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Abstract. Urbanization impacts on hydrologic response are
typically indexed as a function of the fraction of total im-
pervious area (TIA), i.e., the proportion of impervious ar-
eas in a basin. This implicitly assumes that changes in flood
characteristics are somehow proportional to the extents of
land development without considering that such impacts may
vary widely depending on the location of the developed areas
with respect to each other, the less developed land patches,
the stream network, and the basin outlet. In other words,
TIA is blind to the spatial arrangement of the different types
of land patches within a basin and to the nuanced ways in
which runoff volumes are variously generated over them and
then subsequently retained or detained as they are routed
towards the stream network and then the outlet. To over-
come such limitations, we propose a new lumped index that
measures the impacts of urbanization on basin response in
terms of the emerging hydrologic connectivity, defined here
as the distributed property that explains the ability of any
hillslope location to quickly receive and transfer runoff to
the stream network as driven by topographically induced
runoff pathways and locally affected by the different land-
use/land-cover types present in a watershed. This alternative,
hydrologic-connectivity-based index of urbanization (HCIU)
displays sensitivity to the spatial arrangement of both fully
developed and less developed or undeveloped patches, each
with different degrees of imperviousness, roughness, and
other characteristics affecting their abilities to either gener-
ate or hydrologically retain or detain runoff, reflecting their
distinct localized effects on hydrologic connectivity. The pro-
posed HCIU can be readily obtained in a GIS environment
from easily available raster geospatial data. We found that
HCIU improves the predictive power of regional equations

for peak flow in three large case-study homogeneous regions,
when used in place of the traditional TIA.

1 Introduction

The ongoing expansion in land development across many re-
gions of the world is a major driver of alterations in the hy-
drologic response of watersheds (Nirupama and Simonovic,
2007; Sillanpää and Koivusalo, 2015), with subsequent im-
pacts on urban stream ecosystems (Walsh et al., 2005; Vietz
et al., 2016a, b). Along with climate change, this trend in
urbanization is expected to pose formidable challenges for
water resources management in the years to come (Prask-
ievicz and Chang, 2009; Bell et al., 2017; Zölch et al., 2017).
Because developed land patches have quite different infiltra-
tion and interception capacities, as well as surface roughness
characteristics, than undeveloped sectors, they have strong
effects on stormwater runoff dynamics; this is why quantifi-
cations of the level of urbanization based on a basin’s im-
pervious area are widely used in the domains of engineer-
ing hydrology and urban river ecology (Bauer et al., 2007;
Roy and Shuster, 2009; Lee et al., 2018; Gong et al., 2020;
Liang et al., 2022). Urbanization descriptors specified as a
fraction of the total watershed area (Bell et al., 2016) are
extensively adopted in a range of stormwater management
(Kong et al., 2017; Sultana et al., 2020) as well as flood
risk assessment and mitigation practices (Suharyanto et al.,
1997; Loperfido et al., 2014; Sohn et al., 2020). Popular ap-
plications of these metrics include the study of stormwater
runoff dynamics (Meierdiercks et al., 2010; Fletcher et al.,
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2013; Yao et al., 2016), water-quality assessments (Fletcher
et al., 2014; Lee et al., 2012; Li et al., 2021), and peak-flow
prediction in ungauged (urban) basins (PUBs; Kennedy and
Paretti, 2014; Southard, 2010), also involving urban planning
and regulation (Smucker et al., 2016).

The total impervious area (TIA) of a basin has been his-
torically the most widely adopted urbanization metric in hy-
drology (Shuster et al., 2005). Other representations of the
level of urbanization are the directly connected impervious
area (DCIA, i.e., the subset of TIA connected to the stream
network through constructed drainage or other fully imper-
vious pathways; Han and Burian, 2009; Sytsma et al., 2020)
and the effective impervious area (EIA, i.e., an indirect es-
timate of DCIA; Boyd et al., 1993, 1994; Ebrahimian et al.,
2016a, b, 2018). Despite their widespread use, these meth-
ods have intrinsic limitations, as highlighted by a growing
body of research (Shuster et al., 2005; Law et al., 2009; Beck
et al., 2016; Bell et al., 2016). One drawback relates to their
inability to explicitly account for differences in the spatial ar-
rangements of impervious patches (Shuster et al., 2005; Beck
et al., 2016; Bell et al., 2016). However, basins with similar
levels of land development can exhibit distinct hydrologic
behaviors because the actual locations of the developed sec-
tors within a watershed significantly impact surface runoff
dynamics (Corbett et al., 1997; Pappas et al., 2008). Another
issue with these kinds of descriptors is that they are not able
to capture the complex distributed interactions between ur-
banized patches (with varying land-development intensities,
depending on location) and undeveloped sectors with het-
erogenous hydrologic characteristics (Bell et al., 2016; Law
et al., 2009) even though different spatial configurations will
significantly affect a watershed’s hydrologic response (Lop-
erfido et al., 2014).

Despite the conceptual limitations of TIA and similar in-
dices used to depict a watershed’s impervious areas, these
kinds of simple descriptors are needed to characterize the
degree of urbanization in lumped hydrologic models, with
their inherent trade-offs between basin representation detail
and the spatial heterogeneity of the captured hydrologic pro-
cesses (Hrachowitz and Clark, 2017). More recent urbaniza-
tion metrics proposed by Yang et al. (2011) and Beck et
al. (2016) try to incorporate information on the spatial dis-
tribution and geometric fragmentation of developed and un-
developed patches. These indices implicitly attempt to cap-
ture the degree of contiguity and interconnection of differ-
ent land-use/land-cover (LULC) sectors based on their spa-
tial density and granularity but overlook the effects of basin
relief on runoff routing. However, spatial contiguity does not
fully explain the hydrologic connectivity of patches with dis-
tinct LULC types as this property is ultimately determined
by water pathways induced by topographic gradients. Fol-
lowing a conceptually different approach, Zhang and Shuster
(2014) proposed the following two indices: (1) the average
distance of impervious patches to the outlet, measured along
topographic pathways, and (2) the mean number of pervi-

ous cells along those routes, regarded as a proxy for hydro-
logic disconnection. These metrics do consider the effects of
topography but fall short in accounting for the heterogene-
ity across different LULC types and their varying effects on
surface runoff dynamics as they adopt a binary, simplified
pervious-versus-impervious LULC classification. Undevel-
oped areas located downstream of urbanized land patches can
mitigate the adverse hydrologic impacts of the latter to vary-
ing degrees and through different mechanisms, depending on
specific factors, such as soil infiltrability and vegetation type
(and its effects on interception and roughness; Law et al.,
2009). The fact that Zhang and Shuster’s (2014) indices can-
not account for this continuum of behaviors likely explains
their poor correlation with simulated stormwater runoff vol-
umes in their two case-study basins.

In summary, ongoing efforts in urban watershed char-
acterization have brought to light the limitations of tradi-
tional impervious-area-based indicators like TIA as proxies
for the effects of land development on stormwater hydro-
logic processes. Researchers have proposed alternative ap-
proaches that shift the focus towards hydrologic or geomet-
ric properties, considering either the degree of dispersion and
granularity of patches with different LULC types or the in-
terconnections between pervious and impervious patches as
driven by topographic gradients. However, despite these ad-
vances, existing methods have yet to simultaneously address
the synergistic impacts of topography and of the existence of
a wide spectrum of LULC types with heterogeneous effects
on stormwater runoff dynamics.

We propose a conceptual approach for deriving lumped ur-
banization metrics starting from the DEM and LULC map of
a watershed by measuring the impacts of land development
on hydrologic response in terms of its distributed effects
on hydrologic connectivity, the spatially distributed property
that explains the ability of any hillslope location to quickly
receive and transfer runoff to the stream network, as driven
by topographically induced runoff pathways and influenced
by the spatial arrangement of LULC patches with different
hydrologic properties, such as roughness and infiltrability
(Hooke et al., 2021). Distinct LULC patches intensify or mit-
igate the hydrologic response of their contributing area to
varying extents, depending on the hydrologic processes that
take place under specific LULC conditions (e.g., high canopy
and litter interception, as well as detention, due to high sur-
face roughness in densely vegetated areas; increased runoff
volumes and peaks because of negligible infiltration losses
and shorter travel times due to low roughness in urbanized
sectors; and enhanced retention due to higher infiltrability
in undisturbed areas). Hence, basin cells with different land-
use/land-cover types contribute to hydrologic connectivity in
different ways. Conceptually, highly urbanized, fully imper-
vious patches represent one extreme in the continuous spec-
trum of LULC potentials for generating runoff and increasing
connectivity, with their smooth surfaces and absence of infil-
tration losses. In the other extreme instead are forested areas
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and other natural LULC types with high vegetation densities
because of their ability to reduce runoff volumes and travel
speeds through canopy and litter interception and temporary
storage, high surface roughness, and soil infiltration.

Because it displays sensitivity to both the topographic
structure and the heterogenous mosaic of LULC types of
a basin, hydrologic connectivity provides a methodological
framework for a conceptual yet quantitative and comprehen-
sive assessment of the impacts of land development that con-
siders not only the spatial arrangement of urban sectors with
distinct land-development intensities, but also their interac-
tions with undeveloped patches, with their range of flood-
mitigating capabilities. Connectivity analyses have gained
popularity in recent years within hydrology and geomorphol-
ogy (Bordoni et al., 2018; Heckmann et al., 2018; Husic and
Michalek, 2022; Martini et al., 2022). These methods define
a connectivity index (Eq. 1) for each basin cell that can be
interpreted as a measure of its potential for affecting runoff
or sediment fluxes (Hooke et al., 2021), depending on its lo-
cation within the watershed. However, a map of connectivity
values, with possible local peaks induced by the presence of
fully developed patches, does not represent a lumped mea-
sure of the impacts of land development per se, nor does it
allow for a straightforward comparison of the effects of ur-
banization across a range of basins or of different urbaniza-
tion scenarios within a given watershed; thus, further con-
ceptualizations are required.

As the traditional definition of the connectivity index
only accounts for topographically induced runoff pathways
(Borselli et al., 2008), additional adjustments may be needed,
depending on the level of urbanization and the scope of the
analysis, to also include the effects of underground stormwa-
ter drainage infrastructure typically present in urban envi-
ronments. Underground pipe flows may be regarded as an
additional source of connectivity, which can alter and some-
times even reverse the connectivity induced by topography
(e.g., when stormwaters are pumped against topographic gra-
dients).

In this work, we derive a lumped metric of urbanization ef-
fects on hydrologic response, incorporating only topograph-
ically induced connectivity (i.e., neglecting any effects of
underground storm sewer infrastructure), and test its perfor-
mance as a predictor in regional peak-flow equations. Peak
flows are among the hydrologic-response variables of great-
est interest in urban flooding risk (Feng et al., 2021) and are
the most important for design purposes (Vogel and Castel-
larin, 2017). While considering the additional source of con-
nectivity introduced by the underground drainage network
would be straightforward, as explained in the Discussion sec-
tion, we could not account for it here because it was impossi-
ble to obtain stormwater sewer data for the hundreds of wa-
tersheds involved in our regional-scale analyses. However,
for the scope of our investigation, which focuses on hydro-
logic response during severe flooding (peak flows with return
periods from 2 to 500 years), considering only topograph-

ically induced connectivity should be acceptable. This ap-
proach allows us to capture the impacts of land development
on the surface and near-surface phases of a basin’s response
and the effects of streams and watercourses, including the ar-
tificial ditches and canals that make up the so-called major
drainage system of stormwater infrastructure (i.e., excluding
the underground network, also known as the minor system;
Martins et al., 2017). During severe flooding, it is surface
dynamics that predominantly govern hydrologic response, as
the underground stormwater infrastructure’s capacity is typi-
cally exceeded.

We benchmark our hydrologic-connectivity-based index
of urbanization (HCIU) against the traditional fraction of
TIA by alternatively using one of these two metrics as a pre-
dictor in regional peak-flow equations for urbanized basins.
Imperviousness descriptors expressed as a fraction of the to-
tal basin area (e.g., TIA, EIA, and DCIA) are still among the
most popular approaches to quantify the effects of land de-
velopment in lumped hydrologic and regional models (Bell
et al., 2016; Yang et al., 2023). Among these, we chose TIA
as a benchmark because HCIU and TIA both condense dis-
tributed surface basin information (i.e., LULC and the topo-
graphic structure and LULC only, respectively) into a lumped
urbanization metric, making their comparison conceptually
straightforward. On the other hand, EIA is an indirect esti-
mate of the impacts of urbanization based on retrospective
analyses of concurrent historic flow and precipitation data
for the case-study watersheds (Ebrahimian et al., 2016b). In
preliminary tests, we found much uncertainty in EIA values,
possibly due to the challenges involved in reliably estimating
precipitation depths across basins with varying sizes and, for
the same watershed, across distinct storm events (depending,
e.g., on the areal footprint and location of the storm relative
to basin extent). We also discarded DCIA as its estimation
would require knowing the configuration of the stormwater
sewer network for each case-study basin, which was unfeasi-
ble, as mentioned above.

In the next section, we explain in detail our conceptual
methodology for deriving HCIU. We then test this novel
lumped urbanization metric against TIA as a predictor of
peak flows in regional equations for three case-study regions
with urbanized watersheds described in Sect. 3. We conclude
by showing and discussing the performance of HCIU com-
pared to TIA (in Sects. 4 and 5, respectively), highlighting
strengths and weaknesses of the proposed conceptual frame-
work and outlining possible future research directions.

2 Methodology

Of the many types of connectivity indices proposed in the lit-
erature (see, e.g., Bracken et al., 2013, for a comprehensive
review), we adopt a formulation (Eq. 1) first introduced by
Borselli et al. (2008), which measures the potential hydro-
logic connectivity based on a weighted topographic analysis
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(Bracken et al., 2013). We consider two alternatives for the
weights as a function of either Manning’s surface roughness
coefficient, n (Eq. 2), or the curve number, CN (Eq. 3), of
each basin pixel. Conceptually, both n and CN are distributed
basin properties that consistently vary across LULC types
with different surface runoff dynamics, e.g., due to their dis-
tinct water retention/detention capacity or infiltrability.

Below, we recall established formulations based on
Eq. (1), including recommendations for the weighting fac-
tors. These methods provide a measure of the hydrologic
connectivity at each basin cell, resulting in a connectiv-
ity map for the watershed. We then propose hydrologically
driven criteria to obtain a lumped, hydrologic-connectivity-
based index of urbanization (HCIU) able to summarize the
effects of the spatial arrangement of the varied LULC patches
in a watershed in terms of their distributed impacts on con-
nectivity. Two alternative indices, HCIU(n) and HCIU(CN)
(depending on whether n or CN is chosen as weighting co-
efficient) are derived in this work and tested against the tra-
ditional TIA as explanatory variables in predictive peak-flow
equations.

2.1 Connectivity-index formulations

Borselli et al. (2008) proposed a widely used GIS-based in-
dex of connectivity to assess sediment erosion and transport,
which was then modified by Cavalli et al. (2013), Persichillo
et al. (2018), Zanandrea et al. (2019), Hooke et al. (2021),
and Husic and Michalek (2022), among others, to focus on
other basin dynamics, such as runoff generation or land-
slide occurrence. In general, irrespective of the formulation,
computing the index of connectivity requires assigning a
flow direction (by either the D8 or the D-Infinity algorithm;
Hooke et al., 2021) and slope value, S, to each basin cell,
from the DEM, as well as a weighting coefficient, W , that
varies across formulations depending on some additional hy-
drologic properties of interest (e.g., potential for erosion or
runoff generation).

The index of connectivity (ICk) is estimated for each raster
cell k of the basin hillslope component (i.e., excluding cells
corresponding to the stream network) as the logarithm of the
ratio of the upslope (Dup,k) and downslope (Ddn,k; Fig. 1a)
components, as shown in Eq. (1) (Hooke et al., 2021).

ICk = log10

(
Dup,k

Ddn,k

)
= log10

(
W k Sk

√
Ak∑nk

i=k
di

Wi Si

)
(1)

The upslope component, Dup,k , relates to cell k’s upstream
area (determined from the flow direction raster) and is pro-
portional to its length scale,

√
Ak (whereAk is the area drain-

ing to cell k); its average slope, Sk; and its average weighting
coefficient, W k . On the other hand, the downslope compo-
nent, Ddn,k , accounts for the effects along the topographi-
cally determined flow path between cell k and the stream net-
work, obtained as the summation of runoff travel distances di

(weighted by their respective coefficient, Wi , and slope, Si)
across cells k, . . . , i, . . . , nk , moving from cell k down to the
pour point where the runoff pathway eventually meets the
stream network.

In the literature, the cell weighting factor, W , depends on
the type of analysis. Some examples include (1) the RUSLE
C factor (Renard et al., 1997), i.e., a measure of the potential
for erosion, adopted in sediment transport studies (Borselli et
al., 2008); (2) measures of topographic roughness, often used
for morphologic characterization (Cavalli and Marchi, 2008)
or landslide risk assessment (Husic and Michalek, 2022); and
(3) quantifications of the hydrologic characteristics of differ-
ent LULC types, typically expressed as a function of Man-
ning’s surface roughness coefficient, n, to study, e.g., anthro-
pogenic effects on landscape and sediment transport changes
(Persichillo et al., 2018), landslide occurrence (Zanandrea et
al., 2019), or runoff generation (Hooke et al., 2021).

In general, independently of the choice of W , the in-
dex of connectivity, ICk (Eq. 1), is higher for cells with a
larger and/or steeper contributing area, reflecting that such
conditions are associated with the generation of potentially
larger runoff volumes that can concentrate faster at cell k.
Indeed, Dup,k shows some similarity with the well-known
topographic wetness index (TWI; Beven and Kirkby, 1979;
Riihimäki et al., 2021), often regarded as a proxy for soil
moisture (Riihimäki et al., 2021); both are proportional to the
size of the upstream contributing area, but TWI only consid-
ers the local (at-the-cell) slope instead of the average slope of
the area draining to the cell. In turn, longer travel distances
to the stream network and runoff paths with milder slopes
both increase the value of the downslope component, Ddn,k
(in the denominator of ICk), resulting in reduced connectiv-
ity values, to reflect the lower potential of distant (upstream)
hillslope locations to readily contribute the upland runoff (or
sediment) to the stream network.

2.2 Recommended weighting coefficients for deriving
HCIU

Among the options discussed above, when deriving HCIU,
we recommend choosing W values that primarily depend on
the LULC type of each basin cell, considering both devel-
oped (urbanized) and more natural (e.g., barren, cropland,
and forested) categories, possibly differentiating across dis-
tinct intensities of land development and dominant vegeta-
tion types for the developed and vegetated categories, respec-
tively. In this way, the effects of pixels with different sur-
face characteristics can be differentially weighted depending
on their potentials for either generating and quickly trans-
mitting surface runoff (e.g., in the case of developed cells)
or retaining, detaining, or infiltrating water (e.g., in the case
of cells with vegetated land cover), depending on the dis-
tinct hydrologic dynamics associated with different LULC
types. In turn, this incorporates sensitivity to the presence and
spatial arrangement of the wide spectrum of LULC patches,
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Figure 1. Methodological steps for obtaining the hydrologic-connectivity-based index of urbanization (HCIU): (a) scheme for calculating
Borselli et al.’s (2008) connectivity index at generic cell k; (b) create a virtual, totally impervious copy of the basin, with the same shape,
topography, and stream network, but different LULC, i.e., fully developed at all cells; (c) separately calculate the raster maps of connectivity
for both the actual basin and its totally impervious copy; (d) calculate the raster map of normalized connectivity for the basin by dividing,
on a cell-by-cell basis, the connectivity of the actual basin by the connectivity of the totally impervious copy; (e) assign a weight wk to each
basin cell k depending on its distance to the outlet, as measured along the stream network, starting from the cell’s pour point; (f) calculate
HCIU as the weighted average of the normalized connectivities at each basin cell.

from natural to fully developed. Specifically, land develop-
ment will locally increase connectivity at those locations that
receive runoff water from urbanized pixels upstream as well
as those sectors that contribute runoff volumes to the stream
network through impervious water pathways, proportionally
to the intensity of land development; in a similar way, cells
with more natural LULC types, characterized by a lower
range for the weights (i.e., reflecting higher capacity for in-
terception, detention, retention, infiltration, or some other
runoff-mitigation mechanism), will locally decrease connec-
tivity.

A candidate LULC-sensitive expression for the weighting
coefficient W is the n-dependent function given by Eq. (2)
(Persichillo et al., 2018; Zanandrea et al., 2019; Hooke et al.,
2021), which assigns larger weights to urbanized cells, with
small roughness coefficients, compared to vegetated (undis-
turbed) cells, which typically display greater roughness (Liu
and De Smedt, 2004; Hooke et al., 2021).

W(n)= 1− n (2)

Another candidate could be a weighting specified as a func-
tion of the curve number (CN; Rallison, 1980), which ac-
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counts for LULC and soil characteristics with synergistic ef-
fects on surface runoff dynamics. In this work, we propose
the expression W (CN) given by Eq. (3).

W(CN)= CN/100 (3)

In what follows, we assess both weighting approaches
(i.e., based on either n or CN) for deriving a hydrologic-
connectivity-based index of urbanization, indicating the re-
sulting metrics as either HCIU(n) or HCIU(CN), respec-
tively. A table of Manning’s surface roughness coefficients
associated with different LULC types, adapted from Hooke
et al. (2021) and Liu and De Smedt (2004), is reported in Ap-
pendix B. Similarly, CN values adapted from Wu et al. (2024)
are tabulated in Appendix C for different combinations of
LULC types and hydrologic soil groups (HSGs; Rallison,
1980; Ross et al., 2018).

2.3 From distributed connectivity to a lumped
hydrologic-connectivity-based index of
urbanization HCIU

We seek to obtain a meaningful, lumped basin urbaniza-
tion metric that conceptually encapsulates the impacts of
the spatial arrangement of land development and other land-
use/land-cover types into a single number, starting from a
basin’s connectivity map. To achieve this, we propose to first
determine a relative measure of the effects of urbanization
on the connectivity at each basin cell by normalizing with
respect to a benchmark. This is done by computing the ratio
between the connectivity of each cell in the actual basin and
the connectivity at the same cell but for a virtual, totally de-
veloped copy of the watershed (see Fig. 1b and c), with the
same shape, relief, and stream network but fully urbanized
conditions. It is clear that connectivity in this virtual, “fully
paved” basin takes the highest possible value at each cell for
a given watershed’s shape, topography, and stream network.
To normalize consistently positive quantities, we suggest a
change to the traditional connectivity given by Eq. (1) by
computing the hydrologic connectivity index HCIk of cell k
simply as the ratio of the upslope over the downslope compo-
nent (Eq. 4), without considering the logarithmic transform
so that connectivity is always positive. HCIk differs from the
traditional ICk (Eq. 1) only in the scale and sign but main-
tains all other properties of the original formulation, includ-
ing the sensitivity to topographic characteristics and to the
spatial arrangement of patches with different LULC types.

HCIk =
Dup,k

Ddn,k
=
W kSk

√
Ak∑nk

i=k
di
WiSi

(4)

The imposed change in land cover in the totally devel-
oped benchmark basin involves forcing a Manning rough-
ness value n of 0.02 (or a CN value of 99) and a consequent
W(n) of 0.98 (or 0.99 in the case of W (CN)), at each hills-
lope cell. To distinguish the weighting coefficients of actual

basin cells from the corresponding ones in its virtual, fully
developed copy, we indicate the latter as Wimp in what fol-
lows (for impervious). The resulting connectivity map for the
totally impervious basin (Fig. 1c) is a benchmark for the lo-
calized effects of the varied land-use/land-cover characteris-
tics in the actual basin. The connectivity values for the totally
developed watershed represent a theoretical upper limit for
the level of connectivity that could be achieved at each pixel
in the study watershed for its given fixed shape, topography,
and stream network. Using the proposed, non-negative for-
mulation of the connectivity index given by Eq. (4) ensures
that the normalization is operated on non-negative values, so
that the resulting normalized variable is in the interval (0, 1].
Equation (5) provides the expression of the normalized con-
nectivity index, ˆHCIk , for a reference cell k (see also Fig. 1d).

ˆHCIk =
HCIk

HCIimp,k
=

W k

W k,imp
·

∑nk
i=k

di
Wi,impSi∑nk

i=k
di
WiSi

=
W k

Wimp
·

1
Wimp

∑nk
i=k

di
Si∑nk

i=k
di

Wi Si

(5)

In Eq. (5), W k,imp and Wi,imp both refer to the totally imper-
vious benchmark basin, indicating the mean weighting coef-
ficient of the drainage area upstream of cell k, and the co-
efficient of the generic cell i downstream of k, respectively.
Since all upstream cells will have a constant coefficient value
Wimp in the impervious basin, W k,imp is equal to Wimp for
any k. Similarly, Wi,imp =Wimp for any i.

The normalized connectivity index, ˆHCIk , in Eq. (5) is
equal to the product of the ratio of the average weighting co-
efficients from the upslope components, W k/Wimp, and the
ratio of the weighted distances of reference cell k to its pour
point along the stream network, 1

Wimp

∑nk
i=k

di
Si
/
∑nk
i=k

di
WiSi

,
measured in the totally impervious and the actual basin, re-
spectively. For both factors, the numerator is always smaller
than or equal to the denominator. In what follows, to empha-
size the distinction between HCIk and ˆHCIk whenever these
two are compared, we refer to the former as absolute con-
nectivity instead of simply as connectivity, while the latter is
termed normalized connectivity.

With the normalized connectivity map of a watershed, we
can derive HCIU for the basin as a weighted average of the
normalized connectivity indices at each pixel. We consider
a weighted average instead of a straightforward arithmetic
mean because there is still one aspect that the connectivity
index does not account for by construction, i.e., the distance
of each cell’s pour point to the basin’s outlet. As shown in
Fig. 1a, the at-a-cell connectivity index considers the flow
path from each cell k to its pour point along the stream net-
work. However, different pour points along the network are
located at varying distances from the basin outlet; hence, hill-
slope cells with similar levels of connectivity (e.g., because
they have comparable drainage areas and characteristics and
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are located at similar distances from some segment of the
stream network) but at different locations with respect to the
basin’s main channel and its outlet will display strong vari-
ability in their potential for quickly contributing runoff to the
outlet because of the different timing. To account for these
differences, we consider, for each hillslope cell k, its cor-
responding along-the-stream-network distance, dSN,k , to the
outlet, measured starting from the pour point, SNk , of cell k
(see Fig. 1e). We then assign a weight, wk , to each hillslope
cell k in a way such that pixels whose pour point is closer to
the outlet receive a larger weight than those which are further
away from it. In this work, we propose the weighting func-
tion fw,HCIU

(
dSN,k

)
given by Eq. (6), which assigns weights

in the interval [0.5, 1]. Those basin cells pouring at stream lo-
cations with the minimum distance dmin to the outlet receive
a weight of 1, while cells that drain to stream locations at the
maximum distance dmax to the outlet get a weight of 0.5. All
other basin cells with distances dSN,k between dmin and dmax
receive intermediate weights that vary linearly with dSN,k in
the interval (0.5, 1). It is worth noting that dmax varies across
basins, while dmin, the distance between that channel pixel
adjacent to the outlet and the outlet, is clearly equal to 1 pixel
for any basin.

wk = fw,HCIU
(
dSN,k

)
= 1− 0.5

dSN,k − dmin

dmax− dmin
(6)

In Eq. (6), the weight assigned to the generic cell k is in-
dicated as wk . Once a weight is assigned to each cell, de-
pending on its along-the-stream-network distance, dSN,k , to
the outlet, the lumped hydrologic-connectivity-based index
of urbanization (HCIU) is obtained as the weighted average
of the normalized connectivity indices of each basin cell us-
ing Eq. (7), where the normalized connectivity of the generic
cell k is indicated as ˆHCIk (see also Fig. 1f).

HCIU=
∑
kwk

ˆHCIk∑
kwk

(7)

In summary, the proposed methodology provides a lumped
metric (HCIU) that is able to conceptually capture the var-
ied hydrologic effects arising from the spatial arrangement
of different LULC patches, both natural and developed, de-
pending on their relative location with respect to each other,
the stream network, and the basin outlet. First, hillslope-to-
stream connectivities, weighted depending on the hydrologic
effects of distinct LULC types, are normalized with respect
to a fully impervious benchmark (Fig. 1a, b, c, and d), which
allows for the comparison between the effects of heteroge-
neous levels of urbanization both across and within basins.
Then, HCIU is obtained as a weighted average of normalized
connectivities across the entire watershed, assigning differ-
ent weights to each pixel depending on the along-the-stream-
network distance of that cell’s pour point to the basin outlet
(Fig. 1e and f).

The proposed two-step formulation – where the flow paths
of hillslope cells to the pour points along the stream network

and then the distances of those pour points to the basin out-
let are considered separately – is different from other estab-
lished, outlet-focused applications of the connectivity index,
such as the IC_outlet distributed metric proposed by Cav-
alli et al. (2013). The latter is calculated following Borselli
et al. (2008; with some adaptations to the weighting coeffi-
cient and the flow direction algorithm) but considering flow
paths all the way to the outlet (hence considering both over-
land flows and subsequent channelized flows within the same
path) instead of flow paths to the closest stream link, fol-
lowing only hillslope surfaces. The two main components
of a basin’s hydrologic response, i.e., overland and chan-
nel flow, generally involve quite different temporal scales
because of the different orders of magnitude in roughness
and water depths. The IC_outlet metric is able to capture
these differences as IC_outlet raster maps typically exhibit
the highest connectivity values along the watershed stream
network (comparable only to connectivities in the hillslope
sectors closest to the outlet), followed by connectivities in
zero-order valleys or hollows adjacent to channels (Cavalli
et al., 2013). On the other hand, the focus of our methodol-
ogy is on the hydrologic effects of land development, which
mostly influences the surface and near-surface components
of the basin response by locally decreasing infiltration and
increasing runoff speeds. Considering only the hillslope-to-
stream connectivity in our first step allows us to enhance the
method’s sensitivity to the effects of land development on hy-
drologic response by focusing on how runoff interacts with
the distinct LULC patches encountered along the hillslope
path, which control (i.e., enhance or mitigate) the connectiv-
ity. Once runoff reaches the stream network the effects of
travel distance along the stream network must still be ac-
counted for, but this is performed in the separate, second step,
considering a narrower range for the weights. This ensures
that HCIU displays adequate sensitivity to urbanized sectors
that are adjacent to the stream network, but at reaches located
far upstream of the outlet.

Breaking down the calculations for HCIU in two parts
(the hillslope-to-stream and then stream-to-outlet flow paths)
also presents a practical advantage, particularly for large-
scale implementation of the index. To ensure broad appli-
cability of the proposed methodology, we need to be able to
quickly compute HCIU for any basin (in a region, country,
province, state, etc.) as selected by the final user. If we were
to use a cell-to-outlet scheme, such as the IC_outlet metric,
we would need to recompute everything from scratch every
time a user chooses a different basin (i.e., a different outlet
location along the stream network). Splitting the computa-
tions from cell to pour point and then pour point to outlet of-
fers the opportunity to precompute “static” raster maps (i.e.,
independent of outlet location) of connectivity and normal-
ized connectivity for all the pixels over large areas. In this
way, later, when a user selects a specific outlet location, the
final computation of HCIU only involves the much quicker
weighted averaging of the precomputed, at-a-cell, normal-
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ized connectivities, only considering those cells within the
selected basin and their along-the-stream-network distances
to its outlet.

3 Data and case studies for testing HCIU

3.1 Hydrologically homogenous regions

To test the proposed connectivity-based urbanization index
HCIU against the traditional TIA fraction as a predictive
variable in regional peak-flow equations, we considered three
distinct hydrologically homogeneous regions, as determined
by the U.S. Geological Survey (Southard, 2010; Austin,
2014; Feaster et al., 2014; see Fig. 2). One homogenous re-
gion encompasses all major metropolitan areas in Missouri
(MO) and surroundings, including 34 urbanized watersheds
(Southard, 2010). The second involves urban centers in Vir-
ginia (VA), with a total of 112 developed basins (Austin,
2014). The third homogenous region (Feaster et al., 2014)
is the largest, spanning parts of three states – Georgia and
North and South Carolina; it includes 79 urbanized water-
sheds, encompassing the Piedmont and part of the Ridge and
Valley ecoregions defined by the US Environmental Protec-
tion Agency (USEPA), resulting in a long band of land, mov-
ing from Georgia to North Carolina, with consistent flood
frequency characteristics (Feaster et al., 2014). For brevity,
in what follows, we refer to this third homogeneous region
as EPA ecoregion (or EPAE). The VA and EPAE case studies
only include basins with at least 10 % of TIA (Austin, 2014;
Feaster et al., 2014), while the MO study considers a lower
threshold, with all basins above 5 % TIA except for one with
only 2.33 % (Southard, 2010). TIA values for all case-study
basins are reported in Appendix A.

For each basin in their case-study regions,
Southard (2010), Austin (2014), and Feaster et al. (2014)
extracted annual maxima series from instantaneous dis-
charge records (typically with 15 min or hourly temporal
resolution) and performed flood frequency analyses to
estimate peak-flow values for a range of return periods (see
Appendix A) following the US national guidelines provided
in Bulletin 17B (Interagency Advisory Committee on Water
Data, 1982). Southard (2010) and Austin (2014) obtained
the fraction of TIA from the National Land Cover Database
(NLCD) 2001 (Homer et al., 2020) for the MO and VA
case studies, respectively. On the other hand, for the EPA
ecoregion, Feaster et al. (2014) considered the 2006 version.

Figure 2. Case-study regions (basin locations are reported in Ap-
pendix E; map created with ArcGIS Pro; ESRI, 2024).

Regional peak-flow equations proposed for these regions
all include basin area, A, and the percentage of TIA (simply
referred to as TIA in what follows) as explanatory variables
for predicting the magnitude QT of the flood with return pe-
riod T . Southard (2010) and Feaster et al. (2014) adopted the
functional form given by Eq. (8), with TIA as the generic
urbanization metric U , while Austin (2014) considered a dif-
ferent form, where the peak flow per unit area (QT /A) is
modeled as a function of A and TIA. For convenience and
consistency, in this work, we systematically consider the sim-
ple linear model given by Eq. (8) to test the predictive power
of the hydrologic-connectivity-based index of urbanization
(HCIU) against the traditional TIA. We alternatively use TIA
or HCIU as the generic urbanization metric U in Eq. (8),
each time fitting the regression model on A–TIA–QT and
A–HCIU–QT data, respectively. The explanatory power of
these competing variables would change if we considered
other functional dependencies, but from a qualitative stand-
point, the superiority of one variable over the other to explain
peak flows should not be affected by this change.

logQT = β0+β1 logA+β2U. (8)

Figure 3 plots all the A–TIA pairs for the three case stud-
ies, considering basin areas in logarithmic scale. The datasets
span 4 orders of magnitude of basin sizes and a wide range
of land-development conditions. A table with all the basins
considered in the different case-study regions, and related in-
formation, is provided in Appendix A.
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Figure 3. Case-study basins from the EPAE, MO, and VA homo-
geneous regions, characterized by their area (A) and percentage of
total impervious area (TIA). Areas are plotted in logarithmic scale.

3.2 DEM, LULC, and HSG data

For consistency in the comparisons across the different case
studies, we used the same DEM and LULC data across all
homogenous regions. Because of its fine resolution and thor-
ough coverage across the US territory, we selected the 1/3rd
arcsecond DEMs by the USGS (U.S. Geological Survey,
2023), while for LULC, we adopted the same NLCD maps
(Homer et al., 2020) as in the original studies to obtain TIA,
thus using the 2001 version for the MO (Southard, 2010) and
VA (Austin, 2014) case studies and the 2006 version for the
EPAE case study (Feaster et al., 2014). The original NLCD
maps do not distinguish between needleleaf and broadleaf
dominant species within the forest categories even though
these two types of tree cover have very different runoff re-
tention capabilities and should thus be modeled using dif-
ferent Manning roughness coefficients (Liu and De Smedt,
2004). This information was obtained from the global, 300 m
resolution LULC maps produced by the European Space
Agency (ESA, 2017) by overlapping information from the
two sources. Making this distinction results in the expan-
sion of the two original NLCD forested LULC categories ev-
ergreen and deciduous into four classes: deciduous needle-
leaf, deciduous broadleaf, evergreen needleleaf, and ever-
green broadleaf forest. To generate the curve-number-based
urbanization metric, HCIU(CN), for our case studies, we
also needed information about the hydrologic soil group for
each basin cell, for which we considered the HYSOGs250m
global dataset (Ross et al., 2018), providing worldwide HSGs
on a 250 m grid.

Information from the DEM, (expanded) LULC, and HSG
maps was extracted for each case-study basin using the wa-
tershed boundaries obtained from the USGS data reposi-
tory by Krstolic (2006) for the VA case study and from
the StreamStats web application developed and maintained
by the USGS (U.S. Geological Survey, 2019), for the MO
and EPAE case studies. Then, LULC types and LULC–
HSG pairs at each basin pixel were mapped into values
of Manning’s roughness coefficient, n, and curve number,
CN, respectively, following the tables given in Appendices B
(adapted from Liu and De Smedt, 2004; Hooke et al., 2021)
and C (adapted from Wu et al., 2024), respectively.

For each basin, the stream network was obtained from the
flow accumulation raster (using the D8 algorithm) by setting
a minimum threshold for the number of upstream cells. In-
stead of following the traditional procedure of considering a
constant threshold for the whole basin (Tarboton and Ames,
2001), we locally selected the threshold for each headwater
to closely match its location as per the National Land Cover
Database Plus High Resolution (NHDPlus HR; Moore et al.,
2019), outlining a digital stream network as similar as pos-
sible to the official blue lines provided in that dataset. We
found this approach a preferable alternative to DEM-burning
procedures that would enforce the NHDPlus stream network
onto the DEM by locally lowering the elevations and intro-
ducing preferential flow directions (Getirana et al., 2009) be-
cause our method is better at preserving the actual connectiv-
ity patterns between the hillslope component and the stream
network. DEM-burning algorithms, on the other hand, could
have led to issues such as the occurrence of parallel streams
arising from the non-alignment of the original DEM channels
and the corresponding network links coming from an exter-
nal source (Lindsay, 2016), with the consequent risk of dif-
fused runoff pathway disruptions or alterations before reach-
ing the stream.

Figure 4 shows the frequency distribution of the Manning
surface roughness coefficient, n (Fig. 4a, b, and c); the CN
(Fig. 4d, e, and f); and the slope (Fig. 4g, h, and i), ob-
served at both pixel and basin scales (considering basin av-
erages in the latter case), for the three case-study regions.
Based on the functional dependency of HCIk outlined by
Eq. (4), the connectivity-based urbanization index HCIU, in
its two versions HCIU(n) and HCIU(CN), is expected to dis-
play sensitivity to those distributed basin characteristics. We
note that the VA case study presents a wider spectrum of
n values (Fig. 4c) compared to the other two (Fig. 4a and
b), which is imputable to differences in the vegetated areas,
with VA being more dominated by the presence of broadleaf
tree species, both deciduous and evergreen. While VA also
presents a higher frequency of low-CN-value pixels (Fig. 4f),
compared to the other two case studies (Fig. 4d and e), the
difference in the spread of CN values is not as noticeable as
is the case with n. This is because, in contrast to our n values,
the CN for different combinations of LULC types and hydro-
logic soil groups do not weigh broadleaf and needleleaf tree
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vegetated areas differently (Wu et al., 2024). The VA case
study also differs from the other two in its relief character-
istics, with a wider range of point and basin-averaged slopes
(Fig. 4i compared with Fig. 4g and h), associated with basins
from the Appalachian region.

Figure 4 also illustrates the mix of developed LULC types
in the basins by showing the distributions (box plots) of the
extents of the four developed NLCD categories in each wa-
tershed for the three homogenous regions (Fig. 4j, k, and l, re-
spectively). Those categories include developed, open space;
developed, low intensity; developed, medium intensity; and
developed, high intensity, associated with ranges of imper-
vious area of less than 20 %, 20 %–49 %, 50 %–79 %, and
80 % or more, respectively. For each watershed, Fig. 4 pro-
vides developed LULC extents as percentages of the number
of basin pixels with a given developed LULC category (say,
low intensity) with respect to the total number of developed
LULC cells in that watershed (i.e., the sum of the numbers
of developed, open-space; low-intensity; medium-intensity;
and high-intensity cells).

The four urbanized LULC categories are associated with
distinct levels of imperviousness. For instance, open space is
the least developed LULC category, with each pixel having
less than 20 % impervious area (IA), while highly urbanized
cells, with impervious areas from 80 % to 100 %, fall in the
high-intensity category. Because of these differences, mod-
erately developed areas contribute less to the overall TIA
of a basin compared to highly impervious ones. In other
words, larger areas of developed, open-space and developed,
low-intensity patches are needed compared to developed,
medium-intensity and developed, high-intensity ones, to con-
tribute the same proportion of TIA in a watershed.

It is evident from Fig. 4j, k, and l that each region has its
own characteristic mix of basin urbanized areas, even though
there is a clear dominance of moderately developed LULC
categories (i.e., open-space and low-intensity) over the more
urbanized types, across all the case studies. VA (Fig. 4l) is
the region with the smallest relative extents of highly ur-
banized areas (with respect to the total extent of land de-
velopment), with most basins having less than 10 % high-
intensity pixels (i.e., with IA between 80 % and 100 %) and
wider (relative) extents of open-space areas (i.e., with IA less
than 20 %) compared to basins from the other two case stud-
ies (Fig. 4j and k). MO, on the other hand (Fig. 4k), con-
tains many watersheds with more concentrated urbanized ar-
eas, as indicated by the higher proportion of both medium-
and high-intensity areas and low-urbanization environments
more dominated by low-intensity (i.e., with IA between 20 %
and 50 %) than open-space areas (i.e., with IA below 20 %).
The EPAE region (Fig. 4j) displays intermediate conditions
between those observed for VA (Fig. 4l) and MO (Fig. 4k),
in terms of both the more urbanized (i.e., medium- and high-
intensity) and the less urbanized LULC (i.e., open-space and
low-intensity) categories.

4 Results

4.1 Interpretation of the intermediate raster data
products

To get a qualitative understanding of how the new
connectivity-based urbanization index works and examine
differences between the n-based and CN-based formula-
tions, Fig. 5 shows the intermediate raster products gener-
ated by applying the proposed methodology at one of the
MO watersheds. Basin 06894000 (Fig. 5a) is characterized
by quite a heterogeneous mosaic of land-cover patches, with
many parks and forested areas as well as neighborhoods
and parking lots. A zoom on a portion of the basin, in the
circular window in Fig. 5a (obtained from OpenStreetMap;
OpenStreetMap contributors, 2015), offers a more detailed
glimpse into the variety of urbanized and vegetated areas.

Figure 5c and e show the HCI raster maps for basin
06894000, obtained from the n- and CN-based formulations,
respectively. The pairs of circular windows in Fig. 5c and
e both depict the same enlarged portion of absolute con-
nectivity maps obtained for the actual basin (HCI) and the
totally developed virtual copy (HCIimp), respectively. In all
cases, absolute connectivity increases for cells located closer
to the stream network. Slope also controls both formulations
of HCI, with higher gradients of absolute connectivity ob-
served in steeper valleys compared to flatter riverine zones
(see Fig. 5b). This is clear when looking at the floodplain for
the basin’s main channel (the darker buffer area around the
main channel in Fig. 5b), which is characterized by lower
absolute connectivities than many of the riverine zones of its
tributaries, with steeper slopes.

The raster maps of normalized connectivity ˆHCI (Fig. 5d
and f), on the other hand, display low sensitivity to topo-
graphic gradients, as there is no correlation with local spa-
tial patterns in slopes (Fig. 5b). For instance, the floodplain
of the main channel displays higher normalized connectiv-
ity ( ˆHCI(n)) than many of the tributary valleys even though
the latter show higher absolute connectivity (HCI(n); com-
pare Fig. 5c and d). This is because the n-based normalized
connectivity is most sensitive to differences in land-cover, as
captured byW(n) (see also Eq. 5). This is easy to notice from
the ˆHCI(n) raster (Fig. 5d), where cells with lower normal-
ized connectivities coarsely correspond to green patches in
the map of Fig. 5a, while cells with high values of ˆHCI(n)
are typically associated with developed areas of the basin.

While spatial patterns in ˆHCI(n) are easy to interpret ret-
rospectively because n only reflects differences in land-cover
types, spatial patterns in ˆHCI(CN) (Fig. 5f) correlate less
with the spatial arrangement of land-cover types. This is
expected as W (CN) reflects differences in not only LULC
types, but also hydrologic soil groups. Depending on the spe-
cific soil group, some pervious cells with lower soil infiltra-
bility can get CN values as high as those of urbanized cells
(Wu et al., 2024), which may result in similar normalized
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Figure 4. Frequency distribution of the Manning surface roughness coefficient, n (a, b, c); curve number, CN (d, e, f); and slope, S (g, h, i),
for the three case studies as observed at each basin pixel across all watersheds (filled bars) and as basin averages (empty bars). (j, k, l) Mix
of the four NLCD developed LULC types (associated with different extents of impervious area, IA) for all basins in the three case studies,
respectively, expressed as percentages of the total extent of developed areas.
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Figure 5. (a) Basin 06894000 (MO); (b) raster map of slope, S; (c) raster map of the absolute hydrologic connectivity index, HCI(n),
obtained as a function of the Manning roughness coefficient, (n); (d) raster map of the normalized connectivity index, ˆHCI(n), obtained as
a function of the Manning roughness coefficient (n); (e) raster map of the absolute hydrologic connectivity index, HCI(CN), obtained as a
function of the curve number (CN); (f) raster map of the normalized connectivity index, ˆHCI(CN), obtained as a function of the curve number
(CN). Background map in panel (a) was retrieved from OpenStreetMap (OpenStreetMap contributors, 2015). © OpenStreetMap contributors
2015. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.
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connectivity values for some of the pervious patches com-
pared to impervious sectors.

In summary, the two types of normalized connectiv-
ity raster maps, ˆHCI(n) and ˆHCI(CN) (Fig. 5d and f, re-
spectively), may look very different from each other even
though the absolute connectivity maps, HCI(n) and HCI(CN)
(Fig. 5c and e, respectively), present similar spatial patterns.
This is because local topography and the proximity to the
stream network are both strong controls for the absolute con-
nectivity but not necessarily so for the normalized connectiv-
ity.

4.2 Conceptual differences between HCIU and TIA

The new proposed urbanization metric expresses the relative
degree of hydrologic connectivity – with respect to the fully
developed benchmark – that arises from the spatial arrange-
ment of the spectrum of developed and undisturbed LULC
patches present in a basin, with different hydrologic char-
acteristics, contingent upon the topographic structure of the
hillslopes and stream network. As such, it is expected to in-
dex the effects of land development differently compared to
TIA, which is simply the proportion of impervious surfaces.
This means that different basins with similar percentages of
TIA will display variability in their associated HCIU values
because of the heterogeneous effects on connectivity (as cap-
tured byW ) of distinct spatial arrangements of the urban sec-
tors (with different land-development intensities) and the un-
developed patches in the watershed. Figure 6 shows, in two
separate subplots (a and b), the variability in HCIU obtained
for our case studies for various levels of TIA, considering
HCIU(n) and HCIU(CN), respectively. We include example
basins with distinct spatial arrangements of natural and de-
veloped areas (Fig. 6c to i) to clearly illustrate the sensitivity
of HCIU to LULC configurations. For the sake of simplicity,
for this visualization, we adopt a simplified, four-category
LULC classification: highly impervious, moderately imper-
vious, moderately pervious, and highly pervious. We label
developed pixels with impervious areas equal to or above
50 % (i.e., the NLCD medium and high-intensity classes) as
highly impervious, while those with imperviousness below
50 % (i.e., the NLCD open-space and low-intensity classes)
are classified as moderately impervious. On the other hand,
the moderately pervious category encompasses those unde-
veloped cells with moderate values of Manning’s coefficient,
n, equal to or below 0.3 (see Appendix B), such as herba-
ceous, hay/pasture, and barren land LULC, while the highly
pervious category covers the remaining undeveloped LULC
types, including forested and other densely vegetated areas.

In general, a wide range of HCIU values is associated with
any given TIA across all case studies; this is expected since
similar relative extents of impervious areas can have different
effects on hydrologic connectivity depending on their spa-
tial arrangement with respect to each other and also with re-
spect to the less developed and undeveloped patches (Fig. 6a

and b). However, we also note general positive trends, both
within and across all the case studies considered, suggesting
that basins with an increasingly larger TIA are characterized
by overall higher HCIU values, as should also be expected.

Figure 6a and b also show that HCIU(n) and HCIU(CN)
have different ranges of variability. Both have a lower bound
greater than 0; this is intrinsic to the formulation of HCIU
itself as a (weighted) average of the relative degree of con-
nectivity of the watershed. The absolute connectivity of a
basin with totally pervious land-cover type, which can be re-
garded as a lower-bound yet realistic scenario, is small (or
very small) compared to the connectivity of the correspond-
ing totally impervious virtual basin, but it is not zero. There-
fore, the fact that HCIU’s lower bound is greater than zero
comes from physical (or at least conceptual) considerations,
depending on the range of variability in the weighting coeffi-
cient, W , i.e., specifically on its minimum value (see Eq. 5).
Since HCIU(n) and HCIU(CN) use different weighting coef-
ficients, W(n) and W (CN), with different lower limits, their
lower bounds will differ.

Figure 6a and b display another interesting characteristic
of HCIU, i.e., its sensitivity to the heterogeneity in the un-
developed LULC types in a basin. Compared to the other
two case studies, VA watersheds have overall smaller HCIU
values for similar levels of TIA. This is because VA basins
are characterized by pervious land-cover types with gener-
ally greater flood-mitigating capabilities (larger n values and
smaller CN values), as indicated by the wider spread of Man-
ning’s coefficients in the range of small values (Fig. 4c), as
well as the stronger positive skewness in the frequency distri-
bution of CN values (Fig. 4f) compared to the other two case
studies (Fig. 4a–b, and d–e, respectively). As a result, VA
basins have lower HCIU values compared to those from the
MO and EPAE case studies with similar relative extents of
developed areas because the pervious fraction in VA basins
is more effective in reducing the hydrologic connectivity of
the urbanized patches. This effect is more evident with the
n-based formulation for HCIU, where a clear separation also
exists for the smallest TIA values. This is modulated by the
diverse ways in which the effects on hydrologic connectiv-
ity of distinct undeveloped LULC types are differentially
weighted by W(n) and W (CN).

Distinct spatial arrangements of pervious and impervious
patches (see examples in Fig. 6c to i) get HCIU(n) and
HCIU(CN) values (Fig. 6a and b, respectively) in agreement
with our expectations, irrespective of the weighting approach
(based on either n or CN). For instance, focusing on water-
sheds with similar TIA levels (around 30 %), basin 01645975
(Fig. 6h), with predominant highly pervious land cover and
most urbanized areas concentrated in a limited area far up-
stream of its outlet, has significantly lower HCIU values
(on both the HCIU(n) and HCIU(CN) scales) than basins
01657000 (Fig. 6f) and 02203800 (Fig. 6c), both of which
display spatial arrangements of impervious areas that would
be expected to cause stronger hydrologic effects.
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Figure 6. Case-study basins from the EPAE, MO, and VA homogenous regions in the TIA–HCIU plane, considering (a) HCIU(n) and
(b) HCIU(CN), respectively. Seven specific basins (c–i) are used as examples to visualize the sensitivity of HCIU to different spatial ar-
rangements of LULC patches even for basins with similar TIA; a simplified, four-category LULC classification is adopted as indicated in the
legend.

Basin 01657000 (Fig. 6f) has a proportion of pervious and
impervious LULC patches similar to basin 01645975 (Fig.
6h), but its urbanized areas (including a considerable extent
of highly impervious patches) are all concentrated down-
stream, where they can contribute impervious runoff more
effectively to the outlet, hence having a stronger impact on
the overall hydrologic connectivity of the watershed. Basin
02203800 (Fig. 6c) shows even worse conditions, with a sig-

nificantly larger proportion of moderately impervious areas
than pervious patches, which impact a wider extent of the
watershed, including areas near its outlet. These LULC con-
ditions, even though they are associated with locally lower
levels of imperviousness compared with highly impervious
but spatially concentrated areas of basin 01657000 (Fig. 6f),
systematically increase distributed connectivity, hence de-
creasing the overall response time of the watershed. Consis-
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tently, basin 02203800 (Fig. 6c) gets higher HCIU(n) and
HCIU(CN) values than basin 01657000 (Fig. 6f).

These comparisons indicate that large developed areas,
even with locally low levels of imperviousness, can have
stronger effects on HCIU compared to highly urbanized
but spatially concentrated patches. Because of this, basins
that get the highest HCIU values are those where devel-
oped patches are dominant and uniformly spread. Basins
07005000 (Fig. 6d) and 01644291 (Fig. 6e), both in the
higher end of the TIA–HCIU plots (Fig. 6a and b), exem-
plify this case, with their surfaces entirely covered by a mix
of moderately and highly impervious land cover and negligi-
ble presence of moderately or highly pervious patches.

The stronger effects of large extents of moderately imper-
vious patches on HCIU, compared with highly urbanized but
concentrated areas, hold true also when comparing water-
sheds with different TIA levels. For instance, basin 02204070
(Fig. 6g) has a TIA of 20 %, lower than the 30 % TIA of
01657000 (Fig. 6f) and 01645975 (Fig. 6h); yet the HCIU
value of the former is higher than the HCIU values of the lat-
ter two for both n- and CN-based formulations. This is, again,
because the spatial arrangement of its impervious patches
covers a wider (although less dense) spatial extent, resulting
in a more widespread increase in connectivity.

The examples above indicate that HCIU displays sensitiv-
ity to the spatial arrangement of the heterogeneous LULC
patches in a watershed irrespective of basin size and shape.
However, HCIU can also capture similarities in these spa-
tial arrangements across basins with different shapes and
sizes. For instance, basins 02203800 (Fig. 6c) and 02336360
(Fig. 6i), with areas of 108 and 70 km2, respectively, both
display a preponderance of moderately impervious LULC
types, with few, more intensely developed patches located
far upstream with respect to the outlet and a finely dispersed
pervious fraction that tends to condense into larger pervious
patches moving towards the outlet. Because of these simi-
larities in the LULC spatial configurations, these two basins
get similar HCIU values, when using both HCIU(n) and
HCIU(CN), despite their differences in size and shape.

Two highly urbanized VA basins, 01644290 and 01644291
(Fig. 6e), have unusually higher HCIU(CN) values compared
to all others (Fig. 6b), because of their peculiar LULC con-
ditions. Both are very small in size (< 0.20 km2) and are al-
most totally characterized by highly impervious LULC (de-
veloped, high-intensity NLCD type). Furthermore, the few,
small undeveloped patches are unable to mitigate the con-
nectivity of the developed areas since they are located far
upstream, close to the water divide (see Fig. 6e for basin
01644291). Both aspects lead to LULC conditions that are
almost identical to those for the virtual, totally impervi-
ous scenario considered for normalizing absolute connectiv-
ity, hence justifying the large HCIU(CN) values for these
two watersheds, which are the highest among all basins and
case studies. These two watersheds are outliers on the set of
HCIU(CN) values for VA (Fig. 6b), while they are the high-

est on the TIA–HCIU(n) plane (Fig. 6a) but still clustered
with other VA basins with high TIA.

4.3 Performance of HCIU in regional peak-flow
equations

We tested the predictive power of HCIU as an alternative to
TIA, to be used as urbanization metric in the development of
regional peak-flow equations for the three case studies. Fig-
ure 7 shows the performance of the regional model (Eq. 8)
fitted to basin area A, HCIU, and a range of flood quantiles
QT (with a return period T of 2, 5, 10, 25, 50, 100, and
500 years; see Appendix A), comparing it to the benchmark
model with the same functional dependency, but with TIA as
the urbanization metric. The adjusted R2 is considered the
error metric.

Our results indicate that not only is HCIU a strong peak-
flow predictor in combination with A, but it also system-
atically outperforms TIA when the n-based formulation is
considered. Improvement is strongest for the EPAE and MO
cases studies, while for VA, where the performance of the
benchmark model (with A and TIA) was already the high-
est among case studies, only a marginal gain is obtained. On
the other hand, the CN-based formulation for HCIU seems to
be overall less robust, with varying behaviors depending on
the specific case study. For the EPAE homogeneous region,
HCIU(CN) outperforms the benchmark (but not its n-based
counterpart) when fitting extreme flood values with return
periods between 10 and 100 years, while it slightly under-
performs for other flood quantiles. On the other hand, for
the MO case study, HCIU(CN) displays a noticeably worse
performance compared to the benchmark, except for the two
largest flood quantiles (Q100 and Q500). VA is the only re-
gion where the CN-based HCIU performs similarly to the n-
based HCIU, systematically outperforming the benchmark,
even though only marginally, as all models perform well.
In the Discussion section we hypothesize about what might
explain the lower performance of HCIU(CN) compared to
HCIU(n).

Figure 7 also shows that, regardless of the urbanization
metric considered, model performance decreases with in-
creasing return period (T ) of the flood quantile. This may be
due to a combination of two aspects. First, for such extreme
events, differences across distinct LULC patches in the basin
become increasingly negligible from a hydrologic perspec-
tive (Ogden et al., 2011) as wetter pervious patches infiltrate
a smaller fraction of precipitation, causing any land-cover
descriptor to lose predictive power. The second reason lies
in the inevitable uncertainties associated with the estimation
of such extreme quantiles from short flow records (Klemeš,
2000), which means that the models are fitted to highly un-
certain data points. Because of these reasons, we suggest that
improvements in prediction accuracy of urbanization metrics
should be only pursued in the range of more frequent floods
(say, below the 100-year return period). A generalized de-
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Figure 7. Comparison of the performance of regional peak-flow equations calibrated on (1) A, TIA, and QT data (i.e., QT ∼ A+TIA
benchmark model); (2) A, HCIU(n), andQT data (QT ∼ A+HCIU(n)model); and (3) A, HCIU(CN), andQT data (QT ∼ A+HCIU(CN)
model) for the (a) EPAE, (b) MO, and (c) VA case studies. Quantile values QT associated with a return period T of 2, 5, 10, 25, 50, 100,
and 500 years are considered (data in Appendix A).

crease in model performance is also observed when mov-
ing from intermediate to smaller quantiles, except for TIA
in VA. This trend may be due to the increasing influence of
the minor drainage system on the hydrologic response dur-
ing smaller events, overshadowing surface runoff dynamics.
However, both TIA and HCIU primarily focus on aspects re-
lated to surface runoff.

The main hydrologic application of regional peak-flow
equations fitted to data from gauged basins is to extrapo-
late the relationships to other, ungauged basins. Therefore,
a more informative way of testing the two competing urban-
ization metrics is to consider a k-fold validation framework,
where the full dataset is split into a training set and a test
set for fitting and evaluating the model, respectively. Follow-
ing an approach similar to Dell’Aira et al. (2022), we pro-
duced a distribution of test errors (shown in Fig. 8) by re-
peatedly fitting the peak-flow equation (Eq. 8) and evaluating
model performance using separate subsets of the full dataset.
For each case study, we alternately considered a 66 % : 33 %,
75 % : 25 %, and 80 % : 20 % proportion for the training- and
test-set sizes, respectively, associated with three, four, and
five alternative training–test subset splits, respectively, in a
way such that all the obtained test sets together span the full
dataset without having duplicate basins. For each of these
proportions, we repeated the k-fold procedure 10 times, con-
sidering 10 different random samplings to populate the folds,
to avoid any potential bias associated with a single sampling.
This procedure resulted in 120 blind assessments of the per-
formance of the peak-flow equations, each time fitted and
tested on different subsets for each case study.

The box plots of errors in Fig. 8 confirm that HCIU(n)
is the more robust urbanization metric for peak-flow regres-
sion equations. For all flood quantiles, HCIU(n) improves

model performance (compared to the QT ∼ A+TIA bench-
mark) both in average terms (as indicated by the systemati-
cally higher medians and the higher location of the box plots)
and with respect to the error spread, which is narrower for all
EPAE (Fig. 8a) and MO (Fig. 8b) quantiles, with the only
exception being Q2 for EPAE (Fig. 8a).

On the other hand, HCIU(CN) exhibits again a more het-
erogeneous performance. In the EPAE case study (Fig. 8a),
the error box plots for QT ∼ A+HCIU(CN) are marginally
better than those for the benchmark QT ∼ A+TIA across
all quantiles except the two smallest (i.e., Q2, and Q5), with
slightly lower distributions of adjustedR2 (in agreement with
what was observed in Fig. 7). A different picture is obtained
for the MO case (Fig. 8b), where HCIU(CN) significantly
underperforms theQT ∼ A+TIA benchmark for most quan-
tiles, indicating that HCIU(CN) is not a robust urbanization
metric for the MO region.

The same box plots for VA, moved to Appendix D since
they do not add any relevant additional information, indi-
cate comparable results as those already observed when test-
ing the new urbanization metric (with both n- and CN-based
weighting approaches) on the full dataset (Fig. 7c). Specifi-
cally, both HCIU(n) and HCIU(CN) lead to improvements in
model performance as their related error box plots are shifted
upward compared to the benchmark.

5 Discussion

Our results indicate that the proposed conceptual frame-
work for deriving hydrologic-connectivity-based urbaniza-
tion metrics does produce lumped basin descriptors that suc-
cessfully encapsulate information about the flood-enhancing
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Figure 8. Box plots of test errors for (1) the benchmark QT ∼ A+TIA, (2) QT ∼ A+HCIU(n), and (3) QT ∼ A+HCIU(CN) models,
when they are fitted and blind-tested on distinct basin subsets, for the (a) EPAE and (b) MO homogenous regions, respectively (see this same
plots for VA in Appendix D). For each box plot, filled bars represent error values between the first and third quartiles, the upper (lower)
whisker extends from the third (first) quartile by adding (subtracting) 1.5 times the interquartile range, and any outliers beyond the whiskers
are marked by circles.

impacts of urban sectors with different land-development in-
tensities (and thus with different imperviousness levels), con-
sidering their spatial arrangement, but is also sensitive to the
spectrum of mitigation effects afforded by undeveloped (per-
vious) patches, depending on their relative location within
the watershed. This is obtained by differentially weighting
the effects of different LULC types through widely used
and accepted conceptual criteria such as Manning’s surface
roughness coefficients and curve number values, hence cap-
turing heterogeneity in the capacity of LULC patches to both
generate and retain/detain runoff.

The resulting numerical value of HCIU for a single wa-
tershed represents a measure of the proportion of hydrologic
connectivity arising from the specific mosaic of land-cover
patches in that watershed relative to the maximum theoreti-

cal connectivity of that basin if its surface were completely
paved. While this definition may not be as straightforward
as that for TIA, which is simply a proportion of impervious
areas, it results in a conceptually more comprehensive and
hydrologically driven representation of the distributed im-
pacts of urbanization on surface runoff dynamics in a lumped
basin descriptor. Like TIA, HCIU can be used to character-
ize and compare different basins to either simply determine
which basin is more impacted by land development or de-
velop regional models. HCIU can also be utilized for plan-
ning to compare the expected hydrologic effects of different
scenarios for land development in a given watershed.

We suggest that HCIU should also increase our explana-
tory power when predicting other event-related variables
such as lag times and times of concentration. HCIU is in-
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deed sensitive to not only the presence and spatial arrange-
ment of LULC patches with different hydrologic characteris-
tics, but also those locations where flows tend to concentrate,
locally decreasing surface runoff travel times, as conceptu-
ally reflected in the upslope component,Dup,k (Eq. 4). HCIU
also considers the distance of these surface runoff hotspots,
where stormwater tends to concentrate and travel faster, to
the stream network, as reflected by the downslope compo-
nent Ddn,k . This in turn determines how easily those loca-
tions with accumulating flows will contribute to the over-
all basin response. Ultimately, HCIU conceptually summa-
rizes in a single number the effects of all potential runoff
travel paths occurring on the basin surface moving towards
the stream, including interactions among converging surface
flow paths, following a hydrologically driven approach. Be-
cause other response variables, such as lag time and time of
concentration, are emergent basin properties arising from the
interactions of all individual travel paths, their correlations
with HCIU or other connectivity-based descriptors should be
investigated in future research. The HCIU approach could
also be further tested against TIA for predicting other hydro-
logic variables that are affected by land development, such
as water-quality indicators. Depending on the specific appli-
cation, it may be necessary to make some adaptations to ac-
count for additional sources of connectivity, induced by, e.g.,
the underground stormwater sewer infrastructure.

In the next subsection, we discuss in more detail the possi-
ble reasons for the poor performance of the CN-based HCIU.
We then highlight advantages and disadvantages of the pro-
posed methodology and point out challenges and possible
future research directions to deploy the connectivity-based
analysis framework to a range of different hydrologic appli-
cations.

5.1 Considerations about the low performance of
HCIU(CN)

As noted in Sect. 4.1, the CN-based formulation of the nor-
malized connectivity index and the resulting HCIU(CN) (ob-
tained as the weighted average of the former) are more com-
plex than the n-based formulation as they attempt to ac-
count for the combined effects of different coexisting land-
use/land-cover and soil types. Because of this, the choice of
the CN-based weighting coefficients and the interpretation of
the resulting raster maps of normalized connectivity require
particular attention.

For our analysis, we adapted CN values associated
with different land-use/land-cover types and hydrologic soil
groups from the work by Wu et al. (2024) based on hydro-
logic modeling. According to their classification, urban cells
with varying degrees of land development may be assigned
CN values over a wide range depending on the associated soil
characteristics. In some cases, moderately urbanized cells
may have a weight W that is not too dissimilar from those
of some cells with natural land-cover types but low soil in-

filtrability, meaning that both types of cells are expected to
generate similar amounts of runoff. However, it is clear that
undeveloped patches would still mitigate hydrologic impacts
better than urban areas, mostly through enhanced detention
due to their higher roughness, delaying runoff contributions.

Interpretations for the overall low performance of
HCIU(CN) may hence include the variability in stormwater
hydrology dynamics due to storm intensity and soil moisture
conditions. Depending on these aspects, dominant control
mechanisms for hydrologic connectivity and disconnection,
such as soil infiltrability, rainfall interception by vegetation
and litter, and surface roughness, as well as their interplay,
may significantly change (Saffarpour et al., 2016; Zölch et
al., 2017). For instance, the potential for generating runoff
in moderately urbanized cells may be mainly governed by
the type of soil when regular events are considered – like in
the case of the validation of the CN classification proposed
by Wu et al. (2024). On the other hand, when the scope of
the analysis focuses on more extreme events (as in our case,
with peak-flow equations), the effects of land development
may become preponderant (e.g., by decreasing response lag-
times) since soils are more likely to reach saturated condi-
tions. All of this in turn suggests the need to suitably adjust
the CN values of urbanized cells to better differentiate them
from pervious pixels even when the latter display low infil-
trability.

Another likely explanation is that CN also depends on
antecedent soil moisture conditions (ASMCs), with differ-
ent sets of values associated with distinct ASMC categories
(i.e., dry, average, and wet; Wu et al., 2024). In our work,
we considered the average scenario. However, because of
the interactions between event intensity and soil moisture
conditions, different sets of CN values, associated with dif-
ferent ASMCs, should probably be considered instead, de-
pending on the predicted event’s return period. In the case
of small, more frequent events (where we found the worst
performances for EPAE and MO; Fig. 7a and b), HCIU(CN)
might benefit from using lower CN values to reflect drier an-
tecedent conditions. On the other hand, for greater return-
period events, soils are saturated faster, and higher CN val-
ues, related to wet ASMCs, might improve the predictive
power of HCIU(CN).

In summary, based on the overall low performance ob-
served with HCIU(CN), the adopted weighting approach
based on average ASMC curve numbers may not be the best
for our proposed methodological framework, at least when
the analysis aims at predicting extreme peak flows. A poor
tuning of the CN-based weighting coefficients, which do not
clearly distinguish undeveloped patches with low infiltrabil-
ity from developed areas with highly permeable soils, may
also explain why the HCIU(CN) seems less robust compared
to the simpler n-based version. Further research is needed to
study the sensitivity of HCIU to different CN-based weight-
ing approaches and fine-tune the coefficients to maximize its
predictive power.
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5.2 Advantages and limitations of the proposed
approach and future research directions

The proposed conceptual framework builds on and takes ad-
vantage of our qualitative understanding of some of the var-
ied and complex dynamics affecting a basin’s hydrologic re-
sponse. The main strength of the proposed HCIU is that,
in contrast with the traditional percentage of total impervi-
ous area or other metrics that index the impervious fraction
of a basin, it explicitly takes into account the location and
spatial arrangement of all types of LULC patches in rela-
tion with basin topography, the stream network, and the out-
let in a continuum from the highly developed (which tend
to generate more runoff faster) to the undisturbed forested
patches (with the strongest mitigating effects on hydrologic
response). This represents an advantage over other advanced
urbanization metrics in the literature. For instance, while the
methodologies adopted by Yang et al. (2011) and Beck et
al. (2016) both frame the hydrologic interconnections across
some main LULC categories simply based on geometric as-
pects such as the density, spatial adjacency, and granularity
of distinct LULC patches, HCIU captures the connectivity
across a spectrum of surface patches as driven by basin to-
pography. Or, in contrast with the two metrics proposed by
Zhang and Shuster (2014), which also consider the effects
of basin relief but adopt a binary, pervious-or-impervious
LULC representation, HCIU considers the continuous het-
erogeneity of hydrologic characteristics in the mosaic of
LULC patches over a watershed.

This is achieved by alternatively using Manning’s sur-
face roughness coefficients or curve numbers, which are
both well-established conceptualizations that quantify differ-
ent LULC types’ abilities to either facilitate the generation
and transmission of runoff or retain, detain, or dampen water
volumes, dependent on their surface roughness, extent (and
type) of vegetated areas, and infiltrability. Highly impervi-
ous patches with smooth surfaces and limited losses repre-
sent one extreme in the continuous spectrum of LULC po-
tentials for generating runoff, resulting in large peak flows;
in the other extreme are forested areas and other LULC types
with natural soils, presence of litter, and high vegetation den-
sities because of their ability to diminish runoff volumes and
travel speeds through interception (in the canopy and litter),
temporary canopy storage, high surface roughness, and vari-
able infiltration capacity.

Besides its comprehensive formulation that conceptually
considers the synergistic effects of both topography and
LULC, another advantage of HCIU is that it can be vir-
tually derived for any basin in the US or the world from
widely available data, i.e., DEM and LULC (or CN) maps.
As a result, the proposed urbanization metric may easily
find systematic application in peak-flow prediction models
and, depending upon preliminary testing, also in a range
of other water resources management fields that require
quantifying the level of urbanization in a basin, such as

water-quality assessments and stormwater infrastructure de-
sign. We considered two alternative approaches to weigh
the effects of different LULC types (and HSGs in the case
of CN-based weights) on hydrologic connectivity. How-
ever, modelers may also try other weighting criteria de-
pending on their specific needs. To foster the dissemination
of our new metric, a link to a Python program to calcu-
late the HCIU of any basin is provided in the “Code avail-
ability” section (https://doi.org/10.5281/zenodo.14457110,
Dell’Aira, 2024).

A further advantage of the proposed approach is that it
yields simple and easy-to-interpret yet conceptually com-
prehensive assessments of the hydrologic impacts of urban-
ization across different basins. It can also be used to com-
pare different land-development scenarios for the same wa-
tershed, aiding stakeholders in making urban planning deci-
sions, or evaluating possible future LULC changes due to,
e.g., the distributed implementation of candidate stormwater
control measures.

A current limitation of HCIU is that it only frames con-
nectivity patterns driven by basin relief (topography) even
though the potential presence of stormwater drainage infras-
tructure would be another important source of connectivity
in any urbanizing basin. Specifically, in its current version,
the methodology does not capture the effects of underground
stormwater sewer networks (also referred to as the minor
system of stormwater infrastructure; Martins et al., 2017),
although these are typically present in urban environments,
especially in highly developed areas. However, stormwa-
ter drainage infrastructure usually includes not only under-
ground pipe networks, but also surface flow pathways and
canals, which make up the so-called major system. The ma-
jor system is critical for handling larger, less frequent storm
events. When calculating HCIU, major drainage system sec-
tions connected to natural channels are treated as part of
the stream network (assuming that excess flow from the ma-
jor system is poured directly into the stream network). This
means that the connectivity of hillslope cells draining to the
major system is calculated referring to the pour points along
the major system. The contributions of these hillslope cells
are then weighted based on the along-the-stream-network
distance to the outlet, measured starting from the major-
system pour point and following both the major-system and
any subsequent natural-stream-network links downstream,
when averaging the (normalized) connectivities to compute
HCIU. This approach captures the effects of the stream net-
work and major drainage systems, which have a stronger
influence on the hydrologic response to extreme rainfall
events compared to the minor system, whose capacity is typ-
ically overwhelmed by large runoff volumes. Consequently,
the proposed HCIU should be a more reliable predictor of
hydrologic-response variables under severe flooding condi-
tions, as also suggested by the increase in model performance
moving from small to intermediate peak quantiles, observed
in Fig. 7.
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On the other hand, when the analysis focuses on basin
response to regular storms (e.g., in water-quality studies),
the effects of the minor system should not be neglected
as the underground network may be able to handle most
of the (smaller) runoff volumes. Another scenario where it
is highly recommended to explicitly consider underground
connectivity is when dealing with heavily urbanized water-
sheds, typically characterized by the presence of extensive
drainage infrastructure. In these basins, detention tanks and
sections of the minor system pumping stormwater against to-
pographic gradients may completely change the connectivity
determined by topographically driven surface runoff path-
ways. Our results are for basins with heterogeneous LULC
characteristics, where urbanized sectors with varying devel-
opment rates are mixed with natural LULC patches, typi-
cally displaying a distribution of land-development intensi-
ties more skewed towards lower values (Fig. 4j, k, and l),
as is common for residential areas. Among the three stud-
ied regions, only VA included watersheds with TIA above
50 %, but all of those were small in size. Because our dataset
may not be representative of large, highly urbanized basins,
for these cases (e.g., in countries where cities present gen-
erally higher land-development intensities compared to the
US) we recommend considering the effects of the minor un-
derground stormwater drainage infrastructure as well when
deriving HCIU. If stormwater sewer data are not available for
the study region, and HCIU is estimated only considering to-
pographically induced connectivity, some preliminary testing
of its predictive power on gauged basins should be required
(e.g., using the validation approach depicted in Fig. 8) before
using the index for systematically generating peak flows in
ungauged, highly urbanized watersheds.

In principle, the proposed methodology allows for consid-
ering the effects of underground stormwater infrastructure as
well; this would be achieved by first identifying pixels that
are connected to each other and the stream network through
stormwater sewer links and then computing the connectiv-
ity index in a way such that connectivity patterns due to the
stormwater sewer infrastructure override those from topog-
raphy, whenever applicable. As we have found, however, in-
formation about underground stormwater drainage networks
is not easily available, which may impede considering this
additional source of connectivity, particularly in the case of
multi-basin studies. Depending on data availability, an ex-
panded version of HCIU that also accounts for the effects
of stormwater sewer infrastructure as an additional source of
connectivity should be another topic for future research.

6 Conclusion

We proposed and tested a new, hydrologic-connectivity-
based index of urbanization (HCIU) that can be obtained in a
GIS framework from the digital elevation model and a land-
use/land-cover (or curve number) map of a basin. We showed

that, compared to the traditional fraction of total impervious
area (TIA), HCIU helps capture more information about the
impacts of land development on hydrologic response. TIA
only indexes the proportion of impervious patches in a basin,
while our new metric explicitly accounts for the spatial ar-
rangement of the different land patches found in a watershed,
both natural and developed. This is obtained by considering
the spectrum of localized effects of distinct land-use/land-
cover types on the hydrologic connectivity of surface runoff
pathways.

The methodology builds on the well-established connec-
tivity index, which has already found wide application in
several hydrologic and geomorphic problems. Our specific
interpretation of the connectivity index, in the framework of
our approach, considers it as that distributed property ex-
plaining the ability of any hillslope location to quickly re-
ceive and transfer runoff to the stream network, depend-
ing on how topographically induced runoff pathways inter-
act with urbanized sectors (with possible local differences
in land-development intensity) and the undeveloped, typi-
cally more pervious patches in a watershed. We considered
two alternative widely used conceptual descriptors for quan-
tifying the potential for runoff generation of different land-
use/land-cover types, i.e., Manning’s surface roughness coef-
ficients and curve numbers. Depending on these metrics, the
contributions to hydrologic connectivity of basin pixels with
distinct surface characteristics are weighted differently. We
found that weighting factors specified as a function of Man-
ning’s surface roughness coefficients result in more robust
HCIU metrics, compared to curve-number-based weighting
methods, when explaining urban peak flows. However, we do
not exclude that fine-tuning the latter might improve model
performance.

Irrespective of the weighting criterion, the procedure for
obtaining a lumped metric for the effects of urbanization on
hydrologic response, starting from a connectivity map of the
basin of interest, involves the following steps: first, we de-
fine a normalized connectivity map, with respect to the max-
imum connectivity scenario associated with a virtual, fully
developed copy of the original watershed; then, we calculate
HCIU as a weighted average of the normalized connectivi-
ties of all basin pixels that are not part of the stream network,
depending on the distance from their pour point to the water-
shed outlet, following the stream network.

We have shown that our new urbanization metric im-
proves the predictive power of existing peak-flow regional
equations for three comprehensive case studies. Further re-
search is required to test HCIU’s explanatory power for other
hydrologic-response (i.e., flood-related) variables, such as
lag time and time of concentration, as well as other hydro-
logic variables of interest that have traditionally displayed
correlation with TIA, such as water-quality indicators. De-
pending on the scope of the analysis, an expanded version of
the current formulation to account for the additional source
of connectivity introduced by underground storm sewer in-
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frastructure may be necessary; in highly urbanized water-
sheds, the latter may be a stronger control over basin re-
sponse than topographically induced connectivity, especially
in the case of less intense, more frequent events.

Besides its direct application as a metric of urbanization
effects on basin response, HCIU’s sensitivity to the spatial
arrangement of more developed and less developed (or un-
developed) sectors may provide a novel framework to fa-
cilitate comparisons of the hydrologic impacts caused by
basin changes (e.g., due to urbanization or the introduction
of stormwater runoff control measures), offering a valuable
tool to stakeholders for informed urban planning decisions.
More research is needed to study the benefits and the range
of applicability of the hydrologic-connectivity-based index
of urbanization.
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Appendix A

Table A1. Case-study basins. Area, A; fraction of total impervious area, TIA; and flood quantiles Q2 to Q500 were retrieved from Southard
(2010), Austin (2014), and Feaster et al. (2014) for the MO, VA, and EPAE case studies, respectively. We calculated HCIU(n) and HCIU(CN)
following the methodology proposed in this work.

Gauge ID A TIA Case study Q2 Q5 Q10 Q25 Q50 Q100 Q500 HCIU(n) HCIU(CN)
[km2] [%] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1]

1 01613900 41.3 10.59 VA 24.3 46.5 64.6 90.7 112.4 135.9 197.7 0.177 0.601
2 01615000 150.6 18.78 VA 67.3 125.1 174.7 251.3 319.1 397.0 622.4 0.468 0.645
3 01616000 44.0 55.88 VA 15.3 26.4 35.3 48.3 59.2 71.1 103.5 0.669 0.689
4 01621450 1.7 15.41 VA 1.3 2.4 3.6 5.7 7.9 10.7 20.7 0.514 0.693
5 01623000 1.7 14.05 VA 0.3 2.0 6.9 27.3 70.3 170.3 1133.8 0.464 0.643
6 01623500 10.0 18.99 VA 1.1 4.4 9.8 25.1 48.0 88.6 334.1 0.487 0.689
7 01624800 189.1 15.15 VA 71.5 121.9 162.2 221.2 271.2 326.2 477.4 0.480 0.663
8 01625000 965.4 13.51 VA 165.0 318.8 451.4 655.3 834.8 1038.9 1622.0 0.439 0.648
9 01626000 328.7 11.22 VA 76.1 165.0 255.5 417.4 581.3 790.6 1514.1 0.294 0.620
10 01626500 345.7 13.66 VA 92.9 199.3 299.6 466.1 622.4 809.3 1387.0 0.319 0.625
11 01626850 382.7 15.6 VA 113.5 239.5 361.6 571.2 774.7 1025.4 1843.1 0.319 0.627
12 01627500 548.2 14.84 VA 152.9 318.0 464.7 694.6 899.6 1133.8 1807.2 0.314 0.628
13 01628500 2795.4 11.65 VA 466.9 902.2 1303.1 1964.3 2586.7 3335.7 5697.3 0.370 0.633
14 01629500 3554.2 10.97 VA 552.2 1078.0 1575.0 2414.0 3222.5 4213.5 7438.8 0.342 0.628
15 01631000 4232.8 10.55 VA 590.4 1153.3 1675.2 2539.5 3355.5 4341.0 7455.8 0.320 0.626
16 01636210 36.3 10.71 VA 21.0 34.9 46.6 64.4 80.1 98.1 150.4 0.178 0.607
17 0163626650 29.1 15.52 VA 15.9 20.1 22.8 26.2 28.7 31.1 37.0 0.188 0.603
18 01638350 81.9 10.48 VA 48.9 118.7 194.3 336.1 485.4 680.7 1148.8 0.465 0.617
19 01643805 98.7 11.39 VA 128.5 296.5 469.2 778.4 1089.9 1484.7 2827.7 0.460 0.608
20 01644280 197.2 38.7 VA 148.0 186.2 212.2 245.9 271.8 298.2 363.3 0.571 0.644
21 01644290 0.2 91.4 VA 0.2 0.8 1.9 5.0 9.7 18.2 71.0 0.933 0.827
22 01644291 0.2 91.43 VA 2.9 4.7 6.2 8.6 10.8 13.4 21.3 0.948 0.869
23 01644295 0.9 75.03 VA 2.3 4.8 7.2 11.3 15.2 20.1 35.9 0.664 0.712
24 01644300 8.8 81.35 VA 10.6 14.7 17.8 22.0 25.5 29.2 39.0 0.768 0.724
25 01645700 11.3 47.91 VA 13.8 21.1 26.4 33.7 39.6 45.8 61.7 0.464 0.647
26 01645750 4.1 24.68 VA 2.9 5.0 6.7 9.6 12.2 15.3 25.0 0.239 0.595
27 01645784 2.0 62.38 VA 11.9 17.6 21.7 27.3 31.7 36.2 47.7 0.574 0.635
28 01645900 13.1 50.81 VA 10.3 16.8 22.2 30.4 37.6 46.0 70.4 0.559 0.642
29 01645975 8.3 29.52 VA 34.5 37.4 39.2 41.5 43.2 44.8 48.6 0.267 0.615
30 01646000 149.8 35.77 VA 50.1 95.7 143.7 234.0 330.7 460.7 960.2 0.399 0.615
31 01646200 12.1 61.73 VA 31.3 62.0 91.4 141.6 190.4 250.9 450.5 0.557 0.660
32 01646600 7.5 74.53 VA 17.6 26.4 32.9 42.0 49.4 57.3 78.1 0.728 0.653
33 01646700 21.4 67.85 VA 35.6 59.9 80.7 112.8 141.5 174.8 273.7 0.627 0.634
34 01646750 1.1 90.74 VA 8.1 14.1 19.3 27.6 35.1 43.9 70.5 0.729 0.661
35 01646800 6.0 64.33 VA 27.1 44.9 60.7 85.9 109.3 137.2 224.3 0.630 0.626
36 01652400 2.4 91 VA 19.3 25.7 30.4 36.8 41.9 47.4 61.7 0.781 0.688
37 01652430 2.4 91.8 VA 18.8 29.5 38.6 52.6 65.2 79.9 124.0 0.831 0.694
38 01652470 3.4 93.64 VA 21.1 39.4 56.3 84.5 111.5 144.3 250.1 0.849 0.736
39 01652500 32.6 86.5 VA 84.3 156.3 217.6 311.5 394.2 488.2 758.0 0.776 0.699
40 01652600 7.1 71.83 VA 15.5 32.5 49.2 78.0 106.3 141.4 257.9 0.759 0.677
41 01652610 18.4 63.05 VA 19.9 34.4 47.9 70.3 91.8 118.2 204.8 0.563 0.638
42 01652620 4.9 67.64 VA 19.0 31.4 41.5 56.2 68.7 82.6 121.3 0.670 0.645
43 01652645 1.3 70.99 VA 8.4 8.9 9.2 9.5 9.7 10.0 10.4 0.658 0.669
44 01652650 12.0 71.48 VA 29.4 56.8 82.9 127.4 170.6 224.0 400.4 0.680 0.663
45 01652710 5.4 63.68 VA 15.4 24.7 31.8 42.1 50.6 60.0 85.2 0.522 0.623
46 01652810 5.9 64.51 VA 10.3 15.8 20.4 27.4 33.5 40.6 61.5 0.631 0.643
47 01652910 34.9 73.91 VA 59.7 104.9 142.2 198.2 246.7 301.3 455.1 0.669 0.688
48 01653000 87.7 70.21 VA 118.1 197.5 260.8 353.1 431.3 517.3 753.2 0.660 0.684
49 01653210 6.7 78.74 VA 16.2 23.8 29.6 37.9 44.9 52.5 73.3 0.736 0.647
50 01653447 2.0 81.53 VA 6.1 8.5 10.3 12.8 14.8 17.0 22.6 0.773 0.701
51 01653900 17.8 73.88 VA 36.0 74.3 114.4 189.2 268.1 372.9 762.0 0.714 0.676
52 01653950 3.1 71.38 VA 27.4 43.8 56.8 75.8 91.9 109.6 158.9 0.698 0.660
53 01654000 61.8 62.22 VA 66.8 122.3 170.0 244.0 310.1 386.0 608.0 0.591 0.658
54 01654500 9.6 59.32 VA 12.1 28.0 46.3 82.9 124.3 182.1 417.1 0.513 0.622
55 01655000 96.0 61.81 VA 40.1 59.8 75.8 99.9 120.9 144.8 213.9 0.570 0.652
56 01655310 9.9 64.03 VA 12.5 26.4 41.8 72.0 105.4 151.4 335.3 0.623 0.646
57 01655350 39.3 64.87 VA 24.7 40.6 55.4 80.2 104.2 133.9 232.7 0.561 0.643
58 01655370 9.4 68.32 VA 14.1 26.8 38.3 57.1 74.6 95.5 160.7 0.600 0.638
59 01655380 16.3 30.47 VA 12.9 24.6 35.8 54.8 73.3 96.2 172.4 0.378 0.628
60 01655390 81.0 54.24 VA 44.1 77.5 109.1 163.0 215.7 281.5 503.2 0.480 0.637
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Table A1. Continued.

Gauge ID A TIA Case study Q2 Q5 Q10 Q25 Q50 Q100 Q500 HCIU(n) HCIU(CN)
[km2] [%] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1]

61 01656800 20.1 51.67 VA 9.8 11.2 12.0 13.0 13.7 14.4 16.1 0.540 0.612
62 01656960 128.8 52.27 VA 88.3 169.9 240.1 348.3 443.7 552.5 863.1 0.576 0.647
63 01657000 378.1 29.1 VA 193.3 354.0 510.3 784.1 1058.2 1406.5 2617.9 0.481 0.625
64 01657415 478.4 29.55 VA 304.1 564.4 831.4 1322.7 1838.0 2520.5 5065.9 0.455 0.633
65 01657500 1476.7 15.85 VA 312.1 458.4 566.3 715.3 835.3 963.6 1297.5 0.387 0.618
66 01657655 10.2 45.08 VA 15.8 27.3 37.3 53.0 67.4 84.2 135.4 0.430 0.616
67 01657800 11.7 41.39 VA 14.7 21.5 27.0 35.2 42.2 50.2 72.8 0.578 0.627
68 01667600 1.7 12.35 VA 2.2 3.0 3.5 4.3 4.8 5.4 6.9 0.423 0.594
69 01673500 14.9 31.5 VA 3.1 5.6 7.9 11.9 15.8 20.6 36.6 0.414 0.603
70 01673550 66.1 14.95 VA 10.7 24.3 41.1 77.5 121.8 188.5 497.2 0.319 0.603
71 02019400 75.9 13.09 VA 60.7 110.3 154.2 224.4 288.8 364.7 596.4 0.432 0.677
72 02027700 1.2 13.56 VA 1.0 2.0 3.1 5.0 6.9 9.3 17.9 0.176 0.571
73 02030800 7.0 17.31 VA 6.9 11.3 14.8 20.0 24.4 29.3 42.7 0.143 0.608
74 02031000 246.7 11.54 VA 130.3 252.2 352.5 500.1 624.1 759.7 1121.9 0.263 0.604
75 02033500 1303.5 12.41 VA 253.3 346.0 417.7 520.5 606.8 702.0 963.6 0.287 0.604
76 02034000 1716.6 11.83 VA 445.4 821.5 1147.1 1656.3 2112.7 2640.3 4196.6 0.287 0.600
77 02034050 4.1 13.74 VA 5.6 18.0 36.2 81.6 143.3 244.0 773.6 0.331 0.586
78 02037800 47.0 66.61 VA 13.5 29.4 47.1 82.1 121.1 175.4 393.9 0.567 0.629
79 02038000 85.7 58.19 VA 21.9 52.4 87.6 158.3 238.0 349.4 799.1 0.496 0.621
80 02038500 138.2 59.25 VA 30.8 63.6 98.3 163.7 233.5 327.1 680.5 0.530 0.629
81 02042000 363.0 16.99 VA 56.3 131.8 223.1 417.1 647.9 987.4 2494.4 0.317 0.589
82 02042287 161.0 23.7 VA 45.4 86.5 125.7 192.6 258.0 339.2 610.2 0.413 0.616
83 02042426 97.0 66.86 VA 55.7 64.4 70.2 77.6 83.1 88.7 102.1 0.659 0.669
84 02042500 651.3 24.49 VA 45.7 86.0 124.9 192.2 258.8 342.6 627.8 0.395 0.614
85 02042780 6.4 14.22 VA 2.6 3.6 4.5 5.8 7.0 8.3 12.2 0.306 0.557
86 02044400 4.2 22.16 VA 5.5 16.1 30.6 64.7 108.8 178.1 517.9 0.392 0.573
87 02055000 994.3 18.65 VA 216.1 363.3 472.6 621.3 738.8 860.8 1165.8 0.286 0.614
88 02055100 30.3 14.73 VA 22.0 49.8 77.6 126.1 173.8 233.2 428.4 0.431 0.679
89 02056000 1319.5 23.56 VA 311.2 496.7 640.2 845.3 1015.2 1200.6 1698.7 0.345 0.627
90 02056650 144.5 18.67 VA 75.7 160.6 240.7 373.5 498.1 647.3 1110.6 0.226 0.596
91 02057500 2634.0 15.21 VA 451.4 735.7 964.8 1303.7 1594.5 1919.9 2834.5 0.341 0.622
92 02057700 2.0 71.86 VA 4.0 5.4 6.4 7.8 8.8 9.9 12.7 0.706 0.692
93 02059000 3673.5 12.18 VA 587.6 908.1 1152.8 1499.9 1786.2 2096.9 2928.0 0.327 0.612
94 02059450 28.4 10.81 VA 12.7 24.6 35.9 55.5 74.8 98.9 179.7 0.208 0.607
95 02060500 4615.3 10.91 VA 844.7 1294.1 1640.1 2134.0 2544.6 2993.1 4205.1 0.323 0.607
96 02061150 4.0 14.37 VA 4.0 10.8 19.1 36.3 56.0 84.1 199.2 0.374 0.623
97 02062500 6225.6 10.22 VA 887.2 1383.0 1792.2 2413.4 2959.1 3584.9 5414.2 0.245 0.605
98 02076400 5.2 19.11 VA 5.1 8.2 10.7 14.6 18.1 22.1 34.1 0.415 0.612
99 02076500 23.8 15.84 VA 14.1 26.4 36.8 52.5 66.2 81.5 124.6 0.411 0.592
100 02086849 56.7 20.3 EPAE 56.1 67.7 74.2 81.3 86.1 90.3 99.4 0.638 0.637
101 0208726005 196.8 16.7 EPAE 64.3 111.3 146.7 195.1 233.3 273.0 371.0 0.575 0.626
102 02087324 313.4 16.5 EPAE 97.4 154.3 206.4 294.5 376.6 481.4 818.4 0.629 0.631
103 0208732885 17.7 29.5 EPAE 26.0 47.9 67.1 98.0 126.3 159.7 261.9 0.792 0.692
104 02087359 77.2 21.3 EPAE 40.8 75.0 109.6 172.7 237.6 322.8 634.3 0.716 0.660
105 02087580 54.4 15.3 EPAE 52.1 78.2 101.7 139.3 174.7 217.8 354.0 0.674 0.642
106 0209399200 41.2 22.5 EPAE 31.4 57.5 77.6 106.2 129.4 154.3 217.2 0.701 0.656
107 02094659 19.0 41.2 EPAE 52.7 76.5 92.3 113.0 128.6 144.1 181.5 0.853 0.721
108 02094770 39.9 39.5 EPAE 47.3 63.4 73.9 87.5 97.4 107.3 131.1 0.839 0.718
109 02095000 88.1 35.5 EPAE 79.6 90.6 97.4 105.3 110.7 116.1 127.7 0.778 0.704
110 02095271 36.8 32.7 EPAE 58.0 78.4 90.9 105.3 115.2 124.6 144.7 0.844 0.695
111 02095500 96.1 28.8 EPAE 80.7 127.1 161.4 208.1 244.9 283.2 382.3 0.735 0.680
112 0209553650 229.2 27 EPAE 143.3 166.2 178.7 192.3 201.0 209.5 225.4 0.669 0.674
113 0209741955 54.6 14.4 EPAE 143.3 166.2 178.7 192.3 201.0 209.5 225.4 0.571 0.621
114 02115845 13.4 20 EPAE 45.9 56.9 64.0 72.2 78.4 84.4 98.3 0.850 0.699
115 0212414900 89.6 19.1 EPAE 85.0 141.6 194.0 281.8 368.1 470.1 818.4 0.660 0.651
116 0214266000 68.1 14.8 EPAE 27.7 50.1 71.6 108.7 145.0 190.6 345.5 0.576 0.633
117 02142900 42.5 21 EPAE 43.6 65.1 81.3 103.9 122.0 141.9 193.7 0.641 0.656
118 0214291555 81.6 17.4 EPAE 56.4 87.8 109.6 138.2 159.7 181.2 232.8 0.616 0.641
119 0214295600 26.9 20.4 EPAE 33.1 53.2 67.7 86.9 101.7 117.2 154.9 0.692 0.649
120 02145940 9.1 25.5 EPAE 24.7 28.6 30.9 33.1 34.8 36.2 39.1 0.812 0.655
121 02146211 15.5 26 EPAE 25.3 39.1 52.1 74.5 97.1 125.4 224.0 0.706 0.683
122 0214627970 23.5 32 EPAE 70.5 105.3 128.0 156.0 176.1 196.2 240.4 0.801 0.710
123 02146300 79.5 34.2 EPAE 116.4 167.1 206.1 261.4 305.8 356.8 492.7 0.793 0.712
124 02146315 14.8 36.8 EPAE 48.4 71.6 87.2 106.5 120.6 134.2 165.9 0.820 0.710
125 02146348 23.7 24.1 EPAE 22.4 33.4 40.5 49.0 54.7 60.3 71.9 0.541 0.664
126 02146381 169.1 32.4 EPAE 99.4 146.1 184.9 243.8 297.3 356.8 532.4 0.733 0.696
127 02146409 30.6 47.9 EPAE 94.0 120.6 133.9 147.5 155.7 162.5 174.7 0.869 0.764
128 0214642825 13.5 24.6 EPAE 41.9 59.7 73.9 94.6 112.1 132.0 188.0 0.800 0.662
129 0214645022 49.2 25 EPAE 75.3 111.6 138.8 176.1 206.4 239.3 325.6 0.806 0.670
130 02146470 6.8 32.8 EPAE 32.0 48.1 59.2 73.3 84.1 95.1 120.9 0.851 0.681
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Table A1. Continued.

Gauge ID A TIA Case study Q2 Q5 Q10 Q25 Q50 Q100 Q500 HCIU(n) HCIU(CN)
[km2] [%] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1]

131 02146500 106.2 22 EPAE 110.2 151.5 178.7 213.2 238.7 264.2 325.6 0.828 0.698
132 02146507 110.3 32 EPAE 192.8 266.7 317.1 385.1 438.9 492.7 628.6 0.826 0.697
133 02146530 127.4 32 EPAE 137.3 194.0 236.7 294.5 342.6 393.6 529.5 0.823 0.696
134 0214655255 19.0 18.2 EPAE 33.7 77.0 114.7 171.0 217.8 268.4 399.3 0.725 0.650
135 02146562 14.8 26.4 EPAE 25.7 54.4 82.1 129.1 174.7 229.6 407.8 0.796 0.674
136 02146600 100.0 20.2 EPAE 105.3 145.3 170.8 202.2 224.8 247.8 300.2 0.700 0.652
137 02146700 18.0 21.3 EPAE 48.1 72.2 88.3 109.0 124.6 140.2 176.7 0.798 0.642
138 02146750 239.3 19.5 EPAE 145.0 201.3 235.0 274.1 300.2 325.6 376.6 0.725 0.648
139 0214678175 17.9 31.4 EPAE 27.0 40.2 50.1 64.0 75.3 87.8 120.1 0.704 0.689
140 02159785 1.0 19.3 EPAE 4.1 5.9 6.9 8.1 8.9 9.7 11.4 0.721 0.644
141 02160325 23.4 22.3 EPAE 21.3 34.3 49.8 82.4 121.2 178.7 441.7 0.704 0.658
142 02164000 125.9 18.8 EPAE 68.0 98.5 120.6 150.4 173.9 198.5 261.9 0.645 0.655
143 02164011 7.8 34.9 EPAE 26.7 33.1 36.5 40.2 42.8 44.7 48.7 0.832 0.696
144 02168845 1.0 26.6 EPAE 4.4 5.4 6.1 7.1 7.8 8.6 10.4 0.778 0.657
145 02203800 107.5 30.9 EPAE 107.6 159.7 189.2 221.7 242.7 261.4 297.3 0.680 0.679
146 02203835 8.9 16.8 EPAE 20.2 28.3 34.5 43.3 50.4 58.0 78.4 0.648 0.610
147 02203845 2.5 24.7 EPAE 12.1 16.7 19.0 21.2 22.5 23.5 25.2 0.721 0.638
148 02203884 4.9 27.7 EPAE 19.0 26.3 31.1 36.8 41.3 45.6 55.8 0.678 0.645
149 02203900 256.4 23.6 EPAE 148.9 215.2 256.6 305.8 339.8 371.0 438.9 0.645 0.650
150 02204070 471.4 20.2 EPAE 186.3 266.7 325.6 402.1 464.4 526.7 690.9 0.596 0.635
151 02205000 3.3 22.4 EPAE 8.5 18.1 26.2 37.9 47.6 58.0 84.4 0.720 0.655
152 02205230 0.9 15.4 EPAE 4.0 5.6 6.5 7.7 8.5 9.3 11.0 0.590 0.616
153 02205500 6.3 27.1 EPAE 15.3 31.7 48.7 80.7 114.7 159.7 328.5 0.685 0.652
154 02205596 18.7 22 EPAE 20.8 31.1 37.9 46.4 52.7 58.6 72.5 0.681 0.652
155 02206105 0.4 24.9 EPAE 2.4 3.6 4.4 5.6 6.5 7.4 9.6 0.704 0.613
156 02206136 0.9 23.8 EPAE 3.7 4.6 5.3 6.0 6.5 7.1 8.3 0.620 0.614
157 02206500 347.1 22.1 EPAE 102.8 161.7 207.6 271.6 325.6 382.3 535.2 0.656 0.659
158 02207000 14.3 14.3 EPAE 24.1 37.7 46.7 58.0 66.0 73.9 91.5 0.581 0.614
159 02207500 979.0 12.5 EPAE 156.0 270.4 393.6 625.8 877.8 1223.3 2593.8 0.549 0.625
160 02208050 25.8 22.4 EPAE 19.7 32.6 43.3 59.7 74.2 91.2 140.2 0.657 0.656
161 02217505 3.7 29.1 EPAE 14.3 19.0 22.5 27.2 31.1 35.4 46.7 0.815 0.673
162 02218565 14.7 16.4 EPAE 14.0 23.9 30.9 40.2 47.3 54.4 70.8 0.600 0.636
163 02334885 121.7 17.8 EPAE 50.4 86.9 115.5 155.7 188.3 224.0 317.1 0.570 0.642
164 02335347 0.5 32.1 EPAE 4.2 5.9 6.9 8.0 8.7 9.4 10.8 0.819 0.705
165 02335700 186.5 14.5 EPAE 57.8 100.5 132.2 175.0 208.4 243.2 328.5 0.555 0.634
166 02335870 79.5 20.3 EPAE 105.9 162.3 199.9 247.8 282.6 317.1 396.4 0.632 0.633
167 02336080 49.5 33.1 EPAE 61.7 68.0 72.5 78.4 83.0 87.8 100.0 0.684 0.684
168 02336102 6.0 22 EPAE 20.5 25.6 28.6 32.0 34.3 36.5 41.3 0.665 0.622
169 02336238 2.4 20.9 EPAE 16.6 20.9 23.9 27.9 30.9 34.0 41.9 0.740 0.629
170 02336300 224.8 31 EPAE 182.9 231.3 261.9 300.2 328.5 354.0 419.1 0.711 0.679
171 02336360 68.9 27.9 EPAE 69.1 88.9 101.9 117.8 129.7 141.6 169.1 0.674 0.662
172 02336635 81.6 19.9 EPAE 86.1 150.4 203.3 281.2 348.3 424.8 640.0 0.617 0.636
173 02336700 1.8 17.2 EPAE 8.5 10.8 12.2 13.8 15.0 16.1 18.5 0.681 0.612
174 02336705 22.8 19.6 EPAE 76.2 98.8 113.0 130.5 143.0 155.7 183.8 0.624 0.620
175 02341548 4.1 21 EPAE 11.6 16.3 19.3 23.1 26.0 28.9 35.7 0.718 0.666
176 02392975 87.0 24.2 EPAE 52.1 85.5 116.1 166.8 215.2 274.1 467.2 0.649 0.665
177 02395990 0.9 13.2 EPAE 3.1 4.6 5.5 6.6 7.3 7.9 9.3 0.734 0.615
178 02396550 0.6 25.1 EPAE 4.0 4.8 5.4 5.9 6.3 6.7 7.4 0.877 0.678
179 03165200 2.8 33.69 VA 2.6 4.9 6.7 9.4 11.8 14.3 21.2 0.492 0.609
180 03167300 1.7 10.01 VA 1.8 3.2 4.3 6.0 7.4 8.9 13.0 0.414 0.607
181 03167700 11.6 20.1 VA 9.1 14.3 18.4 24.5 29.7 35.5 51.7 0.456 0.605
182 03177700 103.0 26.83 VA 19.9 26.6 31.1 36.8 41.2 45.6 56.4 0.441 0.649
183 03177710 114.7 25.75 VA 21.0 29.1 34.6 41.5 46.7 52.0 64.4 0.364 0.610
184 03474700 21.2 16 VA 6.7 12.6 18.1 27.4 36.4 47.6 84.6 0.437 0.683
185 03474800 20.3 10.15 VA 9.6 21.2 31.2 46.3 59.0 72.9 109.8 0.419 0.693
186 03475600 8.9 20.51 VA 1.2 1.5 1.8 2.2 2.5 2.8 3.7 0.557 0.715
187 03475700 7.2 10.06 VA 3.8 6.4 8.4 11.0 13.2 15.4 20.9 0.522 0.714
188 03478400 69.8 14.42 VA 12.5 18.7 23.3 29.7 34.9 40.5 55.1 0.481 0.702
189 03524500 225.7 15.03 VA 78.6 125.4 166.4 232.1 292.8 365.3 591.8 0.288 0.623
190 03525800 1.8 16.53 VA 2.6 3.6 4.2 5.1 5.8 6.5 8.2 0.397 0.605
191 03530000 103.0 12.06 VA 65.0 91.5 109.3 131.8 148.6 165.4 205.3 0.255 0.599
192 06893300 68.6 36.3 MO 120.1 177.3 219.5 277.5 322.8 373.8 504.0 0.807 0.716
193 06893500 476.6 16.8 MO 286.0 447.4 574.8 761.7 920.3 1095.9 1588.6 0.640 0.691
194 06893560 40.4 32.7 MO 89.2 165.7 238.7 362.5 487.0 640.0 1152.5 0.844 0.708
195 06893562 46.9 33.1 MO 122.3 192.3 261.4 382.3 506.9 665.4 1237.4 0.844 0.711
196 06893600 12.9 31.2 MO 42.2 62.6 75.0 89.5 99.1 107.9 125.7 0.834 0.690
197 06894000 489.5 14.1 MO 140.7 245.8 334.1 475.7 597.5 741.9 1163.8 0.581 0.671
198 06910200 3.0 8.48 MO 9.4 15.4 19.5 24.8 28.6 32.6 41.3 0.477 0.638
199 06910230 182.1 5.15 MO 122.0 189.4 238.4 305.8 356.8 410.6 546.5 0.452 0.639
200 06910430 1.3 2.33 MO 2.6 5.5 8.4 13.6 18.9 25.7 49.0 0.672 0.625
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Table A1. Continued.

Gauge ID A TIA Case study Q2 Q5 Q10 Q25 Q50 Q100 Q500 HCIU(n) HCIU(CN)
[km2] [%] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1] [m3 s−1]

201 06923000 2.0 14 MO 5.4 8.7 11.2 14.8 17.8 20.9 29.4 0.813 0.702
202 06929000 2.8 11.5 MO 5.6 11.8 17.3 25.9 33.4 41.9 66.3 0.526 0.669
203 06935800 2.0 25.2 MO 11.4 18.3 22.9 28.6 32.6 36.5 45.0 0.790 0.669
204 06935850 16.8 29.5 MO 39.4 54.1 64.6 78.4 89.2 100.5 129.1 0.744 0.664
205 06935890 57.5 26 MO 71.1 120.3 160.6 220.0 271.3 328.5 487.0 0.695 0.661
206 06935955 30.3 39.8 MO 62.3 91.2 110.7 135.4 153.8 172.2 215.5 0.847 0.734
207 06935980 8.8 42.3 MO 49.6 74.5 90.6 109.9 123.7 136.8 165.4 0.874 0.747
208 06936475 106.2 40 MO 149.5 205.9 239.6 278.6 305.8 331.3 382.3 0.826 0.625
209 07005000 61.6 32.8 MO 167.1 237.6 288.8 354.0 407.8 461.6 600.3 0.806 0.700
210 07010022 22.6 43.5 MO 92.3 116.4 130.8 147.5 159.1 170.2 194.0 0.876 0.737
211 07010030 5.0 26.5 MO 22.1 34.3 43.3 55.5 65.1 75.3 101.4 0.784 0.655
212 07010035 3.8 27.3 MO 18.1 30.6 38.8 48.7 55.2 61.4 74.2 0.757 0.669
213 07010086 94.0 31.6 MO 123.2 168.8 204.2 255.7 300.2 348.3 481.4 0.846 0.689
214 07010090 9.1 35.5 MO 35.7 46.4 52.4 58.0 61.7 64.6 70.2 0.808 0.699
215 07010180 47.1 37.2 MO 94.6 120.1 137.9 160.8 179.0 197.4 243.2 0.842 0.696
216 07010208 5.8 37.7 MO 30.0 44.2 53.8 66.3 75.9 85.2 108.2 0.858 0.714
217 07019317 20.4 39.4 MO 114.1 165.4 201.9 251.5 288.8 331.3 436.1 0.847 0.700
218 07048490 3.3 35.7 MO 18.1 25.8 31.4 39.4 45.6 52.4 69.9 0.813 0.695
219 07052000 50.5 46 MO 77.9 124.0 162.5 221.4 274.1 334.1 512.5 0.834 0.755
220 07052100 91.4 35.6 MO 69.4 111.9 150.1 212.9 271.8 342.6 572.0 0.736 0.725
221 07052160 151.3 17.8 MO 76.5 119.5 155.2 209.5 257.1 311.5 470.1 0.699 0.706
222 07063200 0.7 7.94 MO 3.5 5.9 7.6 9.6 11.1 12.5 15.6 0.685 0.678
223 07186600 109.6 13 MO 56.1 82.4 99.4 120.6 135.9 150.6 184.1 0.589 0.677
224 07195000 335.9 8.67 MO 156.3 297.3 407.8 560.7 682.4 812.7 1135.5 0.559 0.652
225 07195865 50.5 8.35 MO 48.1 81.3 107.0 143.3 173.0 205.3 288.8 0.541 0.631

Appendix B

Table B1. Manning’s roughness coefficients associated with the dif-
ferent NLCD land-use/land-cover types (adapted from Liu and De
Smedt, 2004; Hooke et al., 2021).

Land use/land cover n

Developed, open-space 0.12
Developed, low-intensity 0.1
Developed, medium-intensity 0.07
Developed, high-intensity 0.02
Barren land 0.1
Deciduous needleleaf forest 0.4
Evergreen needleleaf forest 0.4
Mixed forest 0.55
Evergreen broadleaf forest 0.6
Deciduous broadleaf forest 0.8
Shrubs/scrubs 0.4
Herbaceous 0.3
Hay/pasture 0.3
Cultivated crops 0.35
Woody wetlands 0.5
Emergent herbaceous wetlands 0.5

Appendix C

Table C1. Curve numbers associated with NLCD land-use/land-
cover types and hydrologic soil groups (adapted from Wu et al.,
2024).

Land use/land cover Hydrologic soil
group

A B C D

Developed, open-space 45 65 76 82
Developed, low-intensity 60 74 82 86
Developed, medium-intensity 77 85 90 92
Developed, high-intensity 92 94 96 96
Barren land 77 86 91 94
Deciduous needleleaf forest 45 66 77 83
Evergreen needleleaf forest 30 55 70 77
Mixed forest 36 60 73 79
Evergreen broadleaf forest 30 55 70 77
Deciduous broadleaf forest 45 66 77 83
Shrubs/scrubs 33 42 55 62
Herbaceous 30 58 71 78
Hay/pasture 49 69 79 84
Cultivated crops 62 75 83 87
Woody wetlands 78 78 78 78
Emergent herbaceous wetlands 85 85 85 85
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Appendix D

Figure D1. Box plots of test errors for (1) benchmark QT ∼ A+
TIA, (2) QT ∼ A+HCIU(n), and (3) QT ∼ A+HCIU(CN) mod-
els, when they are fitted and blind-tested on distinct basin subsets,
for the VA homogenous region. For each box plot, filled bars rep-
resent error values between the first and the third quartiles, the up-
per (lower) whisker extends from the third (first) quartile by adding
(subtracting) 1.5 times the interquartile range, and any outliers be-
yond the whiskers are marked by circles.

Appendix E

Table E1. Outlet coordinates, referring to the World Geodetic Sys-
tem (WGS84).

Gauge ID Case study Longitude Latitude

1 01613900 VA −78.288059 39.214548
2 01615000 VA −78.078333 39.174722
3 01616000 VA −78.085833 39.177882
4 01621450 VA −78.917806 38.391793
5 01623000 VA −79.126142 38.166797
6 01623500 VA −79.117809 38.183463
7 01624800 VA −78.994471 38.128467
8 01625000 VA −78.861970 38.261796
9 01626000 VA −78.908079 38.057636
10 01626500 VA −78.896968 38.061247
11 01626850 VA −78.876968 38.088746
12 01627500 VA −78.836692 38.218742
13 01628500 VA −78.754746 38.322628
14 01629500 VA −78.534733 38.646231
15 01631000 VA −78.210834 38.914001
16 01636210 VA −78.185833 38.905667
17 0163626650 VA −78.128056 38.934167
18 01638350 VA −77.615444 39.191111
19 01643805 VA −77.683944 39.072306
20 01644280 VA −77.432389 39.046417
21 01644290 VA −77.371375 38.949277
22 01644291 VA −77.373041 38.949833
23 01644295 VA −77.367486 38.952888
24 01644300 VA −77.371097 38.966777
25 01645700 VA −77.338041 38.874834
26 01645750 VA −77.353041 38.897889
27 01645784 VA −77.344985 38.930111
28 01645900 VA −77.309706 38.965666
29 01645975 VA −77.246648 38.971221
30 01646000 VA −77.245814 38.975943
31 01646200 VA −77.205536 38.958999
32 01646600 VA −77.184425 38.911500
33 01646700 VA −77.139146 38.936222
34 01646750 VA −77.137757 38.905111
35 01646800 VA −77.144979 38.922889
36 01652400 VA −77.126646 38.858723
37 01652430 VA −77.102201 38.861779
38 01652470 VA −77.104145 38.842613
39 01652500 VA −77.085861 38.843333
40 01652600 VA −77.212204 38.865945
41 01652610 VA −77.174147 38.846501
42 01652620 VA −77.178869 38.879556
43 01652645 VA −77.170814 38.865112
44 01652650 VA −77.165536 38.860390
45 01652710 VA −77.186926 38.801502
46 01652810 VA −77.151369 38.810113
47 01652910 VA −77.127757 38.803169
48 01653000 VA −77.105590 38.804447
49 01653210 VA −77.083589 38.793169
50 01653447 VA −77.064700 38.788725
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Table E1. Continued.

Gauge ID Case study Longitude Latitude

51 01653900 VA −77.271094 38.860945
52 01653950 VA −77.242482 38.873167
53 01654000 VA −77.228316 38.812891
54 01654500 VA −77.236455 38.813585
55 01655000 VA −77.202204 38.754281
56 01655310 VA −77.288318 38.801780
57 01655350 VA −77.226650 38.757336
58 01655370 VA −77.233872 38.750392
59 01655380 VA −77.252484 38.736503
60 01655390 VA −77.214149 38.704004
61 01656800 VA −77.466656 38.908445
62 01656960 VA −77.465544 38.821225
63 01657000 VA −77.457489 38.797892
64 01657415 VA −77.414154 38.766504
65 01657500 VA −77.326096 38.705671
66 01657655 VA −77.289984 38.680116
67 01657800 VA −77.226371 38.680116
68 01667600 VA −78.006664 38.397351
69 01673500 VA −77.382481 37.669311
70 01673550 VA −77.257755 37.662643
71 02019400 VA −79.757540 37.496801
72 02027700 VA −78.959466 37.562642
73 02030800 VA −78.808077 38.030138
74 02031000 VA −78.592794 38.102636
75 02033500 VA −78.453344 38.019306
76 02034000 VA −78.265837 37.857919
77 02034050 VA −78.241393 37.946807
78 02037800 VA −77.588600 37.454315
79 02038000 VA −77.522209 37.443759
80 02038500 VA −77.466373 37.461259
81 02042000 VA −77.494153 37.315428
82 02042287 VA −77.421649 37.641811
83 02042426 VA −77.424149 37.613201
84 02042500 VA −77.060803 37.436258
85 02042780 VA −76.766904 37.314036
86 02044400 VA −77.981670 37.079872
87 02055000 VA −79.938648 37.258471
88 02055100 VA −79.935319 37.417633
89 02056000 VA −79.871425 37.255138
90 02056650 VA −79.868091 37.227639
91 02057500 VA −79.521418 37.034312
92 02057700 VA −79.873366 37.007363
93 02059000 VA −79.473083 37.012923
94 02059450 VA −79.730315 37.379859
95 02060500 VA −79.285639 37.105694
96 02061150 VA −79.387530 37.369586
97 02062500 VA −78.945722 37.039444
98 02076400 VA −79.369191 36.933474
99 02076500 VA −79.311412 36.936529
100 02086849 EPAE −78.832296 36.059583

Table E1. Continued.

Gauge ID Case study Longitude Latitude

101 0208726005 EPAE −78.724530 35.845440
102 02087324 EPAE −78.611423 35.810929
103 0208732885 EPAE −78.593078 35.816968
104 02087359 EPAE −78.583059 35.758416
105 02087580 EPAE −78.752249 35.718821
106 0209399200 EPAE −79.860069 36.137849
107 02094659 EPAE −79.855270 36.049536
108 02094770 EPAE −79.799742 36.037715
109 02095000 EPAE −79.725462 36.059935
110 02095271 EPAE −79.782466 36.097823
111 02095500 EPAE −79.708534 36.120195
112 0209553650 EPAE −79.661672 36.128122
113 0209741955 EPAE −78.912984 35.872341
114 02115845 EPAE −80.257807 36.084298
115 0212414900 EPAE −80.715874 35.332301
116 0214266000 EPAE −80.921152 35.389568
117 02142900 EPAE −80.909624 35.328629
118 0214291555 EPAE −80.973052 35.300436
119 0214295600 EPAE −80.974610 35.240307
120 02145940 EPAE −81.016238 34.974710
121 02146211 EPAE −80.836955 35.262057
122 0214627970 EPAE −80.868234 35.240339
123 02146300 EPAE −80.904579 35.197899
124 02146315 EPAE −80.921902 35.206679
125 02146348 EPAE −80.927050 35.145767
126 02146381 EPAE −80.899248 35.090795
127 02146409 EPAE −80.837113 35.203642
128 0214642825 EPAE −80.770919 35.235958
129 0214645022 EPAE −80.831099 35.175358
130 02146470 EPAE −80.853095 35.164402
131 02146500 EPAE −80.854723 35.153631
132 02146507 EPAE −80.857844 35.148087
133 02146530 EPAE −80.882211 35.085094
134 0214655255 EPAE −80.719311 35.176025
135 02146562 EPAE −80.736609 35.186742
136 02146600 EPAE −80.767469 35.137760
137 02146700 EPAE −80.820040 35.140830
138 02146750 EPAE −80.869807 35.066373
139 0214678175 EPAE −80.953677 35.105022
140 02159785 EPAE −81.965937 34.952698
141 02160325 EPAE −82.301249 34.883480
142 02164000 EPAE −82.364644 34.800787
143 02164011 EPAE −82.407097 34.823811
144 02168845 EPAE −81.141053 34.040544
145 02203800 EPAE −84.308194 33.679573
146 02203835 EPAE −84.280408 33.746991
147 02203845 EPAE −84.262407 33.718109
148 02203884 EPAE −84.343674 33.635721
149 02203900 EPAE −84.223998 33.665809
150 02204070 EPAE −84.128472 33.630024
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Table E1. Continued.

Gauge ID Case study Longitude Latitude

151 02205000 EPAE −84.004956 34.001973
152 02205230 EPAE −84.049231 34.001324
153 02205500 EPAE −84.016399 33.934720
154 02205596 EPAE −84.045993 33.912660
155 02206105 EPAE −84.211234 33.886614
156 02206136 EPAE −84.182610 33.888577
157 02206500 EPAE −84.078344 33.853347
158 02207000 EPAE −84.097350 33.861842
159 02207500 EPAE −83.914991 33.614607
160 02208050 EPAE −83.939169 33.978529
161 02217505 EPAE −83.401920 33.942363
162 02218565 EPAE −83.894082 34.010278
163 02334885 EPAE −84.088839 34.032626
164 02335347 EPAE −84.245228 33.956740
165 02335700 EPAE −84.269479 34.050537
166 02335870 EPAE −84.443359 33.953863
167 02336080 EPAE −84.286783 33.862050
168 02336102 EPAE −84.321663 33.855632
169 02336238 EPAE −84.343977 33.794878
170 02336300 EPAE −84.407689 33.820352
171 02336360 EPAE −84.378859 33.869173
172 02336635 EPAE −84.521394 33.803291
173 02336700 EPAE −84.467892 33.690876
174 02336705 EPAE −84.486349 33.715874
175 02341548 EPAE −84.938960 32.526251
176 02392975 EPAE −84.535676 34.068328
177 02395990 EPAE −85.138415 34.267345
178 02396550 EPAE −85.162184 34.232384
179 03165200 VA −80.900355 36.677350
180 03167300 VA −80.578677 36.837909
181 03167700 VA −80.725628 36.768184
182 03177700 VA −81.281766 37.255950
183 03177710 VA −81.304823 37.271506
184 03474700 VA −81.734565 36.783448
185 03474800 VA −81.804011 36.763169
186 03475600 VA −81.855402 36.747335
187 03475700 VA −82.041239 36.678721
188 03478400 VA −82.133743 36.631774
189 03524500 VA −82.456262 36.929269
190 03525800 VA −82.210970 36.830661
191 03530000 VA −82.770994 36.865097
192 06893300 MO −94.671300 38.940800
193 06893500 MO −94.559225 38.957112
194 06893560 MO −94.585223 39.039949
195 06893562 MO −94.578711 39.038983
196 06893600 MO −94.451000 39.076900
197 06894000 MO −94.300753 39.100543
198 06910200 MO −92.323627 39.002679
199 06910230 MO −92.340000 38.927900
200 06910430 MO −92.278945 38.578933

Table E1. Continued.

Gauge ID Case study Longitude Latitude

201 06923000 MO −92.913113 37.347462
202 06929000 MO −91.953400 37.323700
203 06935800 MO −90.583937 38.618272
204 06935850 MO −90.526652 38.646307
205 06935890 MO −90.488982 38.682701
206 06935955 MO −90.447450 38.728081
207 06935980 MO −90.432829 38.764208
208 06936475 MO −90.251215 38.818156
209 07005000 MO −90.226277 38.736631
210 07010022 MO −90.323740 38.668242
211 07010030 MO −90.314768 38.676892
212 07010035 MO −90.302848 38.682617
213 07010086 MO −90.326161 38.601214
214 07010090 MO −90.323566 38.576776
215 07010180 MO −90.299632 38.526898
216 07010208 MO −90.292979 38.490848
217 07019317 MO −90.341065 38.483307
218 07048490 MO −94.162300 36.048400
219 07052000 MO −93.331146 37.186689
220 07052100 MO −93.370200 37.168500
221 07052160 MO −93.404186 37.117840
222 07063200 MO −90.430922 36.784024
223 07186600 MO −94.582200 37.121100
224 07195000 MO −94.288400 36.222000
225 07195865 MO −94.605200 36.201800

Code and data availability. An open-source, Python-based
version of the code used in this paper is available at
https://doi.org/10.5281/zenodo.14457110 (Dell’Aira, 2024).
Basin boundaries for the MO and EPAE case studies were
obtained from https://streamstats.usgs.gov/ss/ (U.S. Geo-
logical Survey, 2019) using the outlet coordinates given
in Appendix E, while those for the VA case study were
obtained from https://doi.org/10.5066/P9VO616K (Krstolic,
2006). Digital elevation model maps were retrieved from https:
//www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3f8de5
(U.S. Geological Survey, 2023). The Land-use/land-cover maps
are available at https://www.mrlc.gov/data (MRLC Consor-
tium, 2023; Homer et al., 2020) and https://maps.elie.ucl.ac.be/
CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (ESA,
2017). The map of hydrologic soil groups can be found at
https://doi.org/10.3334/ORNLDAAC/1566 (Ross et al., 2018).
Stream network data and headwater locations were retrieved from
https://doi.org/10.3133/ofr20191096 (Moore et al., 2019).
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parison of three dual drainage models: Shallow water vs lo-
cal inertial vs diffusive wave, J. Hydroinform., 19, 331–348,
https://doi.org/10.2166/hydro.2017.075, 2017.

Mckinney, W.: Pandas: A Foundational Python Library for Data
Analysis and Statistics, Python for High Performance and Sci-
entific Computing, 14, 1–9, 2011.

Meierdiercks, K. L., Smith, J. A., Baeck, M. L., and Miller,
A. J.: Heterogeneity of Hydrologic Response in Urban
Watersheds, J. Am. Water Resour. As., 46, 1221–1237,
https://doi.org/10.1111/j.1752-1688.2010.00487.x, 2010.

Moore, R. B., McKay, L. D., Rea, A. H., Bondelid, T. R., Price, C.
V, Dewald, T. G., and Johnston, C. M.: National Geospatial Pro-
gram User’s Guide for the National Hydrography Dataset Plus
(NHDPlus) High Resolution, U.S. Geological Survey Open-File
Report 2019–1096, 66 pp., https://doi.org/10.3133/ofr20191096,
2019.

Multi-Resolution Land Characteristics (MRLC) Consortium: Na-
tional Land Cover Database (NLCD), https://www.mrlc.gov/data
(last access: 6 September 2021), 2023,

Nirupama, N. and Simonovic, S. P.: Increase of flood risk due to
urbanisation: A Canadian example, Nat. Hazards, 40, 25–41,
https://doi.org/10.1007/s11069-006-0003-0, 2007.

Ogden, F. L., Raj Pradhan, N., Downer, C. W., and Zahner, J.
A.: Relative importance of impervious area, drainage density,

width function, and subsurface storm drainage on flood runoff
from an urbanized catchment, Water Resour. Res., 47, W12503,
https://doi.org/10.1029/2011WR010550, 2011.

OpenStreetMap contributors: Produced work by the Open-
StreetMap Foundation, https://www.openstreetmap.org/
copyright/ (last access: 23 June 2024), 2015.

Pappas, E. A., Smith, D. R., Huang, C., Shuster, W. D., and Bonta, J.
V.: Impervious surface impacts to runoff and sediment discharge
under laboratory rainfall simulation, Catena (Amst.), 72, 146–
152, https://doi.org/10.1016/j.catena.2007.05.001, 2008.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res.,
12, 2825–2830, 2011.

Persichillo, M. G., Bordoni, M., Cavalli, M., Crema, S., and
Meisina, C.: The role of human activities on sediment con-
nectivity of shallow landslides, Catena (Amst.), 160, 261–274,
https://doi.org/10.1016/j.catena.2017.09.025, 2018.

Praskievicz, S. and Chang, H.: A review of hydrologi-
cal modelling of basin-scale climate change and urban
development impacts, Prog. Phys. Geogr., 33, 650–671,
https://doi.org/10.1177/0309133309348098, 2009.

QGIS Development Team: QGIS Geographic Information System.
Open-Source Geospatial Foundation Project, https://qgis.org/en/
site/ (last access: 23 June 2024), 2024.

Rallison, R. E.: Origin and evolution of the SCS runoff equation, in:
Proc., ASCE lrrig. and Drain. Div. Symp. on Watershed Mgmt.,
ASCE, New York, NY, Vol. II, 912–924, 1980.

Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D.
K., and Yoder, D. C.: Predicting Soil Erosion by Water: A
Guide to Conservation Planning with the Revised Universal
Soil Loss Equation (RUSLE), U.S. Department of Agriculture,
ISBN 0160489385, 1997.

Riihimäki, H., Kemppinen, J., Kopecký, M., and Luoto, M.:
Topographic Wetness Index as a Proxy for Soil Mois-
ture: The Importance of Flow-Routing Algorithm and Grid
Resolution, Water Resour. Res., 57, e2021WR029871,
https://doi.org/10.1029/2021WR029871, 2021.

Ross, C. W., Prihodko, L., Anchang, J. Y., Kumar, S. S.,
Ji, W., and Hanan, N. P.: Global Hydrologic Soil Groups
(HYSOGs250m) for Curve Number-Based Runoff Model-
ing, ORNL DAAC [data set], Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1566, 2018.

Van Rossum, G.: Python tutorial (Technical Report CS-R9526),
Amsterdam: Centrum voor Wiskunde en Informatica, https://ir.
cwi.nl/pub/5007/05007D.pdf (last access: 23 June 2024), 1995.

Roy, A. H. and Shuster, W. D.: Assessing impervious surface con-
nectivity and applications for watershed management, J. Am.
Water Resour. As., 45, 198–209, https://doi.org/10.1111/j.1752-
1688.2008.00271.x, 2009.

Saffarpour, S., Western, A. W., Adams, R., and McDonnell, J. J.:
Multiple runoff processes and multiple thresholds control agri-
cultural runoff generation, Hydrol. Earth Syst. Sci., 20, 4525–
4545, https://doi.org/10.5194/hess-20-4525-2016, 2016.

Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E.,
and Smith, D. R.: Impacts of impervious surface on wa-

https://doi.org/10.5194/hess-29-1001-2025 Hydrol. Earth Syst. Sci., 29, 1001–1032, 2025

https://doi.org/10.2175/106143012x13373550426878
https://doi.org/10.1016/j.jenvman.2017.10.076
https://doi.org/10.1109/JSTARS.2021.3106038
https://doi.org/10.1109/JSTARS.2022.3149813
https://www.whiteboxgeo.com/manual/wbw-user-manual/book/preface.html
https://www.whiteboxgeo.com/manual/wbw-user-manual/book/preface.html
https://doi.org/10.1002/esp.3888
https://doi.org/10.1016/j.jhydrol.2014.07.007
https://doi.org/10.1002/esp.5331
https://doi.org/10.2166/hydro.2017.075
https://doi.org/10.1111/j.1752-1688.2010.00487.x
https://doi.org/10.3133/ofr20191096
https://www.mrlc.gov/data
https://doi.org/10.1007/s11069-006-0003-0
https://doi.org/10.1029/2011WR010550
https://www.openstreetmap.org/copyright/
https://www.openstreetmap.org/copyright/
https://doi.org/10.1016/j.catena.2007.05.001
https://doi.org/10.1016/j.catena.2017.09.025
https://doi.org/10.1177/0309133309348098
https://qgis.org/en/site/
https://qgis.org/en/site/
https://doi.org/10.1029/2021WR029871
https://doi.org/10.3334/ORNLDAAC/1566
https://ir.cwi.nl/pub/5007/05007D.pdf
https://ir.cwi.nl/pub/5007/05007D.pdf
https://doi.org/10.1111/j.1752-1688.2008.00271.x
https://doi.org/10.1111/j.1752-1688.2008.00271.x
https://doi.org/10.5194/hess-20-4525-2016


1032 F. Dell’Aira and C. I. Meier: Hydrologic-connectivity-based index of urbanization

tershed hydrology: A review, Urban Water J., 2, 263–275,
https://doi.org/10.1080/15730620500386529, 2005.

Sillanpää, N. and Koivusalo, H.: Impacts of urban development on
runoff event characteristics and unit hydrographs across warm
and cold seasons in high latitudes, J. Hydrol. (Amst.), 521, 328–
340, https://doi.org/10.1016/j.jhydrol.2014.12.008, 2015.

Smucker, N. J., Kuhn, A., Charpentier, M. A., Cruz-Quinones, C.
J., Elonen, C. M., Whorley, S. B., Jicha, T. M., Serbst, J. R., Hill,
B. H., and Wehr, J. D.: Quantifying Urban Watershed Stressor
Gradients and Evaluating How Different Land Cover Datasets
Affect Stream Management, Environ. Manage., 57, 683–695,
https://doi.org/10.1007/s00267-015-0629-3, 2016.

Sohn, W., Kim, J.-H., Li, M.-H., Brown, R. D., and Jaber, F. H.:
How does increasing impervious surfaces affect urban flooding
in response to climate variability?, Ecol. Indic., 118, 106774,
https://doi.org/10.1016/j.ecolind.2020.106774, 2020.

Southard, R. E.: Estimation of the Magnitude and Frequency
of Floods in Urban Basins in Missouri, U.S. Geological
Survey Scientific Investigations Report 2010-5073, 27 pp.,
https://doi.org/10.3133/sir20105073, 2010.

Suharyanto, A., Sugio, S., Deguchi, C., and Kunitake, M.: Simula-
tion of flood control by rainwater storage facilities in urbanized
watershed, J. Hydrau., Coast. Environ. Eng., JSCE, 572, 95–104,
https://doi.org/10.2208/jscej.1997.572_95, 1997.

Sultana, R., Mroczek, M., Sengupta, A., Dallman, S., and Stein,
E. D.: Improving Effective Impervious Estimates to Inform
Stormwater Management, Water Resour. Manag., 34, 747–762,
https://doi.org/10.1007/s11269-019-02474-7, 2020.

Sytsma, A., Bell, C., Eisenstein, W., Hogue, T., and Kondolf, G.
M.: A geospatial approach for estimating hydrological connec-
tivity of impervious surfaces, J. Hydrol. (Amst.), 591, 125545,
https://doi.org/10.1016/j.jhydrol.2020.125545, 2020.

Tarboton, D. G. and Ames, D. P.: Advances in the Mapping of Flow
Networks from Digital Elevation Data, in: Bridging the Gap:
Meeting the World’s Water and Environmental Resources Chal-
lenges, 1–10, https://doi.org/10.1061/40569(2001)166, 2001.

U.S. Geological Survey: The StreamStats program, https://
streamstats.usgs.gov/ss/ (last access: 21 October 2023), 2019.

U.S. Geological Survey: 1/3rd arc-second Digital Elevation Models
(DEMs), USGS National Map 3DEP Downloadable Data Col-
lection: U.S. Geological Survey, https://www.sciencebase.gov/
catalog/item/4f70aa9fe4b058caae3f8de5 (last access: 18 Au-
gust 2023), 2023.

Vietz, G. J., Rutherfurd, I. D., Fletcher, T. D., and Walsh, C.
J.: Thinking outside the channel: Challenges and opportuni-
ties for protection and restoration of stream morphology in
urbanizing catchments, Landscape Urban Plan., 145, 34–44,
https://doi.org/10.1016/j.landurbplan.2015.09.004, 2016a.

Vietz, G. J., Walsh, C. J., and Fletcher, T. D.: Urban hydrogeomor-
phology and the urban stream syndrome: Treating the symptoms
and causes of geomorphic change, Prog. Phys. Geogr., 40, 480–
492, https://doi.org/10.1177/0309133315605048, 2016b.

Vogel, R. M. and Castellarin, A.: Risk, Reliability, and Return Peri-
ods and Hydrologic Design, in: Handbook of Applied Hydrology
– Second Edition, edited by: Singh, V. P., McGraw-Hill Educa-
tion, ISBN 9780071835107, 2017.

Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D.,
Groffman, P. M., and Morgan, R. P.: The urban stream syn-
drome: Current knowledge and the search for a cure, in: Jour-
nal of the North American Benthological Society, 706–723,
https://doi.org/10.1899/04-028.1, 2005.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy
Array: A Structure for Efficient Numerical Computation, Com-
put. Sci. Eng., 13, 22–30, 2011.

Wu, Q., Yang, J., Ji, C., and Fang, S.: High-resolution An-
nual Dynamic dataset of Curve Number from 2008 to
2021 over Conterminous United States, Sci. Data, 11, 207,
https://doi.org/10.1038/s41597-024-03044-2, 2024.

Yang, G., Bowling, L. C., Cherkauer, K. A., and Pijanowski, B. C.:
The impact of urban development on hydrologic regime from
catchment to basin scales, Landscape Urban Plan., 103, 237–247,
https://doi.org/10.1016/j.landurbplan.2011.08.003, 2011.

Yang, X., Li, F., Qi, W., Zhang, M., Yu, C., and Xu, C. Y.:
Regionalization methods for PUB: a comprehensive review of
progress after the PUB decade, Hydrol. Res., 54, 885–900,
https://doi.org/10.2166/nh.2023.027, 2023.

Yao, L., Wei, W., and Chen, L.: How does impervi-
ousness impact the urban rainfall-runoff process un-
der various storm cases?, Ecol. Indic., 60, 893–905,
https://doi.org/10.1016/j.ecolind.2015.08.041, 2016.

Zanandrea, F., Michel, G. P., Kobiyama, M., and Car-
dozo, G. L.: Evaluation of different DTMs in sediment
connectivity determination in the Mascarada River Wa-
tershed, southern Brazil, Geomorphology, 332, 80–87,
https://doi.org/10.1016/j.geomorph.2019.02.005, 2019.

Zhang, Y. and Shuster, W.: Impacts of Spatial Distribution of
Impervious Areas on Runoff Response of Hillslope Catch-
ments: Simulation Study, J. Hydrol. Eng., 19, 1089–1100,
https://doi.org/10.1061/(asce)he.1943-5584.0000905, 2014.

Zhou, G., Dong, W., and Wei, H.: A fast and simple algorithm for
calculating flow accumulation matrices from raster digital eleva-
tion models, Abstracts of the International Cartographic Associ-
ation, 1, 434, https://doi.org/10.5194/ica-abs-1-434-2019, 2019.

Zölch, T., Henze, L., Keilholz, P., and Pauleit, S.: Regulating ur-
ban surface runoff through nature-based solutions – An as-
sessment at the micro-scale, Environ. Res., 157, 135–144,
https://doi.org/10.1016/j.envres.2017.05.023, 2017.

Hydrol. Earth Syst. Sci., 29, 1001–1032, 2025 https://doi.org/10.5194/hess-29-1001-2025

https://doi.org/10.1080/15730620500386529
https://doi.org/10.1016/j.jhydrol.2014.12.008
https://doi.org/10.1007/s00267-015-0629-3
https://doi.org/10.1016/j.ecolind.2020.106774
https://doi.org/10.3133/sir20105073
https://doi.org/10.2208/jscej.1997.572_95
https://doi.org/10.1007/s11269-019-02474-7
https://doi.org/10.1016/j.jhydrol.2020.125545
https://doi.org/10.1061/40569(2001)166
https://streamstats.usgs.gov/ss/
https://streamstats.usgs.gov/ss/
https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3f8de5
https://www.sciencebase.gov/catalog/item/4f70aa9fe4b058caae3f8de5
https://doi.org/10.1016/j.landurbplan.2015.09.004
https://doi.org/10.1177/0309133315605048
https://doi.org/10.1899/04-028.1
https://doi.org/10.1038/s41597-024-03044-2
https://doi.org/10.1016/j.landurbplan.2011.08.003
https://doi.org/10.2166/nh.2023.027
https://doi.org/10.1016/j.ecolind.2015.08.041
https://doi.org/10.1016/j.geomorph.2019.02.005
https://doi.org/10.1061/(asce)he.1943-5584.0000905
https://doi.org/10.5194/ica-abs-1-434-2019
https://doi.org/10.1016/j.envres.2017.05.023

	Abstract
	Introduction
	Methodology
	Connectivity-index formulations
	Recommended weighting coefficients for deriving HCIU
	From distributed connectivity to a lumped hydrologic-connectivity-based index of urbanization HCIU

	Data and case studies for testing HCIU
	Hydrologically homogenous regions
	DEM, LULC, and HSG data

	Results
	Interpretation of the intermediate raster data products
	Conceptual differences between HCIU and TIA
	Performance of HCIU in regional peak-flow equations

	Discussion
	Considerations about the low performance of HCIU(CN)
	Advantages and limitations of the proposed approach and future research directions

	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

