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Abstract. Large-scale hydrological models (LHMs) are
commonly used for regional and global assessment of future
water shortage outcomes under climate and socioeconomic
scenarios. The irrigation of croplands, which accounts for the
lion’s share of human water consumption, is critical in un-
derstanding these water shortage trajectories. Despite irriga-
tion’s defining role, LHM frameworks typically impose tra-
jectories of land use that underlie irrigation demand, neglect-
ing potential dynamic feedbacks in the form of human insti-
gation of and subsequent adaptation to water shortages via
irrigated crop area changes. We extend an LHM, MOSART-
WM, with adaptive farmer agents, applying the model to the
continental United States to explore water shortage outcomes
that emerge from the interplay between hydrologic-driven
surface water availability, reservoir management, and farmer
irrigated crop area adaptation. The extended modeling frame-
work is used to conduct a hypothetical computational exper-
iment comparing differences between a model run with and
without the incorporation of adaptive farmer agents. These
comparative simulations reveal that accounting for farmer
adaptation via irrigated crop area changes substantially al-
ters modeled water shortage outcomes, with US-wide annual
water shortages being reduced by as much as 42 % when
comparing adaptive and non-adaptive versions of the model
forced with US climatology from the period 1950–2009.

1 Introduction

Threats to water security are a paramount global concern,
driven by growing demographic pressures on scarce water
resources and a changing climate (Vörösmarty et al., 2000,

2010; Oki and Kanae; 2006; Schewe et al., 2014; Liu et al.,
2017; Huang et al., 2019). Regional and global water secu-
rity outcomes are commonly framed in terms of the deple-
tion of groundwater (GW) and surface water (SW) resources
(Wada et al., 2010) or in terms of water shortage, defined
as the gap between water resource availability and human
water demand (Hoekstra et al., 2012; Brauman et al., 2016).
In modeling studies evaluating water shortage, human water
demand is commonly identified as the primary driver in un-
desirable future water security outcomes (Vörösmarty et al.,
2000; Hejazi et al. 2015; Voisin et al. 2016; Hadjimichael
et al., 2020; Yoon et al., 2021).

Of the activities underlying human water consumption, ir-
rigation accounts for the lion’s share (Döll and Siebert, 2002;
Brauman et al., 2016, Huang et al., 2018). Over the 20th cen-
tury, the pace of irrigation expansion has been remarkable,
with a 6-fold increase in irrigated areas (Siebert et al.,
2015). Modeling studies estimate that ∼ 2700± 540 km3

of water is withdrawn globally each year for irrigation,
and ∼ 1200± 99 km3 of that water is consumed (McDermid
et al., 2023), though such estimates of global irrigation are
prone to considerable uncertainty (Puy et al., 2022). Based
on a country-specific estimate for the United States (Dieter
et al.„ 2018), irrigation water withdrawals were estimated at
163 km3 in 2015, with consumptive use for irrigation esti-
mated at 101 km3. While climate change threatens the avail-
ability of water supply to sustain current irrigation practices
(Elliott et al., 2014), and while inter-sectoral competition for
water resources may also limit irrigation potential (Rosegrant
et al., 2002), opportunities for sustainable irrigation expan-
sion have also been identified to enhance food security under
both current and future climatic conditions (Rosa et al., 2018,
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2020a, b, 2022). Dams have been noted to play a unique
and critical role in realizing this future irrigation potential
(Schmitt et al., 2022). The role of dams in the enablement
of irrigation has been a particular focus of several large-scale
modeling analyses (Hanasaki et al., 2006; Fekete et al., 2010;
Biemans et al., 2011; Voisin et al., 2013a; Haddeland et al.,
2014).

Despite irrigation’s defining role, existing large-scale hy-
drological modeling (LHM) frameworks for national to
global assessments of water shortage (Vörösmarty et al.,
2000; Döll et al., 2003; Hanasaki et al., 2008; Pokhrel et al.,
2016; Sutanudjaja et al., 2018; Grogan et al., 2022) often ex-
ogenously impose trajectories of human land use that under-
lie irrigation demand in models, neglecting potential natural-
to-human-system feedbacks (Wada et al., 2017; Huang et al.,
2019), such as human instigation of and subsequent adapta-
tion to water scarcity (Turner et al., 2019; Dolan et al., 2021).
Regional analyses, for example, indicate that drought condi-
tions and reduced water supply can lead to the fallowing of
land and a reduction in irrigated areas, such as during the
2012–2016 California drought (Howitt et al., 2014). Evalua-
tion of the interplay between surface water reservoir manage-
ment and irrigation demand via the “reservoir effect” (Bal-
dassarre et al., 2018) and similar dynamics is also precluded
in large-scale water shortage analyses due to the lack of dy-
namic cropping adaptation in LHMs. While cropping migra-
tions have recently garnered attention in the agricultural cli-
mate adaptation literature (Sloat et al., 2020), the inability
of LHMs to represent such dynamics risks potential misdi-
agnosis of water shortage outcomes. The representation of
dynamic irrigated crop area adaptation in LHM frameworks
for national- to global-scale water shortage analysis remains
a major gap, though recent regional agent-based LHM im-
plementations suggest the potential (De Bruijn et al., 2023)

Our effort builds upon local and regional water-modeling
studies that have introduced and developed various forms of
two-way coupling between agent-based models and hydro-
logic water system models over recent years (Reeves and
Zellner, 2010; Giuliani et al., 2016; Castilla-Rho et al., 2017;
Khan et al., 2017; Yang et al., 2018, 2019; Hyun et al., 2019;
Yoon et al., 2021; Lin et al., 2022; Klassert et al., 2023).
Most of these local and regional applications have focused
on capturing coupled human–hydrological interactions in an
irrigated agricultural context, with some also including rep-
resentation of dam operation and other water user agent cat-
egories (e.g., urban user agents). In these previous efforts,
agent-based models have been integrated with models that
are commonly used for case-specific representation of hy-
drological water systems, such as agent-based model inte-
grations with MODFLOW (Reeves and Zellner, 2010; Yoon
et al., 2021), SWAT (Khan et al., 2017), and Riverware (Hyun
et al., 2019). The coupling of an agent-based model with a
large-scale hydrological model distinguishes the current ef-
fort.

Here we present a new modeling framework, WM-ABM,
to evaluate water shortage outcomes that emerge from the
interplay between climate-driven surface water availability,
reservoir management, and farmer irrigated crop area adap-
tation. The integrated model extends a large-scale, grid-
based, river-routing, reservoir management and water allo-
cation model, MOSART-WM (Voisin et al., 2013b), with
a multi-agent farmer model of crop choice developed us-
ing a positive mathematical programming (PMP) approach
(Howitt, 1995). While the PMP is an optimization-based sim-
ulation model, the approach allows for automated calibration
to observe cropping, economic, and hydrologic data, captur-
ing realistic crop patterning of farms (Heckelei et al., 2012)
and flexibly accommodating local, regional, or national cal-
ibration datasets. The model is deployed to conduct a hy-
pothetical computational experiment at 1/8° (∼ 12 km) spa-
tial resolution over the continental United States (CONUS)
(∼ 50 000 grid cells).

2 Methods

2.1 Integrated modeling approach

The large-scale spatially distributed modeling framework,
WM-ABM, integrates a farmer cropping adaptation model
into a large-scale river-routing water management model
(Thurber and Yoon, 2024). For the latter, an agent-based
model (ABM) approach is adopted with a representative
farmer implemented for each model grid cell. The farmer
agent’s crop selection and irrigation decisions are based on
a positive mathematical programming (PMP) approach, a
method for calibrating agricultural production functions to
observed data. Farmer decisions are based on water avail-
ability provided by the large-scale water management model,
MOSART-WM, which simulates surface water availability
for irrigation. The ABM and MOSART-WM models ex-
change information on an annual basis, with farmers looking
to past simulated water availability from MOSART-WM at
the onset of each calendar year and providing an updated wa-
ter demand based on cropping decisions to MOSART-WM
for the upcoming year. Following this annual update of de-
mand, MOSART-WM proceeds at a daily time step until the
following calendar year, at which time farmers once again
update their water availability forecasts, crop areas, and irri-
gation demand. A schematic illustration of a single year of
the model run is shown in Fig. 1. The framework is applied
to the continental United States at 1/8° spatial and daily tem-
poral resolutions, with model output aggregated and reported
on an annual and monthly basis. The two primary sub-models
of the integrated model, the farmer cropping sub-model and
the water availability sub-model, along with their coupling
and various data inputs, are described further in the follow-
ing sections.
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Figure 1. A model schematic of WM-ABM distinguishing between exogenous inputs (orange), model processes (green and blue), and model
outputs (brown). The model processes are further distinguished between the two interacting sub-models that constitute the integrated model:
the farmer cropping sub-model based on PMP and the water availability sub-model based on MOSART-WM. For any given year, farms first
update water availability expectations (using dynamic flow and storage states provided from the water availability sub-model) and make crop
choice decisions. These decisions result in updated irrigation demands which are fed to the water availability sub-model, which subsequently
routes surface water through the river network, determines reservoir releases, and allocates water supply to demand. Model outputs from
various processes are indicated in brown, with the granularity of model output described in brackets.

2.2 Agent-based model of farmer cropping decisions

The ABM entails agricultural agents, where each agent
serves as an aggregated farm, representing all real-world
farms that are located within a 1/8° grid cell (resulting in
53 835 representative farm agents over the entire model do-
main). The agents are involved in determining the types of
crops to be grown over the 1/8° grid cell and the areas
for each crop, taking into consideration the associated wa-
ter requirements to meet the irrigation needs for the selected
crop patterning. The agents further determine how much sur-
face water and groundwater to use for irrigation based on
the relative cost and availability of each water source. As
the MOSART-WM model focuses on simulating surface wa-
ter availability, groundwater availability for irrigation is as-
sumed to remain steady at the availability and cost estimated
for the baseline period. For example, under an increase in
surface water availability, farm agents can respond by either
reducing their groundwater production or increasing their ir-
rigated cropped areas while maintaining the same level of
groundwater production. While groundwater is treated as an
infinite reservoir at a static groundwater level over the sim-
ulation period, groundwater production for any given annual
time step is constrained to the amount of groundwater pro-

duction estimated for the calibration period. Our representa-
tion of groundwater in the model and its limitations are fur-
ther addressed in the Discussion section.

Farmers update their crop choices on an annual basis at
the start of the calendar year based on an imperfect forecast
of future surface water conditions for the coming year. For
the current experiment, farms forecast future surface water
availability for irrigation through tracking the state of hy-
drological proxies from MOSART-WM, which are then pro-
cessed through a memory decay function (Tamburino et al.,
2020) to determine a forecasted water demand for the follow-
ing year. This annual demand forecast is further partitioned
to individual months following the water use disaggregation
method and dataset described in Moore et al. (2015), which
utilizes a phenological approach to disaggregate annual irri-
gation water demand to monthly demand at 1/8° resolution
over CONUS. Specifically, farmers adopt the following steps
at the start of each model year (1 January):

1. Identify the average state of the hydrological proxy for
the most recent simulated year (Ht ).

a. For farmers within four grid cells (∼ 50 km) of
a river impounded by reservoirs (see ‘Large-scale
modeling of water availability” section below),
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the hydrological proxy is the sum (and associated
annual deviations) of simulated storage volumes
across upstream reservoirs impounding this river.
The 50 km threshold represents a reasonable esti-
mate of a distance cutoff for most diversions (Bie-
mans et al., 2011) while also being aimed at reduc-
ing computational expense (as the buffer increases,
additional agents or cells have access to any given
reservoir, increasing the computational requirement
for the reservoir water allocation algorithm).

b. For farmers not relying on upstream reservoirs, the
hydrological proxy is the river discharge in the co-
incident MOSART-WM grid cell.

2. Determine an adjusted surface water demand (Demadj)
by dividing the updated hydrological proxy by the hy-
drological proxy during the calibration period (Hb) and
multiplying by the surface water demand during the cal-
ibration period (Demb). The hydrological proxy during
the calibration period can be viewed as a long-term av-
erage of the hydrological state identified in step 1 above.

Demadj = (Ht/Hb×Demb (1)

3. Process the adjusted surface water demand through a
memory decay equation to calculate forecasted surface
water demand (Demf):

Demf = [(1−µ)×Demf,t−1] + (µ×Demadj), (2)

where µ is a memory decay factor between 0 and 1, and
Demf,t−1 is the surface water demand forecast from the
previous time step (or Demb if working with the initial
time step).

The memory decay factor, µ, determines how much the
farmer agent weighs distant versus recent experience (with
higher values indicating a higher weighting of recent experi-
ence). As a default, the factor is set at 0.2 (which weights the
most recent year by 0.20, the year before that by 0.18, and
so forth), with different values being explored during sen-
sitivity analysis. A figure illustrating the effect of µ on the
relative influence of previous years’ experience is included
in the Supplement.

For the implementation of adaptive crop choice and irri-
gation decision-making under dynamic expectations of wa-
ter availability, agricultural agents are assumed to behave
as profit-maximizing firms, implemented and calibrated us-
ing a positive mathematical programming (PMP) approach.
The PMP approach, introduced by Howitt (1995), has been
widely using in agricultural-policy-modeling studies (de Fra-
han et al., 2007; Heckelei et al., 2012). In the adopted PMP
framework, an agricultural agent’s crop choice decisions, in-
cluding types of crops and areas (and associated crop produc-
tion inputs), are framed as a quadratic optimization problem
in which the farm agent maximizes profit subject to land and

water availability constraints. Two unobserved cost terms
(one linear and one quadratic) are added to the profit maxi-
mization formulation, with the coefficient for these terms be-
ing calibrated such that the model reproduces observed land
use under known historical conditions. Conceptually, these
unobserved costs can abstractly represent a range of factors
not explicitly accounted for in the agent’s profit maximiza-
tion formulation, such as marketing, risk aversion, crop con-
version, and transaction costs.

The PMP procedure generally follows a two-phase pro-
cess. In the first calibration phase, the coefficients for the un-
observed cost terms are solved using a linear optimization
such that observed crop areas are reproduced under known
historical conditions (i.e., known conditions of production
costs, prices, land availability, and water availability). The
development of input datasets for this calibration phase is de-
scribed further in the following sub-sections. In the second
simulation phase, the calibrated optimization model is then
used to simulate farm agent cropping decisions for scenarios
which include changes in economic (e.g., costs and prices)
and physical (e.g., water availability) conditions, in our case
the simulation phase entailing the coupled MOSART-WM
runs. Specifically, each agricultural agent seeks to maximize
profit according to the following formulation:

maximize

profit =
∑

i
(pricei × yieldi × areairrtotali)− (landcosti

× areairrtotali)

− (αi × areairrtotali)−
(

0.5×βi × areairrtotal2i
)

− (swcost× areairrswi)− (gwcost× areairrgwi) , (3)

subject to∑
i

areairrtotali ≤ availablearea

ciri × areairrswi ≤ swavailability
ciri × areairrgwi ≤ gwavailability
areairrswi + areairrgwi = areairrtotali, (4)

where i refers to the index for crop categories; price refers
to the unit farm-gate price, which farmers receive for the
sale of crop i (USDt−1); yield refers to the amount of
crop produced per land area of crop planted (t per acre);
areairrtotal refers to the total irrigated planted crop area
(acres); areairrgw refers to the total planted crop area irri-
gated with groundwater (acres); areairrsw refers to the to-
tal planted crop area irrigated with surface water (acres); cir
refers to the crop irrigation requirement (m2 per acre); land-
cost refers to the unit cost for land-based inputs excluding
water (USD per acre); swcost refers to the unit cost for sur-
face water (USD per acre); gwcost refers to the unit cost for
groundwater (USD per acre) (fixed at the groundwater cost
estimated for the calibration period); α refers to the first
PMP calibration coefficient; β refers to the second PMP
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calibration coefficient; swavailability refers to the expected
surface water availability (as processed through MOSART-
WM); and gwavailability refers to the expected groundwater
availability (set at groundwater production volume estimated
for the calibration period).

The first term in the profit maximization formulation
above represents the farmer’s revenues from crop sales, the
second term represents known land-based costs for produc-
ing crops, the third and fourth terms are the calibrated unob-
served crop production costs, and the fifth and sixth terms are
costs for surface water and groundwater production for irri-
gation. The unobserved costs have a modulating effect on the
degree of simulated crop divergence from historical patterns,
tending to pull agents towards selecting crops observed in
the calibration period, while changes in modeled conditions
(prices, resource availability, etc.) potentially push agents to-
wards new crops. The data sources and processing for the
agent calibration are described further in the “Farm data for
PMP calibration” sub-section below.

2.3 Farm data for PMP calibration

The first stage of the PMP model development process in-
volves calibration of agricultural agents’ unobserved cost co-
efficients over a historical period. Specifically, coefficients
for the unobserved cost terms in the farm agents’ profit max-
imization formulation are calibrated such that the agents re-
produce observed crop areas under a known set of historical
prices, costs, and resource constraints (e.g., water and land
availability). The quadratic PMP calibration coefficients rep-
resent the unobserved costs of agricultural production activ-
ities (Garnache et al., 2017). These unobserved costs reflect
the technological, environmental, and market constraints fac-
ing individual farmers (Howitt et al., 2012; Paris and Howitt,
1998). The coefficients are derived from regional data about
crop acreages since land use data are more comprehensive
and accurate than direct estimates of marginal costs (Howitt,
1995). For the current effort, we aggregate farm agents at
1/8th degree grid resolution over the continental United
States, following the North American Land Data Assimila-
tion System (NLDAS) grid. In view of future work evaluat-
ing global change conditions, we adopt crop categories from
the Global Change Analysis Model (GCAM) (Calvin et al.
2019), a country-scale and global-scale multisectoral partial
equilibrium model used by the community to answer what-
if science questions around energy–water–land interactions
under policy, climate, and technology change.

The PMP calibration procedure assumes that observed
crop areas are the outcome of conditions representative of
a specific period of time. As such, the PMP calibration bene-
fits from identifying data sources that are available for a co-
incident time period. Given the large spatial extent of our
model, data for the PMP calibration have been drawn from
several disparate data sources that often do not precisely
align in terms of the date of data collection. The data sources

used for PMP calibration are summarized in Table 1. For our
purposes, we assume that these various data sources are an
averaged representation of the 2010–2013 historical period,
though we recognize that the datasets are drawn from dif-
ferent years and that conditions may be variable within this
time period. We select the 2010–2013 period due to both data
availability and historic drought conditions: (1) the Cropland
Data Layer (CDL), a critical input for a our data workflow, is
only available starting in 2008; (2) the start of the 2010s was
a period in which historic drought over the United States was
relatively low as a baseline (i.e., we are not calibrating to an
atypical period of water shortage); and (3) the USDA Farm
and Ranch Irrigation Survey is only available in 2013. We
combine these data sources together (CDL starting in 2010)
and consider them to be a historic representation of 2010–
2013 conditions. Exploring the sensitivity of PMP param-
eters and model behavior to the choice and uncertainty of
these input datasets is an important future research direction.
For example, the PMP could be recalibrated based on dif-
ferent years in which the CDL and USDA Farm and Ranch
Irrigation Survey are available, assessing the sensitivity of
the calibrated PMP coefficients against those generated with
the data used for this particular study.

To calibrate the PMP model, estimates of the follow-
ing data at 1/8° resolution for each GCAM crop category
and representative of the historical calibration period (2010–
2013) are required: cropland area, crop prices, cropland-
based costs, water-based costs, crop yield, and proportion
of cropped area that is irrigated. Development of these
datasets based upon United States Department of Agricul-
ture (USDA) and other agricultural data sources is described
further in the sub-sections to follow. We further note that we
largely rely on nationally available datasets for consistency in
calibration inputs across the model domain, though the PMP
automated calibration approach could readily accommodate
other datasets (e.g., local agricultural datasets).

2.3.1 Cropland area data for PMP calibration

Observed cropped land area data for the continental United
States used during the PMP calibration are estimated at 1/8°
resolution, combining data from the 2013 USDA Farm and
Ranch Irrigation Survey (FRIS) (USDA, 2013), which re-
ports official cropped areas at the state level, and the Crop-
land Data Layer (CDL) (USDA, 2019), which has provided
additional estimates of observed land cover classifications at
30 m resolution across the continental United States on an
annual basis since 2008. To further determine proportions of
irrigated versus non-irrigated crops and, for those crops that
are irrigated, proportions of groundwater-irrigated to surface-
water-irrigated crops, we leverage the FAO’s global map of
irrigated areas (Siebert et al., 2013). The approach generally
relies on the USDA irrigation survey data for acres irrigated
by crop at the state level, and then it distributes these total
areas within a state at 1/8° resolution following the distri-
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Table 1. Agricultural and irrigation data sources for calibration of the baseline PMP farm-cropping model.

Data/survey Product
name

Data description Resolution PMP application

2013 USDA Farm and
Ranch Irrigation Survey

Irrigated crop areas State level Used for state-level estimates of cropped areas which
feed into downscaling process

2010 Cropland Data
Layer

Observed land cover classi-
fications across the continental
United States

30 m The 30 m land use classifications are used to downscale
state-level irrigated crop areas to 1/8° resolution, which
is input to the PMP calibration process.

2013 FAO Global Map
of Irrigated Areas

Proportions of irrigated versus
non-irrigated and groundwater
versus surface water cropped
areas

5 arcmin Used to spatially distinguish between irrigated and
non-irrigated crops. For irrigated crops, this is used to
further distinguish between surface water and ground-
water irrigation sources.

2010 USDA Economic
Research Service’s
(ERS) Commodity Costs
and Returns

Estimates of annual production
costs and returns based on
historical accounts

Nine ERS Farm
Resource Regions
across the United
States

Used to provide prices (e.g., crop prices) and costs
(e.g., land-based costs) that are used during the PMP
calibration process

2013 USDA Farm and
Ranch Irrigation Survey

Irrigation water costs separated
by groundwater, on-farm
surface water, off-farm surface
water

State level Used to estimate water cost of different irrigation
sources for input during the PMP calibration process

2013 USDA Farm and
Ranch Irrigation Survey

Irrigation water requirements
per crop

State level Used to estimate irrigation water requirements per crop
for input during the PMP calibration process

bution observed in the CDL data. The FAO global map of
irrigated areas is used to further distinguish cropped areas by
the portion of area that is non-irrigated versus irrigated and,
for the latter, the portion of area that is irrigated with surface
water versus with groundwater.

As the FRIS, CDL, and GCAM crop categories differ, the
first step in data processing involves developing a mapping
between the crop categories for each source (included in
the Supplement). Using the mapping, each FRIS and CDL
crop category is assigned to a more general GCAM crop cat-
egory. Subsequently, the area of irrigated crops (following
the GCAM crop categories), distinguished by surface water
and groundwater irrigation, is calculated for each 1/8th de-
gree grid cell using the following general sequence (for each
state):

1. Determine summed area of CDL pixels assigned to each
crop category for each 1/8° grid cell.

2. For each grid cell, determine the area of each crop
category that is irrigated with groundwater, irrigated
with surface water, and non-irrigated based on percent-
ages reported in the FAO global map of irrigated areas
dataset.

3. Sum the total irrigated area for all crop categories across
the state.

4. Apply a scaling correction factor (uniform for all 1/8°
grid cells across the state) to the irrigated areas calcu-
lated in step 2 such that the total state-wide irrigated

area (calculated in step 3) matches the irrigated areas
reported in the USDA Farm Ranch and Irrigation Sur-
vey.

The full implementation and code are provided in the
project meta-repository. The approach assumes that the
USDA 2013 FRIS dataset reported at the state level is an ac-
curate representation of the total area of cropped land across
the state, while the CDL maps, which are based upon clas-
sification of satellite images, effectively capture the spatial
distribution of cropped area within a state (though they are a
less reliable indicator of total cropped area compared to the
USDA irrigation survey), and the FAO global irrigation maps
provide a reasonable spatial distribution of irrigated vs. non-
irrigated and groundwater- vs. surface-water-irrigated areas.

In some cases, the method above results in total crop areas
that exceed the total available land area of a 1/8° grid cell.
For these cells, we set the available land area constraints in
the agent-level optimization (see above) to this total observed
crop area such that the PMP can reproduce the calculated
total land areas but is unable to exceed them in simulation
mode.

For land area constraints set for each farm, we assume that
areas assigned to the following land use categories based
upon the CDL remain fixed throughout the model run and
are unavailable for cropping: NotAvailable, RockIceDesert,
and UrbanLand. To determine the land area constraint that
enters the PMP formulation for each NLDAS grid cell, we
take the maximum of (1) the total land area in the grid cell
subtracted from the categories described above and (2) the
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total land area allocated to irrigated crops determined from
the data-processing workflow described above.

2.3.2 Baseline water demand and irrigation estimation

The water demand estimation for the baseline calibration
period is calculated by taking observed crop-specific irri-
gated areas (see section above) and multiplying these by
a region-specific irrigation requirement based on the 2013
USDA Farm and Ranch Irrigation Survey (FRIS) (USDA,
2013). Specifically, the average acre-foot per year of irri-
gation water applied per acre of land is obtained for each
state on a crop-specific basis, which is assumed to be con-
sistent with the crop irrigation requirement. For each 1/8°
grid cell, the baseline demand is subsequently determined by
multiplying the estimated irrigated crop areas with their as-
sociated crop irrigation requirements and summing across all
crops. A table of the state-level irrigation requirements on a
crop-specific basis is included in the project meta-repository.
In an adaptive model simulation, agents are initialized with
their baseline water demands and subsequently adjust their
water demands as they adapt to changing water availability
conditions as the model steps through time. In our formu-
lation, only cropped areas are assumed to change over time
(the irrigation requirement, i.e., the depth of irrigation wa-
ter required per unit land area of crop planted, is assumed
to remain static over the model run). As the baseline wa-
ter demands are based on actual applied water data, these
demands are assumed to account for state-to-state and crop-
to-crop variation in climatology, irrigation technology, wa-
ter use efficiency, and other factors that influence crop irri-
gation requirements. The baseline water demand and irriga-
tion estimation is segmented by surface water and ground-
water based on the source-specific irrigated-area estimations
described in Sect. 2.3.1. For groundwater specifically, this
baseline groundwater irrigation estimate provides an agent-
specific annual groundwater production cap (in acre-ft per
year) that the agent cannot exceed for any given year of the
model run.

2.3.3 Crop prices, costs, and yields

Crop prices and costs are obtained from the USDA Eco-
nomic Research Service’s (ERS) commodity costs and re-
turns datasets, which are produced by the USDA on an an-
nual basis. Prices and costs in these datasets are aggregated to
nine ERS Farm Resource Regions across the United States.
Similarly to the USDA irrigation survey, ERS crop categories
are mapped to more general crop categories to enhance com-
patibility with other global models (as detailed in Table S1 in
the Supplement). Each NLDAS grid cell then uses the eco-
nomic information of the ERS farm region that it is located
within. Specific economic price and cost data derived from
the ERS datasets for each ERS farm region and GCAM crop
category include the following: total cost of production (USD

per acre), crop yield (bushels or tonnes per acre), the oppor-
tunity cost of labor (USD per acre), and the opportunity cost
of land (USD per acre). For the acreage-based inputs, the
ERS costs are generally estimated through surveys that ask
the farmer how much was paid on a per-acre basis for the
various inputs, which we assume to be on a planted-area ba-
sis. For empirical reasons we remove the USDA estimates of
unpaid labor costs and imputed opportunity costs of land as
the PMP calibration terms are better able to capture the rel-
evance and heterogeneity of these non-monetary production
costs. Crop prices and production costs are static over the
simulation period. The full cost tables are included as part of
the data and code meta-repository included with this paper.

2.3.4 Irrigation water sources and costs

Irrigation water sources and costs are derived from the 2013
FRIS database. The survey provides state-level estimates
of irrigation water volumes assigned to three water source
categories: (1) groundwater, (2) on-farm surface water, and
(3) off-farm surface water. The FRIS database also provides
state-level estimates of water purchase costs for off-farm sur-
face water (USD per acre-foot) and average energy pumping
costs for farms that utilize on-farm groundwater for irrigation
(USD per acre-foot). These per-unit water production costs
are assigned to each NLDAS grid cell based upon the state
that the cell falls within. On-farm surface water is assumed
to be free. Irrigation water costs are static over the simulation
period.

2.3.5 Partitioning land- and water-based costs

To partition land- and water-based costs in our farm agent’s
economic profit formulation, we adopt the following proce-
dure, reconciling data reported in the ERS commodity costs
and returns dataset and the 2013 FRIS database (the latter of
which reports costs specifically for irrigation water supply)
while also enforcing a minimum agent profitability thresh-
old:

1. Calculate perceived crop production costs as

PerceivedCostn,c = TotalCostn,c−OppCostLaborn,c

−OppCostLandn,c, (5)

where PerceivedCost refers to the perceived cost of
production (USD per acre), TotalCost refers to the to-
tal cost of crop production as reported in 2013 FRIS
(USD per acre), OppCostLabor refers to the opportu-
nity cost of labor for crop production as reported in 2013
FRIS (USD per acre), and OppCostLand refers to the
opportunity cost of land for crop production as reported
in 2013 FRIS (USD per acre).

2. Calculate the perceived profit for crops:

Profitn,c = (Yieldn,c×Pricen,c)−PerceivedCostn,c, (6)
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where Profit refers to the profit obtained from selling
crops (USD per acre), Yield refers to the yield of crop
production as reported in 2013 FRIS (tonnes per acre),
and Price refers to the farm-gate price for selling crops
as reported in 2013 FRIS (USD per tonne).

3. Calculate an adjusted perceived cost of production (Per-
ceivedCostAdj) which forces a minimum profit margin
of 10 %. This step is applied such that all observed crop
production is assumed to be profitable.

PerceivedCostAdjn,c = (Yieldn,c×Pricen,c)−Profitn,c

when Profitn,c ≥ 0.10×Yieldn,c

×Pricen,c,

PerceivedCostAdjn,c = (0.90×Yieldn,c×Pricen,c)

when Profitn,c < 0.10×Yieldn,c

×Pricen,c. (7)

4. Partition total crop production costs into land-based
costs and water-based costs assuming the following:

PerceivedCostAdj= LandCost+GroundwaterCost
+SurfaceWaterCost, (8)

where LandCost refers to land-based crop produc-
tion costs (USD per acre), GroundwaterCost refers to
the cost of groundwater based upon 2013 FRIS
(USD per acre), and SurfaceWaterCost refers to the cost
of surface water based upon 2013 FRIS (USD per acre).

5. For instances in which the sum of groundwater cost
(GroundwaterCost) and surface water cost (SurfaceWa-
terCost) exceeds the total cost of crop production as
reported in 2013 FRIS, adjust the GroundwaterCost
and SurfaceWaterCost to assume that they comprise the
same proportion of the total cost of crop production as
the United States average.

Large-scale modeling of water availability

Surface water availability that feeds into the farm agents’
cropping and irrigation decisions is dynamically provided
by MOSART-WM. MOSART-WM is a spatially distributed,
large-scale water management model consisting of a physi-
cally based river-routing model (MOSART, Li et al., 2013)
coupled with a generalized water management model (WM,
Voisin et al. 2013b) for seasonal to long-term studies.
MOSART-WM takes surface runoff generation input from
an external hydrological model, commonly referred to as the
Variable Infiltration Capacity (VIC) model in previous appli-
cations. In the river-routing component, daily surface runoff
is an input that is first routed across hill slopes and then dis-
charged into a tributary sub-network within each grid cell
before entering the main channel for transport across grid
cells. WM has two components: reservoir operations, which
influence the seasonality of flow and river storage, and water

supply management, which allocates supply from reservoirs
to spatially distributed demands across grid cells.

Our CONUS setup of the MOSART-WM model includes
all (1848) reservoirs with a storage capacity larger than
10× 106 m3, i.e., focusing on reservoirs that most influence
river discharge. The reservoir database and locations are ob-
tained from the Global Reservoir and Dam Database (GranD)
(Lehner et al., 2011). For daily reservoir storage and re-
lease operations, MOSART-WM adopts generic operating
rules that mimic monthly release and storage patterns based
on the objective of the reservoir (e.g., flood control, irriga-
tion), its physical characteristics (storage), and monthly cli-
matologies of inflow and demand, and it follows daily con-
straints for minimum environmental flow and minimum and
maximum storage volumes. The reservoir model builds upon
generic operating rules introduced in Biemans et al. (2011)
and Hanasaki et al. (2006) and improved upon for multi-
objective operations by Voisin et al. (2013b).

During the calibration phase of the PMP model, we as-
sume that an agent’s water availability constraints are non-
binding (i.e., the irrigation water required to produce the ob-
served surface-water-irrigated crop area estimates was avail-
able during the calibration period). To account for potential
inconsistencies between the estimated surface water irriga-
tion demand (as estimated via the data sources and proce-
dures described above) and VIC-MOSART-WM simulated
irrigation water availability for the calibration period, we
then apply a bias correction factor to the crop irrigation
requirements on a cell-by-cell basis such that total irriga-
tion demand matches VIC-MOSART-WM simulated water
availability for the historical calibration period. Such a treat-
ment attempts to reconcile potential inconsistencies between
estimated irrigation requirements calculated from the data
assimilation process described throughout the sub-sections
above and the actual irrigation water availability modeled
by VIC-MOSART-WM for the baseline period. The addi-
tive cell-specific bias correction factor is subsequently ap-
plied in simulation mode for each time period. This approach
addresses potential biases in VIC-MOSART-WM’s estimates
of irrigation water availability for baseline conditions and as-
sumes that these biases are maintained in the ABM simula-
tions that depart from baseline conditions while relying on
modeled results to estimate changes in water availability rel-
ative to the baseline condition.

3 Design of computational experiment

To evaluate the impact of farm-cropping adaptation on model
outcomes, the model is deployed to conduct comparative
simulations at 1/8° spatial resolution across CONUS with
and without incorporation of the adaptive farmer agents. To
capture a realistic sequence of hydrologic conditions, we
conduct an experiment that mimics the 1950–2009 hydro-
logical record, using simulated runoff derived with the VIC
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hydrology model (Liang et al., 1994). Henceforth, we num-
ber model years between 1–60, referring to a model year as
MY and its associated historical hydrological calendar year
as CY (e.g., MY 1 is associated with CY 1950). The CY
1950–2009 period is specifically selected to capture a range
of hydrologic conditions as VIC outputs are available over
this time period for a simulation that has been calibrated and
is considered to be a benchmark for the United States Bureau
of Reclamation (USBR), as used in the Secure Water Act (see
Reclamation, 2014, for additional details on VIC simulations
and calibration results).

To distinguish the effect of farmer adaptation to hydro-
logical change on water shortage outcomes, we compare
model results between a non-adaptive run and an adaptive
run, herein referred to as the baseline and adaptive runs, re-
spectively. Water shortage is calculated as follows:

WaterShortage= WaterDemand − LocalWaterSupply

− ReservoirWaterSupply, (9)

where WaterDemand refers to the initial water demand for ir-
rigation water as determined by a farmer agent, LocalWater-
Supply refers to the irrigation water supply to an agent from
river flow in a coincident grid cell (via MOSART-WM), and
ReservoirWaterSupply refers to the irrigation water supply to
an agent from connected reservoirs (via MOSART-WM).

In the baseline run, the surface-water- and groundwater-
irrigated crop areas are exogenous and static (in relation to
the baseline 2010–2013 conditions), as is common in the
LHM literature. In the adaptive run, farmer agents are ini-
tialized using the baseline 2010–2013 conditions and subse-
quently endogenously determine their irrigated cropped ar-
eas for 10 general crop categories on an annual basis based
on dynamically updated expectations of surface water avail-
ability (both local runoff and reservoir storage). The water
shortage analytics for both runs are then calculated using un-
met demand for surface water (i.e., the amount of water de-
manded subtracted from the amount of water supplied). For
the adaptive run, expected agricultural profits are also calcu-
lated for each year based on the farms’ cropping decisions.
With the adaptive farmer agents online, we additionally con-
duct sensitivity runs where we adjust the farmer agent mem-
ory decay parameter, allowing us to evaluate the impact of
the strength of agent memory on water shortage outcomes.

We note that the study is designed as a hypothetical ex-
periment to evaluate the influence of farmer cropping adap-
tation on modeled water shortage outcomes rather than be-
ing an attempt at a historical reconstruction of actual crop-
ping and water use patterns as other non-hydrological influ-
ences such as crop prices, areas equipped with irrigation, and
crop-specific irrigation requirements remain static over the
model run. The hypothetical experiment is rather designed
to identify the potential cropping adaptation response to hy-
drologically driven changes in water availability (using the
1950–2009 record as a reasonable window of hydrological

variability), holding all other influences constant. As such, a
detailed comparison of model results against observed data is
not applicable, though we evaluate the plausibility and rea-
sonability of model results by stress testing the farmer agent
model and by comparing modeled land use changes with ob-
served land use changes over an isolated period of drought
in the western United States to determine whether modeled
crop adaptations are commensurate with historical observa-
tions (see Supplement).

4 Results

4.1 The influence of farmer cropping adaptation on
water shortage outcomes

Accounting for farmer irrigated crop area adaptation substan-
tially alleviates simulated annual water shortages, especially
during periods of severe regional drought (Fig. 2; see Fig. S2
for monthly details). In Fig. 2, we show the annual differ-
ence in water shortage between the adaptive and baseline
versions of the model (annual water shortage in the adap-
tive run subtracted from annual water shortage in the baseline
run), aggregated for four California Hydrologic Unit Code
(HUC) 2 regions. We also identify the peak annual water
shortage (across all model years) for farm agents across the
western United States for both the adaptive and baseline runs,
with the ratio of the peak annual water shortage of the adap-
tive and baseline runs (i.e., peak annual water shortage of
the adaptive divided by that of the baseline) shown in Fig. 2.
Blue colors indicate reduced shortages with adaptation, and
orange colors indicate increased shortages with adaptation.
Water shortage alleviation due to adaptation is especially
prevalent across the western United States (Fig. 2b) and is
most evident during periods of drought (Fig. 2a), with the
HUC 2 region by far exhibiting the largest shortage differ-
ences due to adaptation. For example, water availability con-
ditions from MY 38–43 (CY 1987–1992) were some of the
driest in California’s recorded climate history. From the on-
set of these dry conditions to their culmination, modeled re-
sults indicate that cropping adaptation increasingly reduces
water shortages, reaching a decrease in average annual wa-
ter shortage of ∼ 107 m3 s−1 when comparing the adaptive
run to the baseline for MY 42 (monthly shortage decrease
reaches a peak of 299 m3 s−1 for August MY 1992). Neglect-
ing farmer adaptation potentially overestimates water short-
age by over a factor of 2 for MY 42–43 (the CY 1991–1992
drought years in California). Similar effects arise when ac-
counting for farmer adaptation in response to the droughts in
the Missouri region at the onset of MY 50 (CY 2000s), the
Upper Colorado region in MY 27–28 (the CY 1976–1977),
and the Pacific Northwest region MY 38–43 (CY 1987–1992
Snake River low-flow period). In the Missouri HUC 2 re-
gion, decreases in water shortage reach 2.4 m3 s−1 in MY 53
(CY 2002) when comparing the adaptive run to the baseline
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Figure 2. Comparative water shortage results from a hypothetical comparative model experiment mimicking 1950–2009 hydrology. Panel
(a) shows the annual difference in water shortage between the adaptive and baseline versions of the model (annual water shortage in the
adaptive run subtracted from annual water shortage in the baseline run), aggregated for four HUC 2 regions. Panel (b) identifies the peak
annual water shortage (across all model years) for farm agents across the western United States for both the adaptive and baseline runs.
The ratio of the peak annual water shortage of the adaptive and baseline runs (i.e., peak annual water shortage of the adaptive divided
by that of the baseline) is shown in the figure. For both (a) and (b), blue colors indicate reduced shortages with adaptation, and orange
colors indicate increased shortages with adaptation. Accounting for farmer cropping adaptivity results in substantial alterations in simulated
water shortages across the western United States, with a strong tendency towards mitigation of shortages. During extended periods of
drought conditions in the California, Missouri, Upper Colorado, and Pacific Northwest regions, shortage is substantially reduced when
taking adaptation into account (a). Peak annual shortage across the modeled time period is regularly only half of that experienced in the
baseline run when accounting for adaptation (b). While shortage is curbed in most areas due to adaptation, some areas in the Great Basin,
California, and Lower Colorado show an increase (indicated with orange colors).

(or 32 % of the shortage in the baseline run). In the Pacific
Northwest region, water shortage is reduced by 15 m3 s−1 in
MY 43 (or 66 % of the shortage in the baseline run) due to the
preceding 5-year low-flow period (CY 1987–1992 low-flow
period in the Snake River basin).

The evaluation of water shortages on a monthly basis (see
Supplement) indicates that water shortage differences be-
tween the adaptive model runs are concentrated in the peak
irrigation months in regions that regularly experience water
shortages. In the California region, for example, the water
shortage difference between the adaptive and baseline runs
in July reaches a peak of 299 m3 s−1 for MY 43 (∼ 3× be-
ing the annual MY 43 shortage difference rate). For the Pa-
cific Northwest region, the peak water shortage difference
between the runs reaches 126 m3 s−1 in MY 43 (∼ 8× the
annual MY 43 being the shortage difference rate).

While accounting for farmer irrigated crop area adaptation
primarily results in lower water shortages across the western
United States, there are also regions and periods in which
cropping adaptation exacerbates simulated water shortages
compared to non-adaptation. Increases in simulated water
shortage are notable in the headwaters of the middle Gila
River basin in Arizona, the Bear Watershed northeast of the
Great Salt Lake in Utah, and the southern end of the Cen-
tral Valley in California. Such increases in peak shortages
with adaptation are expected over regions which tend to ex-
perience sequences of increasing water availability (along
with increasing farmer expectations of water availability), in-
terspersed with low-water-availability years which result in
more severe shortages due to farmers’ increased water avail-
ability expectations. We also note that a lack of representa-
tion of long-distance inter-basin transfers may account for
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these increases in peak shortage for regions like the south-
ern Central Valley of California and the middle Gila River
basin in Arizona, a limitation which is addressed further in
the discussions.

Across the eastern United States (east of the Mississippi
River), water shortage differences between the adaptive run
and the baseline run are subdued, with significant changes
isolated to southern pockets of the Texas Gulf, Lower Missis-
sippi, and South Atlantic–Gulf regions (see Fig. S3 for a full
CONUS map). For both runs, the US-wide peak water short-
age occurs in MY 28 (CY 1977), with a 364 m3 s−1 peak for
the baseline run and a 332 m3 s−1 peak for the adaptive run
(32 m3 s−1 difference between the two).

4.2 Farmer cropping adaptation via acreage changes
versus crop switching

In the most prominent regions of water shortage, the model-
ing experiment results indicate that farmers primarily adapt
through the contraction of irrigated cropped areas, with crop
switching playing a secondary role. Figure 3a–d show simu-
lated changes in total SW-irrigated crop areas for four repre-
sentative regions with prominent shortages (California, Mis-
souri, Upper Colorado, Pacific Northwest), while Fig. 3e–
h assign farms to crop adaptation categories based on the
amount of crop adaptation simulated over the model pe-
riod. For the latter, agents are assigned to one of four cat-
egories depending on the level of crop adaptation activity,
conducted for each agent considering every year of model
output: (1) crop expansion or contraction if the ratio of an
agent’s annual minimum surface-water-irrigated crop area
is less than 80 % of the annual maximum surface-water-
irrigated crop area, (2) crop switching if the predominant
crop’s share of the total crop makeup for any given agent
(measured in terms of crop area) changes by at least 5 % be-
tween any 2 years of the model run (which do not need to
be consecutive), (3) both if the agent satisfies both criteria 1
and 2 above, and (4) none if the agent satisfies none of these
criteria.

Model results indicate that irrigated crop adaptation ac-
tivity is heavily concentrated in the western United States,
with relatively subdued activity in the eastern United States
outside of the Lower Mississippi and South Atlantic–Gulf re-
gions (see Fig. S4 for a full CONUS map). Across the west-
ern United States, irrigated crop adaptation largely takes the
form of overall crop expansion and contraction, with notable
hot spots of adaptation including the California Central Val-
ley, Snake River basin, and the Western Missouri regions.

In California, total SW-irrigated cropped areas fluctuate
substantially. Preceding the MY 38–43 drought (CY 1987–
1992), SW-irrigated crop areas reach a maximum of 3.6 mil-
lion acres in MY 36, dropping to 2.5 million acres by the
end of the drought in MY 42, a 31 % decline in SW-irrigated
areas over an 8-year period. Crop makeup (in terms of the
percentage each crop accounts for among all SW-irrigated

crops) remains steady, with a slight shift away from rice
crops (a decrease from 13.7 % of all SW-irrigated crops to
11.8 %). Crop adaptation in response to shortage is pro-
nounced in the Central Valley (Fig. 3e), with farmer agents
predominately adapting to water shortage through crop area
contractions (blue cells).

In the Missouri region, widespread declines in SW-
irrigated areas are simulated over the course of the first
10 years of the model run (CY 1950s drought) across all crop
categories. During this period, SW-irrigated areas peak at 3.2
million acres in MY 4, decreasing 25 % to 2.4 million acres
in MY 13. Over this period, the relative proportion of crops
remains nearly stable, with slight decreases in fodder grass
as a relative share of total SW-irrigated crops (dropping from
48 % of SW-irrigated crops in MY 4 to 43 % in MY 13).
The relative drop in fodder grass is accompanied by a rela-
tive increase in grains and miscellaneous crops. Additional
major cycles of crop area contraction and expansion are ob-
served over the simulation period (e.g., expansion starting
around MY 45 and subsequent contraction starting around
MY 50). Upper Colorado similarly experiences a steady re-
duction in SW-irrigated areas over the first several years of
the simulation, reaching a minimum during MY 27–28 (the
CY 1976–1977 drought), followed by cycles of crop expan-
sion and contraction during the latter half of the simulation
period.

For the Pacific Northwest region, marked contractions in
SW-irrigated cropped areas, as well as crop switching, are
simulated over the course of a major low-flow period in the
Snake River basin from MY 38–43 (CY 1987–1992). From
a SW-irrigated area of 4.3 million acres in MY 38, SW-
irrigated area drops to a minimum of 3.3 million acres in
MY 43, a 24 % decline in area. Substantial crop switching is
also simulated over this period, with fodder grass giving way
to miscellaneous crop, root tuber, and wheat in terms of the
relative share of total SW-irrigated crop areas.

Farmer adaptation to declining water availability via total
SW-irrigated crop area contractions and crop switching leads
to associated declines in expected agricultural profits, though
these declines are typically more subdued than the associ-
ated decrease in expected water availability or SW-irrigated
crop areas. For the California region over the MY 36–44
(CY 1985–1993) period, expected agricultural profits (to-
taled over both SW- and GW-irrigated areas) decline from
USD 1.84 billion to USD 1.68 billion (an 8 % decline), in
spite of a 31 % decline in SW-irrigated areas. The sub-
dued profit impact is attributable to both crop switching and
groundwater availability remaining steady; these comprise a
significant percentage of irrigation water needs in Califor-
nia. In the Missouri region over MY 4–13 (CY 1953–1962),
agricultural profits decline from USD 2.53 billion in MY 4
to USD 2.50 billion in MY 13, a mere 1 % decline in spite
of a 25 % decline in SW-irrigated crop areas, reflecting the
predominant role of groundwater over surface water for irri-
gation water in this region. In the Pacific Northwest region,
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Figure 3. Farmer cropping results from a hypothetical comparative model experiment mimicking 1950–2009 hydrology. Panels (a–d) show
changes in surface-water-irrigated acreages by crop for the adaptive model run, aggregated for the four HUC 2 regions of interest shown
(California, Missouri, Upper Colorado, and Pacific Northwest). Panels (e–h) classify individual farm agents in the adaptive model run with
significant irrigation being assigned to one of four categories based upon the level of cropping adaptation (looking over the entire model
period): (1) crop expansion or contraction (in blue) if the ratio of an agent’s annual minimum surface-water-irrigated crop area is less than
80 % of the annual maximum surface-water-irrigated crop area, (2) crop switching (in green) if the predominant crop’s share of the total crop
makeup for any given agent (measured in terms of crop area) changes by at least 5 % between any 2 years of the model run (which do not
need to be consecutive), (3) both (in purple) if the agent satisfies both criteria 1 and 2 above, and (4) none (in orange) if the agent satisfies
none of these criteria. Farm agents that experience significant water shortages, likewise evaluated over the entire model run, are indicated
with a red outline. Expansions and contractions in irrigated cropped areas are simulated in response to major hydrological events (a–d).
Farmer agents in the model largely adapt (e–h) to drought through crop contraction (blue cells with red outline), whereas crop switching
(green cells) plays a less prominent role and is more prevalent in non-shortage areas. Some agents do not adapt in spite of shortage (orange
cells with red outline).

Hydrol. Earth Syst. Sci., 28, 899–916, 2024 https://doi.org/10.5194/hess-28-899-2024



J. Yoon et al.: Representing farmer irrigated crop area adaptation in a large-scale hydrological model 911

Figure 4. Farmer agent sensitivity runs with the annual water shortage percentage (defined as unmet water demand divided by water demand)
aggregated for six HUC 2 regions and ranked by year of shortage. For each year, results from five different experiments are shown, namely
the baseline run (indicated in blue) and four adaptive runs in which the strength of agent memory as defined through a memory decay factor µ
(see Methods section for details) is adjusted between 0.2–0.8 (indicated in shades of red, with lighter shades of red indicating shorter agent
memory, i.e., higher reactivity to more recent events). The largest reductions in water shortage due to farmer cropping adaptation occur in
the highest-shortage years, as most notably evidenced by the difference in the baseline and adaptive shortages for the highest-shortage years
(left sides of the charts) in the California, Pacific Northwest, and Upper Colorado regions. Results are largely robust across agent memory
sensitivity runs, with the general direction of the difference between the baseline run (blue) and the agent adaptation runs (shaded red) usually
remaining consistent (i.e., the blue dot usually lies on one end of the shaded red dots for any given region and/or year).

expected agricultural profits decrease from USD 1.60 billion
in MY 38 (CY 1987) to USD 1.54 billion in MY 46 (CY
1995), a 5 % decline associated with a 24 % decline in SW-
irrigated area. Results showing expected agricultural prof-
its for all HUC 2 regions and model years are included in
Fig. S5.

4.3 The sensitivity of water shortage outcomes to
farmer agent memory of water availability

Figure 4 indicates the annual average shortage percentage
(shortage divided by demand) for the baseline run (blue dots)
and four sensitivity runs with varying agent memory param-
eterizations (red dots) for several HUC 2 watersheds. The
model years are ranked in descending order by year of short-
age (as simulated in the baseline run) to evaluate the impact
of agent memory for varying relative levels of shortages. The
four sensitivity runs serve to assess the robustness of results
in terms of the varying strengths of agent memory in relation
to past water availability, with the adaptive run described in
the results above (µ02) colored in the darkest shade of red
and indicating relatively long memory, while lighter shades
of red indicate decreasing strength of agent memory (i.e., in-

creased agent reactivity to more recent experiences of water
availability with higher values of µ).

Across regions, shortage in the baseline run typically falls
into one extreme of the adaptive runs for a given year (i.e.,
for a given year and region, the four adaptivity runs are either
consistently higher or consistently lower than the baseline
run, with some exceptions). The spread in shortage between
the adaptive runs for any given year and region is also typ-
ically well constrained, with the largest spread between the
sensitivity runs occurring during the higher-shortage years
in the California, Upper Colorado, and Pacific Northwest re-
gions. These findings indicate that the comparative evalua-
tion between the baseline and adaptive runs (in terms of the
direction of water shortage change between the two runs) is
largely robust in terms of assumptions regarding the strength
of agent memory, though the parameterization of agent mem-
ory can control the magnitude of the shortage difference be-
tween the baseline and adaptive runs.

Comparing the baseline results versus the adaptive re-
sults, we further observe that the largest reductions in water
shortage due to adaptation tend to occur in the years of the
highest water shortage. California provides the most promi-
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nent example, in which the shortage difference between the
baseline run and the adaptive runs is readily apparent dur-
ing the 10 highest years of shortage (i.e., the first 10 years
on the x axis of Fig. 4). Beyond the 15th highest shortage
year in California, this pattern reverses, with the adaptive
runs typically indicating slightly higher shortages than the
baseline run. Similar patterns are observed for the Pacific
Northwest and Upper Colorado regions. For the Missouri and
South Atlantic–Gulf regions, agent adaptation tends to lead
to higher shortages, irrespective of the degree of shortage in
any given year.

5 Discussion and conclusion

We demonstrate the representation of farmer irrigated crop
area adaptation to changing water availability in a large-
scale hydrological modeling framework, with farmer agents’
adaptivity specified using a positive economic calibration
approach. The modeling framework allows for the evalua-
tion of dynamic feedbacks between irrigated cropping areas,
reservoir management, and water availability and reveals that
these interactions strongly shape national-scale water short-
age outcomes. In a comparative hypothetical experiment con-
ducted for all of CONUS, annual water shortages decrease
by as much as 42 % when accounting for farmer cropping
adaptation, with differences due to adaptation being even fur-
ther pronounced in regions prone to water shortage, such as
California (where neglecting farmer adaptation results in an
overestimate of water shortage by a factor of 2 during the
year of highest shortage). Our hypothetical modeling exper-
iment indicates that traditional large-scale modeling efforts
that neglect adaptive cropping adaptation may be liable to
misdiagnose water shortage outcomes. While farmer adap-
tation to decreasing surface water availability is accompa-
nied by an associated loss in expected agricultural profit, this
loss is buffered by the ability to switch crops and reallocate
groundwater to more profitable crops to compensate for sur-
face water shortages.

Particularly in agricultural hotspots with highly variable or
declining water availability, the assumption of non-adaptive
behavior most common in LHMs leads to overestimation of
water shortages in our experiment. By isolating the effects of
changing water availability on farmer cropping through com-
paring hypothetical adaptive and non-adaptive runs, our find-
ings suggest that adaptation can significantly alleviate water
shortages and bring into question the severity of water short-
age outcomes indicated by global water security analyses that
neglect such adaptations, especially for regions such as the
western US in which water availability is expected to de-
cline due to climate change (Dettinger et al., 2015). For such
regions with declining water availability trends, representa-
tive farm agents systematically overestimate water availabil-
ity when they do not adapt their cropping based on changing
hydrological conditions, resulting in higher shortages.

While initial sensitivity tests indicate that our results are
robust in relation to assumptions regarding agent memory
of water availability, additional uncertainty characterization
and sensitivity experiments on agent behavioral formulation
and parameterization offer a promising direction for future
research. Such uncertainty analysis could be conducted ei-
ther at the level of the source PMP calibration data inputs, at
the level of the PMP parameters themselves, or via alternate
structural representations of farmer cropping decisions (Yoon
et al., 2023). For example, estimation of the PMP parameters
using alternative data sources or implementation in a data as-
similation framework (Maneta and Howitt, 2014) could be
conducted to further explore the implications of agent pa-
rameterization for water shortage outcomes.

While our study focuses on irrigated crop area changes, the
modeling framework could further be extended to consider
additional farm-level adaptive mechanisms and considera-
tions such as deficit irrigation, adoption of technological in-
novations (e.g., crop varietals, improved irrigation technolo-
gies), and costs for crop switching. New typologies for repre-
senting such adaptive action in human system models (Yoon
et al., 2022) could serve to design and organize such formula-
tions. The hydro-economic formulation of farmer agent crop
choices could further enable the investigation of economy-
wide, multi-sector interactions. For example, future research
could link WM-ABM with computable general-equilibrium
or partial-equilibrium models, exploring economy-wide con-
sequences and feedbacks of water-shortage-induced crop-
ping adaptation (in the fashion of Turner et al., 2019; Dolan
et al., 2021; Basheer, et al., 2021) that account for the hy-
drological, water management, and farmer processes repre-
sented in WM-ABM. Such feedbacks may serve to further
alter water-shortage-induced crop area impacts (e.g., via crop
price signals that shift crop production to more water-rich ar-
eas).

We further note additional key limitations of the current
modeling framework. While we represent groundwater pro-
duction for irrigation in the modeling approach, the avail-
ability and cost of groundwater production are held fixed in
relation to baseline calibration conditions, a limitation of our
analysis. The ability of farms to increase groundwater extrac-
tion in response to surface water shortage and changes in the
availability and cost of groundwater (e.g., due to depletion of
groundwater in stressed aquifers) is not currently represented
in our modeling framework. These potential responses may
either mute the simulated water shortage changes (e.g., in-
stances in which farmers increase groundwater pumping to
accommodate surface water shortage) or heighten them (e.g.,
instances in which increasing groundwater depletion results
in even higher shortages and ensuing adaptive responses).
It is challenging to suggest a consistent implication of im-
proving groundwater dynamics in the model; in some cases,
farms may compensate for surface water shortage by pump-
ing more groundwater where this is physically and economi-
cally viable, while in other cases, groundwater depletion may
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lead to reductions in production (due to changes in capac-
ity, cost, or quality) that intertwine with surface water avail-
ability changes in a more complex manner. The evolution
of such changes over time given regional hydrological and
agronomic differences remains a major question. The incor-
poration of a dynamic sub-model for groundwater aquifer re-
sponse to surface water conditions and groundwater pump-
ing thus presents an important avenue for future research and
model improvement, one that is anticipated as a future update
to the initial version of the model introduced in this work.

The absence of inter-basin water transfers in the modeling
framework further limits the analysis, with some instances
of increased shortage with adaptation (e.g., in the southern
California Central Valley and the middle Gila River basin,
which are recipients of large inter-basin transfers in reality)
appearing to be artifacts of this modeling limitation. In these
regions, farms in the model base expectations of water avail-
ability on local runoff, while in reality they are able to re-
ceive water from distant water sources via inter-basin water
transfers. We note that inter-basin transfers are largely ab-
sent in LHM applications (Wada et al., 2017) due to data
limitations at large scales, and we suggest that the develop-
ment and incorporation of national (e.g., Siddik et al., 2023)
and global inter-basin transfer datasets offer a promising next
step for continued LHM improvement. Recent efforts have
further explored the effects of social norms on the influence
of farmer behavior, for example evaluating the influence of
social norms on farmer forecasts (Hu et al., 2006). Such
considerations have been operationalized in coupled human–
water system models, such as by representing social norms
in terms of compliance in irrigated agricultural groundwater
systems (Castilla-Rho et al., 2017) and beliefs about water
supply conditions in a reservoir-controlled river system (Lin
et al., 2022). The incorporation of social-norm effects into
ABM integration with LHMs represents another future av-
enue of research, though considerations of aggregation and
scale (e.g., highly aggregated representative agents in LHMs)
pose additional conceptual challenges relative to more highly
resolved applications.

The coupled model and hypothetical experiment presented
here intentionally focuses on isolating farmer cropping re-
sponse to surface water availability changes, tracing complex
dynamic feedbacks between hydrological variability, surface
water reservoir management, farmer crop choice, and irri-
gation demand. Our findings indicate that these interactions
can shape the geographic distribution of crops and alter the
magnitude of simulated water shortages, with the coupled
MOSART-WM and farm ABM modeling framework provid-
ing a foundation from which to account for dynamic crop-
ping adaptation amidst climate and socioeconomic change in
future large-scale water security assessments.

Code and data availability. All data and code required to run the
model and reproduce numerical experiments are provided in the
following repository: https://github.com/IMMM-SFA/yoon-etal_
2024_hess and https://doi.org/10.5281/zenodo.10689596 (Thurber
and Yoon, 2024).
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