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Abstract. Motivated by the need to find complementary wa-
ter sources in (semi-)arid regions, we develop and assess
an observation-driven model to calculate fog-harvesting wa-
ter potential. We aim to integrate this model with routine
meteorological data collected under complex meteorologi-
cal and topographic conditions to characterize the advective
fog phenomenon. Based on the mass balance principle, the
Advective fog Model for (semi-)Arid Regions Under climate
change (AMARU) offers insights into fog-water-harvesting
volumes across temporal and spatial domains. The model is
based on a simple thermodynamic approach to calculate the
dependence of the liquid water content (rl) on height. Based
on climatological fog collection records, we introduce an em-
pirical efficiency coefficient. When combined with rl, this co-
efficient facilitates the estimation of fog-harvesting volumes
(L m−2). AMARU’s outputs are validated against in situ ob-
servations collected over Chile’s coastal (semi-)arid regions
at various elevations and during various years (2018–2023).
The model’s representations of the seasonal cycle of fog
harvesting follow observations, with errors of ∼ 10 %. The
model satisfactorily estimates the maximum rl (∼ 0.8 g kg−1)
available for fog harvesting in the vertical column. To as-
sess spatial variability, we combine the model with satellite-
retrieved data, enabling the mapping of fog-harvesting po-
tential along the Atacama coast. Our approach enables the
application of the combined observation–AMARU model to
other (semi-)arid regions worldwide that share similar con-
ditions. Through the quantification of fog harvesting, our
model contributes to water planning, ecosystem delimitation

efforts, and the study of the climatological evolution of cloud
water, among others.

1 Introduction

Water resources in (semi-)arid regions are of critical value
for social, economic, and ecological development. However,
in recent decades, climate change has enhanced drought peri-
ods, intensifying water stress in areas already facing scarcity.
This has resulted in a worldwide dryland expansion (Koppa
et al., 2023). For example, Chile’s (semi-)arid and Mediter-
ranean regions have suffered a 15-year drought, experienc-
ing a nearly 40 % decrease in precipitation (Garreaud et al.,
2021). Likewise, other dry regions, such as California, South
Africa, Australia, Spain, and Morocco, are confronting simi-
lar challenges related to water scarcity, including new threats
like increased fire risk, degradation of soil ecosystems, and
impacts on food security (Goulden and Bales, 2019; Berbel
and Esteban, 2019; Keeley and Syphard, 2021; Kogan and
Kogan, 2019). Moreover, future Intergovernmental Panel on
Climate Change (IPCC) climate scenarios are discouraging,
projecting even drier conditions by 2050 (Masson-Delmotte
et al., 2021). Under this escalating water scarcity scenario,
the exploration of new water resources is imperative.

In this context, the collection of freshwater from fog
presents itself as a viable alternative to face water scarcity,
especially in (semi-)arid regions along the subtropical west-
ern coasts. Fog harvesting has long represented a significant
untapped water potential in the world’s dry regions (Klemm
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et al., 2012). For example, in the coastal Atacama Desert,
fog and dew represent the sole water source across vast terri-
tories with almost null precipitation (Cereceda et al., 2008).
However, quantifying this water potential represents a scien-
tific challenge, requiring a deep understanding of the physi-
cal processes controlling the formation and dissipation of the
marine stratocumulus (Sc) cloud deck over the ocean (An-
dersen et al., 2020; del Río et al., 2021b), its interaction with
coastal topography (Lobos-Roco et al., 2018), and the ef-
fectiveness of fog collector designs (Verbrugghe and Khan,
2023). In addition, the lack of available and direct observa-
tions of the fog phenomenon, combined with the complexity
of topography, makes it challenging to pinpoint where fog
forms, identify optimal harvesting seasons, and determine
potential yield. Consequently, advancing our knowledge to
quantify harvestable water from fog clouds is imperative to
develop this promising alternative water source. Estimating
where, when, and how much water can be harvested from fog
is socially relevant. Estimating fog water potential can facili-
tate the transition from experimental fog-harvesting practices
to industrial ones (Lobos-Roco et al., 2024), potentially en-
hancing the development of overlooked desert territories and
benefiting their local communities. Moreover, estimating po-
tential fog water production can help us better understand
the unique ecosystems sustained by fog (Koch et al., 2019;
Muñoz-Schick et al., 2001; Moat et al., 2021), contributing
to the assessment of their conservation status under a rapidly
warming climate.

Fog is a meteorological phenomenon defined by a bound-
ary layer cloud in permanent contact with the Earth’s sur-
face (Roach, 1995; Stull, 2012). The origins of fog are in-
fluenced by different atmospheric boundary layer and lo-
cal topographic conditions. However, in most of the (semi-
)arid regions along the (sub)tropical western margins of
continents, fog formation is driven by the ocean-to-land
advection of Sc cloud. Sc cloud forms over the ocean
in a vast deck controlled by a strong inversion layer re-
sulting from an interaction between sea surface tempera-
ture and large-scale subsidence (Muñoz et al., 2011). Here,
one of the main physical processes involved in Sc for-
mation is the microphysical properties of cloud droplets,
which are linked to cloud optical properties that have im-
portant climate effects (Wood, 2012). In the southeastern
Pacific, cloud droplet sizes of 5–15 µm are often found;
the concentration of these droplets is ≤ 50 cm−3, increas-
ing to 200 cm−3 along coastal areas of Chile (Painemal and
Zuidema, 2011). The droplet size and concentration deter-
mine the liquid water content (Gultepe et al., 2021), which
is essentially the amount of water that can be harvested
on land once Sc becomes fog. Moreover, the stability of
the marine boundary layer (MBL) determines the forma-
tion, maintenance, and dissipation of Sc cloud. Formation
and maintenance depend on how well mixed the MBL is in
terms of potential temperature (∂θ/∂z< 3.1× 10−3 K m−1),
while dissipation is influenced by the MBL’s stratification

(∂θ/∂z> 3.1× 10−3 K m−1) (Lobos-Roco et al., 2018). This
cloud forms at the upper part of the MBL, exhibiting a clear
vertical structure. This structure is characterized by an av-
eraged cloud base ranging from 300 to 400 m (Lu et al.,
2007), determined by the lifting condensation level. From the
lifting condensation level upwards, the measured liquid wa-
ter content progressively rises. Based on observations in the
same region, we take ∼ 0.7 g kg−1 at cloud top as the maxi-
mum value (Schween et al., 2022). The liquid water content
abruptly drops to 0 g kg−1 just above the cloud top, where
the air becomes stratified and extremely dry. The Sc cloud
is advected into the continent by the typical strong thermal-
driven sea breeze of (semi-)arid regions (Lobos-Roco et al.,
2021). Upon reaching land, the cloud deck is affected by
local conditions that, together with high topography, lift it,
forming fog belts (del Río et al., 2021b). Depending on lati-
tude and topography, these fog belts vary in altitude; for ex-
ample, in the Atacama region, they are found in the coastal
mountains between 600 and 1200 m a.s.l. (meters above sea
level) (Cereceda et al., 2008; Garreaud et al., 2008). This nar-
row belt represents the area in which fog can potentially be
harvested.

The harvesting process is performed by nature through
specialized plants that accumulate water in their leaves,
spines, and branches, making it available for the soil and
roots (Malik et al., 2014; García et al., 2021; Koch et al.,
2019). However, fog can also be harvested artificially
through passive collectors, which efficiently harvest fog wa-
ter using meshes (Schemenauer and Cereceda, 1994). Nu-
merous studies have reported promising fog-harvesting vol-
umes worldwide in arid and semi-arid regions. For exam-
ple, rates between 6 and 8 L m−2 d−1 have been reported
in the hyperarid Atacama Desert in Chile (Cereceda et al.,
2002; Larrain et al., 2002), rates between 1 and 5 L m−2 d−1

have been observed along the western coast of South Africa
(Klemm et al., 2012), and a rate of 7 L m−2 d−1 has been
reported for the Iberian Peninsula in Spain (Estrela et al.,
2009).

In recent years, significant progress has been made in un-
derstanding the spatial variability in Sc cloud and fog (del
Río et al., 2021b; Andersen et al., 2020), the vertical structure
of fog clouds (García et al., 2021; Lobos-Roco et al., 2018),
and the practical applications of fog and dew collection in
water-stressed regions (Lobos-Roco et al., 2024; Baguskas
et al., 2021). Despite these advancements, there remains a
need to integrate these findings into a unified model that can
address the questions of where, when, and how much water
can be harvested from clouds. In this research, we present the
Advective fog Model for (semi-)Arid Regions Under climate
change (AMARU), a phenomenological model designed to
estimate fog-harvesting potential volumes continuously in
time and space.
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2 Model formulation and evaluation

AMARU reproduces the fog that can be potentially harvested
using standard fog collectors, estimating the liquid water
content of the air. A particular aspect of AMARU is the ap-
plication of the available routine meteorological observations
to obtain this liquid water content. The model is based on the
evolution of time and the height of marine Sc adiabatic liquid
water content moving towards land characterized by com-
plex topography. Figure 1 shows the physical assumptions
and processes along with the respective variables and units.
The model is derived from the mass conservation equation.
The sequence of physical mechanisms is as follows:

i. During a fog event, a certain amount of liquid water
(Wh) is retained from the total fog inflow when pass-
ing through a passive collector. We assume that the har-
vested fog water results from the difference between fog
inflow (Fin) and outflow (Fout) in grams per kilogram
multiplied by meters per second (g kg−1 m s−1). This
equation reads as

Wh = Fin−Fout. (1)

ii. Fog inflow and outflow are described as fluxes of the
mixing ratio as

Fin = rlux, (2)
Fout = Fin(1− η). (3)

Here, rl is the liquid water mixing ratio, defined as the
amount of liquid water (ml in Fig. 1) per unit mass of
dry air (md) that contains it, expressed in grams of wa-
ter per kilogram of dry air (g kg−1). To calculate the
inflow, we use ux , which represents the perpendicular
(mean±SD) wind speed (m s−1) relative to the collec-
tor.

iii. The term η is a dimensionless ratio representing the col-
lector efficiency. This coefficient is described as

η =
Wh

Fin
. (4)

Here, η corresponds to the percentage of water har-
vested out of the total water that can potentially pass
through the collector (calculation in Sect. 2.2). Reorder-
ing the terms, we express Eq. (1) in net terms as

Wh = rluxη. (5)

TheWh units are then grams per kilogram multiplied by
meters per second (g kg−1 m s−1). However, for the fi-
nal output, we convert liters per square meter per second
(L m−2 s−1; equivalent to mm) once grams are trans-
formed to liters, and dry-air density (kg m−3) is in-
cluded as

Wh = rlρauxη. (6)

Figure 1. AMARU model physical interpretation, including terms
from Eqs. (1)–(7).

Finally, Wh is integrated over a period as

W
1t

h =

t1∫
t0

Whdt. (7)

Here, t0 and t1 correspond to the respective initial and
ending times (in seconds). The model has three main
assumptions. First, it assumes that Fin>Fout. Second,
as the model aims to reproduce advective fog collec-
tion, it is assumed that condensation only occurs in the
atmosphere under the condition rl = rv − rs. Third, it
assumes that the mixing ratio (rv), which is 2 orders of
magnitude higher than rl, is nearly conserved.

In Eq. (6), rl and η depend on the location and conden-
sation processes. Regarding location, rl varies with re-
spect to height (the vertical dimension of the model) and
depends on the conditions of the marine Sc cloud over
the ocean and its interaction with the topography. To es-
timate this variable using routine data, we assume that
water vapor condenses once it reaches the thermody-
namic conditions to reach saturation, This assumption
implies that we do not consider microphysical proper-
ties such as droplet size, nucleation, or droplet concen-
tration in the calculations. The second term, η, groups
cloud microphysics, the collector design, and its mate-
rial properties. To delve into the detailed calculation of
rl and η, we break down the analysis of Eq. (6) into two
parts – the thermodynamic and water potential modules
(Sect. 2.1 and 2.2). Additionally, we introduce a third
module to represent the model’s horizontal spatial vari-
ability in Wh via spatial interpolation, thereby creating
a fog-harvesting potential map.
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2.1 Thermodynamic module: obtaining the liquid
water mixing ratio (rl)

The liquid water mixing ratio is a complex variable to es-
timate and measure. It can be obtained from complex and
computationally expensive atmospheric models (e.g., the
Weather Research and Forecasting, WRF, and large-eddy-
simulation, LES, models) (Bergot, 2016) or by sophisticated
and expensive instrumentation (fog measurements devices or
microwave radiometers) (Kim et al., 2022; Gultepe and Mil-
brandt, 2007). However, our objective here is to estimate rl
using routine meteorological data. To achieve this, we pro-
pose employing the air parcel method (Wetzel, 1990), which
calculates thermodynamic changes related to an air parcel as
it is uplifted from the surface. The strategy here is to obtain
the adiabatic liquid water mixing ratio including the mixing
during the lifting. This method has been successfully tested
in the Atacama region by Lobos-Roco et al. (2024, 2018),
who averaged the meteorological conditions of two meteoro-
logical stations located at different heights (z1 and z2) along
a topographic transect. This strategy allows for observation
at two combined points within the MBL during advective
fog events: z1 represents near-surface marine meteorologi-
cal conditions, whereas z2 represents inland meteorological
conditions close to the MBL top, where fog formation oc-
curs. Figure 2a provides a schematic illustration of the strat-
egy for estimating rl using the parcel method. This estimation
involves four steps, which are described and evaluated in the
following subsections.

2.1.1 Fog frequency

AMARU is a phenomenological model that relies on the
presence of advective fog, which typically occurs under a
well-mixed MBL regime (Lobos-Roco et al., 2018). We de-
fine fog frequency as the number of counts when fog is
present over a time step (1 h), expressed as a percentage.
For example, a 50 % fog frequency means that fog occurred
during 30 min over 1 h. Thus, we propose three criteria for
estimating fog frequency using routine meteorological data.
The first criterion posits fog frequency when air temperatures
reach the dew temperature (Ta−Td = 0). However, this con-
dition has been rarely observed, particularly in the coastal
Atacama region, even during fog formation. For this reason,
we propose and test four alternative thresholds. For this es-
timation, we exclusively use data from station z2. The sec-
ond criterion is that MBL must be well mixed. Our criterion
for fulfilling this assumption is that the potential temperature
gradient (∂θ/∂z) between θ(z1) and θ(z2) is minimal. Here, we
propose and test four thresholds close to 0 K m−1. The third
criterion is similar to the second one but employs the spe-
cific humidity (assumed as a mixing ratio) vertical gradient
(∂q/∂z) to assess MBL mixing. Similar to the first criterion,
we propose and test four thresholds to determine how well

mixed the MBL is in terms of potential temperature and spe-
cific humidity.

Figure 3a shows a statistical comparison between the esti-
mated fog frequency (in %) derived from the three proposed
criteria and thresholds, while Fig. 3b presents a comparison
of the annual diurnal cycle of fog frequency between obser-
vations from a standard fog collector (SFC) and the best-
performing criteria (Schemenauer and Cereceda, 1994). The
observations were conducted in the fog oases of Alto Pat-
ache (z2) within the Atacama Desert during the year 2018
(20.82° S; 70.14° W; 850 m a.s.l.; 5 km from the coast). In
addition, we also use data from the meteorological station at
Diego Aracena Airport, z1 (20.52° S; 70.15° W; 48 m a.s.l.),
to calculate the vertical gradients.

In general terms, among the three proposed criteria, those
based on Ta− Td (marked using blue in Fig. 3a) show the
strongest correlation with directly observed fog collection.
Among these, the threshold Ta−Td< 1.15 K (no. 4 in Fig. 3a)
emerges as the most accurate, exhibiting a standard deviation
aligned with observations (18 %), a correlation coefficient of
0.95, and a root-mean-square error (RMSE) of 6 %. How-
ever, the remaining thresholds yield similar results, suggest-
ing that fog occurs when Ta−Td spans from 2 to 1.15 K. The
second and third criteria are based on the mixed-layer the-
ory, which states that Sc cloud formation occurs under well-
mixed MBL conditions. The chosen thresholds have been
studied before in the coastal Atacama region by Lobos-Roco
et al. (2018, 2024), del Río et al. (2021a), and García et al.
(2021). The second criterion (depicted in orange in Fig. 3a)
shows promising results when compared to observations, dis-
playing a standard deviation ranging between 17 % and 20 %,
a correlation coefficient value ranging from 0.5 to 0.7, and a
RMSE of ∼ 17%. These values suggest that the MBL tends
to be thermally well mixed (exhibiting minimal vertical gra-
dients) during fog presence. The last criterion (depicted in
purple in Fig. 3a) demonstrates insufficient performance with
respect to detecting fog frequency, exhibiting no correlation
with observations. The disparity in the correlation between
thermal and moisture vertical gradients with fog frequency
can be attributed to the aridity of the observation location.
On the one hand, the arid terrain thermally contributes less to
the MBL during fog events (low radiation during the day over
arid coastal zones), showing a well-mixed MBL. Conversely,
when fog is absent (e.g., during the night), the arid slopes
contributes to a stable stratified MBL. On the other hand, the
arid landscape does not contribute moisture to the MBL dur-
ing fog presence or when fog is absent, thereby showing no
correlation with fog frequency. Figure 3b illustrates the diur-
nal cycle of fog frequency observed at the Alto Patache fog
oasis throughout 2018, as measured by the standard fog col-
lector (SFC) and estimated using the threshold with the best
performance (no. 4). This threshold successfully estimates
fog frequency using simple meteorological data for any day
and time throughout the year.
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Figure 2. (a) Schematic vertical cross section representing the estimation of the liquid water content (rl) using the air parcel method.
(b) Physical representation of the topographic uplifting of Sc cloud and its interaction in the ocean–land transition. Blue (orange) arrows
indicate latent heat flux (sensible heat flux) from the surface (c). Representation of the combined meteorological conditions from stations z1
and z2 at the cloud base and the cloud top and the rl representation.

Figure 3. (a) Taylor diagram comparing the proposed criteria and thresholds for estimating fog frequency (FF, %). The diagram displays
the correlation coefficient, standard deviation (in FF units, %), and root-mean-square error (RMSE, in FF units, %) between the criteria
thresholds and observations. The number of data points used is 8760, corresponding to hourly data over a year. (b) Comparison of the annual
diurnal cycle of fog frequency between observations (SFC; in blue) and the best-performing criteria (in black). Every black or blue mark
represents the presence (100 % frequency) for every hour during 2018. Note that nos. 11 and 12 have a slightly negative correlation, placed
behind (left) the Taylor diagram y axis.
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2.1.2 Cloud base (CB)

Once fog frequency is estimated, we proceed to calculate the
height of the fog-cloud base (CB). This process is summa-
rized in Fig. 2. The calculation assumes that the lifting con-
densation level (LCL) in boundary layer clouds, such as Sc,
is equivalent to the cloud base. To compute this, we adopt two
approaches inspired by the parcel method of Wetzel (1990).
The first approach solely considers data from the lowest sta-
tion (z1), representative of surface marine conditions, where
the LCL corresponds to the height at which the mixing ratio
equals the saturated mixing ratio: rv− rs = 0 (Fig. 2a). This
LCL represents the CB over the ocean.

The second approach considers two physical processes in-
volved in the Sc-to-fog transition: environmental mixing and
topographic uplifting. Firstly, to represent the mixing with
the environment experienced by an air parcel during adia-
batic ascent, and based on Lobos-Roco et al. (2018), we com-
bine the meteorological conditions measured at both transect
stations (z1, z2) using a mixing parameter m as follows:

ψ
p

(z) = (1−m
z

zLCL
)ψ s +m

z

zLCL
ψML, (8)

where ψ is a scalar for potential temperature (θ ) or specific
humidity (q); superscript p represents the state of the air par-
cel; s indicates the conditions at the lowest station used (z1);
ML refers to the mixed layer, which is an average of condi-
tions observed at the two stations; m is the mixing parame-
ter ranging from 0 (no mixing) to 1 (maximum mixing); and
zLCL is the height at which the LCL is reached. Secondly, to
account for the inland effect (observed at z2 station), the LCL
is calculated iteratively using an averaged θ and q (ψML)
from z1 and z2. This ψML and LCL are used in Eq. (8) to
estimate the air parcel state ψp(z), which is then used to cal-
culate a new LCL. This calculation is repeated several times,
with ψML being re-averaged with the conditions at station z2
in each iteration. This repetitive calculation ensures that the
inland conditions (z2) in the MBL’s state are accurately rep-
resented. Our estimations show that the appropriate number
of iterations is related to the distance in kilometers between
z1 and z2. For example, if z1 and z2 are separated by 5 km,
we iterate five times.

The physical interpretation of this topographic uplifting
is depicted in Fig. 2b, where the initial iteration represents
an equal (averaged) influence of marine (z1) and inland (z2)
conditions. Subsequent iterations represent the dominance of
inland conditions over marine conditions. Dominant marine
conditions exhibit a higher latent heat flux (blue arrows in
Fig. 2b) compared with sensible heat flux (orange arrows in
Fig. 2b). Conversely, inland-dominant conditions showcase a
prevalence of sensible heat flux over latent heat flux (Fig. 2b).
The shift in surface energy partitioning toward dominant sen-
sible heat flux (inland conditions) leads to the LCL being
reached at a higher altitude, resulting in the uplifting of Sc
cloud (Fig. 2c). This phenomenon is due to the warmer and

drier conditions prevalent over land. It is important to note
that the MBL remains well mixed during the advection of Sc
cloud, thereby minimizing differences between marine (z1)
and inland conditions (z2).

To assess the accuracy of our CB estimations, Fig. 4
presents a multi-temporal comparison between CB estima-
tions derived from the AMARU model and observations con-
ducted in the Atacama Desert in 2017 as part of the Ground
Optical Fog Observations (GOFOS) experiment (del Río
et al., 2021a). The GOFOS experiment entails yearlong mon-
itoring of cloud-base and cloud-top dynamics during an El
Niño–Southern Oscillation (ENSO)-neutral year (2017), em-
ploying optical cameras placed across the terrain to record
the vertical movement of Sc cloud and fog. The left-hand
side of Fig. 4a illustrates that CB estimates generated by the
model using Eq. (8) (CBmod(8)) closely align with those ob-
served in 2017. The mean values of the estimated CB stand at
879 m compared to the observed average of 870 m, with sim-
ilar standard deviations of 88 and 93 m, respectively. This
satisfactory performance of the model with respect to esti-
mating CB is also observed on a monthly scale in Fig. 4b,
where the estimated CB generally differs by∼ 50 m from the
observed values on a monthly basis. To assess the model’s
capacity to replicate the diurnal cycle of CB, Fig. 4c shows
a representative foggy day in the Atacama region. It is evi-
dent from the figure that the estimated CB closely tracks its
diurnal cycle, with errors of ∼ 100 m observed during the af-
ternoon.

2.1.3 Cloud top (CT)

The parcel method, upon which our CB calculations are
founded, determines rl from the LCL level upward, ac-
cording to atmospheric pressure decreases. However, atmo-
spheric pressure also decreases beyond the MBL, where Sc
is located. Consequently, it becomes necessary to estimate
the cloud top (CT, in m) in order to calculate the rl within
the cloud layer. Given the challenges associated with esti-
mating CT using basic meteorological data and in order to
take advantage of the homogeneity of Sc as a cloud layer, we
propose estimating CT as the function of modeled CB using
three simple linear regression models. These models are phe-
nomenological expressions based on CT measurements ob-
tained during the GOFOS experiment in 2017 (del Río et al.,
2021a). The proposed linear regression models are as fol-
lows:

CTmod(9) = 236.47+ 0.9355(CB), (9)

CTmod(10) = CB+CB

√
FF
2
, (10)

CTmod(11) = 236.47+ 0.9355(CB)
(

1−
∂θ

∂z

)
100. (11)

Equation (9) shows a linear regression model in which CT
(in m) solely depends on CB (in m), where constants are de-
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Figure 4. The (a) annual, (b) monthly averaged, and (c) typical diurnal cycle of CB and CT comparisons between the observations (obs) and
model (mod). The subscript numbers refers to the equation numbers in Sect. 2.1.2 and 2.1.3.

termined from the relation between observed CB and CT dur-
ing the GOFOS experiment. Equations (10) and (11) corre-
spond to linear regression models in which CT is determined
by CB and fog frequency. The FF (fog frequency, in units of
%; Sect. 2.1.1) in Eqs. (10) and the vertical potential temper-
ature gradient (∂θ/∂z, in units of K m−1; Fig. 3a) in Eq. (11)
are based on observations conducted during the GOFOS ex-
periment, where CT demonstrates a negative correlation with
fog frequency (del Río et al., 2021a). A comparable linear re-
gression model, combining CB and fog frequency to estimate
CT, has been tested in various locations within the coastal At-
acama region by Lobos-Roco et al. (2024).

Figure 4 shows the effectiveness of linear regression mod-
els in predicting CT compared to observations obtained from
the GOFOS experiment. The right-hand side of Fig. 4a shows
the performance of the three linear regression models against
observations for the year 2017. The annual means of the three
models are similar to the observed value of (1073 m), with
respective values of 1050, 1091, and 1209 m. However, the
CT derived from Eq. (10) is the one that performs better,
exhibiting a standard deviation of 142 m compared to the
observed value of 124 m. At the monthly scale (Fig. 4b),
the CT estimated by Eq. (11) overestimates observations by
150 m. However, the CT derived from Eqs. (9) and (10) re-
mains within a 50 m range of the observed values. In Fig. 4c,
showing a representative diurnal cycle during the foggy sea-
son, both observed and modeled CTs are presented. Here,

it is evident that the CT estimated by Eqs. (10) and (11)
demonstrates better performance, closely aligning with ob-
servations (black triangles). However, the CT estimated from
Eq. (9) underestimates observations by over 200 m. These
three linear regression models offer a statistical framework
for estimating CT, with performance varying based on the
temporal scale. Henceforth, in this paper, we adopt the CT
derived from Eq. (10).

2.1.4 Liquid water mixing ratio (rl)

Once we had estimated the fog frequency (FF) and the fog-
cloud base (CB) and fog-cloud top (CT) using simple mete-
orological data from a topographic transect, we proceeded to
determine the adiabatic liquid water mixing ratio (rl, in units
of g kg−1) within the cloud layer (z: CT–CB). To achieve this,
we utilize the following equation:

rl(z) = rv(z)− rs(z);rl ≥ 0, (12)

where rv is the mixing ratio of the grams of water vapor
mass over a kilogram of dry air, rs is the saturated mixing
ratio, and z represents the vertical level between CB and CT
(Fig. 2a). Here, as rv is very close to being a conserved vari-
able (rv ∼ qv), it is assumed to be constant over the cloud
layer. Therefore, any excess of rv with respect the change
in rs (T ) will result in rl. It is important to note that, using
a combination of stations z1 and z2 (as in Eq. 8), the term
rv is assumed to be the specific humidity of the mixed MBL
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(qML), and rs depends on absolute temperature; therefore, the
latter term is influenced by θML.

Figure 5a and b show the validation of the model-
estimated adiabatic liquid water mixing ratio (rl) against ob-
servations of the liquid water content (LWC) (CLU, 2024)
derived from combined measurements of a microwave ra-
diometer with a Doppler lidar (Schween et al., 2022), con-
ducted at the Diego Aracena Airport in the coastal Atacama
Desert during July 2018.

In general terms, Fig. 5a and b show a satisfactory com-
parison between our modeled estimations of the LWC and
the measured values. The mean observed values peak at
0.1 g m−3 at 800 m altitude, while our mean estimations peak
at 0.09 g m−3 at the same altitude (∼ 800 m), consistent with
typical values found in marine Sc clouds. When analyz-
ing the 0.95 percentile curve (red line in Fig. 5) the model
follows the vertical distribution of observations, exhibiting
peaks of 0.7 g m−3 between 700 and 900 m a.s.l., while ob-
servations show peaks of 0.5 g m−3. Upon comparing the
modeled and observed 0.95 percentile values, we note that
the model overestimates observations by ∼ 0.2 to 0.3 g m−3.
Finally, upon integrating the vertical column of the LWC,
we also observe similarities in the mean liquid water path
(LWP), with values of 3.6 and 2.6 kg m−2 for modeled and
observed data, respectively. To validate the results obtained
from the thermodynamic module of the AMARU model,
Fig. 5c presents the temporal evolution of a simulated fog
cloud during a fog event occurring at the Alto Patache site
between 16 and 25 July 2018. The aforementioned figure il-
lustrates the model’s capability to accurately represent fog-
cloud frequency, its vertical structure, and water density (rl)
over time. In terms of fog frequency, our model shows fog-
cloud formation from 17 to 19 July and from the 22 to
24 July, aligning with the periods of highest fog collection
rates (gray bars in Fig. 5c). From the 19 to 22 July, our model
does not depict cloud formation, consistent with near-null
fog water collection during this period. Likewise, we observe
that changes in the vertical structure of the cloud (base and
top) correspond to variations in the LWC and fog collection.

In summary, our straightforward methodology, employing
a topographic transect of meteorological stations, effectively
estimates the rl within the MBL vertical column. This es-
timation is achieved by combining thermodynamic princi-
ples and statistical regressions, supported by climatological
observations. Notably, our approach not only provides esti-
mates of rl but also estimates fog frequency and the vertical
structure of the fog cloud, thereby enhancing our understand-
ing of the fog phenomenon in arid coastal regions.

2.2 Water potential module: collector efficiency
coefficient (η)

The second critical parameter in our proposed model is the
collector efficiency coefficient (η). This variable is intricately
linked with complex processes and factors such as wind

flow, liquid water content, droplet size, collector position-
ing, material properties, mesh curvature, and porosity (Car-
vajal et al., 2020). To ensure that our assumptions align with
climatological observations, we determine the collector effi-
ciency using an empirical coefficient. This coefficient, previ-
ously defined in Eq. (4), is now redefined as the ratio between
the observed fog collection (fobs) and the fog inflow (Fin),
where fobs =Wh. As a ratio, η represents the percentage of
the maximum water that a fog collector can potentially cap-
ture under given atmospheric conditions. It is calculated as
follows:

η =
fobs

Fin
. (13)

Note that both Fin and fobs are averaged per hour; there-
fore, both terms have the unit of liters per square meter per
hour (L m−2 h−1). As η is calculated based on fog observa-
tions, its value depends on the type of collector used, provid-
ing flexibility to the model with respect to adapting to differ-
ent collector types if observations are available.

Table 1 shows the empirical collector efficiency coefficient
(η) calculated for five fog collection stations located between
600 and 1200 m along a coastal strip of Chile. Overall, mean
η varies from 15 % to 27 %, with variability ranging from
4 % to 45 %. Three factors contribute to this variability in
the efficiency coefficient. Firstly, the model’s ability to ac-
curately determine fog frequency (RMSE of 6 % in Fig. 3a)
can lead to discrepancies, potentially resulting in very high
(η ∼ 100 %) or null (η ∼ 0 %) efficiencies when fog collec-
tion is observed, thereby altering the averages. Secondly,
wind speed may also play a significant role, as it is responsi-
ble for transporting rl through the collector. Lastly, both the
material of the mesh and its curvature during fog collection
could impact mesh efficiency (Carvajal et al., 2020). Despite
the variability in η across all sites, we find an average effi-
ciency coefficient of 25 %± 10 %, consistent with results in
the literature. For instance, Montecinos et al. (2018) reported
efficiencies ranging from 0 % to 36 % in large fog collectors.
Similarly, using numerical simulations, Carvajal et al. (2020)
reported a mean efficiency of 28 % with a theoretical maxi-
mum of 36 %. Finally, de Dios Rivera (2011) reported max-
imum fog collection efficiencies of between 20 % and 24 %
using a simple numerical model approach for different mesh
types.

For our study, we use an η of 0.25 (25 %). Once η is es-
timated, we can readily solve Eq. (6) to obtain an estima-
tion of the fog-water-harvesting (Wh) potential. Given that rl
has a vertical dimension, assuming a constant wind speed (u)
along the MBL, we can derive the vertical distribution of the
fog-harvesting potential.
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Figure 5. Vertical profiles of rl (in g m−3) (a) derived from a microwave radiometer and Doppler lidar observations (Schween et al., 2022;
CLU, 2024) and (b) estimated by the AMARU model over Diego Aracena Airport. Gray dots represent hourly averaged profiles filtered by
the 0.99 percentile, red lines represent the 0.95 percentile, and the blue line represents the mean. (c) The evolution of the vertical profile
simulated by the AMARU model for the Alto Patache site. Gray bars at the bottom represent fog collection measurements at 850 m (dashed
line).

Table 1. Descriptive statistics of the empirical efficiency coefficient η estimated at five fog collection stations along a 2000 km coastal strip
in Chile. The 25 %, 50 %, and 75 % columns display the interquartile descriptive statistics.

Coordinates Altitude Time period Mean 25 % 50 % 75 %

19.17° S, 70.17° W 850 m 2022 16 % 5 % 13 % 26 %
20.48° S, 70.05° W 1200 m 2019 26 % 6 % 16 % 30 %
20.82° S, 70.14° W 850 m 2018 24 % 11 % 19 % 31 %
30.65° S, 71.68° W 630 m 2022 27 % 6 % 20 % 45 %
32.16° S, 71.49° W 650 m 2022 15 % 4 % 5 % 21 %

2.3 Spatial module: fog-harvesting maps

In addition to the thermodynamic module, we propose a spa-
tial module for extrapolating the vertical variability in Wh
into a horizontal spatial domain. To do this, we integrate
the vertical domain (z) of Wh to an area of optimal fog-
harvesting potential obtained from a combination of a dig-
ital elevation model (DEM) and GOES satellite images. We
outline four steps to achieve this spatial variability.

The first step involves reclassifying the DEM grid cells
based on the cloud layer height and removing all grid cells

below the CB and above the CT elevation. This reclassifica-
tion ensures that only the elevation range in which Sc cloud
could potentially impact the topography is considered. In the
second step, we create an aspect image (slope orientation)
with the DEM and reclassify the pixels based on the angle
range of the main wind direction (mean±SD) when fog is
collected (obtained from observations at the z2 station). The
third step involves calculating the fog and low-cloud (FLC)
frequency using data from the GOES satellite (del Río et al.,
2021b; Espinoza et al., 2024). This algorithm continuously
calculates the presence and absence of FLC in every GOES
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grid cell. The third step serves as a geographical framework,
delineating the area in which fog cloud interacts with topog-
raphy. The spatial intersection of the three steps generates
optimal areas for fog collection, physically representing the
locations at which Sc cloud and its harvesting potential inter-
sect with the surface. It is important to note that the values of
grid cells in these optimal areas for fog collection represent
elevations (m a.s.l.) in areas with a high FLC frequency. The
final step involves replacing the elevation grid cell values of
the optimal fog collection areas with the vertical distribution
of potential fog harvesting (Wh). AsWh values are associated
with a vertical domain (z), each Wh value can be mapped
onto the resulting grid of optimal fog collection areas. The
result of this last step yields a spatial distribution of potential
fog harvesting.

3 Model applications to (semi-)arid study case sites

AMARU enables us to evaluate the spatiotemporal variabil-
ity in fog harvesting using routine meteorological data and
satellite products. In this section, we evaluate the applica-
tion of the model (Wh) to three sites along the coastal strip
of Chile, corresponding to hyper-arid, arid, and semi-arid
ecosystems, between 2018 and 2023.

Figure 6 shows the geographical setting of the study
sites, which correspond to hyperarid (Site a), arid (Site b),
and semi-arid (Site c) fog ecosystems situated between 600
and 1200 m a.s.l., along the coastal mountains of Chile.
Generally, these sites represent xeric ecosystems (Muñoz-
Schick et al., 2001) sustained year-round by fog, with a fre-
quency exceeding 40 % (Fig. 6). Each of these three sites
is equipped with meteorological and fog collection instru-
mentation, managed by the Centro UC Desierto de Ata-
cama of Pontificia Universidad Católica de Chile. The char-
acteristics of these stations and their data and parameters
used in the model are summarized in Table 2. In addition,
to meet the model’s requirements, observations from these
three sites (z2) are complemented with data from near-sea-
level observations (z1), sourced from public datasets (https:
//www.agromet.cl/, last access: 10 October 2023), which are
also detailed in Table 2.

3.1 Seasonal cycle of modeled and observed fog
harvesting

AMARU satisfactorily reproduces the observations of fog
harvesting with respect to both magnitude and variabil-
ity over time. Figure 7 shows a comparison of monthly
averaged daily rates of fog harvesting at the three ana-
lyzed sites. Overall, the model results (blue) follow the sea-
sonal cycle of observed fog collection (gray) across lat-
itudes, albeit showing annual disagreement with observa-
tions (by 0.5–1 L m−2 d−1). In the hyperarid environment of
Site a (Fig. 7a), the model estimates an annual daily rate of

Figure 6. Location of the study sites and their meteorological sta-
tions. The areas shaded using blue colors represent the fog and
low-cloud (FLC) frequency obtained by the GOES satellite (del Río
et al., 2021b) between 2018 and 2023. z1 and z2 represent the mete-
orological stations forming the transect used for running the model
according to our methodology.

5.0 L m−2 d−1, which satisfactorily compares to the rate of
5.5 L m−2 d−1 obtained through observations. Likewise, the
model can closely track the seasonal cycle of fog harvesting,
exhibiting low rates in summer (January–March) and autumn
(April–June) and higher rates in winter (July–September)
and spring (October–December). Moreover, the model cor-
rectly estimates the frequency of fog events. For instance,
during summer, the model estimates a very low (January and
March) or null (February) fog collection, with mean errors
of around 0.39 L m−2 d−1 in the season compared with ob-
servations. Similarly, during the optimal fog-harvesting sea-
son between winter and spring, the model correctly estimates
the monthly magnitude of observed fog collection with er-
rors of 2 L m−2 d−1. Finally, the model successfully repli-
cates the variability in the monthly daily rates of fog col-
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lection, as indicated by the error bars in Fig. 7. For example,
at Site a in spring, the observed mean variability rates (errors
bars) range from 4 to 9 L m−2 d−1, while the model estimates
spring mean rates ranging from 6 to 10 L m−2 d−1.

For Site b, situated in an arid environment (Fig. 6), the
amount of fog collection is notably lower compared with
Site a (hyperarid). However, the model accurately repro-
duces the annually averaged daily rate of fog harvesting of
4.3 L m−2 d−1. Despite this overall good performance, the
model still underestimates observations by approximately
1 L m−2 d−1 during winter in terms of magnitude and vari-
ability (as indicated by the error bars). Unfortunately, the
annual cycle for Site b remains incomplete, as observations
were only recorded from May to October 2023. For the semi-
arid environment of Site c, the model shows annual daily
rates of fog harvesting similar to those of Site b, albeit with
an overestimation of 1 L m−2 d−1 compared with observa-
tions. During the months with the highest fog collection rates
(September–December), the model overestimates observa-
tions by ∼ 0.7 L m−2 d−1 on average. It is worth mentioning
that these discrepancies in estimation are not systematic and
that, despite them, the model captures the same seasonal cy-
cle obtained through observations at all three sites.

3.2 Vertical variability in fog-harvesting potential (Wh)

As the model estimates the LWC (rl) in the vertical column
of Sc cloud when it interacts with topography, and assuming
constant wind at z2 throughout the vertical, we can model the
fog-harvesting potential at every height within the Sc cloud
layer.

Figure 8 shows the vertical variability in Wh potential for
the three analyzed sites. In the aforementioned figure, dots
represent the totalWh per hour at each height within the fog-
cloud layer over the course of 1 year. The red line depicts the
annual average daily rate ofWh as a function of height, while
the black dot shows the observed annual average daily rate. In
addition, the dots are color-coded based on the correspond-
ing rl values. From Fig. 8, it is evident that fog-harvesting
potential decreases from the hyperarid (north) to the semi-
arid (south) regions for both Wh and rl. Specifically, at the
hyperarid site, a Wh of 10 L m−2 d−1 can be easily reached,
whereas maximum Wh values of 5 and 3 L m−2 d−1 are ob-
served at the arid and semi-arid sites, respectively. The same
behavior is observed for rl, which exhibits higher values
(mean 0.95 percentile of up to 0.7 g kg−1) at the hyperarid
site compared with the arid and semi-arid sites, where the
0.95 percentile reaches up to 0.6 and 0.4 g kg−1, respectively.
The vertical variability in Wh also allows us to study the ver-
tical liquid water capacity of the fog cloud. For instance,
at the hyperarid site, the model estimates a fog-harvesting
potential between 600 and 1350 m, whereas fog can be har-
vested from 500 to 1250 m and from 370 to 1050 m at the arid
and semi-arid sites, respectively. These variations in rl and
the fog-cloud layer height are explained in Eq. (3) and Fig. 2b

and c. In Eq. (3), we show that the calculation of CB (and
consequently rl) is influenced by the combined conditions of
stations z1 and z2. For example, at the hyperarid site, situ-
ated within the tropics (Fig. 6), air temperature is higher at
both z1 and z2 compared with the semi-arid site. This implies
that the condensation of the air parcel at Site a will occur at
a higher altitude than at Site b. Likewise, higher tempera-
tures increase the air’s capacity to hold humidity, resulting in
a higher rl observed at the hyperarid site compared with the
semi-arid one. Another significant factor contributing to the
difference in rl and cloud layer height is the distance from the
coast at which station z2 is located. For instance, the hyper-
arid site is 5 km inland, compared with the arid and semi-arid
sites that are located 2 and 3 km from the coast, respectively
(Table 2). Consequently, inland conditions at the hyperarid
site are hotter than at the other two sites, contributing to the
formation of the cloud layer at higher altitudes.

Figure 8 also shows the annual average daily rates (red
line) estimated by the model and observed by a standard
fog collector (black dot). This red line indicates the verti-
cal placement of the maximum annual Wh. For example, at
the hyperarid site, the maximum Wh is located at a height
of 900 m, while observations are situated at 850 m a.s.l., ex-
plaining the highest annual daily fog collection rates. In con-
trast, at the arid and semi-arid sites, the maximum Wh is not
aligned with the height of the observations. For Site b, the
maximum Wh is reached at ∼ 680 m, whereas observations
are located at 820 m a.s.l. Similarly, for Site c, the maximum
Wh is situated at 500 m, while observations are at 650 m a.s.l.
The validation of annual average daily rates in Fig. 8 is de-
termined by the proximity of the black dot to the red line
at the observed height. For example, in Fig. 8a, we observe
an underestimation by the model, which is also evident in
Fig. 7a, although not in the vertical dimension, as the obser-
vations differ by ∼ 0.5 L m−2 d−1 from the modeling results.
For sites (b) and (c) (Fig. 8b and c), the model accurately
reproduces the annual daily rates, consistent with the obser-
vation, as also observed in Fig. 7b and c.

3.3 Spatial variability in Wh: fog-harvesting potential
mapping

The combination of AMARU’s results with satellite prod-
ucts enables us to interpolate the influence of Sc cloud over
land and its potential harvesting in space. This subsection in-
troduces two examples of AMARU’s results with respect to
spatial variability that can be utilized for fog ecosystem de-
limitation and water planning.

Figure 9a shows the optimal fog-harvesting areas (high-
lighted in red), corresponding to the region where Sc cloud
interacts with the Earth’s surface. For Site c, these areas are
displayed near the summit of the coastal mountains, specifi-
cally ranging from 370 to 1050 m a.s.l. (Fig. 8c). In addition,
based on data from the meteorological station (z2) at this site,
the fog-cloud flux originates from the south and southeast
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Table 2. Geographic characteristics and available data of observational sites (z2) and their corresponding stations at the coast (z1). T
represents air temperature at 2 m, RH denotes relative humidity, P represents air pressure, U is wind speed, and WD is wind direction.

Site Coordinates Height Distance from coast η Available data Time period
(dd-mm-yyyy)

az2 20.82° S, 70.14° W 850 m 5 km 25 % T , RH, P , U , WD, fog collection 01-01-2018
az1 20.52° S, 70.15° W 48 m 1 km T , RH, P , U , WD 31-12-2018

bz2 26.00° S, 70.60° W 820 m 2 km 25 % T , RH, P , U , WD, fog collection 01-05-2023
bz1 26.29° S, 70.62° W 120 m 2 km T , RH, P , U , WD 31-10-2023

cz2 32.16° S, 71.49° W 650 m 3 km 25 % T , RH, P , U , WD, fog collection 01-09-2022
cz1 32.16° S, 71.51° W 60 m 1 km T , RH, P , U , WD 31-12-2022

Figure 7. Comparison of monthly averaged daily fog collection rates between the model (blue) and observations (gray) in three fog ecosys-
tems situated on the (a) hyperarid, (b) arid, and (c) semi-arid Chilean coast. The error bars show the data variability between the 25th and
75th percentiles.
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Figure 8. Vertical variability in the modeled fog harvesting (Wh) at the (a) hyperarid, (b) arid, and (c) semi-arid sites. Dispersed dots
represent the total fog harvesting at every hour, the red line is the annual average daily rate of Wh, whereas the gray dot is the observed
annually averaged daily rate ofWh. The dispersed dots are color-coded using a blue scale representing the liquid water content (rl). The gray
shading represents the topographic profile of each site. The right-hand panels show a photograph of each site during a fog event.

(110–300°), which is reflected in the model’s depiction of the
mountain slopes facing south and southeast. In the zoomed-
out view in Fig. 9a, we observe that the extent of these op-
timal fog-harvesting areas spans the first ∼ 20 km from the
coast, as determined by the frequency of FLC derived from
the GOES satellite (Sect. 2.3).

To independently validate the spatial interpolation of
AMARU’s results, we compare the optimal fog-harvesting
areas with fog-dependent vegetation. In Fig. 9a, areas high-
lighted in green represent the normalized difference vegeta-

tion index (NDVI) estimated using Sentinel satellite imagery.
Overall, the optimal fog-harvesting areas align with areas ex-
hibiting the highest NDVI values. For example, a concen-
tration of NDVI is observed at the summit of the mountains
and the southeast slopes, indicative of a forest ecosystem sus-
tained by fog (Garreaud et al., 2008). Furthermore, the NDVI
also concentrates at the bottom of small valleys downstream
of the summits, suggesting that fog water that accumulates
on the summits may potentially flow down, supplementing
the precipitation input to the streams.
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Figure 9. (a) Optimal fog-harvesting areas (red line) resulting from
the model for Site c compared to the normalized difference vegeta-
tion index (NDVI; ranging from 0.1 to 0.4) estimated using Sentinel
satellite images for 2022. The yellow dot indicates the meteorolog-
ical station (z2). (b) Spatial variability in the annual average daily
rates of Wh for Site a estimated during 2018. The red dot indicates
the meteorological station (z2).

Figure 9b shows the spatial variability modeled from the
intersection between the vertical profile annual average daily
rate (red line; Fig. 8a) and the optimal fog-harvesting ar-
eas. In the aforementioned figure, we observe the spatial
distribution of the fog water potential along the mountain,
with maximum values observed around 900 m. The topogra-
phy of the mountain favors altitudes around 900 m a.s.l. with
southwestern slope orientations, leading the model to project
large areas with fog-harvesting potential ranging from 4 to
5 L m−2 d−1. In the eastern areas of the meteorological sta-
tion (red dot, z2), fog-harvesting potential decreases to lower
altitudes, consistent with the results presented in Fig. 8a.
Likewise, fog-harvesting potential decreases towards regions
southwest of the station at higher altitudes until it disap-
pears. The area surrounding the station corresponds to the
well-known fog oasis of Alto Patache (Muñoz-Schick et al.,
2001), situated between 600 and 850 m, within the optimal
fog-harvesting areas determined by the model.

This model application is further extrapolated to the en-
tire region to determine optimal fog-harvesting zones within
the area of influence of fog and low clouds, as determined
using the GOES satellite. An example of these larger areas
is shown in the zoomed-out view of Fig. 9b, where optimal
fog-harvesting areas are situated within 10 km of the coast.
As the model runs with simple meteorological time series,
fog-harvesting potential maps can be generated for different
temporal averages, enabling us to study and assess spatial
changes in fog-harvesting potential over hours (events), days,
seasons, and years.

4 Model limitations and challenges

Despite the versatility of the AMARU model with respect to
representing the harvesting of the advective fog phenomenon
in both time and space, it has several limitations worth de-
scribing.

Firstly, one of the most important variables in the model
is the adiabatic liquid water mixing ratio (rl), which is esti-
mated assuming water vapor is condensed because it reaches
saturation. Despite our simplistic approach and reliable re-
sults, we know that further model improvements must be
made by including essential microphysical processes. Such
processes are mean volume diameter, effective size, droplet
concentration, and effective droplet size (Gultepe et al.,
2021). To account for these processes, comprehensive obser-
vations must be performed to get a complete budget equation,
thereby allowing more realistic modeling.

Secondly, the model’s capability to represent fog harvest-
ing in time is primarily limited by the empirical collector co-
efficient. However, this coefficient remains constant in the
model, resulting in both underestimations and overestima-
tions compared with observations. To improve our estima-
tions of fog harvesting over time, further exploration into
the collector efficiency is necessary, incorporating factors
such as wind speed, collector material properties, and cloud
droplet size into more complex functions.

Thirdly, the model’s capability to assess fog-harvesting
potential in the vertical column of the MBL enables us to
evaluate the maximum fog-harvesting potential beyond sin-
gle point observations. However, this vertical Wh estima-
tion is contingent upon accurately determining rl, assum-
ing that wind speed remains consistent at every level of the
MBL. Although rl estimations align with observations from
microwave radiometers, our results must be validated with
in situ observations of LWC during fog collection. In ad-
dition, relevant physical processes influencing CT, such as
dry-air entrainment from the free troposphere, and thermal
inversion are not included in its calculation. Instead, CT is
statistically estimated, leading to uncertainties in a variable
whose precision is crucial for estimating the maximum rl
and, consequently, Wh. Regarding wind speed, our assump-
tion of a constant horizontal wind along the MBL is based
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on the mixed-layer theory, which posits that scalars such as
potential temperature, mixing ratio, and wind speed remain
constant if the MBL is well mixed. However, this theory
does not consider topography, which may disturb this con-
stant pattern when interacting with MBL winds. To improve
the model’s estimation of rl and better Wh potential, future
research must incorporate accurate vertical profile observa-
tions of the temperature, mixing ratio, and wind speed.

Finally, the spatial extrapolation of Wh represents a
preliminary approach for fog-harvesting-potential mapping.
This is because its accuracy is limited by the availability of
spatially distributed meteorological data. We spatially ex-
trapolate the conditions determined by the model for the
z2 station to all surrounding areas that share the same ge-
ographic conditions. Nevertheless, this approach may over-
estimate several inland locations that meet the geographi-
cal characteristics of z2 but not the atmospheric ones. Im-
proving this spatial extrapolation of Wh can be addressed
using two approaches. The first one involves utilizing grid-
ded meteorological data that allow us to solve Eq. (6) at ev-
ery grid point. Unfortunately, available gridded data are of-
ten too coarse to accurately represent the sub-kilometer fog-
harvesting phenomenon. The second approach entails incor-
porating the FLC frequency determined by the GOES satel-
lite (Fig. 6) into the spatial interpolation ofWh. For example,
we can modify Wh spatially using a function based on the
FLC frequency, where locations with similar geographical
conditions to z2 station may see theirWh reduced (increased)
if their FLC frequency is higher (lower) than that observed at
z2 station.

5 Conclusions

We propose, formulate, and evaluate an observation-driven
model, named AMARU, for estimating advective fog-water-
harvesting potential in (semi-)arid regions. This model uses
standard and routine meteorological observations to estimate
where, when, and how much water can potentially be har-
vested from fog clouds. The proposed model employs a ther-
modynamic approach to estimate fog’s adiabatic liquid water
mixing ratio, incorporating key physical processes associated
with the interaction between stratocumulus cloud and topog-
raphy. This approach yields vertical profiles of the liquid wa-
ter mixing ratio, from which the fog frequency, cloud base,
and cloud top can be derived. In addition, by integrating esti-
mations of the liquid water mixing ratio with climatological
records of fog-harvesting observations, we derive an empir-
ical collector efficiency coefficient to estimate vertical pro-
files of fog-harvesting potential. Finally, by combining ver-
tical profiles of fog-harvesting potential with satellite prod-
ucts, we introduce a methodology for spatially extrapolat-
ing these results, thereby generating fog-harvesting-potential
maps.

The main conclusions of our research are as follows:

– Despite the simple approach, this model correctly re-
produces essential physical components involved in fog
harvesting. Our model evaluation against available ob-
servations shows that model results reproduce the fog
frequency (correlation coefficient of 0.95 and RMSE of
6 %), cloud-base and cloud-top height (errors < 50 m),
liquid water content (errors ∼ 0.2 g m−3), and fog col-
lector efficiency (errors ∼ 5 %). Overall, fog-harvesting
observations are satisfactorily reproduced by the model,
with mean errors of 10 % (< 1 L m−2).

– The simple approach takes advantage of using routine
meteorological data, which is widely available world-
wide in areas characterized by land–ocean contrast and
complex topography.

– However, the model presents several limitations, and the
improvement of these limitations will depend on com-
prehensive observations and further research. Among
these limitations, microphysics observations of cloud
droplet size, concentration, and actual water content
must be incorporated to improve the model. Moreover,
further research must be done on the empirical coeffi-
cient, which is constant in the model. However, our ob-
servations suggest a variability that depends mainly on
wind speed but also on the materials. Finally, future re-
search should incorporate accurate vertical profiles of
the temperature, mixing ratio, and wind speed to cor-
roborate our vertical modeling assumptions.

– Our model offers a versatile approach with multi-
ple applications in massive fog-harvesting planning
and ecosystem delimitation for conservation purposes,
among others. As fog is a global meteorological phe-
nomenon, this model holds potential for applicability in
many coastal (semi-)arid regions, addressing data de-
ficiencies in regions where fog harvesting represents a
viable water source.

Finally, we expect this research to yield significant social
benefits by providing decision-makers with valuable insights
into new water sources, thus aiding in the mitigation of cli-
mate change impacts.
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