-
ity dependency of HIRHAM5 shown in Fig. 4). This inability
to reproduce the correct TD scaling for low relative humidity
is apparent in most RCMs; for instance, for SFR-cent most
RCMs show hardly any dependency between 10 and 20 °C
(RACMO, RCA, REMO, HIRHAM5). As relative humidity
is expected to decrease in the future climate, this could im-
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Figure 4. Anomalies with respect to the observations (1991–2020) of the distribution of dew point depression, DPD, for events exceeding the
99th percentile of rainfall intensity. Plotted is the delta between model and observations as a function of the cumulative probability, similar
to a quantile difference plot.

ply that expected increases in rainfall extremes are underes-
timated in these models.

To summarize these findings, we plotted rainfall amounts
at 15 °C against the scaling coefficient for the 99th percentile
in observations (black, with estimates of uncertainty from the
bootstrap), RCMs (open triangles), and CPMs (solid squares)
(Fig. 7). These results are derived from fitting a linear de-
pendency to the logarithmic of precipitation between 10 and
20 °C dew point temperature and plotting the fit coefficient
against the value at 15 °C. For the observations of NL and
SFR-cent this is rather accurate (and resulting errors are
small) since the scaling lines in Fig. 5 are almost linear in
that dew point temperature range. For all relative humidity
classes – all, low, and high relative humidity – and both re-
gions, scaling rates are close to 2CC in the observations. In
addition, rainfall intensities are higher for low relative hu-
midity as compared to high relative humidity, typically in-
creasing from 10 to 15–17 mm.

The CPMs tend to slightly overestimate the scaling rates
for high relative humidity and the moister NL area. Con-

versely, they tend to underestimate scaling rates for low rela-
tive humidity, as visible for SFR-cent. Overall, however, scal-
ing rates are rather accurate in the CPMs. There is a small
overestimation of the intensity of rain; this could be partly
related to an underestimation of rain frequency, as will be dis-
cussed below. But generally CPMs also have updrafts forced
to occur at too large a scale (the kilometre grid scale) due to
insufficient turbulent mixing, also causing an overestimation
of the rainfall intensity.

Compared to the CPMs, the results derived from the
RCMs are clearly worse. Scaling rates are on average accu-
rate for high humidity, as visible for NL. But, as soon as the
relative humidity drops, scaling rates start to become too low;
this is most prominent for SFR-cent, where several RCMs
display almost no dependency on dew point temperature. We
note that the CPMs tend to struggle here too, with average
dependencies close to the CC rate. But overall, the CPMs are
clearly in better agreement with observations and have lower
inter-model spread.
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Figure 5. Scaling of hourly observations of precipitation extremes on dew point temperature, TD, with cyan, blue, and magenta lines showing
the 90, 99, and 99.9th percentiles based on wet hours only. Dotted black and red lines show a dependency of 1 and 2 times the CC relation.
Horizontal lines at the bottom of a panel show (from lowest to highest) the dew point temperature range for all hours (black); hours with rain
(blue); and hours with rain exceeding 5 (orange), 20, (red) and 40 (magenta) mm. The line shows the 1 to 99th percentile range and markers
indicating the 5, 25, 50 (square), 75, and 95th percentiles. Grey bands are uncertainty estimates from the bootstrapping procedure. Loess
smoothed lines are plotted for a relevant TD range (orange line, showing the 1–99th percentile range of TD for hourly rainfalls exceeding
5 mm), and uncertainty bands are plotted where more than 90 % of the bootstrap samples contain sufficient data (plots for the models instead
of observations are given for NL and SFR-cent in the Supplement).

As an example of where the CPMs improve on the RCMs,
we plotted the difference in rainfall intensity between low
and high relative humidity as a function of TD (Fig. 8). In the
observations, we obtained for NL and SFR-cent substantially
more rainfall for low relative humidity in the TD range be-
tween 10 and 20 °C; peaking at around 15 °C, where hourly
rainfall is 70 %–100 % more intense for low relative humid-
ity. Most of the CPMs capture this intensification of precipi-
tation for lower relative humidity, but they also tend to reach
peak values at too low a TD. In contrast, the RCMs do not
consistently capture an intensification with lower relative hu-
midity (with the exception again of HadRM3).

Besides rainfall intensity, which is conditional on the oc-
currence of rainfall, the frequency of rain is important as
well. As expected, the frequency of rainfall is much higher
for high relative humidities (of around 10 %–15 %) than for
low relative humidities (1 %–4 %) (Fig. 9; note the difference
in scale). The wet hour frequency for SFR-cent and NL is
surprisingly similar for high relative humidity, with values
between 0.1 and 0.14 (Figs. 9 and S12). This is not the case
for low relative humidity, where the frequency of rain events
is lower in SFR-cent than NL, possibly related to the lower
relative humidity conditions in SFR-cent.

The CPMs generally reproduce the observed rainfall fre-
quencies rather well (Fig. 9). The CPMs tend to underesti-
mate the frequency of rainfall for high relative humidity, par-
ticularly for the high TD range (except for AROME). For low
relative humidity they are approximately correct (except for
COSMO in SFR-cent, which appears to underestimate). The
RCMs clearly show more divergent behaviour. In general,

they strongly overestimate the frequency of rainfall (Fig. 9)
– a common deficiency of this type of model (Berthou et al.,
2020; Ban et al., 2021; Lucas-Picher et al., 2021).

The dependence of the frequency of rainfall on relative hu-
midity could have several causes, partly related to relative
humidity directly affecting rain processes but also to con-
founding large-scale atmospheric conditions. Higher lifting
condensation levels and higher values of convective inhibi-
tion associated with lower relative humidity could prevent
an updraft from reaching its level of free convection and
therefore suppress convective showers. However, by select-
ing low relative humidity, large-scale atmospheric conditions
are favoured that are more hostile to the development of con-
vective showers. For instance, high-pressure systems cause
low relative humidity as well as conditions in which showers
are unlikely to develop, due to a lack of large-scale mois-
ture convergence or stable tropospheric temperature profiles.
The biases in model behaviour therefore cannot be easily at-
tributed to the local cloud processes or to the confounding
large-scale factors. Nevertheless, the overall negative bias in
the simulation of the frequency of rainfall in the CPMs for
high relative humidity, in particular for high TD, suggests
that CPMs have difficulties in triggering convection in cases
where the surface is relatively cold – noting that high relative
humidity implies a cold surface temperature for a given TD –
and therefore for cases where the surface forcing is relatively
weak.

The biases in the frequency of occurrence of rainfall may
also affect results from the scaling analysis (Schär et al.,
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Figure 6. Scaling of the 99th percentile of hourly precipitation based on, from left to right, dew point temperature, dew point temperature
for hours with low relative humidity, and dew point temperature for hours with high relative humidity. Results are for SFR-cent, with CPMs
in (a)–(c) and RCMs in (d)–(f). Lines filtered with LOESS filter (span= 0.5). Results for NL in Fig. S10.

2016). We investigate this further in the discussion but note
here that the main conclusions remain the same.

3.4 Regional differences

Finally, we inspect differences between the extreme rainfall
statistics in SFR-cent and NL. In addition to correctly repre-
senting humidity dependencies, a good representation of the
systematic differences between these two contrasting regions
adds confidence to the trustworthiness of these models.

Before looking at the rainfall distribution differences be-
tween NL and SFR-cent, it is useful to inspect the differences
in absolute and relative humidity in more detail. In general,
dew point temperatures are slightly higher in SFR-cent as
compared to NL; the climatological value is approximately
1 °C higher, and this difference decreases to almost zero for
the most intense rain events (Fig. 3, noting the difference in
slope, and also Fig. S13). The differences in relative humid-
ity are more pronounced. The median dew point depression
is approximately 3–4 °C for the most extreme rainfall events
in NL, whereas it is 5–6 °C for SFR-cent, with the largest dif-

ference for the most extreme rainfall. Thus, rainfall extremes
in SFR-cent occur at slightly higher humidity and substan-
tially lower relative humidity as compared to those in NL.

The difference in (extreme) rainfall is measured by
DSFR-cent−NL, which is defined as the fractional difference
(in %) in hourly extreme rainfall (as a function of the prob-
ability of exceedance) with respect to the value for the NL.
We note that results beyond a probability of exceedance of
∼ 10−4 (∼ 20 mm h−1) are less certain, as shown by the grey
shaded areas based on the bootstrap procedure. Values for
DSFR-cent−NL are positive for a probability of exceedance
of less than 10−2, showing that rainfall extremes in central
southern France produce 10 %–30 % more rain in an hour
than in the Netherlands. Based on the differences in humid-
ity it appears likely that this is partly explained by the higher
humidity values and partly by the lower relative humidity.
In particular, for the most extreme rainfall hours, the latter
could be more important.

The CPMs capture the observed behaviour in
DSFR-cent−NL well but are slightly too low for inter-
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Figure 7. Intensity at 15 °C versus scaling coefficient for the 99th percentile of hourly precipitation. Both are derived from a linear fit to
log(P ), fitted between 10 and 20 °C dew point. From left to right, all data (a, d) and data selected on high RH (b, e) and low RH (c, f) for NL
(top panels) and SFR-cent (lower panels). CPM results are shown by solid squares, whereas RCM results are open triangles, and colouring
is the same as Fig. 6.

mediate values of the probability of exceedance between
10−2 and 10−4, yet often within the uncertainty margins
of the observations. For rarer events, with a probability
of exceedance less than ∼ 10−4, modelled DSFR-cent−NL
values are (generally) 10 %–20 % too low and are outside
the uncertainty margins of the observations. We believe this
to be primarily caused by the lower relative humidity in
SFR-cent and the general tendency (small, but consistent) of
the CPMs to underestimate rainfall extremes for low relative
humidity.

The RCMs, on the other hand, display more diverse be-
haviour and are generally further outside the uncertainty mar-
gins of the observations. However, the average across the
RCM model ensemble does not appear to be worse than the
CPM ensemble. This is at odds with the expectation that the
reduction of rainfall intensity to decreases in relative humid-
ity being too strong should lead to a more pronounced un-

derestimation of DSFR-cent−NL as compared to the CPMs.
We could not find a clear reason to explain this finding. It
appears that DSFR-cent−NL is determined by a combination
of different factors: the rain frequency and how it depends
on relative humidity and other factors, the humidity depen-
dencies of rain intensity, and the differences in underlying
climatology. The interplay between these factors is complex,
and most RCMs appear to suffer from compensating errors,
which are hard to disentangle.

As one example of this complexity, we discuss results
from HIRHAM5. By all measures, HIRHAM5 has a very
strong erroneous relative humidity dependency, only produc-
ing extreme rainfall for high relative humidity. Given the
lower relative humidity of SFR-cent, one would therefore ex-
pect DSFR-cent−NL to be negative, but in fact values close to
neutral are obtained. Part of this could be explained by the
finding that, despite a mean negative bias, dew point temper-
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Figure 8. Difference in intensity between low and high relative humidity (%) as a function of dew point temperature for SFR-cent (results
for NL in Fig. S11). Colours are the same as Fig. 6.

atures are overestimated in the upper range of the dew point
temperature distribution by up to 2–4 °C (Fig. S2, and also
visible in Fig. 6 with scaling extending to much higher dew
point temperatures). Similarly, the dew point depression is
underestimated (Fig. S14). Thus it appears that compensat-
ing effects play a role here, and we speculate that these may
be related to soil processes and soil memory and how these
interact with rainfall.

4 Discussion

Different measures have shown that the sensitivity of hourly
extremes to relative humidity is essentially different in RCMs
compared to CPMs and that CPMs behave (much) more real-
istically in this respect. Lower relative humidity tends to lead
to stronger rainfall extremes compared to high relative hu-
midity: extremes co-occur on average with lower relative hu-
midity (Fig. 3), and at a given dew point temperature (given
absolute humidity) rainfall intensities are higher for low rel-
ative humidity (Fig. 8).

It could be that these results are (partly) caused by a sta-
tistical effect caused by taking conditional percentiles. One
may argue that low relative humidity suppresses showers
when the large-scale conditions – for example, convergence
at large scales – are not very favourable, taking light showers
out of the rainfall distribution but hardly affecting the occur-
rence of heavy showers. In that case, the statistics of the ex-
tremes could still be the same, but the conditional percentiles

would give an artificial increase (Schär et al., 2016). Also,
this effect could play a role in explaining the differences be-
tween the models and the observations as the RCMs have
large errors in the frequency of rain.

For this reason, we also considered the unconditional per-
centiles. The disadvantage of unconditional percentiles is
that scaling results become less robust, more dependent on
the percentile, and more variable over the dew point tem-
perature range (Figs. S5 and S15). But the difference is not
very large and is most pronounced for the lowest percentiles
where the bootstrap sampling gives wider uncertainty esti-
mates. The latter suggests that uncertainty in large-scale cir-
culation conditions, which are captured by the resampling
procedure, mostly affects the rain frequency, leaving the con-
ditional intensity distribution unaffected.

Taking the 99.9th percentile (roughly corresponding to
the 99th percentile based on wet hours only), we still find
that low relative humidity leads to stronger precipitation ex-
tremes. Yet, the degree of the effect is substantially reduced.
In general, we now find that the extremes are 10 %–20 %
more intense in the case of low relative humidity (Figs. S15–
S17) – far below the 50 %–100 % from estimated from the
conditional percentiles. However, one should note that we
now likely suffer from a reverse compounding effect; low
relative humidity is likely to co-occur with atmospheric high-
pressure systems. Thus, by comparing low with high rela-
tive humidity samples, we also sample the influence of large-
scale circulation, for low relative humidity, likely leading to
a more hostile environment for convection to occur with less
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Figure 9. Fraction of wet events as a function of dew point temperature, TD, for all hours (a, d), high relative humidity (b, e), and low
relative humidity RH (c, f) (note the difference in plotted range between low and high relative humidity). Lines filtered with LOESS filter
(span= 0.3).

moisture convergence at larger scales and more stable lapse
rates. Thus, we think that this estimate is a lower bound
and that in reality – comparing only systematic differences
in near-surface relative humidity but otherwise similar to
other atmospheric drivers like stability and large-scale con-
vergence (Lenderink et al., 2017) – the sensitivity is in be-
tween the high estimate derived from the conditional rainfall
distribution and the low estimate presented here. This col-
laborates also with the finding that the most extreme events
co-occur with lower relative humidity (Fig. 3).

Physically, several processes could lead to an enhance-
ment of rainfall extremes at lower relative humidity. At a
fixed value of the surface dew point temperature, lower rel-
ative humidity implies higher surface temperatures, so low
relative humidity is likely associated with atmospheric con-
ditions with stronger heat forcing from the surface and higher
values of convection inhibition (CIN). Likewise, lower rel-
ative humidity could be associated with mesoscale circula-
tions transporting moisture to drier regions (Klein and Tay-
lor, 2020; Hohenegger and Stevens, 2018). Lower relative

humidity could lead to stronger cold pool dynamics because
the deeper and drier (in terms of relative humidity) bound-
ary layer causes more evaporation of rainfall (Lochbihler et
al., 2021). The growth and collision of cold pools have been
shown to play an important role in converging moisture and
triggering new precipitation cells, and this process could lead
to bigger and more vigorous cloud systems (Lochbihler et
al., 2021; Haerter and Schlemmer, 2018). Also, it has been
argued that deeper boundary layers lead to wider updrafts at
the cloud base promoting stronger convection (Mulholland et
al., 2021)

Conversely, low relative humidity could lead to weaker ex-
treme rainfall as entrainment of dry air into the updraft mo-
tions could lead to strong cloud erosion and deep and dry
boundary layers could lead to substantial evaporation of rain
before it reaches the ground (Fowler et al., 2021a; Derbyshire
et al., 2004). Also, the atmosphere may become too dry, even
to trigger moist convection, if the lifting condensation level
is not reached or values of CIN are too high. Since, in the
limit of relative humidity approaching zero, there will be no
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Figure 10. Difference in hourly rainfall between SFR-cent and NL. The difference is the percentage difference (SFR-med minus NL) as a
function of the probability of exceedance estimated from pooling all stations within the region and for the period MJJAS.

moisture and therefore no rainfall, these processes that act to
weaken extreme rainfall must start to dominate at a certain
(low) relative humidity value.

The causes of the relatively poor performance of the
RCMs in representing the relative humidity dependencies are
complex but likely the consequence of the way the convec-
tion scheme interacts with its environment and lack of ability
to capture local-scale dynamics – with the parameterizations
essentially treating this as a 1D problem, whereas, since there
is limited moisture available in an atmospheric column, it is a
3D problem where moisture convergence is essential to sus-
tain high rainfall rates. A number of processes leading to the
enhancement of rain extremes with lower relative humidities
are not parameterized or are poorly resolved in most RCMs,
such as the interactions between cold pools. Many mass-flux-
based convection parameterizations use strong assumptions
on the mass of air entering at cloud base, the lateral entrain-
ment and detrainment of air into the cloud, lag memory from
one time step to the next, and often suffer from numerical
noise (Lenderink et al., 2004; Hohenegger et al., 2009; de
Rooy and Pier Siebesma, 2010; Yano et al., 2013). Although
we cannot pinpoint a specific process being misrepresented
in parameterizations or under-resolved at low resolution, it
may be worthwhile using these relations to guide and eval-
uate further convection parameterization development, in-
cluding upcoming schemes developed using machine learn-
ing techniques (Dwyer and O’Gorman, 2017; Gentine et al.,
2018)

Further, we question whether differences in the humidity
dependencies are reflected in the spatial differences between
NL and SFR-cent. The climate in SFR-cent is most compara-
ble to NL, with extreme rain occurring primarily in the sum-
mer months, but it is characterized by slightly higher absolute
humidity (<1 °C higher TD) and considerably lower relative
humidity (2–4 °C higher DPD). It is clear that CPMs show
much more realistic humidity dependencies (by all metrics
discussed here) with much smaller spread as compared to the
RCMs; they are also more realistic and show less spread in
simulating the difference in extreme rain statistics between
France and the Netherlands.

All CPMs underestimate the difference in extremes be-
tween SFR-cent and NL. This is likely related to the finding
that they underestimate the sensitivity to humidity when the
relative humidity is low. The dry bias in climatology – with
too low a relative humidity in most CPMs – could also play
a role here. It may well be that low relative humidity is still
enhancing rainfall extremes for the Netherlands, while the
lower relative humidity in SFR starts to limit the simulation
of rainfall extremes in the CPMs. Here, we also emphasize
the importance of the land surface scheme and how it inter-
acts with convective processes, for instance, how convection
reacts to surface heterogeneities and associated mesoscale
circulations and how rainfall is divided into soil water storage
and runoff (Prein et al., 2015; Halladay et al., 2024).

Lower relative humidity may also be linked to larger tem-
perature contrasts. Higher rates of evaporation in deep dry
boundary layers associated with low relative humidity could
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lead to strong temperature drops. Indeed, sub-selecting rain-
fall based on the temperature change between a few hours
before and just after the rain leads to scaling rate satisfy-
ing 2CC for when the temperature drops more than 2 °C but
much lower rates for a temperature rise (Fig. S18). However,
larger temperature drops could also be related to stronger at-
mospheric forcing at larger scales, for example related to the
passage of a cold front. This finding corroborates Barbero et
al. (2018), where heavier rainfall is associated with stronger
temperature drops in the hours preceding the event.

In this study, we did not separate hourly rainfall data into
rainfall events (such as in Lenderink et al., 2017; Visser et
al., 2021). Recent research showed that an event-based anal-
ysis could increase the robustness of scaling (Visser et al.,
2021). For instance, they found that the typical “hook shape”
from positive to negative scaling rates at high temperatures
(and low relative humidity) found in many studies can be at-
tributed to a reduction of the rainfall event duration, while
event peak intensities still increase with temperature. Thus,
it would be interesting to repeat this analysis based on rain-
fall events.

5 Conclusions

We evaluated five CPM and seven RCM simulations – all
driven by reanalysis data – using hourly rainfall observations
over the Netherlands and two regions in southern France
(SFR-cent covering the central inland, SFR-med close to the
Mediterranean Sea). We investigated extreme rainfall statis-
tics as well as their sensitivities to absolute and relative hu-
midity. Interestingly, many of the sensitivities we derived
from the observations are similar for the different regions.
This is in particular true for NL and SFR-cent, where we
found a very robust super CC scaling rate of 13 % per degree
over a large range in dew point temperatures.

We have shown that, on average for a model ensemble,
CPMs have much better extreme hourly rainfall distributions
in comparison to RCMs, in agreement with earlier results.
Importantly, CPMs more faithfully reproduce dependencies
of hourly rainfall extremes on absolute humidity (as mea-
sured by dew point temperature) and relative humidity (as
measured by dew point depression) than RCMs. RCMs show
much greater spread and rainfall intensities that are generally
too low, often (but not always) underestimating the depen-
dency on dew point temperature, and are generally (except
for HadRM3) unable to reproduce the observed dependency
of rainfall extremes on relative humidity.

The most striking result is the sensitivity of hourly rainfall
to relative humidity, with all measures showing that lower
relative humidity leads to more intense rainfall for the cli-
mate conditions in NL and the inland part of southern France
(SFR-cent). This is particularly relevant in a climate change
context as widespread decreases in relative humidity are ex-
pected in future summers. The RCMs (with exception of one)

cannot reproduce the observed extreme rainfall increase with
decreasing relative humidity and are therefore unreliable for
extreme rainfall projections in a climate change setting. The
CPMs qualitatively reproduce the correct sensitivity to rela-
tive humidity but still appear to underestimate the observed
enhancement of rainfall extremes with lower relative humid-
ity. They are therefore more reliable but may still underesti-
mate climate change effects on rainfall extremes.

In short, our results support the greater trustworthiness of
CPM results as compared to RCMs in a climate change set-
ting. However, we also note deficiencies obtained in most
CPMs: in general too low a relative humidity, a negative bias
in rain frequency for high relative humidity with likely weak
forcing from the surface, and biases in differences for the
most extreme hourly rainfall between the Netherlands and
southern France. By comparing models with the observations
using the metrics describing absolute and relative humidity
dependencies as proposed in this paper, we can systemati-
cally improve climate models and obtain better future pre-
dictions of rainfall extremes.
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