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Abstract. Non-asymptotic (NA) probability distributions of
block maxima (BM) have been proposed as an alternative to
asymptotic distributions of BM derived by means of classic
extreme-value theory (EVT). Their advantage should be the
inclusion of moderate quantiles, as well as of extremes, in
the inference procedures. This would increase the amount of
information used and reduce the uncertainty characterizing
the inference based on short samples of BM or peaks over
high thresholds. In this study, we show that the NA distri-
butions of BM suffer from two main drawbacks that make
them of little usefulness for practical applications. Firstly,
unlike classic EVT distributions, NA models of BM imply
the preliminary definition of their conditional parent distri-
butions, which explicitly appears in their expression. How-
ever, when such conditional parent distributions are known
or estimated, the unconditional parent distribution is readily
available, and the corresponding NA distribution of BM is
no longer needed as it is just an approximation of the upper
tail of the parent. Secondly, when declustering procedures are
used to remove autocorrelation characterizing hydroclimatic
records, NA distributions of BM devised for independent
data are strongly biased even if the original process exhibits
low or moderate autocorrelation. On the other hand, NA dis-
tributions of BM accounting for autocorrelation are less bi-
ased but still of little practical usefulness. Such conclusions
are supported by theoretical arguments, Monte Carlo simula-
tions, and re-analysis of sea level data.

1 Introduction

In the last decades, the statistical analysis of hydroclimatic
extremes has mainly relied on theoretical results and mod-
els developed by a branch of statistics called extreme-value
theory (EVT) (Fisher and Tippett, 1928; Von Mises, 1936;
Gnedenko, 1943; Jenkinson, 1955; Gumbel, 1958; Balkema
and de Haan, 1974; Pickands III, 1975; Leadbetter, 1983;
Smith, 1984; Davison and Smith, 1990; Coles, 2001; Beirlant
et al., 2004; Salvadori et al., 2007). EVT describes the ex-
tremal behavior of observed phenomena by means of asymp-
totic probability distributions that are valid under certain as-
sumptions about the parent process, such as large sample
sizes n (i.e., n→∞ to guarantee asymptotic convergence),
independence, and distributional identity. However, hydrocli-
matic records are commonly quite short and hardly ever be-
have as independent and identically distributed random vari-
ables. More often, hydroclimatic processes result from com-
binations of heterogeneous physical processes (e.g., Morri-
son and Smith, 2002; Smith et al., 2011, 2018) and exhibit
autocorrelation (e.g., Kantelhardt et al., 2006; Wang et al.,
2007; Serinaldi, 2010; Labat et al., 2011; Papalexiou et al.,
2011; Serinaldi and Kilsby, 2016b; Lombardo et al., 2017;
Iliopoulou et al., 2018; Markonis et al., 2018; Serinaldi and
Kilsby, 2018; Serinaldi et al., 2018; Dimitriadis et al., 2021,
and references therein), with their behavior being better de-
scribed by stochastic processes incorporating such proper-
ties (e.g., Serinaldi and Kilsby, 2014a; Serinaldi and Lom-
bardo, 2017a, b; Dimitriadis and Koutsoyiannis, 2018; Pa-
palexiou, 2018; Koutsoyiannis, 2020; Papalexiou and Seri-
naldi, 2020; Koutsoyiannis and Dimitriadis, 2021; Papalex-
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iou et al., 2021; Papalexiou, 2022; Serinaldi et al., 2022a;
Koutsoyiannis, 2023, and references therein).

As a consequence, the lack of fulfillment of EVT assump-
tions affects the analysis of block maxima (BM) or over-
threshold (OT) values as the BM and OT sample selection
generally yields short sample sizes and does not remove the
effects of autocorrelation and the possible heterogeneity of
the generating mechanisms (see, e.g., Koutsoyiannis, 2004;
Iliopoulou and Koutsoyiannis, 2019; Serinaldi et al., 2020b).
Research in EVT has addressed these issues to some extent
for the case of asymptotic and sub- or pre-asymptotic meth-
ods for the BM and OT processes (see Serinaldi et al., 2020b,
and references therein for an overview).

On the other hand, parallel literature has focused on non-
asymptotic (NA) approaches for BM, attempting to use as
many observations as possible to infer the distribution of
the largest values. NA distributions of BM include Todor-
ovic distributions and their special cases (e.g., Todorovic,
1970; Todorovic and Zelenhasic, 1970; Lombardo et al.,
2019), specifically the so-called metastatistical extreme value
(MEV) distributions and their variants, such as the simpli-
fied MEV (SMEV; Marani and Ignaccolo, 2015; Zorzetto
et al., 2016; De Michele and Avanzi, 2018; Marra et al., 2018;
De Michele, 2019; Marra et al., 2019; Hosseini et al., 2020;
Miniussi et al., 2020; Zorzetto and Marani, 2020).

Serinaldi et al. (2020b) explained the conceptual and an-
alytical relationships among the above-mentioned NA dis-
tributions of BM in the context of compound distributions
of order statistics and introduced compound beta-binomial
distributions (βBC) of BM in processes with stationary au-
tocorrelation structure. βBC distributions allow one to avoid
declustering procedures required, for instance, by (S)MEV
to obtain samples fulfilling the assumption of independence.

However, while the βBC distributions allow a correct in-
terpretation of the NA models of BM and their connections
to their parent distributions, Serinaldi et al. (2020b) did not
comprehensively explore the usefulness or lack thereof of
NA models of BM in practical analysis. In this study, we
further explore and discuss the extent of the redundancy of
such models with respect to their parent distributions, as well
as the actual lack of effectiveness in declustering procedures
in the context of NA-based analysis.

This paper falls into the class of so-called neutral (inde-
pendent) validation–falsification studies (see, e.g., Popper,
1959; Boulesteix et al., 2018, and references therein), aim-
ing to independently check the theoretical consistency in
statistical methods applied in the analysis of hydroclimatic
data (Lombardo et al., 2012, 2014, 2017, 2019; Serinaldi and
Kilsby, 2016a; Serinaldi et al., 2015, 2018, 2020a, b, 2022b).
We put emphasis on the common but misleading habit of
seeking confirmation by iterating the application of a given
method in relation to observed data whose generating pro-
cesses are inherently unknown. In fact, if a method is techni-
cally flawed, its output will always be consistent across appli-
cations but systematically incorrect. In contrast, genuine neu-

tral analysis calls into question the theory behind a method or
model and checks it analytically and/or against challenging
controlled conditions via suitable Monte Carlo simulations.

This study is organized as follows. In Sect. 2, we briefly
review the main NA distributions of BM proposed in the
literature and their relationship to the corresponding distri-
butions of the parent process. Section 3 recalls the rationale
for performing an extreme-value analysis and explains why
the NA models of BM are conceptually redundant in this
context. These aspects are further discussed in Sect. 4 us-
ing simple Monte Carlo simulations and by reanalyzing sea
level data previously studied in the literature. Monte Carlo
experiments in Sect. 5 investigate the performance of some
NA models of BM under independence and serial depen-
dence, as well as the effectiveness of declustering methods
proposed to deal with autocorrelated time series and the re-
liability of some results previously reported in the literature.
In Sect. 6, the problems concerning the use of NA models
of BM for practical applications are placed within the wider
context of a questionable approach to applied statistics in hy-
droclimatic studies. Conclusions are given in Sect. 7.

2 Overview of NA distributions of BM

To support our discussion, we firstly recall some basic theo-
retical results, referring to Serinaldi et al. (2020b) and the ref-
erences therein for more details about the analytical deriva-
tion of the equations reported below. Under the assumption
of an identical probability distribution, BM are the largest-
order statistics (David and Nagaraja, 2004, p. 1) of a se-
quence of m random variables Z1, . . .,Zm with the same cu-
mulative distribution function (cdf) FZ(z). If these variables
are also independent, the cdf of BM Y in random samples of
finite size m is

FY (z)=

m∑
i=m

(
m

i

)
F iZ(z)[1−FZ(z)]

m−i
= FmZ (z)

= 1−FB(m− 1;m,FZ(z))
= FB(0;m,1−FZ(z))
= Fβ(FZ(z);m,1), (1)

where FB and Fβ are the binomial and beta cdf’s, respec-
tively. Under the assumption of serial dependence, the dis-
tribution of BM in finite-sized blocks is unknown as it de-
pends on the m-dimensional joint distribution of the m vari-
ables forming a block (Todorovic, 1970; Todorovic and Ze-
lenhasic, 1970). Closed-form solutions do exist for the case
of Markovian processes, whereby the joint distribution is
bivariate (Lombardo et al., 2019). For high-order depen-
dence structures, the NA distribution of BM can be approx-
imated by an extended beta–binomial distribution βB (Seri-
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naldi et al., 2020b, Sect. 2.2):

FY (z)=
B(α(z),m+β(z))

B(α(z),β(z))

= FβB(0;m,1−FZ(z),ρβB(FZ(z),ρ)), (2)

where FβB is the βB cdf; B(·, ·) is the complete beta function
(Arnold et al., 1992, pp. 12–13); and ρβB(z) is known as the
“intra-class” or “intra-cluster” correlation, which depends on
FZ(z) and the autocorrelation function (ACF) of the parent
process {Zi}mi=1, denoted as ρ. When the parent process Zi
is serially uncorrelated (ρβB = 0), Eq. (2) yields Eq. (1) as a
particular case.

The process Z is named the “parent” as it is the stochastic
process whose distribution FZ appears in the expression of
the distribution of BM FY , and it could have no strict phys-
ical meaning. For example, the parent process used to build
the distribution of BM for precipitation or streamflow sam-
pled at a given timescale (e.g., daily) could be the process of
observations over any threshold guaranteeing the selection
of at least one observation per block. Therefore, inter-arrival
times of the observations z are always smaller than or equal
to them time steps corresponding to the block size. As a lim-
iting case, Z can obviously be the complete streamflow or
rainfall process sampled at the finest timescale (e.g., daily).

As discussed in more depth in the next sections, every dis-
tribution of BM (asymptotic or non-asymptotic) provides just
an approximation of the upper tail of the distribution of the
parent process. Equations (1) and (2) indicate that two parent
processes can have the exact same marginal distribution, but
the expression of the corresponding NA model of BM ap-
proximating the upper tail of FZ might be different accord-
ing to the presence or absence of serial dependence. In other
words, serial dependence influences the patterns of the obser-
vations z within each block and, therefore, the sequences of
BM and the form of their NA distribution FY . On the other
hand, FZ is unaffected by serial dependence as it describes
the distribution of Z, which does not imply any operation
(aggregation, average, or BM selection) over a time window
(block).

The assumption of intra- or inter-block distributional iden-
tity can be relaxed by resorting to the concept of mixed
or compound distributions, which integrate (average) over
the parameter space of the parent distribution under the as-
sumption that these parameters can change within or between
each block (Marra et al., 2019; Serinaldi et al., 2020b). For
instance, such changes or fluctuations can reflect different
physical generating mechanisms (e.g., convective and frontal
weather systems generating storms in different seasons) or
inter-block sampling uncertainty related to still unidentified
physical processes, which therefore need a stochastic de-
scription. A general compact form of this class of models

can be written as

FY (z)=

∞∑
l=0

∫
�θ

Gl(z;θ)g(l,θ)dθ = E[GL(z;2)], (3)

where Gl(z;θ)= P[Z1 ≤ z∧Z2 ≤ z∧ . . .∧Zl ≤ z|L=

l,2= θ ] is the joint distribution of the parent process ac-
counting for intra-block dependence, �θ is the state space of
parameter vector θ , and E[·] is the expectation operator.Gl is
integrated (averaged) over the number of observations L
in each block of size m and the parameters 2, which are
treated as random variables with a joint probability density
function (pdf) g(l,θ). Equation (3) is a generalization of
Todorovic distributions, incorporating possible inter-block
fluctuations of parameters of the joint distribution of parent
process Z.

Since high-dimensional joint distributions Gl are difficult
to handle and fit, the general model in Eq. (3) can be ap-
proximated by a compound version of the βB distribution
in Eq. (2) for high-order dependence structures, resulting in
the following compound βB model (βBC) (Serinaldi et al.,
2020b, Sect. 5.2):

FY (z)∼= FβBC(z) :=

∞∑
l=0

∫
�ρ

∫
�θ

FβB(0; l,1−FZ(z;θ),

ρβB(FZ(z;θ),ρ))g(l,ρ,θ)dρdθ

= E
[
FβB(0; l,1−FZ(z;2),

ρβB(FZ(z;2),P))
]
, (4)

where FβBC is the βBC cdf, ρ is the correlation function of
the parent process Z, and �ρ is its state space. Under the
assumption of independence (ρ = 0), the βB distribution is
reduced to a binomial distribution (which can also be written
in the form of a beta distribution), and Eq. (4) yields MEV
models as special cases:

FY (z)=

∞∑
l=0

∫
�θ

FB(0; l,1−FZ(z;θ))g(l,θ)dθ

=

∞∑
l=0

∫
�θ

Fβ(FZ(z;θ); l,1)g(l,θ)dθ

=

∞∑
l=0

∫
�θ

F lZ(z;θ)g(l,θ)dθ . (5)

Analogously to Eqs. (1) and (2), Eqs. (4) and (5) approxi-
mate the upper tail of the distribution of the parent processZ:

FZ(z)=

∫
�θ

FZ(z;θ)g(θ)dθ . (6)

This is, in itself, a compound distribution (averaged over
the parameter space) and should not be confused with the
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conditional distributions FZ(z;θ), which depend on the pa-
rameters. FZ in Eq. (1) is also unaffected by serial correla-
tion, which, in turn, changes the form of the corresponding
NA distribution FY of BM. As mentioned above, we can
have two parent processes with identical FZ and different FY
depending on the presence or absence of serial dependence.
Equations (4) and (5) are quite general and account not only
for inter-block fluctuations via g(θ) but also for intra-block
variability (such as different physical generating mechanisms
and/or seasonal fluctuations acting at the intra-block scale)
assuming that the conditional distributions FZ(z;θ) are com-
pound or mixed – that is,

FZ(z;θ)=

∫
�ϑ

FZ(z;ϑ,θ)g(ϑ;θ)dϑ, (7)

where g(ϑ;θ) describes the intra-block variability of ϑ (e.g.,
seasonal fluctuations or intra-annual weather system switch-
ing) conditioned on the inter-block status (e.g., El Niño or
La Niña conditions spanning 1 or more years). Of course,
g(ϑ;θ) is reduced to g(ϑ) if the intra-block fluctuations are
assumed to be independent of inter-annual fluctuations. A
typical example is the common assumption of year-to-year
invariant seasonal patterns.

In the next sections, the models in Eqs. (1), (2), (4), and (5)
are compared with the corresponding parent distributions.
We stress that the models in Eqs. (4) and (5) must be com-
pared with the corresponding compound parent distribution
in Eq. (6), which accounts for the same intra- and/or inter-
block variability. It is worth noting that the following discus-
sion is fully general and valid for any NA model of BM re-
quiring the preliminary knowledge or definition of FZ(z;θ)
and its use in the expression of FY . Hereinafter, the terms
“NA model or distribution of BM” and “NA model or dis-
tribution” are used interchangeably to denote the same class
of models.

3 Modeling extreme values: asking “why” before
looking for “how”

Asymptotic distributions provided by EVT are the limit dis-
tributions of NA models under some assumptions concern-
ing the nature of the marginal distribution and dependence
structure of the parent process Z. In particular, it is well
known that the generalized extreme value (GEV) and gen-
eralized Pareto (GP) distributions are the general asymptotes
of the distributions of BM and peaks over thresholds (POTs),
respectively, under the assumptions of independence (or cer-
tain types of weak dependence) and distributional identity
(see, e.g., Leadbetter et al., 1983; Coles, 2001). Therefore,
EVT models are fairly general and relatively easy to ap-
ply, mainly because they do not require a precise knowledge
of FZ (Leadbetter et al., 1983, p. 4), which, instead, explic-
itly appears in the expression of any NA model. This aspect

has already been stressed in standard handbooks of applied
statistics, such as that of Mood et al. (1974, p. 258), who
stated (using our notation and setting L=m) “One might
wonder why we should be interested in an asymptotic dis-
tribution of Y when the exact distribution, which is given
by FY (z)= FmZ (z), where FZ is the c.d.f. [cumulative dis-
tribution function] sampled from, is known. The hope is that
we will find an asymptotic distribution which does not de-
pend on the sampled c.d.f. FZ . We recall that the central-
limit theorem gave an asymptotic distribution for Z [sample
mean] which did not depend on the sampled distribution even
though the exact distribution of Z could be found.”

Bearing in mind that Z and Y are two different pro-
cesses (Serinaldi et al., 2020b, Sect 3.2), the usefulness and
widespread application of asymptotic EVT models of BM
and POTs stems from the fact that such distributions ap-
proximate (converge to) the upper tail of the distribution of
the parent process Z without needing to know FZ (under
the above-mentioned assumptions) and only requiring a lim-
ited amount of information (i.e., BM and/or POT observa-
tions) instead of complete time series. This is paramount in
practical applications as it allows the use of (i) a couple of
general distributions (GEV and GP) supported by a theory
that clearly identifies the range of the validity of such mod-
els and (ii) data that are more easy to collect and are more
widely available worldwide compared to complete time se-
ries. For example, meteorological services provide most of
the historical information on rainfall in terms of annual maxi-
mum values for specified durations to be used in the so-called
intensity–duration–frequency (IDF) analysis. In these cases,
we do not know FZ , and we cannot fit it either as the data
representing the whole rainfall process – and, therefore, FZ –
are not available. However, EVT states, for instance, that the
GEV distribution asymptotically approximates the upper tail
of FZ independently of the form of FZ (under certain con-
straints) based on theoretical results concerning the asymp-
totic behavior of FY = FmZ . EVT distributions independent
of the form of FZ are also useful when observations of Z are
available, but defining a reliable model for FZ is too difficult
due to complexity of the hydroclimatic process of interest
and its generating mechanisms.

Unlike asymptotic models, NA distributions require the
preliminary knowledge or fit of FZ , which explicitly appears
in their expression. However, if we already know FZ (or if we
have a good estimate of it), we no longer need any NA distri-
bution of BM as the latter provides only an approximation of
the upper tail of the known or fitted FZ . We do not even need
any asymptotic model and/or, more generally, any model of
BM or POTs as these are just processes extracted from the
parent process Z, whose distribution FZ already describes
the whole state space, including the extreme values. The use
of extreme-value distributions makes sense if and only if we
do not have enough information on FZ . Otherwise, the latter
provides all the information needed to make statements about
any quantile. In this context, FmZ only plays a functional or
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intermediate role in theoretical derivations to move from FZ
to general asymptotic distributions independent of FZ , to be
used when FZ is not available.

The same remarks hold true for any compound NA model
such as βBC and its special cases. In fact, these models re-
quire the preliminary inference of FZ to derive distributions
(compound versions of FmZ ) that only approximate the upper
tail of the previously estimated FZ . It is easy to understand
that such a procedure makes little sense in practical applica-
tions: why should one search for an approximation of the up-
per tail of a distribution that is already known or fitted? The
use of compound NA models is not even justified by their
mixing nature, which allows for averaging inter-block fluc-
tuations of parameters. In fact, as further discussed below,
such a mixing procedure can be directly applied to FZ , thus
obtaining a compound distribution of the parent process Z
that can readily be used to make statements on any quantile,
avoiding unnecessary NA approximations of the upper tail.
This explains why NA models have not received much at-
tention and why the recently proposed compound NA mod-
els are of little practical usefulness, if any. Their usefulness
is mainly theoretical as they help explain the inherent differ-
ences between parent processes Z and BM processes Y , thus
avoiding misconceptions and misinterpretations of different
model outputs (see Serinaldi et al., 2020b).

4 Investigating circular reasoning and redundancy: do
we need NA distributions of BM in practical
applications?

While the concepts discussed in Sect. 3 should be well-
known and self-evident, they seem to be systematically ne-
glected in hydroclimatic literature dealing with NA models.
Therefore, this section reports further discussion using some
simple examples and real-world data re-analysis to highlight
the relationship between NA models and the embedded dis-
tribution FZ , thus showing concretely how the former pro-
vide only a redundant approximation of the upper tail of the
latter.

4.1 Estimation of T -year events: recalling basic
concepts to avoid inconsistencies

The first example is freely inspired by the work of Mush-
taq et al. (2022), who searched for an approach to select the
most suitable distribution FZ of ordinary streamflow peaks
(i.e., the parent process Z) between gamma and log-normal
to be used to build MEV distributions FY for annual max-
ima (AM, i.e., the BM process Y ). Here, we focus on the
very primary logical contradiction (circular reasoning) of at-
tempting to find a distribution FZ to build FY as a function
of FZ to approximate the tail of FZ itself, which is already
known exactly. In this respect, to keep the discussion as sim-
ple and focused as possible but without the loss of generality,

we do not use compound models but assume that the parent
process is independent and identically distributed, follow-
ing a gamma distribution. Compound models and the issues
related to some MEV technicalities (such as the decluster-
ing method used to obtain apparently independent ordinary
events) will be discussed in the second example. Concern-
ing the first example, we firstly discuss the above-mentioned
contradiction (circular reasoning) from a conceptual perspec-
tive and then provide visual illustration by means of Monte
Carlo simulations.

4.1.1 The logic behind the estimation of return levels
and the role of FZ and FY

For the sake of illustration, let us suppose we have a hy-
pothetical streamflow process sampled at a daily timescale,
with us being interested in estimating a flow value that is ex-
ceeded, on average, every T years, i.e., the so-called T -year
return level corresponding to the T -year return period (see,
e.g., Eichner et al., 2006; Serinaldi, 2015; Volpi et al., 2015,
and references therein). Under the ideal situation where in-
finitely long records are available and, therefore, where FZ
and FY are known exactly, one can use the distribution of
the parent process FZ and determine the T -year return level
as the quantile zp that is exceeded with probability p =

1/(365T ), i.e., the value that is exceeded, on average, once
in T years= 365T d (leaving aside leap years). Since zp is
a quantile of the distribution FZ , which describes the parent
process at its finest available resolution (here, daily), it is un-
affected by possible autocorrelation and clustering of T -year
events (see Bunde et al., 2004, 2005; Serinaldi et al., 2020b,
for an in-depth discussion). Note that this is the definition
applied in the literature to compute the exact T -year return
level used to assess the accuracy of NA models (see, e.g.,
Marani and Ignaccolo, 2015; Marra et al., 2018).

However, real-world records rarely span more than a few
decades, and the data are not enough to obtain FZ (and FY )
and determine directly the T -year return level for high val-
ues of T , such as 100 or 1000 years. Therefore, an alterna-
tive approach is based on the distribution of AM, i.e., BM
within relatively short intervals (i.e., 365 d). Of course, a vir-
tually infinite sequence of BM defines their exact distribu-
tion. Such a distribution allows an approximate estimation
of the T -year return level as the quantile that is exceeded
with probability 1/T because 1 year is the finest timescale
of AM. In other words, FY cannot provide information about
events occurring more often than once in m days (e.g., once
per year for AM) as this is the finest sampling frequency of
BM for blocks of size m. This estimation of T -year return
levels based on BM involves the joint exceedance probability
within each block described by the intra-block joint distribu-
tionGl (see Sect. 2), and, therefore, it is affected by autocor-
relation (see Eichner et al., 2006, for a detailed discussion).

Therefore, the distributions of AM commonly used in hy-
droclimatology are only approximations of the upper tail
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of FZ , and their estimation is justified if FZ is unknown.
This can happen if (i) we have no regular records of the
parent process to reliably estimate FZ or (ii) a faithful pa-
rameterization of FZ is not so easy to determine due to the
difficulties in accounting for various characteristics of the un-
derlying process, such as cyclo-stationarity, different physi-
cal generating mechanisms, and other possibly unknown fac-
tors. In these cases, EVT comes into play, stating, for in-
stance, that, under certain assumptions, the distribution of
BM within relatively short intervals (e.g., 365 d) converges
to one of the three asymptotic extreme-value models sum-
marized by the GEV distribution independently of the exact
form of FZ . Of course, the approximate or partial fulfillment
of EVT assumptions affects convergence. For example, au-
tocorrelation and a lack of distributional identity slow con-
vergence down (Koutsoyiannis, 2004; Eichner et al., 2006;
Serinaldi et al., 2020b) and sometimes prevent it, resulting in
degenerate models. These remarks explain why asymptotic
models are such powerful tools that are widely applied in
any discipline dealing with extreme values.

4.1.2 Visualizing the relationship between FZ and FY

A simple example with a graphical illustration can help bet-
ter clarify the difference between FZ and FY (see Sect. 3.2 in
Serinaldi et al., 2020b, for a formal discussion based on theo-
retical arguments). Let us assume that we have 365× 105 ob-
servations of an independent process Z following a gamma
distribution with shape and scale parameters κ = σ = 2, rep-
resenting, for instance, 105 years of daily records of a hypo-
thetical streamflow process (or a generic hydroclimatic pro-
cess). These data allow one to build the empirical version
of FZ and FY and the corresponding pdf’s fZ and fY . In par-
ticular, Fig. 1 shows the empirical pdf’s (Fig. 1a–c) and the
return level plots (i.e., return level vs. return period; Fig. 1d–
f) for two sub-samples of size 365× 100 and 365× 500 (i.e.,
100 and 500 years, respectively) and for the whole data set
(10 000 years). Figure 1 also displays the theoretical gamma
pdf and return level curves, as well as empirical and theo-
retical 100-year quantiles (vertical lines). The T -year return
levels are computed as the (1− 1

T )· 100 % quantiles of the
empirical cdf of AM and the (1− µ

T )· 100 % quantiles of
the theoretical and empirical cdf’s of the process Z, where
µ= 1/365 can be interpreted as the inter-arrival time (in
years) between two records of Z.

For T greater than ∼= 20 years, the upper tail of the em-
pirical FY (fY ) matches that of the empirical FZ (fZ). This
matching and convergence to the upper tail of the theoret-
ical FZ (fZ) improve as the sample size increases. This be-
havior is further stressed focusing on the 100-year return lev-
els (vertical lines in Fig. 1). It should be noted that the dis-
crepancies between FY and FZ for T < 20 years do not de-
pend on the sample size. Instead, they are related to the dif-
ferent natures of the processes Y and Z, and their magnitude
also depends on autocorrelation when data are correlated (see

Sect 3.2 in Serinaldi et al., 2020b, for a theoretical discus-
sion). Both distributions provide very close estimates of the
100-year return level for each sample size, and the accuracy
obviously improves as the sample size increases. Moreover,
Fig. 1 provides an intuitive (albeit very simplified) explana-
tion of why EVT models of BM work when FZ is not avail-
able and when EVT assumptions are fulfilled.

From Fig. 1, it is evident that we do not need any model
for Y if we already have a model for the parent Z. Since
NA distributions require the preliminary definition or fit of
a model for FZ , they have no practical usefulness as the
preliminarily fitted FZ already provides all the information
required to make statements on both ordinary and extreme
events or quantiles. In this respect, defining NA distribu-
tions from FZ is only an unnecessary and redundant step,
yielding only an approximation of the embedded FZ . These
issues are further discussed in the next section in a review of
a real-world data analysis previously reported in the litera-
ture.

4.2 Re-analysis of sea level data

In this section, we further illustrate the foregoing concepts
by re-analyzing two sea level time series already studied
by Caruso and Marani (2022). These data refer to hourly
sea level records from the tide gauge of Hornbæk (Den-
mark) and Newlyn (United Kingdom), spanning 122 years
(1891–2012) and 102 years (1915–2016), respectively. Data
are freely available from the University of Hawaii Sea
Level Center (UHSLC) repository (Caldwell et al., 2015,
http://uhslc.soest.hawaii.edu/data/?rq#uh745a/, last access:
23 August 2022). For the sake of consistency with the origi-
nal work, we removed years with less than 6 months of water
level observations and days with less than 24 h of data (see
Caruso and Marani, 2022). This resulted in 120 and 100 years
of data for the Hornbæk and Newlyn gauges, respectively.
Moreover, time series are pre-processed by filtering out the
time-varying mean sea level (m.s.l.) computed using the av-
erage of daily levels for each calendar year. Thus, the filtered
time series retain the contributions from astronomical tides
and storm surges.

Daily maxima are used as the basis for extreme-value anal-
ysis, which is performed by means of three different ap-
proaches: (i) GEV distribution of AM, (ii) GP distribution
of POTs, and (iii) GP-based MEV of peaks over a moderate
threshold (i.e., the so-called ordinary events). These extreme-
value models assume that the underlying process is a collec-
tion of independent random variables. Since sea levels are a
typical example of an autocorrelated process, data are pre-
liminarily declustered by selecting peaks that are separated
by at least 30 d to obtain (approximately) independent sam-
ples. In more detail, Caruso and Marani (2022) adopted “a
threshold lag of 30 d, which yielded the minimum estimation
error under the MEVD approach”. Therefore, declustered
data are used to extract AM and POT samples over optimal
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Figure 1. Probability density functions (a–c) and return level plots (return period vs. return level; d–f) of samples of varying size
(365×{100,500,10000}) and corresponding BM (with block size m= 365) drawn from a gamma distribution. The diagrams show the
relationship between the parent distribution and the distribution of BM, along with the convergence of the upper tails of the empirical dis-
tribution toward the theoretical counterparts. The abscissa of dashed vertical lines indicates the value of the theoretical 100-year return level
(gray lines) and its estimates from samples of the parent process Z (blue lines) and the corresponding BM process Y (red lines).

statistical thresholds (Bernardara et al., 2014). Caruso and
Marani (2022) selected the GP threshold for POTs by study-
ing the stability of the GP shape parameter (Coles, 2001,
p. 83), while they chose the moderate threshold of GP distri-
butions entering MEV “by testing different threshold values
and evaluating the goodness of fit of the distribution using
diagnostic graphical plots”.

Before presenting results of extreme-value analysis, it is
worth noting the following:

1. The extraction of independent data from correlated sam-
ples is referred to as “physical declustering” (Bernar-
dara et al., 2014). Its algorithms rely on the physical
properties of the process of interest (e.g., the lifetime of
the weather systems generating a storm over an area)
and/or the properties of the occurrence process (e.g.,
statistics of the (inter-)arrival times of rainfall storms).
In this respect, a threshold selection based on “the min-
imum estimation error under the MEVD approach” not
only requires iterative fitting of MEV components but
also contrasts with the rationale of physical decluster-
ing, whose algorithms should be unrelated to the sub-
sequent analysis and models involved. In other words,
physical declustering should guarantee only the inde-

pendence of the extracted sample and not the goodness
of fit of a specific model (GP, MEV, or anything else).

2. Goodness of fit concerns statistical optimization, which
aims to set a threshold that guarantees the convergence
or fit of the POT sample to an extreme-value model. For
the GP model, such a threshold should provide “the best
compromise between the convergence of [the POT dis-
tribution toward] a GP distribution (bias minimization)
and the necessity to keep enough data for the estima-
tion of its parameters (variance minimization)” (Bernar-
dara et al., 2014). In the present case, such a statistical
threshold should not be required as the physical thresh-
old was already selected to yield “the minimum esti-
mation error under the MEVD approach” (Caruso and
Marani, 2022). In fact, for Hornbæk and Newlyn data
sets, the thresholds used by Caruso and Marani (2022)
(i.e., 40 and 250 cm, respectively) lead us to discard ap-
proximately only 13 % of the complete declustered sam-
ple. Therefore, for the sake of comparison, we applied
MEV to both the original declustered data and their
over-threshold sub-samples.
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Figure 2. Detrended sea levels (gray line) for the gauging sites of Newlyn (UK) and Hornbæk (Denmark) and AM values for GEV analysis (a,
d), POTs used for GP analysis (b, e), and over-threshold events used for fitting MEV and compound parent models (c, f). “Detrended” refers
to sea level time series preliminarily filtered by removing the time-varying mean sea level.

For both data sets, Fig. 2 shows the time series of AM
(Fig. 2a and d), POTs for GP (Fig. 2b and e), and POTs
for MEV (Fig. 2c and f), along with the complete sample of
daily maxima. Note that the sizes of POT samples are slightly
different from those reported by Caruso and Marani (2022).
This is likely due to the slightly different implementations of
the declustering algorithm, which involves some technicali-
ties such as the treatment of unavailable values.

Figure 3 reports the results of extreme-value analysis in
terms of return level plots. Figure 3a shows the empirical re-
turn level plot of the AM sample used to fit the GEV distri-
bution and that of the corresponding declustered sample used
to extract AM values. The values of the return period used to
build these diagrams are estimated as T = µ

1−Fn
, where Fn is

the empirical cdf of AM or the declustered sample, and µ is
the average inter-arrival time between two observations of
a (discrete-time) process of interest, i.e., µ= 1 for AM and
µ= E[1/L] for the complete declustered sample, where the
random variable L denotes the varying number of events (or

peaks) per year. Figure 3a and e are analogous to Fig. 1 and
convey the same message but for real-world data; that is, the
distribution of AM is only an approximation converging to
the distribution of the parent sample for large quantiles (up-
per tail).

When using POT values over the threshold optimizing the
GP fitting (Fig. 3b and f), we get a similar message: the dis-
tribution of AM is an approximation of the upper tail of the
distribution of POTs, which plays a role similar to that of the
parent sample in NA models of BM. In fact, the GP-based
analysis of POTs does not require the subsequent derivation
of the distribution of AM to make inferences regarding re-
turn levels as the return period (in years) of any quantile is
computed as T = µ̂

1−FGP
, where FGP is the GP cdf, and µ̂ is

the estimate of the average inter-arrival time between two
POT observations. Even though this remark can seem triv-
ial, it plays a key role in understanding the redundancy of
NA distributions.
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Figure 3. Return level diagrams (return period (in years) vs. return level) resulting from extreme-value analysis of Newlyn data (a–d) and
Hornbæk data (e–h). All panels report empirical return level diagrams of AM as a common reference. Panels (a) and (e) report empirical
return level diagrams of the parent sample of declustered data along with the theoretical return level diagram of the fitted GEV model.
Panels (b) and (f) refer to POT sample and the corresponding GP model. Panels (c) and (g) and panels (d) and (h) show results for the MEV
and compound parent distributions applied to the over-threshold data and complete declustered sample, respectively.

MEV models require us to preliminarily fit a model for
values above a moderate threshold (or all available indepen-
dent declustered data), which is our parent distribution FZ ,
and therefore derive the distribution of the annual max-
ima FY as a function of FZ . Figure 3c, d, g, and h show the
empirical cdf’s of both the AM and parent sample, as well as
their theoretical counterpart, i.e., the GP-based MEV model
and the compound GP parent. As for GEV, the MEV distri-
bution is only an approximation of the upper tail of the fitted
compound parent. However, in this case, we already have a
model for the parent process, and, therefore, we do not need
any distribution of AM as the fitted compound FZ already
provides all the information required for inferential purposes.
In other words, MEV cannot provide the correct probability
of low or moderate quantiles (as with every extreme-value
model of BM), and it cannot add any information compared
to the corresponding fitted compound parent FZ . Once FZ is
available, any other model of any sub-process (such as AM
or POTs) is less informative or redundant, at most.

Figure 3c, d, g, and h also show that the claimed good-
ness of fit of MEV models is related to the fact that they are
compound distributions rather than the fact that they are dis-
tributions of AM. In fact, MEV tails match those of the cor-
responding compound parent distributions. When we have a
good compound model FZ integrating (i.e., averaging) sea-
sonal fluctuations and other forcing factors (such as different
generating mechanisms of rainfall, storms, flood, or storm

surges), the corresponding NA model is no longer needed
as it can, at most, be as accurate as the corresponding com-
pound FZ .

The use of NA distributions is not even justified in mak-
ing inferences regarding the return period and return levels.
In fact, a compound FZ can be used to compute return levels
in the same way as one uses GP distributions, calculating the
return period as T = µ̂

1−FZ
, where µ̂ is the estimate of the

average inter-arrival time between two observations in the
sample of values above a moderate threshold (as for the case
in Fig. 3c and g) or in the complete sample of independent
declustered data (as for the case in Fig. 3d and h). In gen-
eral, FZ does not require the derivation of the corresponding
NA model for AM to make inferences with regard to the re-
turn period (expressed in years) in the same way as GP-based
inference for POTs does not require the corresponding GEV
model of AM.

5 Smoke and mirrors on the water extremes: a matter
of compound distributions, neglected dependence,
and misuse of multi-model ensemble averaging

The discussion in Sects. 3 and 4 was based on conceptual ar-
guments, simplified numerical examples, and real-world data
re-analysis with simple visual assessment. However, to be
consistent with the scientific method, new models and meth-
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ods should be validated or falsified against challenging and
controlled conditions before being applied to real-world data
coming from inherently unknown processes (Serinaldi et al.,
2020a, 2022b). To this end, we set up three Monte Carlo ex-
periments. The first experiment replicates and expands the
numerical simulations reported by Marra et al. (2018) with
the aim of providing independent validation and further ev-
idence about the redundancy of NA models (here, MEV)
when dealing with serially independent processes. The sec-
ond experiment investigates the effect of autocorrelation on
NA-based analysis, evaluating the effectiveness of declus-
tering algorithms based on threshold lags, as well as the
use of βBC models accounting for serial correlation without
declustering. The third experiment replicates and expands
some of the Monte Carlo simulations reported by Marani and
Ignaccolo (2015) to support the introduction of MEV mod-
els. In this case, the aim is to explain the apparent discrepan-
cies between the results in Marani and Ignaccolo (2015) and
those in Marra et al. (2018).

5.1 Monte Carlo experiment 1: serially independent
processes

The first experiment consists of simulating S = 1000 time se-
ries of ordinary events mimicking 3, 5, 10, 20, and 50 years of
records. Each year comprises l events drawn from a random
variable L following a Gaussian distribution with a mean of
µL ∈ {10,50,100} and a standard deviation of σL= 0.3µL.
Marra et al. (2018) chose the range of µL and σL based on
exploratory analysis of hourly rainfall data collected over
the contiguous United States. Ordinary events are simu-
lated from Weibull distributions with the shape parameter
κ ∈ {0.8,1.25} and the scale parameter λ= 1. The κ values
represent the typical range of variability of the observed rain-
fall data studied by Marra et al. (2018), while a constant λ is
chosen for easier interpretation of the results. The simulated
time series are used to estimate the 100-year return levels.
The reference 100-year return level is empirically obtained
from 105 years of simulated samples, and the performance
of GEV, GP, and MEV is checked in terms of multiplicative
bias:

Bk =
x̂k

xref
, (8)

where x̂k is the estimate of the target statistics (here, 100-
year return level) for the kth Monte Carlo simulation (with
k = 1, . . .,S), and xref is the reference (true) value.

We note that the use of a Gaussian distribution with infinite
support can generate a physically inconsistent negative num-
ber of events in some years. Moreover, simulating integer
values from a continuous distribution requires rounding off.
In these cases, more appropriate models for discrete random
variables defined in [0,∞), such as binomial, beta-binomial,
Poisson, or geometric, should be used. The reference 100-
year return level can be computed as the (1− 1

100 )· 100 %

quantile of the empirical cdf of AM or the (1− µ̂
100 )· 100 %

quantile of the empirical cdf of the complete time series of
ordinary events, where µ̂ is the estimate of the average inter-
arrival time (in years) between two ordinary events. For large
samples, the former estimate converges to the latter for T val-
ues greater than a few years (e.g., 3–5 years for independent
data; see Fig. 1) or much more for serially dependent pro-
cesses (see Sect 3.2 in Serinaldi et al., 2020b). In any case,
the most accurate estimate of the T -year return level for ev-
ery value of T is given by the distribution FZ of the parent
process, thus making the derivation of the distribution FY of
AM redundant if the latter requires the preliminary definition
of the former.

Results are reported as diagrams of the 5 %, 50 %, and
95 % quantiles of multiplicative bias versus the number of
years. As expected, Fig. 4 is in perfect agreement with Fig. 7
in Marra et al. (2018) and leads to the same overall conclu-
sions: MEV exhibits positive bias compared to GEV and GP
but smaller variance. However, Fig. 4 provides an additional
result concerning the performance of the compound parent
distribution corresponding to MEV and shows that both mod-
els yield almost identical results apart from unavoidable sam-
pling fluctuations in the estimation of the 5 % and 95 % quan-
tiles based on 1000 simulated values of bias B. As discussed
in Sects. 3 and 4, MEV distributions (or, more generally,
NA distributions) do not add any information with respect
to the parent distribution appearing in MEV formulas. There-
fore, once a distribution is selected to describe the ordinary
events (here, Weibull), its compound version is enough to
make statements regarding any quantile, providing more in-
formation than the derived compound NA models, which
approximate only the upper tail of the (embedded) parent dis-
tribution.

5.2 Monte Carlo experiment 2: serially dependent
processes

This Monte Carlo experiment is designed to study the ef-
fect of autocorrelation on NA-based inference. Time series
of ordinary events mimicking 3, 5, 10, 20, and 50 years
of daily records (i.e., 365 records per year) are simu-
lated S= 1000 times to estimate 100-year return levels.
The marginal distributions are the same as those used
in the first experiment, i.e., Weibull with shape parame-
ter κ ∈ {0.8,1.25} and scale parameter λ= 1. Autocorre-
lation is modeled by a first-order autoregressive (AR(1))
process with parameter ρ1 ∈ {0.3,0.6,0.9}, corresponding
to weak, moderate, and relatively high autocorrelation.
Weibull-AR(1) time series are generated by the CoSMoS
framework, which enables the simulation of correlated pro-
cesses with the desired marginal distribution and ACF (Pa-
palexiou, 2018, 2022; Papalexiou and Serinaldi, 2020; Pa-
palexiou et al., 2021, 2023).

Extreme-value analysis is performed by GEV for AM, GP
for POTs of preliminarily declustered data, Weibull-based
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Figure 4. Multiplicative bias for the 100-year return levels obtained from 1000 synthetic samples of varying record length (i.e., number of
blocks or years) and with a varying number of ordinary events per block or year (10, 50, and 100) drawn from Weibull distribution with
shape parameters κ = 0.8 (a–c) and 1.25 (d–f). The reference 100-year return levels are empirically obtained from a 105-year record. Solid
lines represent the median bias, while shaded areas (for GEV and MEV) and dashed lines (for GP and Compound parent) represent the
95 % Monte Carlo confidence intervals.

MEV for declustered data, and Weibull-based βBC for the
complete time series. Declustering is based on time lag, se-
lecting the first lag τ0 such that the empirical ACF becomes
smaller than twice the 99 % quantile of the sampling distri-
bution of the ACF values under independence. Although this
approach is slightly different from that used by Marra et al.
(2018), the rationale is the same, and it yields τ0 values that
guarantee sufficiently long inter-arrival times, as well as a
suitable number of events per block for the considered AR(1)
ACFs and sample sizes. Subsets of ordinary events used for
MEV analysis are then defined as peaks separated by time in-
tervals ≥ τ0. POTs for GP analysis are extracted from these
subsets, while AM for GEV analysis are selected from the
original sample, assuming their inter-annual independence.
Of course, βBC analysis uses the complete data set and does
not require any preliminary declustering procedure as it ex-
plicitly accounts for autocorrelation.

Figure 5 compares the results of the GEV, GP, and MEV
analyses. For ρ1 = 0.3, values of bias B are similar to those
obtained for the previous experiment in Sect. 5.1, with µL =
100 (Fig. 4). This is expected as low values of ρ1 correspond
to rapidly decreasing ACF and, therefore, τ0 ∼= 2–3 time
steps, corresponding to sample sizes of ordinary events be-
tween about 120 and 180. For ρ1 = 0.6 and 0.9, τ0 increases
to 4–6 and 15–30 time steps, respectively, corresponding to
sample sizes of 60–90 and 12–24 ordinary events. The pro-
gressively reduced sample size increases MEV uncertainty,
which becomes similar to that of GEV and GP models. More
importantly, MEV bias dramatically increases with ρ1 and

the number of years (blocks). The effect of ρ1 is easy to in-
terpret in terms of reduced sample size resulting from declus-
tering with larger τ0. On the other hand, the effect of the
number of years could appear to be counterintuitive as one
would expect more accuracy when a larger number of years
is available.

Marra et al. (2018) ascribe this behavior “to uncertain es-
timation of the weight of the tail of the ordinary events dis-
tribution when few data points are used for the fit”. However,
this would not be sufficient to explain why the smallest bias
corresponds to small numbers of available years and, thus, to
overall smaller samples. The actual issue is the combination
of the (average) number of intra-block peaks (or intra-block
sample sizes – here, l or µL), the number of blocks (here, the
number of years nY ), and the compounding procedure char-
acterizing MEV.

For fixed nY , a small intra-block sample size l results in
great variability in the Weibull parameters estimated in each
block, which, in turn, results in heavier tails of compound
distributions. As l increases, the inter-block variability of
Weibull parameters decreases, and the compound distribu-
tion resulting from averaging a set of similar Weibull distri-
butions becomes closer and closer to the theoretical Weibull
used to simulate. In other words, the compounding mecha-
nism works better in those cases in which it is less required,
i.e., when the inter-block variability is small and when model
averaging (of very similar models fitted on each block) is less
justified and useful. On the other hand, when model aver-
aging could be more justified, i.e., when there is substantial
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Figure 5. Multiplicative bias for the 100-year return levels obtained from 1000 synthetic samples of varying record length (i.e., number
of blocks or years) from the Weibull-AR(1) process, with Weibull shape parameters κ = 0.8 (a–c) and 1.25 (d–f) and AR(1) parameter
ρ ∈ {0.3,0.6,0.9}. The reference 100-year return levels are empirically obtained from a 105-year record. Solid lines represent the median
bias, while shaded areas (for GEV and MEV) and dashed lines (for GP and compound parent) represent the 95 % Monte Carlo confidence
intervals. MEV and compound parent distributions are fitted to preliminarily declustered data.

uncertainty in the sampling parameters, the dispersion of the
sampling distribution of parameters is greater, and the tail of
the resulting compound distribution is heavier, with a shape
departing from that of the (true) theoretical distribution.

For given µL, when the number of years nY is small, com-
pound NA models average a small number of components
F
lj
j , with j = 1, . . .,nY (e.g., we have three components for
nY = 3 years). In a Monte Carlo experiment, averaging a few
heterogeneous components results in a set of heterogeneous
compound distributions whose differences tend to compen-
sate for each other, on average. Therefore, the Monte Carlo
ensembles of compound distributions exhibit high variabil-
ity and small bias. As nY increases, the number of averaging
components F

lj
j increases, providing a more accurate pic-

ture of the inter-block variability that is incorporated into
the compound distributions. This results in Monte Carlo en-
sembles of compound distributions with more homogeneous
and systematically heavier tails than those of the compound
models resulting from small nY . Therefore, the Monte Carlo
ensemble exhibits lower variance and higher bias as nY in-
creases for a given µL.

As for Fig. 4, Fig. 5 also reports results for the compound
distribution of ordinary events, which are almost indistin-
guishable from those of MEV analysis. Overall, Fig. 5 further
confirms the redundancy of MEV models (and, more gener-
ally, NA models) once we have a compound parent distribu-
tion, which has to be estimated in any case to derive NA dis-
tributions. Moreover, uncorrelated ordinary events resulting
from declustering procedures do not guarantee convergence

of compound distributions (MEV or parent) to the true dis-
tribution. In fact, the bias is generally much larger than that
of GEV and GP estimates, although the intra-block sample
size is generally much larger than that of AM and POTs, and
the compound distributions have a much larger number of
parameters (from 6 to 100, resulting from the two-parameter
Weibull fitted to 1-year blocks over 3 to 50 years).

Figure 6 compares the results of the GEV and GP analyses
with those of βBC and compound parent models. Since βBC
models (and the corresponding compound parent) use the
complete time series instead of declustered data, uncertainty
and bias are smaller than those of MEV models (and the
corresponding compound parent). Therefore, while time lag
declustering seems to yield apparently independent events,
the resulting data sets do not provide a faithful description
of the upper tail of the true generating process; that is, MEV
models do no make suitable use of these declustered sam-
ples. Declustering has negative effects independently of the
intensity of autocorrelation. Of course, larger bias and uncer-
tainty correspond to higher ρ1 values in both MEV and βBC
analyses. In fact, MEV is affected by significant decreases
in sample size due to declustering, while βBC suffers from
underestimation of ACF, which requires large sample sizes
to be reliably estimated (see, e.g., Koutsoyiannis and Mon-
tanari, 2007; Serinaldi and Kilsby, 2016a). It is worth noting
that the GEV and GP results are rather insensitive to autocor-
relation. This is expected as the underlying joint dependence
structure of AR(1) processes is a Gaussian copula, which is
characterized by asymptotic tail independence and is there-
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Figure 6. Multiplicative bias for the 100-year return levels obtained from 1000 synthetic samples of varying record length (i.e., number
of blocks or years) from the Weibull-AR(1) process, with Weibull shape parameters κ = 0.8 (a–c) and 1.25 (d–f) and AR(1) parameter
ρ ∈ {0.3,0.6,0.9}. The reference 100-year return levels are empirically obtained from a 105-year record. Solid lines represent the median
bias, while shaded areas (for GEV and MEV) and dashed lines (for GP and compound parent) represent the 95 % Monte Carlo confidence
intervals. βBC and compound parent distributions are fitted to complete autocorrelated time series.

fore complaint with EVT assumptions. Similarly to Fig. 4
and 5, Fig. 6 shows that the βBC model and the correspond-
ing compound parent match (apart from discrepancies due to
the issues mentioned above), confirming the redundancy of
NA models.

5.3 Monte Carlo experiment 3: reviewing simulations
of Marani and Ignaccolo (2015)

Figure 4 shows that MEV and its compound parent distribu-
tion yield a median multiplicative bias BM ∼= 1.25 for 100-
year return levels estimated from nY = 50 years (blocks) of
data drawn from Weibull distributions with the shape param-
eter κ = 0.8 and an average number of events per block of
µL ∈ {50,100}. On the other hand, BM ∼= 1.0 for GEV and
GP distributions. For a similar setup (i.e., nY = 50, κ = 0.82,
and µL ∈ {30,100}), Marani and Ignaccolo (2015) reported
probability plots (probability vs. quantiles) and relative error:

Rk =
x̂k − xref

xref
, (9)

where x̂k is the estimate of the target statistics for the
kth Monte Carlo simulation (with k = 1, . . .,S), and xref is
the reference (true) value. They found that MEV is almost
unbiased, with an average relative error of R =

∑
Rk
S
∼= 0,

while GEV exhibits bias, with R ∼= 5 % and ∼= 30 % for the
100- and 1000-year return levels, respectively. On the other
hand, for the 100-year return level, simulations in Sect. 5.1
(reproducing those of Marra et al., 2018) yield R ∼= 25 %
for MEV and R ∼= 0 for GEV. Therefore, we re-run Monte

Carlo simulations described by Marani and Ignaccolo (2015)
to understand the reason for such a disagreement. We an-
ticipate that the foregoing discrepancies depend on the mis-
use of methods used to summarize multi-model ensembles.
Thus, before describing Monte Carlo experiments and their
outcome, we need to recall some theoretical concepts that are
required to correctly interpret numerical results.

5.3.1 Summarizing multi-model ensembles: some
overlooked concepts

Monte Carlo simulations are usually used to study the uncer-
tainty affecting estimates based on finite-sized samples (that
provide incomplete information about the underlying pro-
cess) or to approximate population distributions (or statistics)
when mathematical closed-form expressions are not avail-
able. Examples of these applications are the experiments re-
ported in Sect. 5.1 and 5.2.

In all cases, the primary output of Monte Carlo simu-
lations is a set of parameters identifying a set of models
(multi-model ensemble) that is then used to estimate the tar-
get statistics of interest. For example, simulations of S finite-
sized samples in Sect. 5.1 and 5.2 are used to fit a set of
S GEV distributions. These are then used to calculate a set of
S 100-year return levels, which are eventually used to build
confidence intervals summarizing sampling uncertainty.

However, a multi-model ensemble can be summarized in
many different fashions to obtain a representative point es-
timate of a statistic of interest (e.g., Renard et al., 2013;
Fawcett and Walshaw, 2016; Fawcett and Green, 2018).
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Let S be the number of Monte Carlo replications; let F(z|θk)
(with k = 1, . . .,S) be the kth member of the Monte Carlo
multi-model ensemble (e.g., the kth Weibull distribution fit-
ted to the kth simulated sample); let zp be a target quantile
with a non-exceedance probability p; and let us define the
quantile function as the inverse of the cdf, Q= F−1. A rep-
resentative point estimate of zp can be, for instance, the mode
of the S quantiles zp,k =Q(p|θk)= F−1(p|θk).

More popular point estimates of zp (or whatever statis-
tics) rely on the definition of so-called predictive distribu-
tions and predictive quantile functions. The sampling predic-
tive cdf reads as

F(z) :=
1
S

S∑
k=1

F(z|θk)

∼= E�θ [F(z|2)], (10)

and the corresponding quantile with a specified non-
exceedance probability p is given by

zp,F =

{
z :

1
S

S∑
k=1

F(z|θk)= F(z)= p

}
= F

−1
(p). (11)

The sampling predictive quantile function reads as

Q(p) :=
1
S

S∑
k=1

Q(p|θk)

∼= E�θ [Q(p|2)] = E�θ [F
−1(p|2)], (12)

resulting in predictive quantile estimates of

zp,Q =
1
S

S∑
k=1

F−1(p|θk)

= F−1(p). (13)

Let us denote the empirical cdf and quantile function of
the S sampled quantiles zp,k as FS andQS , respectively. Re-
calling that the distribution of zp can be approximated by
the distribution of order statistics and that the latter is de-
scribed by a generalized beta distribution (see Eq. 1, as well
as Eugene et al., 2002; Tahir and Cordeiro, 2016), we can
write FS(zp)∼= Fβ(F (z)|pS′, (1−p)S′), where S′ = S+ 1.
Therefore, the foregoing zp estimators can be complemented
by the median estimator, defined as

zp,M =
{
z : P[Zp,k ≤ z] = FS(zp)= 0.5

}
= F−1

S (0.5)∼= F−1
(
F−1
β (0.5|pS′, (1−p)S′)

)
. (14)

Similarly, we can also define the median probability of a
fixed quantile zp from an ensemble of cdf’s as follows:

pM =
{
p :QS(0.5)= zp

}
=
{
p : FS(zp)= 0.5

}
∼=
{
p : Fβ(F (zp)|pS

′, (1−p)S′)= 0.5
}
. (15)

The foregoing formulas indicate that the three zp esti-
mators obviously represent different quantities. Focusing on
zp,F and zp,Q and comparing Eqs. (11) and (13), we have it
that

F
−1
(p) 6= F−1(p). (16)

Equation (16) is the sampling counterpart of
Q(E[F(Zp)]) 6= E[Q(F(Zp))] ≡ E[Zp], which, in turn,
follows from the well-known general inequality

E[F(Z)] 6= F(E[Z]), (17)

stating that the distribution of the expected value of Z is dif-
ferent from the expected distribution of Z. In fact, since F is
commonly a nonlinear transformation of Z (as well as of the
parameters θ ), it hinders the interchangeability of the (linear)
expectation operator E. In passing, such an inequality also
partly caused a long “querelle” (controversy) with regard to
plotting position formulas (see, e.g., Makkonen, 2008; Cook,
2012; Makkonen et al., 2013).

On the other hand, zp,M is the only estimator that guar-
antees the identity between the zp estimates obtained from
ensembles of Q or F functions. This property depends on
the fact that the median (as well as every quantile) is a rank-
based (central-tendency) index, and ranking is a transforma-
tion that does not depend on absolute values and therefore
passes unaffected trough nonlinear monotonic functions such
as Q and F . This means that the median parameters θM cor-
respond to zp,M and pM. This property does not hold for the
expectation operator E. In fact, generally, F(zp|E�θ [2]) 6=
E�θ [F(zp|2)].

The foregoing concepts and properties play a key role in
the correct interpretation of the results reported in the next
section.

5.3.2 Numerical simulations: the consequences of
overlooking theory

Marani and Ignaccolo (2015) supported the introduction of
MEV by means of five Monte Carlo experiments (referred to
as cases “A”, “B”, “C”, “A2”, and “B2”), comparing the ac-
curacy of MEV to that of standard asymptotic models of BM
(i.e., Gumbel and GEV distributions). For the cases B and
B2, Marani and Ignaccolo (2015) did not provide enough
information to enable their replication. Therefore, we fo-
cused on cases A, C, and A2, which are sufficient to sup-
port our discussion. Case A consists of simulating S = 1000
samples from a Weibull distribution with a scale parameter
equal to 7.3, a shape parameter of κ = 0.82, a number of
blocks (years) of nY = 50, and a number of events per block
(here, wet days per year) of l = 100. Case C is similar to A,
with the only difference being that the number of events per
block is drawn from a uniform distribution U(21,50). The
setup of case A2 is similar to that of A; however, it explores
the effect of varying l from 10 to 200 by steps of 10 events
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per block. Therefore, Gumbel, GEV, and MEV distributions
of BM are fitted to each of the S samples. For the cases A and
C, the accuracy of the three models is assessed by compar-
ing “the ensemble average distributions, ζMEV(y), ζGEV(y),
ζGUM(y) as the means of the distributions of Y computed
over the 1000 synthetic time series” (Marani and Ignaccolo,
2015). For the case A2, the three models are evaluated in
terms of the average relative error R of the estimates of the
100- and 1000-year return levels. The reference (true) return
levels are empirically obtained from 106 years of simulated
samples.

Figure 7a–c reproduce Fig. 3a and c in Marani and Ignac-
colo (2015). For the case A, we used both κ = 0.82 and 0.73
as the original parameterization cannot reproduce the results
of Fig. 3a in Marani and Ignaccolo (2015). In fact, analyzing
the original Fig. 3a, the reference 100- and 1000-year return
levels should be close to 150 and 210, respectively, while
κ = 0.82 yields values close to 109 and 143, which, in turn,
are consistent with case C. Therefore, we used κ = 0.73 to
obtain a figure that is as close as possible to the original one.
Nonetheless, the exact value of κ is inconsequential in the
following discussion, and we use both κ = 0.82 and 0.73 for
completeness.

The key aspects in Fig. 7a–c are (i) the perfect match of
MEV and its compound parent, confirming the redundancy
of NA models when their parents are already known, and
(ii) the accuracy of MEV and its compound parent against
the prominent bias of GEV, which is in contrast to results re-
ported by Marra et al. (2018) and in the previous sections.
The reason for such a discrepancy is that Fig. 7a–c (and
Fig. 3a in Marani and Ignaccolo, 2015) do not show what
they are supposed to do, thus making the comparison un-
fair and misleading. In fact, contrarily to the description in
Marani and Ignaccolo (2015), the MEV curves in Fig. 7a–
c do not refer to the predictive MEV obtained by averaging
S MEV distributions according to Eqs. (10) and (11). Instead,
recalling that MEV is itself a predictive distribution (i.e., the
average of multiple components F

lj
j , with j = 1, . . .,nY ; see

Sect. 2), MEV curves in Fig. 7a–c refer to the predictive ver-
sion (averaged over S samples) of MEV quantile functions,
which are predictive quantile functions themselves resulting
from averaging over nY samples.

In other words, Fig. 7a–c report the pairs (zp,Q,p)

instead of the claimed (zp,F ,F ), and these pairs dif-
fer from each other (see Sect. 5.3.1). In more de-
tail, zp,Q ∼= ES[E�θS [F

l
WEI
−1
(p|2S)]], while the figure

should show zp,F obtained by inverting F ∼= ES[FMEV] =

ES[E�θS [F
l
WEI(zp|2S)]].

On the other hand, Fig. 7a–c (and Fig. 3a and c in Marani
and Ignaccolo, 2015) correctly show the predictive distri-
butions of Gumbel and GEV. However, this hinders a fair
comparison. In fact, EVT states that the asymptotic model
of BM is a GEV distribution (under suitable conditions) and

not the compound version of GEV resulting from averaging
S GEV models. Such a compound GEV distribution always
has a larger variance and heavier tails than its classical GEV
counterpart (see Sect. 6). Therefore, to be consistent with
EVT, the ensemble of GEV and Gumbel distributions should
be summarized using a transformation, such as the median,
that retains the expected GEV or Gumbel shape. Figure 7d–
f show the median GEV and Gumbel distributions (result-
ing from Eq. 15), along with the actual predictive MEV (as
it should be). Results in Fig. 7d–f are fully consistent with
those reported by Marra et al. (2018) and in Sect. 5.1 and 5.2,
confirming the low bias of asymptotic models and the natural
tendency of compound distributions to exhibit heavier tails
than their components and their generating processes. More-
over, the perfect agreement of the upper tail of MEV and that
of the compound parent distributions in Fig. 7d–f further con-
firms (if still needed after many examples) the redundancy of
NA models once their parent distributions are defined.

Similar remarks hold for the case A2. Results in Fig. 8a
and b are close to those reported by Marani and Ignaccolo
(2015) in their Fig. 4a, with MEV showingR ∼= 0 for both the
100- and 1000-year quantiles and with GEV showing R ∼= 0
for the 100-year return level and R ∼= 5 % for the 1000-year
return level. The Gumbel distribution yields slightly nega-
tive R for both return levels, with smaller values for higher κ ,
which corresponds to a generating Weibull distribution closer
to exponential, thus allowing faster convergence to the first
asymptotic distribution of EVT. As for the cases A and C,
these results are affected by mixing predictive distributions
and predictive quantile functions, as well as the improper
use of the former to summarize the ensemble of GEV and
Gumbel models. Figure 8c and d show the median relative
errors corresponding to GEV, Gumbel, and true predictive
MEV distributions. As mentioned above, the median of S
the GEV and/or Gumbel distributions is still a GEV and/or
Gumbel distribution. As the S relative errors of GEV return
levels (Eq. 9) are just the rescaled value of GEV return levels,
if the median GEV correctly describes the reference (true)
distribution of AM, the median relative error (over S = 1000
samples) is expected to be equal to zero. On the other hand,
the mean relative error of GEV return levels is expected to be
different from zero as it would correspond to the difference
between a compound GEV (resulting from averaging over S
samples) and the reference distribution of AM.

As expected, the GEV model correctly describes BM,
while the compound structure of MEV yields heavier tails.
Once again, results from MEV and compound parent are al-
most indistinguishable due to the redundancy of MEV (and
any NA model in general).

The work by Marani and Ignaccolo (2015) also suffers
from several mismatches between the text and figures. For
example, concerning the case A2 and the corresponding
Fig. 4a, they state that the “GEV approach systematically
overestimates the 100-year extreme rainfall intensity by 5 %
even for large numbers of wet days. The Gumbel approach
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Figure 7. Probability plots (probability vs. quantile) showing different models for AM Y resulting from the Monte Carlo experiments denoted
as cases A (a, b, d, e) and C (c, f) (see main text for details about the simulation setup). Panels (a–c) reproduce results reported in Marani and
Ignaccolo (2015, Fig. 3a and c), while panels (d–f) show the revised version with corrections accounting for inconsistencies in the calculation
of compound quantiles and the misuse of multi-model ensemble averaging.

systematically underestimates the 100-year extreme rainfall
intensity by about 5 %. For the 1000-year return period in-
tensities, the GEV approach severely overestimates actual
extreme events (minimum relative error is 30 % for n= 200
events yr−1), whereas the Gumbel approach yields underes-
timation errors of about 10 %”. However, in contrast with the
text, their Fig. 4a shows that GEV has R ∼= 0 for the 100-
year return level andR ∼= 10 % for the 1000-year return level,
while Gumbel distributions have R ∼=−15 % and ∼=−30 %
for the 100- and 1000-year return levels, respectively. Con-
cerning the case B2 and the corresponding Fig. 4b, any in-
terpretation is impossible as Fig. 4b in Marani and Ignaccolo
(2015) reports the “root mean square % error”, whereas the
text refers to R, and it is not even clear if Fig. 4b actually
refers to the case B2.

6 Discussion

The proposal of NA models as an alternative to classic EVT
models suffers from some problems that seem to be quite
widespread in the hydrological literature dealing with statis-
tical methods (see, e.g., discussions in Serinaldi and Kilsby,
2015; Serinaldi et al., 2018, 2020a, 2022b).

1. Data analysis should be supported by preliminary
scrutiny of its rationale, allowing, for instance, the
recognition of the “circular reasoning” affecting the
practical use of NA models of BM. Extreme-value
models are powerful tools if applied in the right context
according to their motivation and assumptions. Their
usefulness relies on the fact that they provide an approx-
imate description of the upper (or lower) tails of the dis-
tribution of parent processes when the latter is unknown
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Figure 8. Relative errors for 100- and 1000-year return levels resulting from the Monte Carlo experiment denoted as case A2 (see main text for
details about the simulation setup). Panels (a) and (b) reproduce results reported in Marani and Ignaccolo (2015, Fig. 4a) for κ ∈ {0.73,0.82},
while panels (c) and (d) show the revised version with corrections accounting for inconsistencies in the calculation of compound quantiles
and the misuse of multi-model ensemble averaging.

and when there are no data (or not enough data) to reli-
ably estimate it. NA models of BM contradict this prin-
ciple. In fact, NA models require the preliminary esti-
mation of a parent distribution FZ to build a surrogate
distribution FY that approximates a tail of FZ , neglect-
ing the fact that FZ is already known or fitted.

For example, Marra et al. (2023) studied the distribu-
tion of worldwide daily rainfall data over low and mod-
erate thresholds showing that a Weibull model provides
a good fit and reproduces L-moments of AM even when
AM are excluded from calibration. Conversely, using
GP tails provides the same results only over the 95 %
threshold and overestimates the heaviness of the upper
tail when the GP model is assumed for low or moderate
thresholds (in agreement with results reported by Seri-
naldi and Kilsby (2014b) about the multiple-threshold
method (Deidda, 2010)). The natural interpretation of
these results would be that the Weibull distribution is a
good model FZ for the parent process Z (positive rain-
fall or rainfall over low or moderate thresholds), con-
firming previous results reported in the literature, while
the GP model works well for exceedances over high
thresholds (as postulated by EVT) and does not work
well (as expected) for low or moderate thresholds, that
is, outside its range of validity. Recalling the theoreti-

cal link between GP and GEV, this also means that the
latter is a good model for rainfall BM.

For practical applications, this should translate into the
following recommendations: (i) use GEV if only BM
are available (e.g., AM from hydrological yearbooks),
and (ii) use FZ (e.g., (compound) Weibull) if you have
information on Z, which can be either the process of
all positive rainfall or the rainfall over arbitrary low
or moderate thresholds if the latter is deemed easier to
fit. In the latter case, calculate the T -year return levels
as the (1− µ

T )· 100 % quantiles of FZ , where µ is the
(mean) inter-arrival time (in years) between two obser-
vations of Z (e.g., Serinaldi, 2015; Volpi et al., 2019).

Such a plain reasoning highlights that there is no need to
build an additional distribution of BM (i.e., (compound)
F lZ). This is similar to the case of asymptotic models,
whereby we do not need to define the GEV distribu-
tion of AM once we have already inferred a GP model
of POTs. Nonetheless, Marra et al. (2023) interpreted
their results as evidence in support of NA models of
BM, missing the fact that the fitted Weibull distributions
over zero, low, or moderate thresholds are conceptually
similar to each other and can be used directly to make
inferences about any desired quantile without deriving
redundant models of BM (here, exponentiated Weibull).
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2. New methods need to be suitably validated before being
applied. Actually, applications to real-world data are of-
ten improperly used as validation. Proper validation or
falsification requires the use of processes with known
properties that match or contrast the model assump-
tions. For example, NA models, such as (S)MEV, have
only been assessed for parent processes with known
marginal distributions under independence (e.g., Marra
et al., 2018), while the effect of dependence and the ef-
fectiveness of declustering were not checked. We en-
courage modelers to perform proper Monte Carlo simu-
lations as suitable methods are readily available for such
an analysis (e.g., Serinaldi and Lombardo, 2017a, b;
Papalexiou, 2018; Serinaldi and Kilsby, 2018; Kout-
soyiannis, 2020; Papalexiou and Serinaldi, 2020; Pa-
palexiou et al., 2021; Papalexiou, 2022, among others).
Of course, numerical experiments should be supported
by the theoretical knowledge required to allow for cor-
rect implementation and interpretation and to prevent
inconsistencies such as those discussed in Sect. 5.3.

On the other hand, proper validation was replaced by
quite an extensive use of cross-validation exercises
based on observed data (e.g., Miniussi and Marani,
2020; Mushtaq et al., 2022), which might, however, be
misleading for the following reasons:

a. Hydroclimatic records come from processes with
inherently unknown properties as only estimates of
the variables of interest are available.

b Cross-validation is usually performed on short time
series (commonly, a few years of data), and model
estimates (from shorter calibration subsets) are
compared with sample estimates (from shorter ver-
ification subsets), which might not be representa-
tive of the true value of the target statistics. Cross-
validation relies on the assumptions that the cali-
bration subsets are representative of the population,
and out-of-sample subsets come from the same
population. However, for autocorrelated processes,
very long time series might be required to explore
the state space of the studied process (Koutsoyian-
nis and Montanari, 2007; Dimitriadis and Kout-
soyiannis, 2015), thus meaning that the observed
series might be not representative, especially when
focusing on extreme values. In hydroclimatic pro-
cesses, this issue is exacerbated by the effect of
long-term fluctuations characterizing the climate
system at local and global spatial scales.

c. Standard bootstrap resampling used in cross-
validation might also be misleading. In fact, it pro-
vides correct results under the assumption that the
state space is explored under independence, and,
therefore, relatively short samples are enough to
give a reliable picture of the range of possible out-

comes. If the hypothesis of independence is not
valid, the observed values might cover a subset of
the state space, and the standard bootstrap com-
monly applied in MEV literature just conceals this
fact.

3. Often, inappropriate validation and iterated application
to real-world data generate quite an extensive literature
in which numerical artifacts are confused with physi-
cal properties (see, e.g., Serinaldi and Kilsby, 2016a;
Serinaldi et al., 2020a, 2022b, for paradigmatic ex-
amples). Such a literature is often improperly used to
support a given method through arguments like “there
is such a strong scientific body of literature demon-
strating the technical advantages of these approaches”.
However, consensus is not a scientific argument. His-
torically, the main scientific progresses occurred when
someone called into question widely accepted main-
stream theories using arguments more solid than those
of the superseded theories. Consensus is even more
questionable when a method is iteratively applied with-
out a necessary neutral or independent validation. The
literature on NA models tends to suffer from these
problems, and our discussion in Sect. 5.3 illustrates how
these models have been iteratively applied without the
above-mentioned independent analysis.

It is quite common to read sentences such as “these new
approaches have been shown to be practically useful un-
der real conditions, showing their practical advantage
over traditional methods”. Such kinds of statements do
not provide any technical information about either the
relationship between the distribution of BM and POTs
and their corresponding parent or the rationale and ef-
fects of compounding multiple models or the difference
between the parameterizations of GEV and NA mod-
els, for instance. Moreover, if a method is biased, as
shown in the previous sections, multiple applications to
real-world data do not make it unbiased.

4. Often, (seemingly) new methods are not put into their
broader context and are denoted by uninformative
names, thus concealing their nature and hindering cor-
rect interpretation. In particular, NA distributions are
only special versions of the class of compound distribu-
tions (e.g., Dubey, 1970; van Montfort and van Putten,
2002):

f̃ (x)=

∫
�θ

f (x,θ)dθ

=

∫
�θ

f (x|θ)f (θ)dθ

= E�θ [f (x|2)], (18)
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where f̃ (x) is the marginal pdf of a generic variable X,
f (θ) is the pdf of the parameter vector θ of the distri-
bution f (x|θ), and �θ is the state space of θ when it
is treated as a random variable 2. The variance V[X]
of f̃ (x) is always greater than that of its components
f (x|θ) (e.g., Karlis and Xekalaki, 2005).

V[X] = E�θ [VX|θ [X]] +V�θ [EX|θ [X]] (19)

Compound distributions have been presented in the lit-
erature under various names and contexts, such as “su-
perstatistics” in physics and hydrology (Beck, 2001;
Porporato et al., 2006; De Michele and Avanzi, 2018)
and “predictive distributions” in theoretical and ap-
plied statistics (Benjamin and Cornell, 1970; Wood
and Rodríguez-Iturbe, 1975; Stedinger, 1983; Bernardo
and Smith, 1994; Kuczera, 1999; Coles, 2001; Cox
et al., 2002; Gelman et al., 2004; Renard et al., 2013;
Fawcett and Walshaw, 2016; Fawcett and Green, 2018),
or without introducing any specific name (Koutsoyian-
nis, 2004; Allamano et al., 2011; Botto et al., 2014; Ya-
dav et al., 2021). In more detail, Eq. (18) “might be
referred to as the prior (Bayesian) distribution or the
posterior (Bayesian) distribution on X, depending on
whether a prior or posterior distribution of θ is used
to determine f̃ (x)” (Benjamin and Cornell, 1970, pp.
632–633). f (θ) can be analytical (e.g., Skellam, 1948;
Moran, 1968; Dubey, 1970; Hisakado et al., 2006)
or empirical, resulting from Monte Carlo simulations,
bootstrap resampling, or estimation from multiple sub-
samples, such as in the case of βBC or MEV inference.

However, using our notation, f̃ (x) “can be interpreted
as a weighted average of all possible distributions
f (x|θ) which are associated with different values of θ .
In this sense [Eq. (18)] can be interpreted as an appli-
cation of the total probability theorem. . . In any event
we note that the unknown parameter will not appear
in f̃ (x) as it has been “integrated out” of the equation.
We also note that, as more and more data become avail-
able, the distribution of θ will be becoming more and
more concentrated about the true value of the parameter.
We should generally expect the distribution f̃ (x) to be
wider, e.g., to have a larger variance, than the true f (x),
since the former incorporates both inherent and statisti-
cal uncertainty” (Benjamin and Cornell, 1970, pp. 632–
633).

In other words, NA models, such as βBC and MEV,
are just the output of what is often referred to as multi-
model ensemble averaging (e.g., Burnham and Ander-
son, 2002; Giorgi and Mearns, 2002, and references
therein). The inherent nature of compounding or aver-
aging procedures explains the tendency of NA models
to yield f̃ (x) with tails that are heavier than those of the
true underlying distribution f (x), as well as progressive

convergence of f̃ (x) to f (x) as the (block) sample size
increases and as f (θ) becomes more and more concen-
trated around the true value of the parameter(s). It also
clarifies that the properties of NA models of BM de-
pend on being compound models rather than extreme-
value models. In fact, the same results can be obtained
by directly compounding the distributions of the parent
process without any additional derivation of the corre-
sponding distributions of BM. Furthermore, recogniz-
ing the rationale of compound models allows us to un-
derstand that the BM process is different from the parent
one, and the distribution of the former is useful only if
the latter is not available. Finally, as shown in Sect. 5.3,
understanding the nature of compounding procedures is
fundamental to correctly summarize and interpret multi-
model outputs.

7 Conclusions

This study presented an inquiry into non-asymptotic (NA)
distributions FY of block maxima (BM) Y , which was moti-
vated by their increasing use in data analysis without a neces-
sary preliminary validation or falsification under controlled
conditions, along with a deep discussion of their rationale
and their relationship with the distribution FZ of the gen-
erating process Z. We discussed their redundancy in real-
world analysis. This apparently bold statement relies on very
basic facts: (i) the distribution FZ of a process Z provides
all the information about any quantile or summary statis-
tics (extreme or not); (ii) extreme-value distributions FY of
BM corresponding to the parent process Z are only approx-
imations of the tails of the distribution FZ , and they have a
role only if FZ is unknown; and (iii) NA distributions imply
the preliminary knowledge or estimation of FZ , but once FZ
is known or fitted to data, NA distributions of BM are no
longer needed, and their derivation is redundant as FZ al-
ready provides all the information. In this context, the use of
asymptotic extreme-value models is justified by the fact that
they do not require the preliminary knowledge or estimation
of FZ (under suitable conditions).

While the foregoing logical arguments should be suffi-
cient to call into question the practical use and usefulness of
NA models, we further demonstrated these issues by means
of simplified examples, re-analysis of real-world data, and
suitable Monte Carlo simulations. The aim was to support
conceptual statements with numerical experiments that are
easy to reproduce and can independently be checked. In this
way, debate can be based on technical counter-arguments and
proper analysis of data drawn from processes with known
properties, avoiding the “consensus” argument and resetting
the discussion about NA models within the boundaries of
the scientific method.

Of course, the questionable usefulness of NA models in
practical applications does not mean that they are not useful
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at all. As shown in this study and by Serinaldi et al. (2020b),
NA formulation clarifies the inherent relationship between
the distribution of BM (FY ) and that of their generating pro-
cess (FZ), thus shedding light on some inferential aspects
from a theoretical point of view. For example, NA formula-
tion highlights that the difference between return periods or
levels estimated from FY and FZ does not depend on sample
size (as incorrectly stated in the literature) but rather on the
theoretical difference in the processes Y and Z and cannot be
reduced. NA expressions also allow a better understanding
of the mechanism of compounding distributions to account
for multiple generating processes, showing the dualism of
additive and multiplicative mixing in the derivation of FY
from FZ (Serinaldi et al., 2020b). In principle, NA models
incorporating dependence are also the basis for the theoreti-
cal study of the corresponding asymptotic models free from
the preliminary definition of FZ .

To conclude, models and methods should be thought of
and used in the right context and for suitable purposes. The
reliability of models must rely on a careful preliminary anal-
ysis of their consistency with the logic, theory, data, pro-
cesses analyzed, and problems at hand. A cautious approach
should start from the assumption that a new model is likely
to be questionable in terms of novelty (it can already ex-
ist, perhaps under a different name in different disciplines),
theoretical correctness, and practical usefulness. Therefore,
model developers should perform a deep literature review
(possibly extended to other disciplines); clearly understand
the rationale, assumptions, and purpose of the model; and at-
tempt model falsification rather than validation. New models
should be tested under controlled challenging conditions. We
believe that these recommendations are the cornerstones of a
rigorous scientific inquiry and are too often neglected. Call-
ing into question the practical usefulness of NA models of
BM is precisely an application of that investigation method.
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