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Abstract. The large spatial scale of global Earth system
models (ESMs) is often cited as an obstacle to using the
output by water resource managers in localized decisions.
Recent advances in computing have improved the fidelity
of hydrological responses in ESMs through increased con-
nectivity between model components. However, the models
are seldom evaluated for their ability to reproduce metrics
that are important for and resonate with practitioners or that
allow practitioners to situate higher-resolution model out-
puts within a cascade of uncertainty stemming from differ-
ent models and scenarios. We draw on the combined expe-
rience of the author team and water manager workshop par-
ticipants to identify salient water management metrics and
evaluate whether they are credibly reproduced over the con-
terminous USA by the Community Earth System Model v2
(CESM2) Large Ensemble. We find that, while the exact val-
ues may not match the observations, aspects such as interan-
nual variability can be reproduced by CESM2 for the mean
wet day precipitation and length of dry spells. CESM2 also
captures the proportion of total annual precipitation that de-
rives from the heaviest rain days in watersheds that are not
snow-dominated. Aggregating the 7 d mean daily runoff to
two-digit Hydrological Unit Code (HUC2) watersheds also
shows that rain-dominated regions capture the timing and
interannual variability of annual maximum and minimum
flows. We conclude that there is potential for far greater use
of large-ensemble ESMs, such as CESM2, in long-range wa-

ter management decisions to supplement high-resolution re-
gional projections.

1 Introduction

Water availability and water quality for human consumption,
ecosystems, and agriculture are fundamental requirements,
making pertinent assessments of future change crucial for
adaptation planning (IPCC, 2022). Climate-related changes
in the hydrological cycle will affect substantial portions of
the world’s population, most directly through changes in wa-
ter availability at or near the surface (Mankin et al., 2020;
Sedláček and Knutti, 2014). The information required by wa-
ter managers for decision-making is not readily available in
a relevant format or at sufficient spatial or temporal resolu-
tions from global Earth system models (ESMs; e.g., Ekström
et al., 2018). We explore how the Community Earth System
Model (CESM) represents the climatology of water availabil-
ity, focusing on metrics that are familiar to decision-makers
in planning investment-scale decisions.

The inability of ESMs to explicitly resolve subgrid-scale
(∼ 100 km) processes is often cited as the limitation pre-
venting direct model use in decision-making. The litera-
ture from large organizations making infrastructure decisions
(e.g., Brekke, 2011; Brekke et al., 2009; Reclamation, 2016,
2014; Lukas et al., 2020) emphasizes downscaling of climate
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model data closer to the scale of the watersheds they manage.
These additional modeling steps add complexity and may in-
crease statistical errors (Clark et al., 2015; Ekström et al.,
2018). Extracting useful and robust information directly from
ESMs would reduce such errors if metrics most important to
decision-makers, such as the timing of peak flow, are known
to be robustly represented.

There are many comprehensive examples of metrics used
to evaluate climate and hydrological models (e.g., Ekström et
al., 2018; Mizukami et al., 2019; Wagener et al., 2022), com-
municate the impacts of climate change (e.g., Reed et al.,
2022), or identify decision-relevant metrics (e.g., Bremer et
al., 2020; Mach et al., 2020; Underwood et al., 2018; Vano et
al., 2014). However, very few have examined whether user-
defined metrics can be reproduced reliably by ESMs (Mankin
et al., 2020) and whether further model development and
scale reduction are warranted instead of improved commu-
nication (Pacchetti et al., 2021). Better communication may
also reduce the temptation of some users to calculate “stan-
dard hydroclimate metrics” that are not supported by the cli-
mate model data (Ekström et al., 2018).

In contrast, climate model output can be rejected unnec-
essarily when simulated annual minima from freely running
simulations do not “match” the sequence of observed low
flows (Ekström et al., 2018; Moise et al., 2015). Similarly, the
benefits of a range of projected outcomes from different cli-
mate models are not widely appreciated beyond the climate
model community (Tebaldi and Knutti, 2007). Large ensem-
bles from a single climate model initialized with a range of
atmospheric and ocean conditions, such as the CESM v2
(CESM2) Large Ensemble (LENS2; Rodgers et al., 2021),
help to bound the uncertainty that derives from a naturally
chaotic system. Averaged over the full ensemble, they give
a better estimate of the model’s response to internal and ex-
ternal forcing (Deser et al., 2012) and enable assessments of
the rarity of projected extremes. The additional analysis for
identifying structural (i.e., model formulation) and internal
variability within regional climate models means that there
are fewer large ensembles at a high resolution (Deser et al.,
2020).

Since different decision-makers have different priorities
and timescales of interest, Shepherd et al. (2018) recom-
mended the development of climate storylines to commu-
nicate with those using climate data to make decisions. In-
formed by previous surveys of water managers (e.g., Brekke,
2011; Brekke et al., 2009; Cantor et al., 2018; Raff et al.,
2013; Wood et al., 2021), Fig. 1 aims to map the different
types of water decisions (e.g., Raff et al., 2013; Fig. 3) to
the different scales of model resolution (Meehl et al., 2009;
Fig. 2). Water managers make daily operational decisions
(e.g., to control instantaneous river flow) with the aid of fine-
scale weather and flood models (< 4 km) that reliably rep-
resent convective and local weather processes, even though
their predictability is relatively short-lived (Yuan et al., 2019;
far left of Fig. 1). Larger watershed operations (such as reser-

Figure 1. Mapping the temporal and spatial scales of models to the
time frames for water management decisions.

voir management or groundwater recharge; Regional Water
Authority, 2019) depend on seasonal outlooks (center left
of Fig. 1). Smaller adaptation and mitigation projects take
place at the typical policy or decadal prediction scale (i.e.,
4–10 years; center right of Fig. 1). Finally, major public in-
vestments and interbasin agreements are made at the same
timescales as climate projections (30–100 years; far right of
Fig. 1), where persistent and relatively predictable synoptic
and planetary-scale processes are represented well in lower-
resolution (∼ 100 km) climate models (Phillips et al., 2020).
While forecasts (seasonal or decadal) are re-initialized from
specific atmosphere, ocean, or land states at regular time in-
tervals, climate projections are run freely from a variety of
atmospheric and oceanic conditions that take several decades
to converge to a mean climatology. In considering the utility
and usability of information directly from ESMs, we focus
on decisions made over decadal to climate scales at larger
spatial scales.

Given that ESMs have advanced immeasurably in the last
decade, it is time to re-evaluate whether their direct output
can support decision-makers. Such an evaluation needs to fo-
cus on how well the models can reproduce metrics used by
decision-makers and whether the results are credible (Bri-
ley et al., 2020; Jagannathan et al., 2021). Here we evaluate
the credibility of one ESM in generating metrics known to
be salient for water management decisions, specifically de-
cisions for water management infrastructure project invest-
ments.

The motivation for this paper is to identify

– a set of water availability metrics that resonates with
decision-makers and supports their investment-scale de-
cisions;

– how well CESM2 represents the climatology and re-
cently observed behaviors of those metrics; and

– the range of CESM2 structural uncertainty and internal
variability for these metrics.

This paper builds off a decade of collaboration between
scientists at the National Center for Atmospheric Research
(NCAR) and US water agencies that led to a virtual work-
shop (Tye, 2023), and it presents a test case for improved
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communication with water management decision-makers.
The focus is on the conterminous United States (CONUS)
in order to match the interests of workshop participants.

2 Climate information needs from prior research

Information needs vary greatly, from 5 min rainfall totals at a
point (ASCE, 2006) to basin-wide measures of annual min-
imum and maximum total runoff. Water management deci-
sion metrics can be grouped into similar types such as timing,
frequency, magnitude, extreme values, variability, and dura-
tion of events (Ekström et al., 2018). While some aspects of
timing, magnitude, or variability can be reproduced reliably
by ESMs (e.g., Deser et al., 2020; Tebaldi and Knutti, 2007),
others such as short-duration extremes are less reliable.

Methods of evaluation and data use also differ. For in-
stance, Clifford et al. (2020) reported that predicting gen-
eral changes in the frequency of extreme precipitation events
is more useful for future planning than precise prediction
of mean values evaluated by model developers. Lehner
et al. (2019) emphasized that models need to be evalu-
ated for their ability to reproduce sensitivities (e.g., stream-
flow changes in response to temperature and precipitation
changes), in addition to mean states. However, metrics that
are meaningful for evaluating a model’s capabilities (e.g., the
ratio of precipitation to runoff) are less valuable for man-
agement decisions (Lehner et al., 2019; McMillan, 2021;
Mizukami et al., 2019). When reporting results, water man-
agers are more familiar with the water year than the calendar
year when capturing the full annual hydrological cycle (Ek-
ström et al., 2018). While the use of water years is a nuance
that does not add substantial value to climate model assess-
ments, communication with decision-makers is improved by
presenting data in a familiar format (Briley et al., 2020).

There is a need for information at the local scale that is
unlikely to be met directly by raw outputs from the cur-
rent generation of ESMs. However, better communication of
the variability in future daily precipitation and the associated
runoff can add value to the detailed models by bringing in the
added statistical context and perspective of the large ensem-
bles. Thus, we believe that ESMs can produce useful infor-
mation about hydrometeorological extremes when presented
at different spatial or temporal scales and offer the benefits
of large climate model ensembles to constrain future impact
uncertainty.

Appendix A summarizes potential hydrological metrics
used in water management decisions (Jagannathan et al.,
2021), statistical assessments of extremes (Zhang et al.,
2011), and model evaluations (Phillips et al., 2020). The met-
rics in bold are presented in this paper. We only considered
a simplistic measure of meteorological drought (absence of
rain) in the current work, as drought is sensitive to the defini-
tion (Bachmair et al., 2016) and local conditions (Mukher-
jee et al., 2018) and so is not suited to a generalized as-

sessment. Similarly, snow measures are not included in this
assessment, due in part to the limited availability of high-
quality, long-duration, quality-controlled, and observational
data (McCrary et al., 2017) and the biases in snow distribu-
tion arising from the smoothed topography in ESMs (Mc-
Crary et al., 2022).

3 Data and methods

3.1 Climate model data

CESM2 (Danabasoglu et al., 2020) is a fully coupled global
model that simulates Earth’s climate system through in-
teractive models for the atmosphere, ocean, land, sea ice,
river runoff, and land ice. The variables considered in this
project are taken from the Community Atmosphere Model
version 6 (CAM6) and the Community Land Model ver-
sion 5.0 (CLM5; Lawrence et al., 2019) and are part of the
default model outputs. A schematic of the model components
is included in Appendix B. This project uses daily to annual
values (e.g., annual maximum daily precipitation) on a grid
with ∼ 1° resolution. Data were extracted over the CONUS
from 10 ensemble members of LENS2 (Rodgers et al., 2021)
for model validation in the current era (1981–2010).

3.2 Observations

Gridded daily observations of precipitation at 1/16° hori-
zontal resolution (∼ 6 km) were obtained from the Livneh et
al. (2013) dataset covering the CONUS and southern Canada
for the control period (1981–2010), hereafter referred to as
“Livneh”. Pierce et al. (2021) provided an update to the
Livneh dataset to address time adjustments that result in an
underestimation of the most extreme daily precipitation to-
tals and the resultant runoff and flood potential (Pierce et al.,
2021). However, as we are also interested in other measures
of precipitation and in runoff minima, we did not employ the
updated gridded observations.

Livneh daily temperature maxima and minima as well as
precipitation were used to force the Variable Infiltration Ca-
pacity Model (VIC; Liang et al., 1994) version 4.1.2 to ob-
tain runoff estimates for the years 1980–2005 as evaluated
in Livneh et al. (2013). Hereafter this model is referred to as
“Livneh-VIC”.

3.3 Methods

All analyses were carried out using the North American wa-
ter year (1 October to 30 September) to facilitate later com-
munication.

3.3.1 Remapping

For ease of comparison, model outputs were regridded us-
ing a conservative second-order remapping (Jones, 1999) to
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Figure 2. HUC2 regions used in data validation and analysis. Re-
gions defined by Seaber et al. (1987): Region 01 New England
(NE), Region 02 Mid-Atlantic (MA), Region 03 South Atlantic-
Gulf (SA), Region 04 Great Lakes (GL), Region 05 Ohio (OH),
Region 06 Tennessee (TN), Region 07 Upper Mississippi (UM),
Region 08 Lower Mississippi (LM), Region 09 Souris-Red-Rainy
(RR), Region 10 Missouri (MR), Region 11 Arkansas-White-Red
(ARK), Region 12 Texas-Gulf (GUL), Region 13 Rio Grande
(RIO), Region 14 Upper Colorado (UC), Region 15 Lower Col-
orado (LCO), Region 16 Great Basin (GB), Region 17 Pacific
Northwest (PN), and Region 18 California (CA).

place both datasets on the same grid and assess anomalies.
Data were also calculated as areal averages or totals over the
two-digit Hydrological Unit Code (HUC2) regions (Seaber et
al., 1987). HUC2 basins represent 18 watersheds, covering
areas ranging from 41 000 mi2 (∼ 105 000 km2; Tennessee)
to 520 960 mi2 (1 350 000 km2; Missouri), as shown in Fig. 2.
While the scale of HUC2 regions may be large for some lo-
cal decision-makers, it is also a more appropriate and conser-
vative scale for comparison with ESMs, as demonstrated by
Lehner et al. (2019).

3.3.2 Percentile-based thresholds

The threshold for very heavy rain days (Q95) was calculated
at each individual grid cell using only days with ≥ 1 mm
of rain (“wet days”). Thresholds were derived empirically
for each model ensemble member, with the ensemble mean
threshold (Q95) used to identify the days per year exceeding
the threshold (N95) and the total annual rainfall from those
days (P95).

Runoff was aggregated over each HUC2 watershed and
multiplied by the respective area to generate the total volume
per day. The volume per day was then converted to measure-
ments more familiar to users, such as acre feet per day or
cubic meters per second. Daily time series of total volumet-
ric runoff had a 7 d running mean smoother applied, and then
the annual maximum, minimum, and mean values were ex-
tracted. The highest and lowest 7 d average runoffs expected
once per decade (7Q90 and 7Q10) were estimated empiri-
cally from the 25 ranked values of annual maxima and min-
ima per watershed. Stationarity was assumed over the clima-
tological period for the purposes of these analyses, acknowl-

edging that changes may have already occurred in the fre-
quency of these events.

4 Model evaluation

The metrics used to evaluate CESM2’s ability to reproduce
large-scale features and physical behaviors (e.g., Danaba-
soglu and Lamarque, 2021, and the associated special is-
sue) are not necessarily those employed by decision-makers.
ESMs are designed to represent large-scale atmospheric pro-
cesses and fluxes not specific to local responses (Gettelman
and Rood, 2016), but this design assumption may not be suf-
ficiently well communicated to decision-makers. The pur-
pose of our evaluation is to establish whether CESM2 output
is also fit for local decision purposes or whether the breadth
of information from ESM ensembles remains unsuitable for
immediate use in targeted water management decisions.

4.1 Rainfall metrics

While broad spatial patterns of seasonal mean daily rainfall
are reproduced well (Danabasoglu et al., 2020; Feng et al.,
2020; Simpson et al., 2022), CESM2 fails to capture details
over high topography and overestimates summer precipita-
tion where convective extremes dominate summer rainfall
(Appendix C). The seasonal mean precipitation also fails to
capture some important watershed-level processes, such as
the seasonal variability in the number of days with precipita-
tion and the associated intensity.

Estimates of mean annual rainfall on wet days, or wet day
volume, are in broad agreement with Livneh and CESM2
output. Figure 3 shows examples of the mean number of
wet days per month (NWD) and the mean wet day volume
(WDV) averaged over California and the Pacific Northwest.
While CESM2 represents the NWD annual cycle very well in
regions such as California (Fig. 3a, c) and the Pacific North-
west (Fig. 3b, d), it does not capture NWD in many central
and snow-dominated regions (Figs. S1 and S2 in the Sup-
plement). This is likely due to the smoother topography of
CESM2 missing the influence of orographic uplift as well
as large-spatial-scale missing subgrid-scale convective sys-
tems (e.g., over the Central Plains). The figures also highlight
the scale of model (structural and internal variability) uncer-
tainty present in the ensemble. As noted in the previous sec-
tions, water management decision-makers are aware of the
potential scale of uncertainty and have expressed a desire for
the full ensemble range to be presented to them instead of
ensemble means.

The annual variability in WDV, both year-to-year varia-
tions and the overall range of minima and maxima, is cap-
tured well by each of the model members for the differ-
ent HUC2 regions, even if the absolute values do not match
(Fig. 3c, d). As expected, the specifics of which years have
high or low values of WDV are not the same for each ensem-
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Figure 3. Average number of wet days per month (a, b) and interannual variability in mean annual precipitation on wet days for the
Livneh climatological mean (red) with interannual spread (pink) and the CESM2 mean (cyan) with interannual and ensemble spread (gray).
(c, d) Between 1981 and 2010 for observations derived from Livneh (red), an individual CESM2 ensemble member (blue), and the ensemble
spread (gray) in (a, c) CA and (b, d) PN.

ble member (i.e., demonstrating internal variability). As a re-
sult, the ensemble mean value of WDV (cyan) does not re-
flect the same year-to-year variability as the observations for
individual ensemble members (blue). Decision-makers stated
that the interannual variability demonstrated by each model
member is more valuable for demonstrating the credibility
of the data than the ensemble mean (Tye, 2023). We recom-
mend that the full range of values of each metric (i.e., after
individual computation for each ensemble member) be com-
municated in addition to the climatological means to help
bound uncertainty around decisions (Wilby et al., 2021).

The magnitude of interannual variability in WDV (i.e., the
absolute differences between the maximum and minimum
values in each member time series) is typically within 10 %
of observations in all the regions, as illustrated for two re-
gions in Fig. 3. Exceptions are the Lower Colorado, South
Atlantic-Gulf, and Upper Mississippi regions, where the sim-

ulated distributions are too narrow. Many different sources of
error may contribute to this discrepancy, such as the inability
to resolve convective precipitation (Chen et al., 2021) and el-
evation changes not captured by the coarse model resolution
or the “drizzle effect” that is common in GCMs (Chen et al.,
1996; Dai, 2006).

CESM2 captures the longest spells of consecutive dry days
per year (CDD; Fig. 4a) and consecutive wet days per year
(CWD; Fig. 4b), together with their variability. Many regions
capture both the interannual variability and the climatolog-
ical mean duration of CWD, particularly in those regions
that are subject to large-scale synoptic systems (e.g., Pacific
Northwest, Mid Atlantic-Gulf, and California). Several re-
gions either overestimate (South Atlantic-Gulf) or underes-
timate (Great Lakes and Souris-Red-Rainy) the absolute du-
rations of the longest wet spells but do reflect the magni-
tude of interannual variability. The exception is Tennessee,
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Figure 4. (a) Longest duration per year of consecutive days with
< 1 mm of rain (longest dry spell) for Livneh over all the years
(green) and the CESM2 ensemble range over all the years (blue)
for all the HUC2 regions. (b) Longest duration per year of consec-
utive days with ≥ 1 mm of rain (longest wet spell). The regional
abbreviations are given in Fig. 2.

where both interannual variability and mean CWD are over-
estimated. At the grid scale, the broad spatial patterns of
CWD are correct, but the finer atmospheric processes aris-
ing from topographic features are incorrect, as expected from
the coarse model resolution. A similar pattern is present in
CDD, except that some drier regions with CDD> 30 d do not
capture the full range of interannual variability (Souris-Red-
Rainy, Missouri, and Rio Grande). As GCMs have a tendency
to produce drizzle, adjusting for a higher wet day threshold
(e.g., 2 mm) might improve dry spell representation in those
regions. It is also important to communicate such model sen-
sitivities to users more effectively.

The thresholds for heavy and very heavy rain days (P95
and P99) are defined with respect to the wet days, are calcu-
lated individually, and are compared for Livneh and CESM2
in order to understand whether the intensity of more ex-
treme rainfall is captured and to evaluate the models’ be-
havior. A comparison of the thresholds reflects the consider-
able improvements in modeling capabilities in recent years
(Gettelman et al., 2022). For instance, earlier versions of
CESM underestimated extreme precipitation intensity by 10–
30 mm d−1 east of the Rockies and overestimated intensity
by 5–10 mm d−1 to the west (Gervais et al., 2014). We found
that CESM2 still underestimates the most extreme rainfall
but that errors have approximately halved. As these differ-
ences are still inadequate for many engineering and major
infrastructure decisions (Wright et al., 2019), we focus on
CESM2’s ability to capture the relative contributions of P95
and P99 to the annual total and the interannual variability
in their frequency. A result with considerable useability is
the proportion of total annual precipitation derived from the
heaviest rain days, or “proportional contribution of extreme

Figure 5. (a, c, e, g) Number of very heavy rain days per year
and (b, d, f, h) total rain from very heavy rain days as a propor-
tion of the annual total for the (a, b) TN, (c, d) GL, (e, f) RR, and
(g, h) CA HUC2 regions. Observations are in red, the CESM2 en-
semble spread is in gray, and single randomly selected ensemble
members are in blue.

days” (P95Tot). This proportion and its interannual variabil-
ity are well represented by CESM2 at the HUC2 scale and
have proven skillful in other models (Tebaldi et al., 2021).

The interannual variability in the frequency (N95) and
intensity of extreme rainfall, as represented by P95Tot, is
illustrated in Figs. 5 and 6. In several HUC2 regions the
simulations report more frequent events and proportionally
higher totals (e.g., Rio Grande, Missouri, Upper Colorado,
and Lower Colorado; Fig. S3). Overall, there is good subjec-
tive agreement between Livneh and CESM2, identifying an
opportunity to inform local decisions from large-scale ESMs.
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Figure 6. Boxplots of the interannual range of contributions to to-
tal annual rainfall from very heavy days (P95Tot), shown as per-
centages for observations (light blue) and the ensemble range for
CESM2 (green) for all HUC2 regions. Boxes are bound by the in-
terquartile range, black lines indicate the median, notches indicate
the degree of spread from the median, and bars extend to the full
data range.

4.2 Runoff metrics

Runoff estimates are taken from the individual components
of surface and subsurface runoff generated within CLM5
(Lawrence et al., 2019) and compared to the Livneh-forced
VIC runoff (“Livneh-VIC”).

Assessing the skill of runoff in large-scale models is com-
plicated by many factors, including the mismatch of scales
between in-channel flow (∼ 1–102 m) and the grid scale
(∼ 105 m). Thus, metrics of climate model runoff should
be selected carefully, and the runoff should be aggregated
or combined with other metrics rather than used directly
(Lehner et al., 2019). Appendix D demonstrates the discrep-
ancies between the grid-scale representation of runoff from
Livneh-VIC and CESM2. The large discrepancies arise from
different processes that are not captured adequately, such as
groundwater, topography, and the associated snow ablation
and snowmelt, in addition to meteorological biases.

However, water management decisions are made over wa-
tersheds in units such as acre feet1 or cubic meters, while
model data are output as a depth of runoff over each grid cell
(e.g., mm d−1 km−2). We aggregated the 7 d running mean
daily runoff (Q7) within each HUC2 region to generate Q7
time series in each basin. Figure 7a illustrates the 25-year
mean seasonal cycle for Livneh-VIC in red and CESM2 in
blue, together with the full range of values over all years and
ensemble members for the RR basin (HUC Region 9). Ad-
ditional basins are included in Fig. S4. Data are presented in
millions of acre feet in order to align with decision-maker
needs. The minimum simulated Q7 in any year consider-
ably underestimates the lowest flows in this region com-

1One acre foot is the volume of water it would take to cover
1 acre of land to a depth of 1 foot. This is equal to 325 852 gallons
or 1233 m3 (USGS Water Science).

pared to Livneh-VIC. In contrast, the largest total runoff
volume is overestimated and peaks too early in the water
year. Figure 7b plots the same information as the cumula-
tive runoff volume from the start of the water year, high-
lighting that the lowest runoff volume is underestimated by
a factor of 10 for this region; the other regions are illus-
trated in Fig. S5. Low runoff volumes were typically under-
estimated in smaller regions (e.g., NE and TN). High runoff
volumes were only underestimated in three regions (LM,
ARK, and GUL) and considerably overestimated in seven re-
gions. Snow-dominated regions perform particularly poorly
for both QMax and QMin, as snowpacks and the timing of
the associated runoff are not simulated well. Transitional re-
gions that straddle both snow- and rain-dominated hydrolo-
gies also fail to capture QMax but better estimate Qmin
(not shown). Only the South Atlantic region reproduces both
QMax and QMin.

We explored the relationships between the highest and to-
tal annual runoff (QMax /QTot) and the lowest and total an-
nual runoff (QMin /QTot). Some regions performed well for
QMax /QTot and others performed better for QMin /QTot,
but there was no consistent relationship that could be utilized
by decision-makers.

Participants in the NSF NCAR workshop (Tye, 2023) em-
phasized that the exact numbers produced by climate models
are not very important for future decisions. Others have also
emphasized the importance of well-represented processes in
the model (Reed et al., 2022) and correlations with known
experiences (Mach et al., 2020; Shepherd et al., 2018). Fo-
cusing on fidelity to the historical climate exaggerates the
importance of model performance instead of robustness to
different conditions without ensuring that model predictions
are useful or reliable (Brunner et al., 2021; Wagener et al.,
2022). Runoff estimates in transitional catchments may be
inadequate in the current climate but plausible in the future if
the model reproduces rain-dominated hydrological processes
(McMillan, 2021).

Climatological mean runoff cycles are estimated from
Pardé coefficients – calculated as Q7 /QTot on each calendar
day – a dimensionless value that enables comparison across
regions. Figure 8 depicts the mean seasonal cycle for rep-
resentative snow-dominated (Upper Colorado), transitional
(Missouri), and rain-dominated (Tennessee) regions, demon-
strating how an imperfect representation of snow in the Up-
per Colorado region results in CESM2 peak runoff occur-
ring 2 months earlier than Livneh-VIC (Fig. 8a). The runoff
regimes display very different seasonal characteristics, with
CESM2 having a “mid to late spring” runoff regime rather
than Livneh-VIC’s “extreme early summer” regime (Fig. 8a;
Haines et al., 1988). Peak runoff is also too early in the tran-
sitional regions but is closer to Livneh-VIC than in snow-
dominated regions (Fig. 8b). Rain-dominated regions capture
both the timing of QMax and the overall seasonal hydrograph
shape (Fig. 8c).
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Figure 7. Interannual variability in runoff in the RR region for (a) the mean seasonal cycle and (b) the cumulative watershed runoff over the
water year. The Livneh-VIC climatological mean is in red, the range of all the years is in pink, the CESM2 ensemble mean is in blue, and
the ensemble range is in gray. The figure highlights the underestimation of the lowest runoff volume by CESM2 by a factor of 10.

Table 1. Very low (7Q10) and very high (7Q90) regional runoff, together with the standard deviation in the regional annual minima (σ QMin)
and maxima (σ QMax) for Livneh and CESM2. Values in bold indicate where CESM2 and Livneh-VIC regional runoff is statistically similar
according to a χ2 test.

Region Livneh-VIC CESM2

7Q10 7Q90 σ QMin σ QMax 7Q10 7Q90 σ QMin σ QMax

NE 1 4.1 132.4 1.3 25.5 8.6 215.1 4.7 39.9
MA 2 6.9 103.5 2.5 25.7 7.4 220.7 3.6 47.9
SA 3 21.1 240.4 8.4 50.7 20.5 258.6 11.9 45.8
GL 4 6.9 122.5 2.2 23.8 7.8 331.0 4.3 58.0
OH 5 7.8 187.6 2.3 53.0 9.4 260.9 4.5 56.4
TN 6 2.1 90.5 0.8 23.1 0 98.7 0.3 21.7
UM 7 2.1 78.2 1.7 16.9 7.9 122.3 4.7 31.5
LM 8 3.9 212.2 1.1 36.1 8.0 81.0 5.1 14.7
RR 9 1.0 24.3 0.5 7.1 0 33.0 0.1 8.4
MR 10 2.3 103.0 1.6 28.1 5.2 147.4 4.2 30.4
ARK 11 2.2 130.5 0.7 36.2 3.2 93.9 4.5 18.1
GUL 12 1.5 99.1 0.5 35.5 1.3 70.7 2.8 16.7
RIO 13 0.5 22.5 0.2 5.8 0.4 29.5 1.3 7.3
UC 14 0.6 27.3 0.2 7.2 0 74.7 0.2 15.3
LCO 15 0.5 19.4 0.2 7.5 0.3 46.7 0.7 11.6
GB 16 0.7 33.3 0.3 10.3 1.8 71.5 1.3 21.1
PN 17 20.6 266.5 7.9 50.2 4.4 449.6 2.6 87.3
CA 18 1.6 323.2 0.4 101.9 1.3 233.4 1.1 61.3

7Q10 and 7Q90 are estimated empirically from annual
minima and maxima as occurring once per decade. Projected
changes in the frequency of very low or very high runoff vol-
umes are deemed credible where CESM2 replicates the stan-
dard deviation of annual minima and maxima according to a
χ2 test at the 5 % significance level. Table 1 reports CESM2
and Livneh-VIC regional estimates of 7Q10 and 7Q90 and
standard deviations of the annual maxima and minima; val-
ues in bold indicate where estimates are statistically similar.

It should be noted that the values in Table 1 have ≤ 10 % oc-
curring in any year and so represent the tails of the runoff
distribution.

Grid-scale estimates such as mean daily runoff read-
ily highlight why decision-makers have low confidence in
CESM2 output: the metrics are not salient and appear to have
no skill. After aggregating the 7 d mean daily runoff to wa-
tershed scales, some skill emerges in the annual minima and
maxima as well as the seasonal cycles. Snow-dominated wa-
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Figure 8. Seasonal patterns of runoff for HUC2 regions: (a) UC,
(b) TN, and (c) MR, constructed from normalized series of the ra-
tio of 7 d mean runoff to the mean annual total. Livneh-VIC runoff
climatological mean (red), climatological range (pink), CESM2 en-
semble mean (blue), and ensemble range (gray with a dashed bor-
der). Vertical lines indicate the mean date of peak runoff with the
number of days since the start of the water year.

tersheds perform poorly with regard to the peak runoff vol-
ume and the timings of the peaks and lows, as expected (Mc-
Crary et al., 2022). Rain-dominated watersheds capture the
interannual variability and magnitudes of the peak and low
flows as well as the seasonal hydrographs. While CESM2 at
this coarse scale does not represent the local topography and
cannot represent finer-scale snow, our analysis indicates that
the land surface model correctly simulates the overall bulk
water budget for most watersheds, as illustrated in Figs. 7 and
8. However, the tail behavior of the highest and lowest total
watershed runoffs is only captured by a few basins, and so
caution needs to be exercised in the interpretation and use of
model results, as biases may propagate into the future. This is
premised on the understanding of why the model can produce
accurate results and whether the accuracy can be reproduced
reliably for the future climate (Wagener et al., 2022).

While participants in the NSF NCAR workshop stated
that precise estimates are not necessary, they also empha-
sized their desire for high confidence in the projected scale
and direction of any changes. We note that “confidence” is
derived from a combination of (1) credible process repre-
sentation; (2) agreement with historical trends, given inter-
nal variability; and (3) agreement across multiple models.
It is worth noting that trends in extremes may be important
without being statistically significant, as a limited sample of
points (e.g., one per year) from a stochastic series is inher-
ently noisy. However, some of these trends may emerge from
the noise in the distribution and so are important to monitor.

5 Discussion

As decision-makers have become more immersed in devel-
oping water management adaptation plans, the role of “cli-
mate services” in developing salient climate information has
increased (Briley et al., 2020; Brugger et al., 2016; Dilling
et al., 2019). We tested our hypothesis that recent improve-
ments in ESMs can allow decision-relevant metrics to be
produced directly by leveraging the combined experience of
the author team, results from the NCAR workshop, and the
wealth of literature on actionable knowledge (Bremer et al.,
2020; Jagannathan et al., 2021; Mach et al., 2020; Vano et
al., 2014). Given that no model can perfectly address all deci-
sion needs, we identified and evaluated multiple metrics that
can frame specific water management decisions within the
known constraints of the data (Lempert, 2021) or within the
decision-makers’ experiences (Austin, 2023; Clifford et al.,
2020; Reed et al., 2022; Shepherd et al., 2018).

It is important to communicate the original purpose of
the model and the associated weaknesses, so that decision-
makers fully understand which information is appropriate to
use in other applications (Fisher and Koven, 2020; Gettel-
man and Rood, 2016; Wagener et al., 2022). Given the bal-
ance between model fidelity and model complexity (Clark
et al., 2015) and the absence of detailed global-scale ob-
servation data (e.g., Gleason and Smith, 2014; Reba et al.,
2011), CESM2 provides a plausible representation of Earth
system processes and moisture fluxes but may not capture
basin-scale specifics (Ek, 2018; Lehner et al., 2019). That
said, there are continued efforts to improve the simulation of
land surface processes, and analyses such as those presented
in this article can flag weaknesses for future improvement
(Lawrence et al., 2019).

Establishing model fidelity also requires one to distinguish
between an accurate representation of the climate processes
from serendipitous correlations and observations. Whether
the model has good process representation overall or exac-
titude in one simulation can be established through inter-
nal variability analyses using large ensembles (e.g., Deser et
al., 2020; Tebaldi et al., 2021). Repeating the analyses with
several different ESMs to establish the degree of agreement
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(Mankin et al., 2020) would further strengthen the usability
of the metrics presented in this article. It is also worth not-
ing that the analysis presented here only used one reference
dataset. As different reanalysis and observational datasets
can have large discrepancies, a thorough model evaluation
would also benefit from comparison to several products (Kim
et al., 2020; Newman et al., 2015), including an assessment
of how removing temporal adjustments in observations af-
fects the statistics of extremes (Pierce et al., 2021).

While the precise details of precipitation and runoff may
not be simulated well by CESM2, we found some aspects to
be credible. The frequency of wet days highlighted regions
where the current seasonal behavior is captured well and may
support planning around flood and drought control or wild-
fire risk when used in combination with other models or data
sources (Austin, 2023; Clifford et al., 2020; Jagannathan et
al., 2021; Reclamation, 2016).

6 Conclusions

This paper presented an assessment of whether a standard-
resolution (∼ 100 km grid) Earth system model is capable of
producing information that water users typically employ in
their decisions. Our motivation was to explore whether it is
possible to reduce the need for intermediate downscaling and
to extend the use of large model ensembles to quantification
of the influence of internal variability on localized decisions.
We drew on the combined experience of the project team and
workshop participants to identify potential metrics and fa-
miliar modes of visualization. This project only used CESM2
over the conterminous United States to develop example met-
rics that may be explored within other models and over other
regions. CESM2 is unable to reproduce some metrics given
the lack of topographical detail. A companion paper by Rugg
et al. (2023) examines potential improvements to the subgrid-
scale simulation of land processes in order to improve the
representation of the hydrological cycle in mountainous re-
gions.

We encourage others working in the decision space be-
tween climate data producers and users to be forthcoming
about specific regions and reasons where model data are not
credible or where the model has particular weaknesses (such
as the drizzle effect) that may be overcome with a different
analysis approach.

For future model assessors, the following metrics were
found to be salient for water users and were skillfully repro-
duced in many regions.

Rainfall:

– Number of wet days (≥ 1 mm of rain) per year or season

– Mean precipitation on wet days

– Duration of the longest wet and dry spells per year

– Number of days with rain > 95th percentile of the cur-
rent climate’s wet day totals

– Proportion of the annual total derived from days > 95th
percentile of the wet day totals

Runoff (aggregated up to the basin level as a volume for 3
and 7 d averages):

– Annual maxima and minima

– Frequency of very high or very low flows (< 10 % an-
nual chance of occurring in the current climate)

– Proportion of averaged daily runoff in the annual total

The work presented in this paper is a small step towards
establishing greater usability of climate model output by
decision-makers. The present evaluation is also only the first
step in evaluating ESM performance. Additional research is
needed to support water managers, placing these results and
their uncertainty in the context of additional observational
data (such as remote sensing) that may already be available
to them. Continued collaboration is essential for improving
the transfer of knowledge (e.g., data requirements, model as-
sumptions, or decision constraints) between communities.
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Appendix A

Table A1. Hydrometeorological responses used in water management decisions and the specific metrics that have the potential for represen-
tation in ESMs. The metrics in bold are presented in this article.

Hydrometeorological
response

Typical water management
decision

Metric Description

Annual rainfall Water supply and drought
monitoring

Total precipitation (PRCPTOT) Total annual precipitation measured as rainfall
or snow water equivalent

Seasonal rainfall
cycle

Seasonal water supply, reservoir
operation management

Number of wet days (NWD),
mean wet day volume (WDV)

Frequency of days with ≥ 1 mm precipitation
(NWD) per month, season, or year
Mean precipitation on wet days calculated from
PRCPTOT or NWD

Rainfall extreme Flood and storm water
management

95th percentile (Q95)
Number of very heavy rain days
(N95)
Very heavy rain volume (P95)
Proportional contribution of
very heavy rain (P95Tot)

Rainfall percentile threshold that is exceeded by
5 % of events per year on average and calculated
from wet days only
Frequency of days with rainfall exceeding Q95
Total rain falling on days exceeding Q95
Proportion of the annual total derived from
very heavy rain, calculated as P95 or PRCPTOT

Rainfall extreme
(dry)

Water supply planning and drought
monitoring or planning, including
water rights and restrictions

Consecutive dry days (CDD) Maximum duration of spells with consecutive
days measuring < 1 mm precipitation

Rainfall extreme
(wet)

Storm water management, water
supply planning

Consecutive wet days (CWD) Maximum duration of spells with consecutive
days measuring ≥ 1 mm precipitation

High streamflow Reservoir management and flood
control, water quality management,
and water supply management,
including use of supplemental
water supplies

Annual maximum runoff
(QMax)
Description (JMaxF)
Description (HFD)

Annual maximum daily volume of basin-wide
runoff
Julian day of the QMax and day of the water year
Duration of high flows

Low streamflow Water supply management,
assessment of water shortages with
respect to seasonal demands

Annual minimum runoff
(QMin)
Description (JMinF)
Description (LFD)

Annual minimum daily volume of basin-wide
runoff
Julian day of QMin and day of the water year
Duration of low flows

Streamflow Water supply planning, water
quality management, reservoir
operation management, planning of
future investment needs

7 d mean runoff (Q7) Daily volume of basin-wide runoff averaged
over 7 d Often presented as the percentage of the
annual total volume of runoff or as a Pardé
coefficient (Pardé, 1933)

Very low
streamflow

Water quality management for
discharge permits, conservation
management, and drought planning

7 d “10-year” low runoff (7Q10) 7 d averaged basin-wide lowest volume of
runoff with < 10 % annual probability of
occurrence Estimated from Qmin series

Very high flow Flood management and planning,
reservoir operations

7 d 10-year high runoff (7Q90) 7 d averaged basin-wide highest volume of
runoff with < 10 % annual probability of
occurrence Estimated from Qmax series

Streamflow Water supply planning, reservoir
operation management

Central tendency (CT)
Description (Q25, Q50, and Q75)

Day of the water year when the cumulative annual
runoff exceeds 50 % of the total annual runoff
Annual quartiles of cumulative annual runoff
estimated from daily streamflow

Snowpack Reservoir operations and flood
management, water supply
planning

Snow water equivalent (SWE)
maximum (SWEMax)
SWEMax date
SWE duration

Volume of the peak snow water equivalent
Day of the water year when the peak SWE occurs
Total length of snow accumulation and ablation

Snowmelt Flood management and reservoir
operations

Snowmelt onset Day of the water year of snowmelt onset
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Appendix B

Figure B1. Schematic of the Community Earth System Model version 2 (CESM2) model components, reproduced from Danabasoglu et
al. (2020, Fig. 1).

Appendix C

Figure C1. Seasonal mean precipitation for winter (top row), spring (row 2), summer (row 3), and fall (bottom row) as shown in Livneh (left
column) and CESM2 (middle column), together with the difference CESM2−Livneh (right column).
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Appendix D

Figure D1. Comparison of the maximum daily runoff between
1981 and 2005 in (a) Livneh, (b) CESM2, and (c) the difference
CESM2−Livneh.
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