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1 Adequacy of the JAMS-J2000 river networks with the observed river networks

Figure S1, S2 and S3 show the comparison between the synthetic river networks generated for the hydrological modelling with

JAMS-J2000 and reference river networks provided by local DRN teams from the DRYvER projetc (Datry et al., 2021). For

the Albarine and Lepsämänjoki catchments, the spatial resolution of the generated river networks had to be increased in order5

to capture all reaches with available observed flow intermittence data.

1

Supplement



Reference river network Genal

River network J2000

Genal watershed

Figure S1. Generated (green) and observed (blue) river networks for the Genal catchment.
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reference river network Albarine

watershed Albarine

River network J2000

Figure S2. Generated (green) and observed (blue) river networks for the Albarine catchment.
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Reference river network Lepsamaanjoki

Lepsamaanjoki watershed

River network J2000

Figure S3. Generated (green) and observed (blue) river networks for the Lepsämänjoki catchment.

2 Calibration of the JAMS-J2000 model

2.1 Catchments for JAMS-J2000 calibration

The calibration of JAMS-J2000 parameters was performed on larger catchments (1500 to 3700 km2) corresponding to the

intermediate-scale basins studied in the DRYvER project (to bridge the gap between the DRN scale and the continental scale).10

The larger catchments characteristics are presented in Figure S4.
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Ain          3700 km2

Albarine  354 km2 
Guadiaro  1504 km2

Genal       343 km2
Vantaanjoki     1667 km2

Lepsämänjoki  208 km2
a) b) c)

Figure S4. Catchments used for JAMS-J2000 calibration (larger catchments in light grey). Small catchments in dark grey are the catchments

used for the flow intermittence modelling. Gauging stations used for the calibration are represented in red. a) French study sites : Ain and

Albarine catchments, b) Spanish study sites : Guadiaro and Genal, c) Finnish study sites : Vantaanjoki and Lepsämänjoki.

2.2 Calibration of snow parameters

Snow parameters (Table S1) were calibrated separately by comparing the simulated snow cover with the catchments’ fractional

snow cover area from MODIS10A2 datasets using the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009). For that purpose,

the catchment fractional snow cover area (fSCA) from the MOD10A2 dataset available at a 8-day resolution (Hall et al., 2007)15

was used as observed data. MOD10A2 fSCA was downloaded for the period 2000-10-15 to 2021-05-25 and aggregated at the

catchment scale. The NSGA-II algorithm (Deb et al., 2002) with 1000 iterations was used for the automatic calibration, and

the KGE as an objective function. The model time series were split into a period of initialization (1995 to 2000), a period of

calibration (even years from 2000 to 2020), and a period of validation (remaining years from 2000 to 2020).

For the Ain catchment, KGE is respectively equal to 0.81 and 0.74 for the calibration and validation period. For the Vantaan-20

joki catchment, KGE is respectively equal to 0.80 and 0.74 for the calibration and validation period. Figures S5 and S6 show

simulated and observed snow cover areas in the Ain and Vantaanjoki catchments. The Guadiaro catchment is not characterized

by a regular winter snow cover, and therefore, snow calibration was neglected for this catchment.
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Figure S5. Simulated (red) and observed (blue) snow cover area (fSCA) for the Ain catchment. KGE calibration = 0.81, KGE validation =

0.75

Figure S6. Simulated (red) and observed (blue) snow cover area (fSCA) for the Vantaanjoki catchment. KGE calibration = 0.79, KGE

validation = 0.76

2.3 Calibration of discharge

Measured streamflow available at different gauging stations was used for model calibration and validation. For this purpose, the25

available streamflow data was split into two periods for calibration and validation (Table S3). Due to different catchment char-

6



acteristics, process dynamics, and data availability, the calibration approaches were slightly different for the three catchments.

The calibration procedures are therefore presented separately for the Guadiaro catchment on the one hand and for the Ain and

Vantaanjoki catchments on the other hand. The list of the calibrated parameters with their calibration range is presented in

Tables S1 and S2 and all the final parameter values can be found in the JAMS-J2000 model datasets available on request.30

Abbreviation Description Unit
Calibration range

Ain and Vantaanjoki Guadiaro

snow_trans Half width of the transition zone rainfall-snowfall K 0 - 3.5

snow_trs Threshold temperature for precip phase (the temp.

in which 50% of precip fall as snow and 50% as

rain)

°C 0 - 3

t_factor Temperature factor for snow melt mm*°C-1 0 - 8

ccf_factor Cold content factor - 0.0001 - 0.01

CropCoef_aAF Crop coefficient additive adaptation factor - -0.2 - 0.2

CropCoef_mAF Crop coefficient multiplicative adaptation factor - 0.5 - 2

FCAdaptation Multiplier for field capacity - 0.5 - 5 0.5 - 3

ACAdaptation Multiplier for air capacity - 0 - 3 0.5 - 3

soilPolRed Polynomic reduction factor for potential evapo-

transpiration

- 0 - 10

soilMaxInfSnow Maximum infiltration for snow covered areas mm 5 - 200

soilMaxInfSummer Maximum infiltration in summer (Apr - Sep) mm 5 - 200

soilMaxInfWinter Maximum infiltration in winter (Oct - Mar) mm 5 - 200

soilMaxPerc Maximum percolation rate mm 1 - 20

soilLatVertLPS LPS lateral-vertical distribution coefficient - 0 - 10

soilOutLPS LPS outflow coefficient - 0 - 10

SoilConcRD1 Recession coefficient for surface runoff - 1 - 5 1 - 10

SoilConcRD2 Recession coefficient for interflow - 1 - 10

gwRG1RG2dist Distribution factor between shallow and deep

groundwater aquifer

- 0 - 10

flowRouteTA Flow routing coefficient TA - 1 - 20 1 -30
Table S1. List of the calibrated global parameters and their calibration range
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Abbreviation Description Unit
Calibration range

Ain and Vantaanjoki Guadiaro

RG1_max Maximum storage capacity of the upper ground-

water reservoir

mm 10 - 300 not calibrated

RG1_k Storage coefficient of the upper ground-water

reservoir

day 2 - 30 0.3 – 3-times of

physically deter-

mined parameter

RG2_max Maximum storage capacity of the lower ground-

water reservoir

mm 100 - 1500 not calibrated

RG2_k Storage coefficient of the lower ground-water

reservoir

day 10 - 600 0.3 – 3-times of

physically deter-

mined parameter
Table S2. List of the calibrated spatially distributed parameters and the calibration range

DRN Initialization period Calibration period Validation period

Albarine 1990-1995 1995-2009 2009-2020

Genal 1998-2001 2001-2004 2012-2018

Lepsämänjoki 2000-2005 2005-2014 2014-2020
Table S3. Calibration and validation periods. Hydrological years start on the 1st of October and end on the 30th of September.

2.3.1 Model calibration and validation for the Guadiaro catchment

The models’ performance of simulating the measured streamflow at multiple gauging stations was evaluated using a semi-

automatic calibration method, which utilizes automatic and manual calibration techniques. To assess model performance,

different performance criteria were used, which focus on different evaluation criteria, such as low-flow, high flows, and bias

(Kundzewicz et al., 2018) (Table S4).35

8



Efficiency criteria Definition and reason for selection

Nash-Sutcliffe Efficiency (NSE) Multi-objective function, strong focus on simulation of peak flows,

widely used

Logarithmic Nash-Sutcliffe Efficiency

(NSElog)

Like NSE, but logarithm focuses on the representation of simulation of

low flows

Relative Volume Error (pBias) Representing overall under or overestimation

Kling-Gupta-Efficiency (KGE) multi-objective function, representing bias, correlation, and flow vari-

ability
Table S4. Efficiency criteria used for automatic model calibration and performance evaluation (Gupta et al., 2009)

Overall, 15 global model parameters were calibrated, which showed a moderate to high sensitivity on processes related to

infiltration, evapotranspiration, percolation, soil, groundwater, and runoff routing (Tables S1 and S2). Besides, hydrogeological

parameters influencing the recession of the water from shallow and deep groundwater aquifers were calibrated in a spatially dis-

tributed manner. For the automatic optimization, the multi-objective, non-dominated sorting genetic search algorithm NSGA-II

was applied (Deb et al., 2002). Here, the three performance criteria NSE, NSElog and pBias at different gauging stations were40

used in 5000 iterations to optimize the 15 parameters and hence, simulated streamflow in the Genal DRN. Additionally, the

process was repeated for different spatially distributed hydrogeology parameter sets addressing the varying groundwater reces-

sion from shallow and deep groundwater aquifers. This resulted in several pareto-optimal model solutions, which still inherited

strong differences of hydrological process patterns, considering, for example, the overland flow or groundwater contribution

to the overall runoff. Even though statistical measures have the advantage to objectively classify model performance and allow45

comparison across different models, they do not substitute for visual interpretation of simulated and observed hydrographs

and interpretation of process dynamics by domain experts (Legates and McCabe Jr, 1999; Moriasi et al., 2007). Therefore, the

models were manually calibrated in a second step to fine-tune the results of the automated calibration procedure. The focus

here was particularly on the representation of the runoff recession and groundwater contribution. Besides, due to the modeling

of flow intermittence, the performance of modeling low flows was weighted higher than the model’s ability to simulate high50

flows accurately. Further, when selecting the final parameter sets for the DRN, sets showing higher performance at the smaller

basin were given preference over sets showing higher performance at the larger basin. During calibration, the following hydro-

logical characteristics were taken into account:

1. runoff components (Hortonian and Hewlettian runoff, subsurface flow from soil and upper groundwater zones as well as

baseflow), precipitation, actual evapotranspiration, and soil saturation;55

2. seasonal and annual water balances;

3. spatially distributed processes at the HRU level: runoff generation, interflow, soil water balancing, evapotranspiration,

and groundwater recharge.
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Finally, from all pareto-optimal solutions identified through automatic and manual calibration, the most plausible model in

terms of process representation according to the observed data and the knowledge about environmental characteristics was60

selected.

Figures S7 and S8 show the performance of the JAMS-J2000 model in the Guadiaro catchment.

Figure S7. KGE for the a) calibration period (2002 - 2012; Genal: 2001 - 2004) and b) the validation period (2012 - 2018) for the Guadiaro

catchment
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Figure S8. Simulated (red) and observed (blue) discharge at the Jubrique gauging station (in the Genal catchment). KGE calibration = 0.75,

KGE validation = 0.76

2.3.2 Model calibration and validation for the Ain and Vantaanjoki catchments

The calibration for the Ain, Fekete, and Vantaanjoki catchments also uses a multi-stations and multi-objectives approach, but

using a different method. 15 global parameters related to evapotranspiration, infiltration in the soil layer, and percolation to the65

groundwater layer, (Table S1) as well as 4 spatially distributed parameters related to the groundwater reservoirs (Table S2), are

calibrated. The calibration and validation periods (Table S4) were selected based on the availability of the observed discharge

data in the different river basins. In a first step, the Latin Hyper Cube Sampling (LHS) is used to generate 5000 model runs for

each pilot river basin (the calibration ranges are provided in Tables S1 and S2). Then the calibrated set of parameters is selected

among the 5000 parameters sets so that the model performs best on (i) a multi-objective function (MOF) representing KGE,70

low-flows (10th percentile Q10), and mean annual outflow (Qyr), (ii) all the stations. The MOF function is computed for all

stations and all parameter sets (Eq. 1), then a weighted average over the stations is calculated to prioritize the stations located

at the outlets of the large and small river basins (Ref1) and the other stations located in the small river basin (Ref2) (Eq. 2)

(other stations located in the large catchment are referred as Ref3). The final calibrated set of parameters is selected among the

model runs leading to the lowest MOFall stations.75

MOF = 0.6 ∗ (1−KGE)+
0.2 ∗ |Q10sim −Q10obs|

Q10obs

+
0.2 ∗ |Qyrsim −Qyrobs|

Qyrobs
(1)
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MOF =
wRef1

∑
i∈Ref1

MOFi +wRef2

∑
j∈Ref2

MOFj +wRef3

∑
k∈Ref3

MOFk∑
i∈Ref1

wRef1 +
∑

j∈Ref2
wRef2 +

∑
k∈Ref3

wRef3

(2)

with wRef1 = 5, wRef2 = 2, wRef3 = 1

The Ain catchment is characterized by karstic areas which have a strong impact on the hydrological response of the sub-

catchments. As the JAMS-J2000 model does not represent the karst-related processes, a correction factor k was applied to80

the observed discharges at the gauges before comparison with simulated discharges to consider water input or water losses in

sub-catchments through the karstic network (Eq. 3).

k =
P−ETact −Q

P−ETact
(3)

with P the observed mean annual precipitation in mm (from the Safran reanalysis; Vidal et al. (2010)), ETact the mean annual

actual evapotranspiration simulated with JAMS-J2000 in mm (forced with Safran reanalysis as climate input data), and Q the85

observed mean annual outflow in mm.

Figures S9 and S10 show the performance of the JAMS-J2000 model in the Ain catchment.
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b)a)

Figure S9. KGE for the a) calibration period (1995-2009) and b) the validation period (2009-2019) for the Ain catchment. Missing values

during the validation period are due to the shutdown of gauging stations
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Figure S10. Simulated (red) and observed (blue) discharge at the Saint-Rambert station (in the Albarine catchment) for the validation period.

KGE calibration = 0.76, KGE validation = 0.79

Figures S11 and S12 show the performance of the JAMS-J2000 model in the Vantaanjoki catchment.

a) b)

Figure S11. KGE for the a) calibration period (2005-2014) and b) the validation period (2014-2020) for the Vantaanjoki catchment
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Figure S12. Simulated (red) and observed (blue) discharge at the Lepsämänjoki station for the validation period. KGE calibration = 0.74,

KGE validation = 0.81

2.3.3 Validation of the JAMS-J2000 model for low flows

In this section we analyse the performance of the JAMS-J2000 model to simulate discharges below a defined threshold at the90

gauging stations in the 3 catchments. The threshold is taken as the 10th percentile of observed discharges on the total period

(calibration and validation), keeping only the values for hydrological years with less than 10% missing values.

Then the performance metrics were computed as follows:

Sensitivity =
a

a+ c
95

Specificity =
d

b+ d

Accuracy =
a+ d

a+ b+ c+ d

FAR =
b

a+ b
100

with a, b, c, and d the number of simulated days for each of the 4 conditions defined in the confusion matrix (Table S5).

Observed discharges

Simulated discharges Qobs < threshold Qobs > threshold

Qsim < threshold a b

Qsim > threshold c d
Table S5. Confusion matrix of matches and mismatches of predictions and observations of low flows with JAMS-J2000.
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Figure S13 shows the results of the analysis of the performance of JAMS-J2000 to simulate low flows. For the validation

period, Sensitivity is respectively equal to 0.84, 0.62 and 0.91 for the St-Rambert (Albarine), Lepsämänjoki, and Jubrique

(Genal) gauging stations, which shows that the hydrological model simulates low-flow periods very well (for Saint-Rambert and

Jubrique) and fairly well (for Lepsämänjoki). However, for the St-Denis gauging station in the Albarine catchment, Sensitivity105

is equal to 0. This is due to the fact that the river is intermittent and sometimes completely dries at this station. For the

St-Denis station the 10th percentile is equal to 0 m3/s, and as the JAMS-J2000 is not able to simulate complete drying, the

model performance is poor. These results show that the JAMS-J2000 hydrological model can provide correct simulations of

the alternation between periods of low flow and medium-high flow to the RF model, but that the J2000-RF coupling is essential

for correctly simulating the flow on intermittent river sections.110
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Figure S13. Metrics for the prediction of low flows (< 10th percentile of observed discharges) with JAMS-J2000 model at the gauging stations

for the calibration and validation periods.

3 Validation of the simulated spatial flow intermittence pattern in the Albarine and Genal DRNs

Some classification of the reaches flow regime (permanent or intermittent) were provided for the Albarine and Genal DRN by

local teams based on their observations. Figures S14 and S15 show the comparison between the simulated spatial pattern of

flow intermittence in the Albarine and Genal DRNs with the observed flow regimes in the river networks.
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Figure S14. a) Mean annual number of days with a dry condition predicted in the Albarine DRN with the flow intermittence model, b)

classification of the reaches (perennial or intermittent) provided by the DRN local experts based on observations.
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Figure S15. a) Mean annual number of days with a dry condition predicted in the Genal DRN with the flow intermittence model, b)

classification of the reaches (perennial or intermittent) provided by the DRN local experts based on observations.
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4 Covariates analysis with configuration 1115

Figure S16 shows the importance of the covariates with configuration 1 in the 3 catchments. It is very similar to Figure 10 from

the manuscript (with configuration 0) for the 5 most important covariates, which shows that for this study the importance of

the covariates is not very sensitive to the size of the training sample, but rather to the quality of the covariates (cf Section 3.5.3

of the manuscript).
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Figure S16. Importance of the covariates in the RF models (mean decrease in impurity (Archer and Kimes, 2008)) for the 3 DRNs. Bars

represent the mean MDI and the error bars the minimum and maximum values of MDI for the 20 runs of the RF model with configuration 1.
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