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Matching crop categories between datasets 

For the model, we use 10 general crop categories that closely follow those used in the Global Change 

Assessment Model (GCAM), which include: corn, fiber, fodder, grain, miscellaneous, oil, rice, root tuber, 

sugar, and wheat. Each of the datasets used to calibrate the farmer agents (USDA Farm and Ranch 

Irrigation Survey, USDA Cropland Data Layer, and USDA Economic Research Service’s Commodity 

Costs and Return datasets) reports on crop statistics using different (typically more detailed) crop 

categorizations compared to GCAM. We accordingly assign crop types from the various datasets to one 

of the general GCAM crop categories using the crop category mapping provided in Table S2. 

The utilization of the 10 general crop categories for the model introduces simplifications in modeled crop 

representations with potential implications for model results. For example, over 50 crops from the CDL 

dataset are assigned to the miscellaneous crop category, with the model only tracking irrigated areas for 

all these crops combined into a single category. Similarly, each general crop category is characterized by 

a representative economic price/cost (e.g., the miscellaneous crop category is characterized by a single 

representative price, though this price can vary between regions/agents). Such an aggregation of 

economic prices/costs could introduce significant bias in the calibration procedure, specifically as cost 

data from the USDA ERS dataset is limited to a select group of crops. For miscellaneous crops for 

example, the economic data for peanuts is utilized as the representative crop for all other miscellaneous 

crops due to limitations in the USDA ERS dataset. 

While such aggregation and mapping of crops introduces limitations and potential inaccuracies in the 

model calibration and outcomes, we argue that such aggregation is necessary and reasonable given the 

large-scale nature of the modeling endeavor and limited data at more detailed levels of crop categories at 

CONUS-scale. The introduction of additional or more detailed crop categories would also result in 

excessive computational burden (each new crop is an additional decision variable in the farmer’s 

optimization problem) for such a large-scale effort. For future research, we recommend evaluating the 

sensitivity of model results to these crop categories and the underlying data inputs used for each crop 

category during model calibration.  
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GCAM 

Category 

USDA FRIS 

Crops 

USDA 

ERS CDL Crops 

Corn 

Corn for grain 

or seed, 

Alfalfa, Corn 

for Silage or 

Greenchop Corn 

Corn, Sweet Corn, Por or Orn Corn, Dbl Crop Barley/Corn, 

Dbl Crop Corn/Soybeans 

Fiber All cotton Cotton Cotton 

Fodder All other hay,  

Grain 

Sorghum* Alfalfa, Other Hay/Non Alfalfa 

Grain 

Other small 

grains, 

Sorghum for 

grain or seed 

Barley, 

Oats, 

Sorghum 

Sorghum, Barley, Other Small Grains, Rye, Oats, Millet, 

Speltz, Buckwheat, Triticale, Dbl Crop Oats/Corn, Dbl Crop 

Lettuce/Barley, Dbl Crop Durum Wht/Sorghum, Dbl Crop 

Barley/Sorghum, Dbl Crop WinWht/Sorghum, Dbl Crop 

Soybeans/Oats, Dbl Crop Barley/Soybeans 

Miscellaneous 

Beans, Tomato, 

Berries, 

Orchards, 

Vegetable, 

Lettuce, 

Peanuts, Sweet 

Corn, 

Tomatoes Peanut 

Tobacco, Mint, Mustard, Dry Beans, Other Crops, Misc Vegs 

& Fruits, Watermelons, Onions, Cucumbers, Chick Peas, 

Lentils, Peas, Tomatoes, Caneberries, Hops, Herbs, 

Clover/Wildflowers, Sod/Grass Seed, Cherries, Peaches, 

Apples, Grapes, Christmas Trees, Other Tree Crops, Citrus, 

Pecans, Almonds, Walnuts, Pears, Pistachios, Asparagus, 

Garlic, Cantaloupes, Prunes, Oranges, Honeydew Melons, 

Broccoli, Peppers, Pomegranates, Nectarines, Greens, Plums, 

Strawberries, Squash, Apricots, Vetch, Lettuce, Pumpkins, 

Dbl Crop Lettuce/Cantaloupe, Dbl Crop Lettuce/Cotton, 

Blueberries, Cabbage, Cauliflower, Celery, Eggplants, 

Gourds, Cranberries 

Oil 

Soybeans for 

beans Soybean 

Soybeans, Sunflower, Peanuts, Canola, Flaxseed, Safflower, 

Rape Seed, Camelina, Olives, Dbl Crop Soybeans/Cotton 

Rice Rice Rice Rice 

Root Tuber Potatoes Potatoes* Potatoes, Sweet Potatoes, Carrots, Radishes, Turnips 

Sugar Sugarbeets* Beets Sugarbeets, Sugarcane 

Wheat 

Wheat for grain 

or seed Wheat 

Durum Wheat, Spring Wheat, Winter Wheat, Dbl Crop 

WinWht/Soybeans, Dbl Crop Lettuce/Durum Wht, Dbl Crop 

WinWht/Cotton 

Table S1. Crop category mappings between datasets. 

USDA Economic Research Service’s (ERS) Commodity Costs and Return Datasets 

Economic data on agricultural crop prices and productions costs for calibration of the farmer agent model 

is obtained from the USDA ERS Commodity Costs and Return Datasets. The USDA has estimated annual 

agricultural production costs and returns since 1975, with the annual estimates based upon producer 



surveys that are conducted every 4-8 years depending upon the commodity. As reported in the USDA 

ERS documentation, “The theoretical basis and accounting methods used for the most recent estimates of 

commodity costs and returns conform with standards recommended by the American Agricultural 

Economics Association (AAEA) Task Force on Commodity Costs and Returns.” While some previous 

studies deploy similar economic costs and returns, these are typically focused on specific locales or 

regions. While datasets collected for specific locales might provide a more accurate economic farm 

information, such local studies likely adopt different data collection methods and estimates potentially 

leading to regional biases in model results if consolidated for use in our analysis. As such the, USDA 

ERS commodity costs and returns dataset is adopted for the current analysis, given its national coverage 

and consistent data collection and estimation approach across all regions. 

Agent Memory Parameterization 

The agent memory parameter controls how agents weigh the relative importance of recent versus distant 

experience in their expectations of future water availability. Based on the memory decay formulation, a 

chart indicating the relative weight for preceding years on agents’ expectations of water availability is 

shown on Figure S1. 

 

Figure S1 - The relative weight of previous years experience (with 0 being the most recent year of experience and 

17 being the most distant) on influence farmer’s future expectation of water availability based on various values of 

agent’s memory decay factor, µ 

 

 



 

Additional Monthly Model Results 

Monthly water shortage changes with adaptation are presented on Fig. S2, supplementing the annual 

results provided in the main manuscript text. 

Figure S2 – Monthly water shortage change (m3/s) with adaptation when comparing the adaptive to the baseline run 

(i.e., monthly water shortage in the adaptive run subtracted by monthly water shortage in the baseline run), 

aggregated over six HUC 2 regions of interest.. Blue colors (negative values) indicate reduced shortages when 

accounting for adaptation, while orange colors (positive values) indicate higher shortages when accounting for 

adaptation. These results provide monthly detail on the annual results presented in Fig. 1 of the main manuscript. 

 

 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

     

          
      

           
      

     
        
      

        
      

       
         
      

     
        
      

    

    

    

 

 

  

  

 

  

  

  

   

   

 

    

   

 

  

   

   

 

        

        

                

   
    

             

 
  
  
 



CONUS-wide results for Water Shortage Differences 

 

Figure S3 - Comparative water shortage results from a hypothetical comparative model experiment mimicking 

1950-2009 hydrology. The figure identifies the peak annual water shortage (across all model years) for farm agents 

across the western United States for both the adaptive and baseline runs. The ratio of peak annual water shortage of 

the adaptive and baseline runs (i.e., peak annual water shortage of the adaptive divided by that of the baseline) is 

shown on the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

                  

                   
      

           

                 

                 

                

              

     

        

           

           

            
           

   

      

          

         

          

         

    

                

                                   

        

          

          

           

            

           

          

          

        

  

          



CONUS-wide results for Farm Cropping Adaptation 

 

Figure S4 - Farmer cropping results from a hypothetical comparative model experiment mimicking 1950-2009 

hydrology. The figure classifies individual farm agents in the adaptive model run with significant irrigation into one 

of four categories based upon their level of cropping adaptation (looking over the entire model period): 1) “crop 

expansion/contraction” (in blue) if the ratio of an agent’s annual minimum surface-water irrigated crop area is less 

than 80 percent of the annual maximum surface-water irrigated crop area, 2) “ crop switching” (in green) if the 

predominant crop’s share of the total crop makeup for any given agent (measured in terms of crop area) changes by 

at least 5 percent between any two years of the model run (which do not need to be consecutive), 3) “both” (in 

purple) if the agent satisfies both criteria 1 and 2 above, and 4) “none” (in orange) if the agent satisfies none of these 

criteria. Farm agents that experience significant water shortage, likewise evaluated over the entire model run, are 

indicated with a red outline. Expansions and contractions in irrigated cropped areas are simulated in response to 

major hydrological events (a-d). Farmer agents in the model largely adapt (e-h) to drought through crop contraction 

(blue cells with red outline), whereas crop switching (green cells) plays a less prominent role and is more prevalent 

in non-shortage areas. Some agents do not adapt in spite of shortage (orange cells w/ red outline). 

 

 

 

 

 

 

 

 

                   

                        

           

                 

      

           

                

              

      

         

                      

            
           

          

          

          

          

        

    

               

                          

    

                       

         

            

                         
       



Expected Agricultural Profit Results 

 

Figure S5 – Expected Agricultural Profit Results ($) from irrigated crops for all HUC 2 regions. 

          

                                     

         
         
      

          
      

           
      

           
      

     
        
      

     
           
      

            
      

        
      

           

       
         

      

          
      

           
     

      

     

             
      

         
      

          
      

     
        

      

     

           
      

    

    

    

     

     

     

    

    

    

    

    

    

    

   

   

   

     

     

     

     

     

     

     

      

      

      

     

     

    

    

    

    

      

      

    

    

    

     

     

     

    

    

   

   

   

      

      

      



Evaluating the plausibility of simulated modeling results 

To evaluate the plausibility of our modeling results, we compare simulated irrigated land use values via 

WM-ABM with observed irrigated land use values from the USDA Agricultural Census, retrieved using 

the USDA’s National Agricultural Statistics Quick Stats tool (USDA, 2017). As non-hydrological factors 

(e.g., crop prices, crop production costs, equipped irrigated area, etc.) are treated statically in our 

simulations, a formal validation process is not possible for the model results for the hypothetical 

experiments. Given such, our strategy for the evaluation of model plausibility is to isolate a relatively 

short time window over which significant hydrological changes occurred, comparing model results 

against USDA surveyed data over this time period. As irrigated land use data from the USDA census is 

limited (available in 5-year intervals from 1997-2007), we specifically focus on the 2000-2005 time 

period during which much of the Western United States experienced drought conditions.  

For the evaluation, we specifically compare percent changes in irrigated land use area between 2000-2005 

from WM-ABM, comparing these changes with those recorded by the USDA agricultural census in 2002 

and 2007. For the WM-ABM output, we report the total irrigated land use area (over all crops and 

including both surface water and groundwater sources). For the USDA data, we specifically report the 

land area of harvested cropland that is entirely irrigated. The comparison (shown in Table S2) is 

conducted for the 11 states in the Western United States in which irrigated land use and water shortages 

are most prevalent. 

States 
USDA Initial 
Area (2002) 

ABM Initial 
Area (2000) 

USDA 
Initial Area 

(2007) 

ABM Final 
Area (2005) 

USDA 
Percentage 

Change 

ABM 
Percentage 

Change 

Arizona 0.90 0.91 0.82 0.85 -8.9% -6.6% 

California 7.40 7.78 6.90 7.37 -6.8% -5.3% 

Colorado 1.74 2.05 1.77 1.83 1.7% -10.7% 

Idaho 2.68 3.65 2.67 3.16 -0.4% -13.4% 

Montana 1.12 1.50 1.08 1.18 -3.6% -21.3% 

Nevada 0.61 0.50 0.62 0.49 1.6% -2.0% 

New Mexico 0.64 0.61 0.61 0.60 -4.7% -1.6% 

Oregon 1.28 1.19 1.21 1.03 -5.5% -13.4% 

Utah 0.81 0.89 0.90 0.82 11.1% -7.9% 

Washington 1.40 1.40 1.31 1.22 -6.4% -12.9% 

Wyoming 1.28 1.07 1.12 0.84 -12.5% -21.5% 
Table S2. Comparing simulated versus observed irrigated land use areas (in millions of acres) for the early to mid 

2000s for eleven states across the Western United States. 

The comparison of the simulated and USDA irrigated land use areas indicate that the model performs 

reasonably well in capturing irrigated land use changes over the period of interest, especially for the states 

in which reliance on irrigation is most prominent. In California for example, the model indicates a 

decrease in irrigated land use of 5.3 percent (from 7.78M acres to 7.37M acres), while the USDA survey 

data indicates a 6.8 percent decrease (7.40M acres to 6.90 acres). The states with the largest discrepancy 

between modeled and observed irrigated land use changes include Colorado, Idaho, Montana, Utah, and 

Oregon. We note that the most arid states with the heaviest reliance on irrigation for agriculture (e.g., 

California, Arizona, Nevada) show reasonably close percentage changes to the USDA data, possibly 

pointing to the limitations of the comparison. Specifically, comparing simulated results against USDA 



harvested cropland that is entirely irrigated introduces an inconsistency in the comparison (in many of the 

less arid states, cropland might only be partially or periodically irrigated depending on climatic 

conditions). Such inconsistencies potentially explain the discrepancies between modeled and observed 

results in the less arid states included in the comparison. 

We reiterate that the comparison only provides a first-order evaluation of model plausibility, providing an 

initial indication that the model behaves reasonably during periods of water shortage in regions of high 

irrigation activity. To fully evaluate the performance of the model in reproducing historical observations, 

a more extensive comparison exercise would need to be conducted in which non-hydrological factors 

(e.g., crop prices, production costs, etc.) are also input as exogenous time series to the model, matching 

observed conditions over the period of comparison. The comparison would also be enhanced through 

identification or development of observed irrigated land use datasets at higher temporal frequency and 

spatial resolution. 

Observed versus Modeled (Baseline) Irrigated Areas 

To confirm that the PMP-based calibration is behaving appropriately, we run the farm agent model in 

simulation mode under the same environmental and economic conditions as the baseline model used for 

calibration, further using the PMP coefficients identified during the calibration procedure. We expect to 

find an exact or near exact match between modeled and observed irrigated areas. Results from this 

comparison are shown on Figure S6, which includes a scatterplot comparing modeled and observed 

irrigated areas for each farm agent. The near exact match between modeled and observed outcomes 

indicates that PMP model has been calibrated successfully and is behaving as expected. 

  

Figure S6 – Modeled versus Observed Irrigated Areas for PMP calibration. 

Observed versus Modeled Irrigated Area (thousands acre-ft)



Stress Test Results 

To evaluate the plausibility and sensitivity of farm model behavior, we conduct a series of stress tests 

relative to the baseline model. Six different stress tests are simulated, including: 1) baseline surface water 

availability multiplied by 1.5, 2) baseline surface water availability multiplied by 0.5, 3) baseline crop 

prices multiplied by 1.5, 4) baseline crop prices multiplied by 0.5, 5) both baseline surface water 

availability and crop prices multiplied by 1.5 and, 6) both baseline surface water availability and crop 

prices multiplied by 0.5. For each stress test, we track 3 key outcomes: total irrigated area, total surface 

water irrigation, and total groundwater irrigation, comparing results from the stress test to the baseline 

scenario for each farm agent (Figures S7 – S9). 

The stress tests indicate reasonable behavior and response of the farm cropping model. Total irrigated 

areas increase with an increase in surface water availability and decrease with a decrease in surface water 

availability. The relationship between crop prices and total irrigated area is less clear, which is expected 

as an increase in price may shift preferred crops to either those with higher or lower irrigation water 

needs, depending upon the specific farm.  

Surface water irrigation increases with increased surface water availability, and decreases with decreased 

surface water availability. An increase in crop prices does not influence surface water irrigation, as limits 

on surface water availability constrain further increase of irrigation. However, a decrease in crop prices 

results in a notable decrease in surface water irrigation for most farms. 

Groundwater irrigation typically shows a tradeoff effect with surface water availability. With an increase 

in surface water availability, groundwater irrigation is reduced. However, a decrease in surface water 

availability does not result in an increase in groundwater irrigation, as groundwater production capacity is 

constrained to the amount of groundwater irrigation observed in the baseline period. Crop price impacts 

on groundwater irrigation are similar to those on surface water irrigation. 



 

Figure S7 – Scatter plots of total irrigated area for the stress test versus baseline case (with a dot plotted for each 

farm). For the 3 left sub-figures, we note that only irrigated areas less than the 95th quantile (for the baseline run) are 

shown for visualization purposes. 
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Total Irrigated Area (thousands acre-ft)
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Crop Prices x 1.5 Crop Prices x 0.5
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Crop Prices x 1.5

Surface Water x 0.5
Crop Prices x 0.5



 

 

Figure S8 – Scatter plots of total surface water irrigation for the stress test versus baseline case (with a dot plotted 

for each farm).  

Total Surface Water Irrigation (m3/s)

Surface Water x 1.5 Surface Water x 0.5

Crop Prices x 1.5 Crop Prices x 0.5

Surface Water x 1.5
Crop Prices x 1.5

Surface Water x 0.5
Crop Prices x 0.5



 

Figure S9 – Scatter plots of total groundwater irrigation for the stress test versus baseline case (with a dot plotted 

for each farm).  
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Table S3. ODD+D description for farm model. 

Guiding questions  ODD+D model description 

I)
 

O
v

er
v

ie
w

 

I.i Purpose I.i.a What is the purpose 

of the study? 

To evaluate the influence of farmer irrigated crop area 

adaptations on national-scale water shortage outcomes.    

I.ii.b For whom is the 

model designed? 

Primarily for scientists who work with large-scale 

hydrological models (LHMs) and the decision makers 

interested in global or national scale water shortage 

assessments and outcomes. 

I.ii Entities, 

state variables, 

and scales 

I.ii.a What kinds of 

entities are in the model? 

The model consists of farmer agents deciding irrigated 

crop areas in the context of changing water availability. 

The model also represents a water allocation manager, 

who determines how water is allocated from surface 

water reservoirs to various competing uses across space 

and sector. 

I.ii.b By what attributes 

(i.e., state variables and 

parameters) are these 

entities characterized? 

Farmer agents decide their irrigated cropped areas (the 

primary state variables) across 10 representative crop 

categories. Farmers are characterized by their total 

available land area, their access to irrigation water sources 

(based on both cost and availability), and empirically 

estimated coefficients representing their unobserved 

costs in producing crops.   

I.ii.c What are the 

exogenous factors / 

drivers of the model? 

The major exogenous driver of the model for the current 

experiment is changing hydrological conditions, namely 

precipitation forcing that drives the upstream hydrological 

models. Economic conditions (crop prices, production 

costs, water costs) also drive the model but are treated 

statically for the model experiment. 

I.ii.d If applicable, how is 

space included in the 

model? 

Yes, space is included in the form of a grid-based spatially 

distributed domain. Each grid cell contains a single 

representative farmer agent.  

I.ii.e What are the 

temporal and spatial 

resolutions and extents of 

the model? 

The farmer agent model runs on an annual basis, while 

the hydrological model runs on a daily basis. The model 

extends across the continental United States (CONUS), 

with the domain resolved by 1/8 degree grid cells 

following the North American Land Data Assimilation 

System. 

I.iii Process 

overview and 

scheduling 

I.iii.a What entity does 

what, and in what order? 

At the beginning of a model year, farm agents update 

their expectations of water availability and decide 

irrigated cropped areas. The water availability sub-model 

then runs on a daily basis, in which water supplies for 

irrigation water use are determined. At the end of a 

model year, water supply information from the preceding 

year are processed by each farmer agent for input into the 



proceeding year’s water availability expectations and 

irrigated crop decisions.  
II

) 
 D

es
ig

n
 C

o
n

ce
p

ts
 

II.i Theoretical 

and Empirical 

Background 

II.i.a Which general 

concepts, theories or 

hypotheses are underlying 

the model’s design at the 

system level or at the 

level(s) of the submodel(s) 

(apart from the decision 

model)? What is the link 

to complexity and the 

purpose of the model? 

The modeling assumes that irrigated cropped areas are an 

emergent property of a coupled human-natural complex 

system. Namely, farmers determine their demand for 

irrigation water based on expectations of water 

availability, while the realized water availability is likewise 

dependent upon the total irrigation demand of farmers 

(e.g., increased competition for scarce water supplies 

generally results in lower water availability per farm). The 

system co-evolves according to these perpetual two-way 

interactions. 

II.i.b On what assumptions 

is/are the agents’ decision 

model(s) based? 

The farmer agents follow an economic formulation, 

assuming rational maximization of agricultural profits. In 

the positive mathematical programming approach, 

calibrated unobserved cost terms can account for 

monetary or non-monetary costs that are not explicitly 

accounted for otherwise in the profit maximization 

formulation.  

II.i.c Why is a/are certain 

decision model(s) chosen? 

The positive mathematical programming approach is well 

established in the agricultural economics literature. The 

approach can also be readily applied at scale with the 

identification of appropriate data sources, which was an 

important consideration for a CONUS-scale study. 

II.i.d If the model / a 

submodel (e.g., the 

decision model) is based 

on empirical data, where 

does the data come from? 

The farmer decision model is calibrated to historical land 

use and conditions based on a combination of data, 

primarily including observed crop land use data from 

USDA’s Cropland Data Layer, historical irrigation 

information from USDA’s Farm and Ranch Irrigation 

survey, crop prices and production costs from the USDA 

Economic Research Service’s Commodity Costs and 

Returns dataset, and information on irrigated versus non-

irrigated and groundwater versus surface-water irrigated 

areas from FAO’s global map of irrigated areas. 

II.i.e At which level of 

aggregation were the data 

available? 

The USDA Cropland Data Layer is available at 30-meter 

spatial resolution. The USDA Farm and Ranch Irrigation 

survey was utilized at state level. The USDA ERS 

Commodity Costs and Returns datasets are based on 9 

ERS farm resource regions defined to cover the United 

States. The FAO global map of irrigated areas is available 

at 5 minutes resolution across the globe.  



 

II.ii Individual 

Decision 

Making 

II.ii.a What are the 

subjects and objects of 

decision-making? On 

which level of aggregation 

is decision-making 

modeled? Are multiple 

levels of decision-making 

included? 

The primary subject of decision making is a representative 

farmer. The object of decision making is cropped areas for 

a 1/8 degree grid cell. The reservoir allocation mechanism 

embedded within the water availability sub-model may be 

viewed as a higher-level agent (relative to farmer agents) 

allocating water from surface reservoirs across individual 

farm agents. 

II.ii.b What is the basic 

rationality behind agents’ 

decision-making in the 

model? Do agents pursue 

an explicit objective or 

have other success 

criteria? 

Farmer agents aim to maximize their expected agricultural 

profits. Their associated expectations of water availability 

are continuously updated based upon simulated water 

availability. 

II.ii.c How do agents make 

their decisions? 

Utility function / profit maximization. 

II.ii.d Do the agents adapt 

their behavior to changing 

endogenous and 

exogenous state 

variables? And if yes, 

how? 

Yes, they update their expectations of water availability 

(which are considered a resource input into their crop 

production decision) based upon continuously evolving 

simulated water availability.  

II.ii.e Do social norms or 

cultural values play a role 

in the decision-making 

process? 

Not explicitly, though social norms or cultural values may 

be embedded in the unobserved cost term that is 

calibrated to data. 

II.ii.f Do spatial aspects 

play a role in the decision 

process? 

Yes, indirectly. Spatial heterogeneity in water availability 

influence farmer agent’s expectation of water availability. 

II.ii.g Do temporal aspects 

play a role in the decision 

process? 

Yes, farmer agent’s update their expectations of water 

availability based upon past water availability that is 

continuously updated as the model progresses in time. 

The strength of this memory is treated as an agent 

parameter. 

II.ii.h To which extent and 

how is uncertainty 

included in the agents’ 

decision rules? 

In regards to uncertainty in environmental conditions, 

farmer agents do not have perfect information on how 

water availability conditions will unfold in an upcoming 

season, so they formulate expectations of water 

availability based upon past experience. In regards to 

uncertainty in agent decision making parameterization, 

we evaluate five different parameterizations in the 



strength of agent memory in agent formulation of 

expected water availability. 

II.iii Learning  II.iii.a Is individual learning 

included in the decision 

process? How do 

individuals change their 

decision rules over time as 

consequence of their 

experience? 

Agents update their expectations of future water 

availability conditions based upon past experience. 

Otherwise, learning is not incorporated in an agent’s 

decision process. 

II.iii.b Is collective learning 

implemented in the 

model? 

No 

II.iv Individual 

Sensing 

II.iv.a What endogenous 

and exogenous state 

variables are individuals 

assumed to sense and 

consider in their 

decisions? Is the sensing 

process erroneous? 

Agents sense reservoir volumes and local river flows 

(endogenous) as a proxy for hydrologically-driven water 

availability conditions. This sensing is erroneous in the 

sense that these states are an imperfect proxy of future 

water availability conditions. Agent’s also sense crop 

prices and production costs (those these variables are 

exogenous and static). 

II.iv.b What state variables 

of which other individuals 

can an individual 

perceive? Is the sensing 

process erroneous? 

Farm agents do not sense each other’s state. The reservoir 

allocation procedure embedded within the water 

availability sub-model can be said to sense farm agent’s 

current water demand. 

II.iv.c What is the spatial 

scale of sensing? 

Farm agent’s can sense river flows in their coincident grid 

cell and reservoir volumes for any reservoir that can 

allocate them water (defined by a 50 kilometer buffer). 

II.iv.d Are the mechanisms 

by which agents obtain 

information modeled 

explicitly, or are 

individuals simply 

assumed to know these 

variables? 

Individuals are simply assumed to know these variables. 

II.iv.e Are costs for 

cognition and costs for 

gathering information 

included in the model? 

Not explicitly, though these may be factored into the PMP 

unobserved cost coefficients. 

II.v Individual 

Prediction 

II.v.a Which data uses the 

agent to predict future 

conditions? 

The agent uses reservoir volumes and local river flows 

(assimilated through the agent memory) to predict future 

water availability conditions. 



  II.v.b What internal 

models are agents 

assumed to use to 

estimate future conditions 

or consequences of their 

decisions? 

Agents formulate expectations of future water availability 

based upon memory of past events. This expectation of 

future water availability is then input into a profit 

formulation of crop decision making, with agents assumed 

to maximize their expected agricultural profits. 

II.v.c Might agents be 

erroneous in the 

prediction process, and 

how is it  implemented? 

Yes, formulating an expectation of future water 

availability based on past experience is an imperfect 

predictor of future conditions given stochastic 

hydrological conditions. This prediction can be particularly 

erroneous under non-stationary hydrological conditions. 

II.vi Interaction II.vi.a Are interactions 

among agents and entities 

assumed as direct or 

indirect? 

Indirect. Farmer agents do not directly interact with one 

another, although they interact indirectly via resource 

demands on a shared water resource system. 

II.vi.b On what do the 

interactions depend? 

The interactions depend on the level of water demand 

pressure in the system, e.g., if water shortage is severe 

each agent’s demand can be viewed as exerting a heavier 

influence on another agent’s water supply and ensuing 

water shortage. 

II.vi.c If the interactions 

involve communication, 

how are such 

communications 

represented? 

Not applicable. 

II.vi.d If a coordination 

network exists, how does 

it affect the agent 

behaviour? Is the 

structure of the network 

imposed or emergent? 

The reservoir water allocation process embedded within 

the water availability sub-model distributes shortage 

equally among farms with access to a particular reservoir. 

This structure is imposed. 

II.vii Collectives II.vii.a Do the individuals 

form or belong to 

aggregations that affect, 

and are affected by, the 

individuals? Are these 

aggregations imposed by 

the modeller or do they 

emerge during the 

simulation? 

Yes, every farm agent that has access to a given reservoir 

can be viewed as an aggregation. This aggregation is 

imposed based upon a distance rule that links farmer 

agents with surface water reservoirs. 

II.vii.b How are collectives 

represented? 

Every reservoir in the system is linked with a subset of 

farmer agents (which can be viewed as a collective) that 

has access to that reservoir. 



II.viii 

Heterogeneity 

II.viii.a Are the agents 

heterogeneous? If yes, 

which state variables 

and/or processes differ 

between the agents? 

Yes, each agent has uniquely calibrated coefficients for 

the unobserved cost term of their profit maximization 

formulation. 

II.viii.b Are the agents 

heterogeneous in their 

decision-making? If yes, 

which decision models or 

decision objects differ 

between the agents? 

No, all agents follow a consistent PMP-based profit 

maximization formulation. 

II.ix 

Stochasticity 

 

II.ix.a What processes 

(including initialization) 

are modeled by assuming 

they are random or partly 

random? 

None. 

II.x Observation II.x.a What data are 

collected from the ABM 

for testing, understanding, 

and analyzing it, and how 

and when are they 

collected? 

Irrigated cropped area outcomes made by the farm agents 

are used to evaluate the behavior and plausibility of the 

agent decision making process. 

II.x.b What key results, 

outputs or characteristics 

of the model are 

emerging from the 

individuals? (Emergence) 

The overall water shortage in the system is the key 

emergent outcome of interest. 
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II.i 

Implementation 

Details 

III.i.a How has the model 

been implemented? 

The ABM is developed in Python. The water availability 

sub-model (MOSART-WM) is originally written in 

FORTRAN and implemented in the Common Infrastructure 

for Modeling the Earth (CIME) framework.  

III.i.b Is the model 

accessible and if so 

where? 

Yes, a meta-repository of all data and code required to run 

the model is available at: https://github.com/IMMM-

SFA/yoon-etal_2023_hess 

 

III.ii 

Initialization 

III.ii.a What is the initial 

state of the model world, 

i.e. at time t=0 of a 

simulation run? 

The initial state of the model world is based upon data 

used for calibration of the model, representing average 

conditions from 2010-2013. 

III.ii.b Is initialization 

always the same, or is it 

allowed to vary among 

simulations? 

Yes, initialization is the same for our model experiments, 

though it can be changed.  



III.ii.c Are the initial values 

chosen arbitrarily or 

based on data? 

Based on historical data. 

 

III.iii Input Data III.iii.a Does the model use 

input from external 

sources such as data files 

or other models to 

represent processes that 

change over time? 

Yes, the agent-based model is coupled with a water 

availability sub-model (MOSART-WM). Communications 

between the two models occurs on an annual model 

timestep basis. 

III.iv Submodels 

 

III.iv.a What, in detail, are 

the submodels that 

represent the processes 

listed in ‘Process overview 

and scheduling? 

There are two main sub-models. The agent-based model 

of farmer irrigated cropping decisions described in length 

in this ODD+D document. The second is the water 

availability sub-model, which is based on the MOSART-

WM large-scale hydrological model described in detail in 

the following publication: 

https://hess.copernicus.org/articles/17/3605/2013/ 

III.iv.b What are the 

model parameters, their 

dimensions and reference 

values? 

The sub-model parameters for the agent-based model are 

described above. The water availability sub-model 

(MOSART-WM) parameters are extensive and too detailed 

to present here. We refer readers to the following 

publication: 

https://www.pnas.org/doi/abs/10.1073/pnas.1421675112  

III.iv.c How were 

submodels designed or 

chosen, and how were 

they parameterized and 

then tested? 

The water availability sub-model (MOSART-WM) was 

selected as it is a common model used for large-scale 

hydrological modeling applications. The calibration and 

validation of the sub-model is described at length in the 

two publications provided above. 

 

 


