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Abstract. Process-based lake temperature models, formu-
lated on hydrodynamic principles, are commonly used to
simulate water temperature, enabling one to test different
scenarios and draw conclusions about possible water quality
developments or changes in important ecological processes
such as greenhouse gas emissions. Even though there are
several models available, a systematic comparison regarding
their performance is currently missing. In this study, we cali-
brated four different one-dimensional (1D) lake temperature
models for a global dataset of 73 lakes to compare their per-
formance with respect to reproducing water temperature, and
we estimated parameter sensitivity for the calibrated param-
eters. The parameter values, model performance, and param-
eter sensitivity differed between lake models and between
clusters that were defined based on lake characteristics. No
single model performed best, with each model performing
better than the others in at least some of the lakes. From the
findings, we advocate the application of model ensembles.
Nonetheless, we also highlight the need to further improve
weather forcing data, individual models, and multi-model en-
semble techniques.

1 Introduction

The global rise in water temperatures in lakes and reservoirs
(O’Reilly et al., 2015; Pilla et al., 2020) is affecting water
quality and ecosystem services worldwide in multiple ways,

e.g., by promoting the formation of harmful cyanobacteria
blooms (Huisman et al., 2018), modifying lake ice phenol-
ogy (Knoll et al., 2019), affecting ecosystem functioning
(Kattel, 2022), or increasing deep-water oxygen depletion
(Jane et al., 2023). Water temperature is a “master variable”
in aquatic biogeochemical cycling, involved in processes in-
cluding the kinetics of metabolism (Staehr et al., 2010) and
greenhouse gas emissions (Audet et al., 2017). Moreover,
the vertical temperature structure controls mixing rates be-
tween water layers and modifies the position of organisms in
the water column as well as the light and nutrient conditions
that they experience. As such, global future estimates of var-
ious water quality and ecological processes in inland waters
should be based on an accurate model representation of the
present and future conditions of lakes’ temperatures and ther-
mal structures that addresses the variability in lake character-
istics worldwide. Recent continental- and global-scale mod-
eling efforts have presented convincing evidence of the large
impact of climate warming on lake temperatures (e.g., Wool-
way et al., 2021b; Golub et al., 2022). However, lake models
can only be calibrated for comparatively few lakes for which
in situ, depth-resolved observations exist. Furthermore, there
is a knowledge gap on how model performance is affected by
different lake-specific characteristics and how models could
be parameterized based on the lake characteristics when ap-
plied on a global scale. At the moment, it is common in
global lake modeling studies to apply models without lake-
or region-specific calibration (e.g., Woolway et al., 2021a;
Vanderkelen et al., 2020), and this adds considerable uncer-
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tainty to projections of climate change impacts on lake water
temperatures.

Vertical one-dimensional (1D) lake models, based on hy-
drodynamic principles, are efficient tools to simulate water
temperature dynamics for lakes in which the vertical density
gradient is more pronounced than the horizontal one. Pic-
colroaz et al. (2024) gave an extensive review of the theo-
retical considerations for water temperature modeling across
different spatial dimensions and noted the frequent use of 1D
models in climate simulations due to their low computational
costs and adequate performance. Previous studies have indi-
cated that optimal model parameter values may depend on
certain lake characteristics, which could help to obtain more
accurate fits in global applications. For instance, an appli-
cation of the 1D physical lake model GLM (General Lake
Model; see Hipsey et al., 2019) with a sensitivity analysis of
nine model parameters across multiple lakes suggested that
the sensitivity of a subset of parameters depended on charac-
teristics such as lake depth, water transparency, and residence
time (Bruce et al., 2018). In a multi-lake application of the
1D physical model ALBM, Guo et al. (2021) highlighted the
relationships between the relative influence of model param-
eters and lake characteristics such as latitude and lake depth.
Extending beyond physical variables, Andersen et al. (2021)
performed an extensive, global sensitivity analysis on the
1D coupled physical–biogeochemical model GOTM-FABM-
PCLake in three Danish lakes and found that parameter sen-
sitivity may be strongly linked to lake morphology in shallow
lakes, including a potential feedback of biogeochemical com-
ponents on temperature (such as light absorption by organic
matter).

In this study, we applied four 1D physical lake models to
a set of 73 lakes for which in situ water temperature obser-
vations were available, as part of the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP; Golub et al., 2022),
using meteorological forcing from bias-corrected reanalysis
data. The models were calibrated in a consistent manner, and
we report on the overall model performance, highlight con-
sistent patterns in model performance and parameter values,
and the assessed parameter sensitivity. These calibrations
were in preparation for ISIMIP climate impact simulations
for the local lakes sector (see the Code and data availability
statement). This study approach expands on previous studies
through testing the sensitivity of multiple models simultane-
ously by applying an identical methodology for calibration
and sensitivity analysis implemented over a larger number of
lakes. Such an in-depth model evaluation on a global scale
can accomplish the following:

1. point towards systematic issues and biases in 1D physi-
cal lake models when forced by meteorological reanal-
ysis data;

2. reveal patterns in model performance driven by geo-
graphic location and/or lake characteristics;

3. test if an optimal model for specific lake types exists, or
alternatively, advocate for an ensemble approach;

4. identify a set of highly sensitive parameters for calibra-
tion.

This will expand our knowledge of the accuracy of water
temperature modeling on a global scale; improve our under-
standing of the relationship between lake characteristics and
model parameterization, thereby providing practitioners with
advice on how to best calibrate certain lake types; and, po-
tentially, lead to more accurate model application. As there
is a growing interest in global estimates of water quality and
greenhouse gas emissions (e.g., Kakouei et al., 2021; Jansen
et al., 2022; Jane et al., 2023; Zhuang et al., 2023), which of-
ten rely partially on simulated water temperature and thermal
structure, we need to ensure that the underlying global ther-
mal information is as accurate as possible and that the level
of uncertainty is known.

2 Methods

2.1 ISIMIP local lakes

ISIMIP – the Inter-Sectoral Impact Model Intercomparison
Project – is a framework for consistently projecting the im-
pacts of climate change across affected sectors and spa-
tial scales (https://www.isimip.org/, last access: 20 February
2025; Frieler et al., 2024). The ISIMIP Lake Sector considers
the impact of global warming on two categories of lakes: “lo-
cal lakes” and “global lakes” (Golub et al., 2022). The local
lakes were used for this study: 73 lakes for which observed
in situ water temperature data and hypsographic information
are available (Table S1 in the Supplement). The resolution
(vertical and temporal) of the observed data and the detail of
the hypsograph varied for each lake. For all but two lakes,
data covered a period of at least 1 year; for 75 % of the cases,
they covered at least 5 years. Profiles (three unique depths or
more) were provided for all but four lakes, and all lakes had
more than 100 unique observations (Fig. S1 in the Supple-
ment). A link to the observed data and hypsographs is pro-
vided in the Code and data availability statement. No inflow
or outflow data are available, so we assumed a constant water
level throughout the simulation.

For the forcing of the models, we used the GSWP3-W5E5
reanalysis dataset, which combines the GSWP (Kim, 2017;
Dirmeyer et al., 2006) and the W5E5 datasets (Lange et al.,
2021; Cucchi et al., 2020). The meteorological forcing, avail-
able at daily resolution, for each lake was extracted by the
ISIMIP organizational team for the grid cells (at a spatial res-
olution of 0.5°× 0.5°) in which each lake was located (Golub
et al., 2022). The following meteorological variables were
used to drive the lake simulations: air temperature, relative
humidity, precipitation, shortwave radiation, longwave radi-
ation, surface air pressure, and wind speed.
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Figure 1. Map showing the locations and grouping derived by K-
means clustering of the 73 lakes included in the study.

Initial conditions were estimated from observed water
temperatures. Therefore, all available data in a period of days
(depending on data availability) before and after the start date
of the simulation were taken and averaged to set the initial
temperature profile. All simulations used a spin-up period of
1 year.

2.2 Lake clustering

In order to analyze the impact of lake characteristics (Ta-
ble S2) on the model performance and parameter sensitivity,
we used K-means clustering to group the 73 lakes (Fig. 1).
Prior to clustering, we log-transformed the elevation, mean
depth, maximum depth, and lake area and then applied a z-
score transformation. We created a silhouette plot to deter-
mine the optimal number of clusters, which was two. How-
ever, we decided to use five clusters instead, as this gave
a more meaningful representation of different lake types
(Fig. S2).

2.3 The 1D physical lake models

In this study, four vertical lake temperature models with vary-
ing algorithms and calculations regarding vertical tempera-
ture and heat transport were used to explore the model sen-
sitivity around climate change projections in lakes: the two-
layer (0.5D) model FLake (Mironov, 2008, 2005), the 1D in-
tegral energy model GLM version 3.1.0 (Hipsey et al., 2019),
and the 1D turbulence-based models GOTM lake-branch ver-
sion 5.4.0 (Burchard et al., 1999; Umlauf et al., 2005) and
Simstrat version 2.4.1 (Goudsmit et al., 2002; Gaudard et
al., 2019). The models were set up and run using the La-
keEnsemblR R package (Moore et al., 2021) to standardize
the approach. We refer to Piccolroaz et al. (2024) for detailed
information regarding general concepts in water temperature
modeling. In this section, we provide a summarized overview
of the main differences in process description between these
four models. The models were applied in an identical way,

with the exceptions that FLake was used to simulate up to the
mean depth instead of the maximum depth (in line with as-
sumptions in the model) and that cloud cover was calculated
from the meteorological variables using the LakeEnsemblR
functions for the GOTM model.

The vertical 0.5D (i.e., a box model but with two sep-
arate boxes for upper and lower water layers) lake model
FLake was originally designed for weather prediction stud-
ies, in which a large-scale climate model is coupled to mul-
tiple small-scale lake models. To achieve computational effi-
ciency, FLake simulates the temperature dynamics of an up-
per completely mixed layer and a thermocline layer (com-
monly also known as metalimnion), while neglecting temper-
ature dynamics below the latter layer (Mironov, 2005). The
vertical temperature evolution itself is parameterized based
on the self-similarity concept of the vertical temperature pro-
file (Kitaigorodskii and Miropolsky, 1970). This observed
and theoretically explained concept states that a dimension-
less temperature profile in the thermocline can be replicated
using a “universal” function of the dimensionless depth ζ :

θs(t)− θ(z, t)

1θ(t)
=8θ(ζ ) , (1)

where t and z are the dimensions over time and depth, respec-
tively. In Eq. (1), θs is the absolute temperature of the upper
completely mixed layer, 1θ(t) is the absolute temperature
gradient across the thermocline layer, and 8θ is the univer-
sal function of the dimensionless depth. The dimensionless
depth can be parameterized as follows:

ζ =
z−h(t)

1h(t)
, (2)

where h(t) is the depth of the upper completely mixed layer
and 1h(t) is the depth difference between the mixed-layer
depth and the bottom of the metalimnion. Note that, in this
study, we set the bottom metalimnion depth to each lake’s
mean depth. Applying this concept to temperature evolution,
FLake parameterizes both layers (upper completely mixed
and thermocline layer) as follows:

2=

{
θs, if 0< z < h
θs − (θs − θb)8(ζ ), if h≤ z ≤Dlake

, (3)

where Dlake is the maximum depth (Mironov, 2005). Sim-
ilar to the other models, the upper completely mixed layer
receives the energy fluxes from the atmosphere:

h
dθs
dt
=

1
ρwcw

(Qs+ Is−Qh− I (h)) , (4)

where ρw is water density, cw is heat capacity, Qs is the
turbulent heat flux at the surface, Is is the surface short-
wave radiative flux, Qh is the heat flux from the bottom
to the upper layer, and I (h) is the radiative shortwave flux
through the water column (Mironov, 2005). We can state the

https://doi.org/10.5194/hess-29-1183-2025 Hydrol. Earth Syst. Sci., 29, 1183–1199, 2025



1186 J. Feldbauer et al.: Large-scale lake model calibration

sum of these individual heat fluxes as the net heat flux ex-
change (Hnet). Although FLake’s numerical implementation
combines empirical formulations with physical processes, it
has demonstrated good performance for surface water tem-
perature modeling as well as ice phenology investigations
(e.g., Mallard et al., 2014) and is commonly applied to global
studies (Woolway and Merchant, 2019).

GLM, GOTM, and Simstrat are vertical 1D lake models
in which temperature evolution is quantified at every time
step over a vertical grid. Conceptually, the models differ re-
garding how the vertical grid is configured: GLM applies a
flexible structure, whereas the others use a fixed grid with the
possibility of refinements. Nonetheless, all three models are
based on the vertical water temperature equation, which – in
its general form – can be stated as follows:

∂T

∂t
=−

1
ρcp

∂I

∂z︸ ︷︷ ︸
(1)

+
Hsed

Aρcp

∂A

∂z︸ ︷︷ ︸
(2)

+
ST

ρcp︸︷︷︸
(3)

+
1
A

∂

∂z

(
ADTz

∂T

∂z

)
︸ ︷︷ ︸

(4)

. (5)

Here, the change in temperature T over time depends on four
terms on the right-hand side: (1) the internal heat genera-
tion due to shortwave solar radiation I , (2) a geothermal heat
flux Hsed that acts over an area A, (3) an internal heat source
term ST , and (4) a turbulent diffusive term that includes the
eddy-diffusivity coefficientDTz (Piccolroaz et al., 2024). The
layer adjacent to the atmosphere–water interface receives a
net heat flux exchange similar to the one described in Eq. (4),
where Hnet is the sum of radiative and turbulent heat fluxes:

ρwcp

(
DTz

∂Tz

∂z

)∣∣∣∣
z=s

=Hnet . (6)

Here, Tz is the water temperature of the layer adjacent to the
atmosphere–water interface at the surface depth s.

The main difference between GLM and both GOTM and
Simstrat is how they simulate the turbulent diffusive trans-
port. GLM applies a combination of empirical and physi-
cal relationships that use the available external turbulent ki-
netic energy (TKE) to calculate the thickness of a completely
mixed surface layer (for general information about integral
energy models, see Ford and Stefan, 1980). For this, mix-
ing in a surface mixed layer is calculated by comparing the
available external energy to the potential energy of the water
column that is needed to lift up denser water from below a
completely mixed layer into a newly formed mixed layer un-
til the TKE is no longer sufficient for further mixing (Hipsey
et al., 2019). Below the depth of this surface mixed layer, a
parameterization for the eddy-diffusivity coefficient in rela-
tion to water column stability is used to calculate diffusive
transport:

DTz =
CHYP εTKE

N2+ 0.6k2
TKE u

2
∗

, (7)

whereCHYP is a constant coefficient for the mixing efficiency
(later referred to as the calibration parameter coef_mix_hyp),

εTKE is a simplified approximation of the turbulent dissipa-
tion rate based on the dissipation by inflows and wind, N2 is
the squared buoyancy frequency, kTKE is the turbulence wave
number, and u∗ is the wind shear velocity (Weinstock, 1981).
The buoyancy frequency (Brunt–Väisälä frequency) quanti-
fies local stability to vertical displacements as follows:

N =

√
g

ρ

∂ρ

∂z
, (8)

where g is gravitational acceleration.
Simstrat and GOTM are turbulence-based models that ap-

ply a two-equation turbulence model to compute the quan-
tities of the production, transport, and dissipation rates of
TKE. Here, we highlight the k− ε two-equation turbulence
model which is implemented in both models (Burchard et al.,
1999; Goudsmit et al., 2002):

∂k

∂t
=

1
A

∂

∂z

(
ADkz

∂k

∂z

)
+P +B − ε , (9)

∂ε

∂t
=

1
A

∂

∂z

(
ADεz

∂ε

∂z

)
+
ε

k

(
cε,1P + cε,3B − cε,2ε

)
, (10)

where Dkz and Dεz are the turbulent diffusivities of TKE and
TKE dissipation, respectively; P is the TKE production due
to shear; and B is the production and dissipation of TKE re-
lated to buoyancy (Rodi, 1984). cε,1, cε,2, and cε,3 are em-
pirical constants. In GOTM, whenever the simulated TKE is
lower than the calibration parameter k_min , it is set to the
value of k_min. We can compute the eddy-diffusivity coeffi-
cientDTz as a function of the turbulence kinetic energy k and
the dissipation rate ε:

DTz =
cµ

σt

k2

ε
, (11)

where cµ is an empirical coefficient and σt is the turbulent
Prandtl number.

Simstrat further employs an empirical seiche excitation
and damping model to improve the representation of internal
seiches in transport processes (Goudsmit et al., 2002). Here,
seiche movement can produce additional TKE,Eseiche, inside
the water column with the intention to provide a more real-
istic simulation of vertical transport due to bottom boundary
mixing as seiche motion damping acts as an energy source
below the mixed layer:

dEseiche

dt
= αA0ρairc10

(
u2

10+ v
2
10

)3/2

︸ ︷︷ ︸
PW

−CDeffA0V
−3/2ρ

−1/2
0 E

3/2
seiche︸ ︷︷ ︸

LS

, (12)

where PW is energy production, LS is energy loss, α is a
model parameter to describe the wind energy fraction that is
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transferred to the seiche motion (later referred to as the cal-
ibration parameter a_seiche), c10 is the drag coefficient, u10
and v10 are velocity components of wind speed measured at
10 m above water surface, and CDeff is the effective bottom
friction coefficient (Goudsmit et al., 2002). We note that sim-
ilar algorithms, designed to improve vertical mixing dynam-
ics below the epilimnion, also exist in other models, includ-
ing integral energy models, i.e., the turbulent benthic bound-
ary layer mixing algorithm by Yeates and Imberger (2003),
but are not – to the best of our knowledge – implemented in
GLM and GOTM.

An additional structural difference between the models
is their process description of the treatment of the attenua-
tion of shortwave radiation, especially the nonvisible near-
infrared light (NIR) and the visible parts of shortwave radi-
ation. FLake does not distinguish between these parts of the
light spectrum, and it applies the Beer–Lambert law for light
attenuation with depth (see also Stepanenko et al., 2014, for
a more detailed analysis), although the model can be param-
eterized to consider a set of different wavelength bands with
variable attenuation coefficients (Mironov, 2005). GLM has
the option to apply the Beer–Lambert law for only the pho-
tosynthetically active fraction (PAR), while the NIR and ul-
traviolet bandwidths are attenuated directly in the layer adja-
cent to the atmosphere–water interface (Hipsey et al., 2019).
A second option in GLM uses the algorithm by Cengel and
Ozisk (1984) to simulate light penetration of individual band-
width fractions. However, in this study, the first option was
applied; this option treats 45 % of the incoming shortwave
radiation as PAR which is subsequently attenuated in the lay-
ers below the atmosphere–water interface. Similarly, GOTM
was configured to have a separate depth-specific attenuation
for the visible and nonvisible light fractions. In this study,
the incoming shortwave radiation was split into the nonvisi-
ble (55 %) and visible (45 %) fractions. The light extinction
coefficient for nonvisible light was set to 2 m−1. Although
Simstrat does not split light into separate fractions, it uses
a parameter to absorb a fixed fraction of shortwave radia-
tion (set to 30 % in this study) in the uppermost water layer,
eventually resulting in a similar impact of fast absorption of a
part of the solar energy near the atmosphere–water interface
(see also Gaudard et al., 2019). This highlights that more
heat potentially gets absorbed in the layer adjacent to the
atmosphere–water interface in the GLM, GOTM, and Sim-
strat simulations than in the FLake simulations.

2.4 Calibration workflow

The workflow (Fig. 2) to calibrate the models for the 73 lakes
is described in the following section. For each lake, we gath-
ered the available data from ISIMIP: observed water tem-
peratures, lake hypsography, lake location (elevation, coordi-
nates), and light extinction (or Secchi disk depth data to de-
rive light extinction). Observed water temperature data with
subdaily resolution were averaged to daily mean values. If no

data on the light extinction were available, we estimated it
from Secchi disk depth (Koenings and Edmundson, 1991). If
no Secchi disk depth was available, we estimated it from the
maximum lake depth (Håkanson, 1995). We then formatted
the ISIMIP data to a pre-defined standard format, from which
the LakeEnsemblR package (Moore et al., 2021) generated
model-specific forcing and configuration files. We used four
lake models included in LakeEnsemblR (GLM, GOTM, Sim-
strat, and FLake) which are described in Sect. 2.3.

Finally, we ran the calibration using a Latin hypercube ap-
proach (see, e.g., Mckay et al., 2000). Here, we chose six
parameters for each model: three model-specific parameters
and three scaling factors (for wind speed, incoming short-
wave radiation, and the estimated light extinction coefficient,
respectively; Table 1). For the model-specific parameters, we
chose parameters that are commonly used to calibrate these
models, based on the literature (see Moore et al., 2021) and
discussions on the parameter range held by the Lake Mod-
elling working group at the GLEON All Hands’ Meeting in
2020 and 2021 (Hansen et al., 2018). We sampled and ran
the four models for 2000 parameter sets, and we calculated
four performance metrics over all water temperature obser-
vations for each of the parameter sets: root-mean-square er-
ror (RMSE), Nash–Sutcliffe model efficiency (NSE), Pear-
son correlation coefficient (R), and mean error (bias).

2.5 Global sensitivity analysis

Based on the sampled parameter sets and the calcu-
lated performance metrics, we performed a delta moment-
independent sensitivity analysis (Plischke et al., 2013; Bor-
gonovo, 2007) for each performance metric per lake per
model, using the SALib Python library (Iwanaga et al., 2022;
Herman and Usher, 2017). The analysis calculates two sen-
sitivity measures, the moment-independent δ and variance-
based Sobol’ S1. The delta moment-independent measure δ
considers the entire distribution of the model output instead
of a particular moment (e.g., variance) by calculating the
difference between the unconditional and conditional cumu-
lative distribution functions of the simulated model output,
whereas the variance-based first-order Sobol’ index S1 calcu-
lates a parameter’s influence on the variance of the simulated
model output (Plischke et al., 2013; Borgonovo, 2007). As
this study was interested in identifying the most important
parameters (i.e., factor prioritization setting), we followed
the recommendations of Borgonovo et al. (2017) and used
both variance-based and moment-independent measures to
increase the robustness when inferring which parameters are
most important when simulating water temperatures. In ad-
dition to the six calibrated parameters, we included a dummy
parameter that had no influence on the model output in the
sensitivity analysis, which we sampled from a uniform dis-
tribution ranging from zero to one. In theory, this dummy
variable should have a sensitivity of zero; however, due to
the numerical approximation of the sensitivity measures, it
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Figure 2. Workflow of the calibration; for a description and units of the calibrated parameters, see Table 1. The light extinction coefficient
(Kw) for each specific lake was calibrated by multiplying the default value by a scaling factor in the range from 0.7 to 1.3.

Table 1. Description of the calibrated parameters. For the range of the parameters, see Fig. 2.

Parameter Unit Description Model

wind_speed – Scaling factor for wind speed All models
swr – Scaling factor for incoming shortwave radiation All models
Kw – Scaling factor for estimated light extinction All models
c_relax_c – Constant in the relaxation equation of the shape factor FLake
fetch_lk m Typical wind fetch FLake
depth_bs_lk m Depth of the thermally active layer in bottom sediments FLake
k_min m2 s−2 Minimum turbulent kinetic energy GOTM
h0b m Physical bottom roughness length GOTM
const_num m2 s−1 Constant eddy diffusivity GOTM
coef_mix_hyp – Mixing efficiency of hypolimnetic turbulence GLM
coef_mix_conv – Mixing efficiency of convective overturn GLM
coef_mix_turb – Mixing efficiency of unsteady turbulence effects GLM
a_seiche – Fraction of wind energy that goes to seiche energy Simstrat
hgeo W m−2 Geothermal heat flux Simstrat
cd – Bottom drag coefficient Simstrat

can have small nonzero values. This can be used to approx-
imate the error related to estimating sensitivity indices and
thereby avoid classifying non-influential parameters as in-
fluential. This approach has been used in previous studies
(e.g., Andersen et al., 2021; Khorashadi Zadeh et al., 2017).
A resample size of 100 was used to compute confidence in-
tervals on both sensitivity analysis metrics. To provide an
estimate of potential parameter interactions, we additionally
calculated the interaction indicator Sinteraction (Borgonovo et
al., 2017; Saltelli et al., 2000) that describes the fraction of
model output variation apportioned by interactions:

Sinteraction = 1−
k∑
i=1

Si , (13)

where (Si) is the first-order variance-based sensitivity mea-
sure (S1) of parameter i out of k tested parameters.

3 Results

3.1 Model performance

The single best-performing model (out of the four applied
models) for each lake reproduced observed water tempera-
tures well for all 73 lakes, with a median RMSE of 1.2 °C
and a median R of 0.98 (Fig. 3). The variation in error met-
rics between the best- and worst-performing model for each
lake was rather small, e.g., a standard deviation of 0.5 °C or
less in the RMSE (Fig. S3). Simstrat performed the best in
most lakes in terms of the RMSE, R, and NSE, while GLM
performed best in most lakes with respect to the bias (Fig. 3).
However, all four models outperformed the others in at least
some of the lakes. In over 90 % of all lakes, at least two dif-
ferent models performed best for different metrics.

Following the cluster analysis, we classified the lakes into
five clusters. We visually compared the characteristics of the
clusters (Fig. S4) and characterized them according to their
most noticeable features: “deep” (n= 3), “medium temper-
ate” (n= 25), “small temperate” (n= 32), “large shallow”
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Figure 3. Distribution of the four evaluated performance metrics for the single best-performing model over the 73 lakes. The pie charts show
how often the different models performed best per lake and metric. The units for the RMSE and bias are degrees Celsius.

(n= 4), and “warm” lakes (n= 9) (Fig. 1). Model perfor-
mance was comparable among the clusters, although the
deep lakes had a lower RMSE, whereas medium, small tem-
perate, and large shallow lakes performed best in terms of the
NSE andR (Fig. S5). When considering the four models sep-
arately, the overall better performance of Simstrat was mostly
due to its better performance in the deep and medium tem-
perate lakes, compared with the other models. In the other
three clusters, the four models performed similarly (Fig. S6).

We calculated the ensemble mean by taking the arithmetic
mean of the four models for each time step and depth indi-
vidually. We then tested this as an additional predictor for
water temperature and calculated its performance in terms
of the RMSE. For the majority of lakes, the ensemble mean
performed better than any single model (Fig. S7). This is es-
pecially visible in the medium temperate, small temperate,
and large shallow lakes, where the ensemble mean performed
best for the majority of lakes. The cases where the ensemble
mean did not perform better than each single model were of-
ten lakes in which a single model performed notably better
or worse than the other three models.

Looking at the distribution of the model error in terms of
the RMSE over the water column depth (Fig. 4a), we can see
that Simstrat performed better over all depths for the medium
temperate lakes. In the deep lakes, FLake performed consid-
erable worse than the other three models, especially at in-
termediate depths. For the other three models, the error in-
creased towards the surface. For all four models in the large

shallow lakes, the error was larger at the surface, while the
error was largest at intermediate depths for the warm lakes.

From the observed water temperatures, we calculated the
thermocline depth and then chose the simulation–observation
pairs closest to that depth to estimate the RMSE at the ther-
mocline temperature (Fig. 4b). For the large shallow lakes,
no thermocline could be calculated. Simstrat performed best
at the thermocline depth for deep, medium temperate, and
warm lakes: its performance for deep and medium temper-
ate lakes was about 0.5 °C better, while it was only about
0.1 °C lower than the next best model for warm lakes. For
small temperate lakes GLM performed better, with a median
RMSE that was about 0.3 °C lower than the next best model.
FLake performed most poorly at the thermocline depth for
all lake clusters.

3.2 Parameter sensitivity

From the calibration runs using the Latin hypercube ap-
proach, we calculated the moment-independent measure δ
and the variance-based first-order measure S1 for each com-
bination of models, performance metrics, and lakes (Fig. 5).
We saw a similar ranking of the most influential model pa-
rameters on most combinations of models, performance met-
rics, and lakes for δ and S1. For almost all lakes, the same
three to four parameters were classified as sensitive: the scal-
ing factors for wind speed, shortwave radiation, and light ex-
tinction as well as k_min for GOTM. Moreover, one or two
of these parameters accounted for more than 75 % of the sum
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Figure 4. Depth distribution of the root-mean-square error (RMSE) for the models and lake clusters (a) and box plots of the RMSE at the
thermocline depth (b). The depth was normalized to the depth of the deepest measurement (with 0 being the surface and 1 being the deepest
point) and then binned in steps of 0.1. The points represent the median RMSE over all profiles, and the error bars present the 25 % to 75 %
quantiles. If water temperatures deeper than 3 m were unavailable, no thermocline was calculated.

of the sensitivity measures for most lakes (Fig. S8). Most
often, these were meteorological scaling factors, which are
not model-specific, with the exception of GOTM, in which
k_min was most sensitive. Additionally, the light extinction
coefficient and other model-specific parameters appeared to
be sensitive in a couple of lakes (Fig. 5), although to a lesser
degree.

For most models and performance metrics, interaction ef-
fects accounted for less than 20 % of the variation in model
performance, although interactions were relevant for specific
models and lake groups (Fig. 6). For instance, interactions
were relevant for GLM modeling deep lakes and, to a lesser
degree, for GLM and Simstrat modeling large shallow lakes.
In contrast, increased parameter interactions were observed
for FLake, especially for the NSE and RMSE, for all lake
clusters except deep lakes. We highlight that, especially in

lakes with shorter time series of observed water temperature
data, the interaction measure was larger (Fig. S9). Interac-
tions were low for the bias for all models and lake clusters.

3.3 Distribution of best parameter values

Looking at the parameter values from the best-performing
parameter sets, the optimal meteorological scaling factors
differed between models. Especially GOTM showed a differ-
ent behavior from the other models, with lower wind speed
scaling factors and a higher shortwave radiation scaling fac-
tor (Fig. 7). The lake clusters also differed with respect to
the optimal scaling factors, although their effects seemed
model-specific. Differences in extinction factor scaling were
less clear than the meteorological scaling factors, but GLM
preferred a higher extinction factor in large shallow lakes,
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Figure 5. Box plot of the two calculated sensitivity measures for each parameter of the four models and for the four calculated performance
metrics over all lakes.

whereas FLake preferred a higher extinction factor in deep
and medium temperate lakes. Most model-specific parame-
ters had a low sensitivity, but some still showed markedly dif-
ferent behavior among clusters (Fig. S10). The single model-
specific parameter with high sensitivity, GOTM’s k_min, had
distinctly lower values in small temperate lakes. For both the
scaling factors and the model-specific parameters, we saw
that the outcome was different depending on which perfor-
mance metric was used to select the best parameter set (see
Fig. S11).

4 Discussion

Using a standardized and computationally efficient calibra-
tion approach (2000 model runs per model and lake), we
were able to reproduce water temperature to a sufficient ac-
curacy for 73 lakes across the globe. For 95 % of the lakes,
the single best-performing model had an RMSE below 2 °C
with a median of all performing models at 1.2 °C. Model-
specific performance (Table S3) naturally showed higher er-
ror values but remained below 2 °C for most lakes and mod-
els. Compared to a previous ISIMIP simulation round, the
performance in terms of median RMSE was similar (ISIMIP
2b; Golub et al., 2022), although GLM, GOTM, and Sim-
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Figure 6. Box plot of the interaction measure of the first-order sensitivity metric for the four models and performance metrics over all lakes.

strat performed slightly worse and FLake performed slightly
better in our simulation. Possible reasons for this could
be the different meteorological forcing, the composition of
lakes, and a different calibration approach. In comparison to
two other multi-lake applications of gridded meteorological
data, our calibration performed similarly (ALBM; Guo et al.,
2021) or better (GLM; Read et al., 2014) in terms of the
RMSE. In over 40 % of all lakes, the ensemble mean per-
formed better than any single model in terms of the RMSE.
Similar to previous studies using an ensemble framework
(e.g., Feldbauer et al., 2022; Ladwig et al., 2023), it seems
that the ensemble mean is a good predictor for water temper-
ature dynamics. However, when using a larger global dataset,
we showed that employing the simple arithmetic average as
an ensemble mean did not increase performance for a sub-
set of lakes. As, in many of these cases, a single model
performed notably better or worse than the other ensemble
members, a step forward could be to use other averaging
techniques to make better use of the ensemble simulation.
Such approaches already exist in other fields, like the relia-
bility ensemble averaging method (REA) for climate simula-
tions (Giorgi and Mearns, 2002).

Model performance showed a distinct pattern over the five
lake clusters: when looking at the RMSE, general model per-
formance in deep lakes was better, whereas it was worse in
large shallow lakes compared with the other clusters. How-

ever, both deep and warm lakes showed poorer model perfor-
mance when considering the NSE (Fig. S5). We attribute the
model performance in deep lakes (n= 3) to the low variation
in the deep-water temperatures, which the models could ap-
proach closely (a low RMSE), whereas the relatively small
temporal variations were harder to simulate (i.e., poorer per-
formance in terms of the NSE). The reduced model per-
formance in terms of the RMSE for large shallow lakes
(n= 4) was likely due to the intense interaction with the
atmosphere (worsened by the use of gridded instead of lo-
cally observed meteorological data), while the lower NSE in
warm lakes (n= 9) can be explained by the reduced season-
ality in weather forcing data, and thus a harder-to-achieve
high performance in metrics relying on a temporal trend.
Other performance differences between lake clusters, such
as that in the bias, or any differences between the two largest
clusters (small temperate and medium temperate lakes) were
marginal. These two largest clusters covered 78 % of the
lakes in the dataset, which is in line with the higher presence
of temperate lakes in the ISIMIP dataset. However, the un-
equal division of lakes over the clusters does skew the com-
parison, as conclusions regarding differences in other clus-
ters are based on lower sample sizes.

To discuss how individual model performance is related
to the underlying equations and design, we first need to ac-
knowledge the limitations of this analysis: (a) parameter se-
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Figure 7. Distribution of the wind speed, shortwave radiation (swr), and light extinction (Kw) scaling factors, faceted by model and lake
cluster. The light extinction scaling factors are normalized to each lake’s default light extinction value. The optimal values are determined
only based on the RMSE.

lection was limited and had identical ranges across models,
which could cause a bias for models that would need spe-
cific adjustments during calibration, and (b) we neglected
any inflows and outflows. Observed water temperature fluc-
tuations caused by entrainment or withdrawal could be ap-
parent in the training data, and models could replicate them
by manipulating other processes (internal shear or mixing),
thereby neglecting the actual hydrodynamic flow processes
which caused the abovementioned temperature fluctuations.
We note that the level of complexity in the process formu-
lations for inflows and outflows varies across the models.
Putting these caveats due to the standardized methodology
aside, 1D lake models have improved performance com-
pared with single 0.5D lake models, like FLake, for deep
and medium temperate lakes. Here, all 1D lake models better
replicated water temperatures in the surface layers (relative
depths up to 0.75 and about 0.5 for deep and medium tem-
perate lakes, respectively; Fig. 4a), underscoring that their re-
spective algorithms, wind-induced mixing in GLM and com-
putation of TKE in GOTM and Simstrat, outperform the
shape assumptions that underlie FLake to replicate depth-
specific near-surface water temperature dynamics. Addition-
ally, their higher light extinction near the atmosphere–water
surface interface due to attenuation of nonvisible light could
also be a factor in their improved depth-specific simulation
of water temperature in medium temperate and deep lakes.
Below the epilimnion, at the thermocline, Simstrat outper-

forms the other models (Fig. 4b) in deep and medium temper-
ate lakes. This underscores the importance of accounting for
energy sources below the epilimnion. We assume that Sim-
strat’s seiche excitation and damping parameterization has
more accurately simulated the availability of TKE at these
metalimnetic depths, which were not reached by wind shear
stress originating from the atmosphere–water interface. We
reinforced this hypothesis by performing additional simula-
tions with a_seiche set to 0, which led to poorer model per-
formance of Simstrat (see the Supplement for details). This
emphasizes the importance of implementing deep-water mix-
ing algorithms in 1D lake models to account for mixing at
intermediate depths, which are usually characterized as quiet
with respect to turbulent fluxes (Wüest and Lorke, 2003). In
the hypolimnion, models performed similarly, with Simstrat
only producing slightly better replications of the deep-water
temperature in medium temperate lakes.

For the calibration of the lake models, we took an ap-
proach commonly used in applied studies where scaling fac-
tors for wind speed and shortwave radiation, the extinction
coefficient, and a few model-specific parameters are cali-
brated (e.g., Ayala et al., 2020; Weber et al., 2017). Addi-
tionally, we used the output of the calibration to conduct a
global sensitivity analysis of the calibrated parameters. We
selected the model-specific parameters and the ranges for all
parameters based on previous studies and expert knowledge,
but we acknowledge that this approach is somewhat limited
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compared with an extensive sensitivity analysis including all
model parameters. However, to our knowledge, there have
only been a few studies that have looked at the sensitivity of
the parameters of the used models (e.g., GLM – Bruce et al.,
2018; GOTM – Andersen et al., 2021), and even those did not
include all model parameters. Moreover, the model perfor-
mance of all four investigated performance metrics was com-
parable to similar studies (e.g., Golub et al., 2022), despite
using only a selection of parameters for the calibration. The
sensitivity analysis revealed that, for most lakes and models,
the most sensitive parameters were the scaling factors. Thus,
it could be reasoned that only calibrating the scaling factors
could be sufficient for similar applications. The clear excep-
tion here is GOTM, for which the minimum turbulent kinetic
energy level (k_min) was shown to be highly sensitive for all
lake clusters besides the large shallow lakes (Fig. S12). In
fact, k_min was so important that it could dominate the other
scaling factors, leading to different overall patterns in the cal-
ibrated parameters with lower values for the wind speed scal-
ing across all lakes, compared with the other models (Fig. 7).
This warrants future caution when calibrating k_min, as this
parameter, which directly manipulates background turbulent
kinetic energy and, therefore, turbulent transport, is highly
sensitive. A way forward to address this could be the use of
local field measurements to restrict the lake-specific range of
estimates for k_min.

Specifically, the range for the wind speed scaling that
we used in the calibration was quite large (0.25–1.5); how-
ever, even with this range, the best-performing estimates are
located close to the limits for some of the lakes. An ex-
planation for this large range of scaling factors is that we
used forcing from bias-corrected (to global data sources, not
data measured above the lakes; Lange, 2019) reanalysis data
with a grid size of 0.5°× 0.5°. Local wind fields can have
large variations; especially for lakes, sheltering plays an im-
portant role, as lakes are, by definition, located in depres-
sions in the landscape. Simultaneously, larger lakes can act
as smoother surfaces with higher near-surface wind speeds
compared with surrounding areas. We could not highlight
any relations between the best parameter values for the wind
speed scaling factors and lake size, which could imply that
the gridded weather data mask any effects of lake size. This
highlights that there is still potential to enhance the model
quality of local wind speed (Tan et al., 2024). The use of
daily aggregated wind speeds also requires caution, as the
mechanic energy transferred to the water is a cubic func-
tion of wind speed (Wüest et al., 2000); therefore, averag-
ing of the measured wind speed can lead to an underesti-
mation of mixing. The large range for the wind speed (and
shortwave radiation) scaling factors were probably partly re-
sponsible for their high sensitivity. In a setting with locally
observed meteorological forcing data, the model-specific pa-
rameters might become more influential if meteorological
forcing variables can be better constrained. Previous studies
used this approach in one or a few lakes (e.g., Guseva et al.,

2020; Guo et al., 2021), but it would be beneficial to compile
such data for a larger number of lakes, similar to the present
study. Reducing the strong influence of meteorological scal-
ing factors could facilitate the identification of optimal mod-
els for different clusters. If observations are not available,
improvements in downscaling methods from global products
to weather conditions at the lake surface might also partially
achieve this. Similarly, the use of hourly meteorological forc-
ing could result in more realistic patterns in wind-driven or
convective mixing (Ayala et al., 2020).

We highlight that both sensitivity metrics and calibrated
parameter values were strongly influenced by the chosen per-
formance metrics (see, e.g., Figs. 5 and S11). This means
that the model configuration would be different depending on
which performance metric is chosen (except for the RMSE
and NSE, which will lead to the same set of parameters).
Therefore, it is important to choose the model performance
metric with care, as they capture different aspects of the
performance (see, e.g., Jachner et al., 2007). For a more
thorough assessment of the choice of performance metrics,
model validation at multiple levels of complexity could be
performed (Hipsey et al., 2020).

Interaction between parameters was larger for FLake com-
pared with the other models, except for deep lakes, where
GLM and GOTM showed larger interactions, and large shal-
low lakes, where FLake, GLM, and Simstrat showed interac-
tions (Fig. 6). For the lakes with high interaction measures,
we found the interdependence of two or more parameters,
most notably wind speed scaling and shortwave radiation
scaling as well as, in some cases, the light extinction factor
or model-specific parameters. A higher shortwave radiation
increases the near-surface water temperatures and can pro-
mote stratification, while a higher wind speed has largely the
opposite effect. The effect of wind on mixing dynamics is
notably different, so that the influence of the two variables
can be separated given enough observations. We could see
that the interaction measure was generally lower for GLM,
GOTM, and Simstrat for lakes that had longer time series of
observed water temperature (Fig. S9). However, for the sim-
pler temperature algorithms in FLake, separating the impact
of wind speed and shortwave radiation seems to be more dif-
ficult. Similarly, the lake type (identified by the clustering)
seemed to influence the degree of interaction as well, per-
haps extending to parameters other than the meteorological
scaling factors, which is in line with the findings of Andersen
et al. (2021).

The overall uncertainty in mechanistic simulations is usu-
ally related to uncertainty in the initial conditions, uncer-
tainty in the driving data (both forcing data such as meteorol-
ogy and data used for calibration such as water temperature),
uncertainty in the model parameter values, and structural un-
certainty in the process description (also called epistemic un-
certainty) (Thomas et al., 2020; Scavia et al., 2021; Dietze,
2017). In this study, we aimed to explore the relationships
between lake model performance, parameterization, and lake
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characteristics. For this, our main focus was on highlighting
uncertainties related to parameter values and model structure.
The uncertainty in the meteorological forcing was partly ac-
knowledged by the inclusion of the scaling factors. However,
because the scaling factors proved to be among the most sen-
sitive parameters, they could have prevented the identifica-
tion of an optimal model or patterns relating the parameter-
ization of the models to the lake characteristics (if such an
optimal fit exists). A way forward could be to reduce the un-
certainty in the meteorological forcing data, and hence hope-
fully the sensitivity of the scaling factors, by using local me-
teorological observations instead of reanalysis data.

The sensitivity analysis and cluster analysis could provide
hints towards improving global simulations without the need
for model-specific calibration. The sensitivity analysis sug-
gests that, with the parameter value ranges used here, the me-
teorological forcing data are the most influential with respect
to reproducing observed lake water temperatures. Compar-
ing the distributions of the best-performing parameter values
between the lake clusters gives an indication of how to scale
meteorological forcing (and potentially other less sensitive
parameters) for certain lakes, which could result in an over-
all improvement with respect to simulating global lake wa-
ter temperatures. For instance, the models showed clear im-
provement regarding model performance when scaling short-
wave radiation and wind speed (Fig. 7). Sheltering and the
cubic scaling of wind speed with mixing may account for
some of the need to scale wind speed, whereas the scaling
of shortwave radiation is less easily explained, although heat
transport into the water column, shading, or another lack or
excess of heat input may play a role. Regardless, an open
question remains as to whether using the results of the cluster
analysis to parameterize uncalibrated simulations should be
done. A clear weakness of this study is the low sample size in
some lake clusters (i.e., n= 3 for deep lakes). Furthermore,
the model configuration can be problematic, as, for instance,
the influential k_min parameter in GOTM had strong effects
on mixing and would therefore interact with the meteoro-
logical scaling factors (more details on this can be found in
the Supplement). Additionally, gridded data are supposed to
give the best possible estimate of meteorological variables in
a certain grid cell. Unless it can be shown that such data are
skewed in a predictable way for lakes in particular, an adjust-
ment of meteorological variables would mostly be needed to
compensate for current sub-optimal process descriptions in
lake models themselves. Thus, taking the above weaknesses
into consideration, these findings raise the following related
questions:

– Are gridded forcing data adequate to replicate lake-
specific meteorological conditions and, thus, for use in
the reproduction of a lake’s thermal structure?

– If so, should improvements in current model perfor-
mance be found solely by improving hydrodynamic
process descriptions?

5 Conclusions

We calibrated four different lake temperature models to 73
lakes using bias-corrected reanalysis data as forcing and then
estimated the sensitivity of the calibrated parameters. From
the six parameters calibrated for each model, only two to
three were sensitive. This suggests that it can be sufficient to
calibrate the models using only a subset of parameters. We
achieved good model performance compared with previous
studies and underscored that, while some of the models per-
formed better overall, each model outperformed the others in
at least some lakes. We analyzed four different model perfor-
mance metrics; for over 90 % of all lakes, at least two models
performed best for different performance metrics. To under-
stand the effect of lake characteristics on the model perfor-
mance, we grouped the 73 lakes into five clusters represent-
ing different characteristics. We highlight that both the model
structure and lake clusters influenced model performance. In
general, the three 1D lake models (GLM, GOTM, and Sim-
strat) performed better than the 0.5D model (FLake). More
specifically, Simstrat performed better with respect to simu-
lating the water temperature at the depth of the thermocline
than the other models. We attribute this to the seiche module
included in Simstrat. From these findings, we conclude the
following:

1. There is still room to improve model structure and pro-
cess description of the 0.5D and 1D lake temperature
models. Specifically, (better) representation of deep-
mixing processes, e.g., internal seiches, could poten-
tially benefit simulations results.

2. Using an ensemble of multiple lake models is benefi-
cial, especially as the computational cost of using mul-
tiple models simultaneously is low for these 1D (0.5D)
models. However, there is still room to take further ad-
vantage of the ensemble approach, e.g., by exploring
weighted ensemble averaging techniques.

3. Even though we saw patterns in the best-performing pa-
rameter sets regarding the lake clusters, it is unclear if
using this approach might improve uncalibrated simula-
tions (i.e., simulations where no observations are avail-
able). This is mainly caused by the fact that we used
gridded forcing data, and meteorological scaling fac-
tors (wind speed and shortwave radiation) were the most
influential on the lake thermal structure, likely repre-
senting the importance of local orography and potential
sheltering.

These conclusions serve as a baseline for understanding
model sensitivity, and they can support further improve-
ments and developments of water temperature simulations
and, thus, a better assessment of global change in lakes and
reservoirs. Additionally, these conclusions can be the basis
of a broader discussion about model uncertainty – especially
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when using gridded forcing data – and its relation to model
design and parameterization.
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