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Abstract. Many observed time series of precipitation and
streamflow show heavy-tail behaviour. For heavy-tailed dis-
tributions, the occurrence of extreme events has a higher
probability than for distributions with an exponentially re-
ceding tail. If we neglect heavy-tail behaviour we might un-
derestimate the magnitude of rarely observed, high-impact
events. Robust estimation of upper-tail behaviour is often
hindered by the limited length of observational records. Us-
ing long time series and a better understanding of the rele-
vant process controls can help with achieving more robust
tail estimations. Here, a simulation-based approach is used
to analyse the effect of precipitation and runoff generation
characteristics on the upper tail of flood peak distributions.
Long, synthetic precipitation time series with different tail
behaviour are produced by a stochastic weather generator.
These are used to force a conceptual rainfall–runoff model.
In addition, catchment characteristics linked to a threshold
process in the runoff generation are varied between model
runs. We characterize the upper-tail behaviour of the simu-
lated precipitation and discharge time series with the shape
parameter of the generalized extreme value (GEV) distribu-
tion. Our analysis shows that runoff generation can strongly
modulate the tail behaviour of flood peak distributions. In
particular, threshold processes in the runoff generation lead
to heavier tails. Beyond a certain return period, the influence
of catchment processes decreases and the tail of the rainfall
distribution asymptotically governs the tail of the flood peak
distribution. Beyond which return period this is the case de-
pends on the catchment storage in relation to the mean annual
rainfall amount.

1 Introduction

Many observed streamflow and precipitation time series ex-
hibit heavy-tailed distributions (Bernardara et al., 2008; Far-
quharson et al., 1992; Smith et al., 2018; Villarini et al.,
2011). For these distributions, the upper tail decreases slower
than exponentially, leading to a higher occurrence proba-
bility of extremes (El Adlouni et al., 2008; Papalexiou and
Koutsoyiannis, 2013). If we underestimate the tail heaviness
of a distribution, we might get caught by surprise when an
extreme event happens. Surprising floods can result in ma-
lign and devastating consequences (Merz et al., 2015). The
flood in the Ahr Valley in the west of Germany in 2021 is
a recent example of a surprising flood with severe conse-
quences. The distribution based on systematically recorded
flows which was used to derive flood hazard maps was nearly
light-tailed, whereas considering historical floods suggests
the distribution to be extremely heavy-tailed (Vorogushyn
et al., 2022). Understanding the processes related to precip-
itation and catchment response which result in heavy-tailed
flood peak distributions is required for better estimating the
tail behaviour in view of limited flood records.

Different indices exist for quantifying tail behaviour
(Wietzke et al., 2020). In hydro-meteorological studies, the
most frequently used indices are the shape parameter of the
generalized extreme value (GEV) distribution (e.g. Morrison
and Smith, 2002) and the shape parameter of the generalized
Pareto (GP) distribution (e.g. Coles, 2001). The GEV dis-
tribution is the asymptotic distribution of independent block
maxima according to the Fisher–Tippett theorem (Fisher and
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Tippett, 1928). It is therefore widely accepted as the suitable
distribution for annual maximum series. On the contrary, the
GP distribution is used for peaks-over-threshold approaches.
GEV and GP distributions with shape parameters larger than
zero are heavy-tailed (El Adlouni et al., 2008). Other indices
which are used for characterizing tail heaviness are, for ex-
ample, skewness (McCuen and Smith, 2008) and upper-tail
ratio (Lu et al., 2017). In contrast to the shape parameters,
these are not linked to the formal definition of tail heaviness
in relation to an exponentially receding tail (Wietzke et al.,
2020).

Estimating the upper-tail behaviour of observed time se-
ries can be associated with high uncertainties and is highly
sensitive to the largest few events (Merz and Blöschl, 2009).
Often, we only have observed time series of limited length
available. While tail behaviour is an asymptotic property
from a statistical perspective, in hydrological practice it is
usually inferred from pre-asymptotic properties and for fi-
nite return periods (Merz et al., 2022). More robust estima-
tions of upper-tail behaviour can be achieved through longer
time series, such as can be generated using simulations or
by including historical or paleoflood records (e.g. Stedinger
and Cohn, 1986; Vorogushyn et al., 2022), or through region-
alization approaches (e.g. Merz and Blöschl, 2005; Gaume
et al., 2010). Furthermore, understanding controls of heavy-
tail behaviour can improve the estimation of extreme floods
and their exceedance probabilities, even for limited time se-
ries lengths.

Several studies on the potential controls of heavy-tail be-
haviour and related characteristics of flood peak distribu-
tions exist (Merz et al., 2022). While some studies used data-
based approaches (e.g. Macdonald et al., 2022; Thorarinsdot-
tir et al., 2018; Villarini and Smith, 2010), others used model-
based approaches (e.g. Struthers and Sivapalan, 2007; Rog-
ger et al., 2013). Many of the previous studies focused on the
effect of single processes on the tail behaviour of flood peak
distributions and only few studies took a broader, multivari-
ate approach (e.g. Macdonald et al., 2022; Thorarinsdottir
et al., 2018). Furthermore, many studies did not specifically
analyse flood tail indicators but considered for example the
entire flood frequency curve (e.g. Struthers and Sivapalan,
2007; Rogger et al., 2013) or flood skewness (McCuen and
Smith, 2008; Merz and Blöschl, 2009).

Given the high relevance of rainfall characteristics for
flood peak distributions, it seems likely that the heavy tail
of a flood peak distribution is inherited from a heavy-tailed
rainfall distribution. However, data-based analyses (McCuen
and Smith, 2008) and derived flood frequency analyses
(Gottschalk and Weingartner, 1998) found that (almost) iden-
tical rainfall distributions can result in very different upper-
tail behaviour of flood peak distributions. While we cannot
directly transfer the GEV shape parameter from rainfall to
flood peak distributions, rainfall still has an important role: in
his analytical analysis, Gaume (2006) states that “the shape
of the flood peak distribution is asymptotically controlled

by the rainfall statistical properties, given limited and rea-
sonable assumptions concerning the rainfall–runoff process”.
A similar assumption is the basis of the GRADEX method
which is used in practice, for example, in France (Naghettini
et al., 2012). The method assumes that beyond a certain re-
turn period, the upper tail of a flood peak distribution is the
same as the upper tail of the rainfall distribution (Naghet-
tini et al., 2012). While in the GRADEX method, this re-
turn period is usually assumed to be between 10 and 50 years
(Naghettini et al., 2012), Gaume (2006) estimates it to be be-
yond 500 years. Merz et al. (2022) state in their review study
on heavy tails that runoff generation processes strongly mod-
ulate tail behaviour of streamflow – but only up to a certain
return period – and that for very high return periods the flood
tail tends to be dominated by the rainfall tail. They conclude
that the relevant question is where this “threshold return pe-
riod” lies and how it varies between catchments.

The stronger variation in flood peak tail behaviour com-
pared to rainfall tail behaviour has been linked to varying
distributions of runoff coefficients (Gottschalk and Weingart-
ner, 1998) or more general to catchment and runoff gen-
eration processes (McCuen and Smith, 2008; Merz et al.,
2022). Similarly, Macdonald et al. (2022) found in a data-
based approach for 480 German and Austrian catchments
that variables describing the catchment response dominate
flood peak tail behaviour. Heavy-tailed flood peak distribu-
tions emerge especially when there are distinct differences
in the catchment response between small and large flood
events (Macdonald et al., 2022). Basso et al. (2015) linked
heavy-tailed streamflow distributions to enhanced nonlinear-
ities in the catchment response. Such nonlinearities can orig-
inate from the switching between runoff mechanisms or the
activation of additional flow paths (Viglione et al., 2009), or
from temporal or spatial variability in hydraulic properties
and in the river network morphology (Basso et al., 2015).
Along this line, Basso et al. (2023) suggest that the recession
behaviour related to the flow network organization on the one
hand and daily flow variability related to the interplay of pre-
cipitation volume and storage capacity of the catchment on
the other hand control the occurrence of an inflection point
in the flood frequency curve (FFC). Such inflection points
or step changes in FFCs have been linked in several stud-
ies to threshold processes and the switching between dom-
inant runoff mechanisms (Kusumastuti et al., 2007; Rogger
et al., 2012; Struthers and Sivapalan, 2007). The return pe-
riod of step changes has been found to be similar to the aver-
age recurrence interval of years when storage thresholds are
exceeded and saturation excess is triggered (Rogger et al.,
2013; Struthers and Sivapalan, 2007). While those studies
linked threshold processes in the runoff generation to step
changes in FFCs, the effect of such threshold processes on
the tail behaviour of flood peak distributions has not yet been
studied.

Based on the previous studies it appears that both precip-
itation and runoff generation properties are of relevance for
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the tail behaviour of flood peak distributions. The data-based
studies which found a dominant effect of the catchment re-
sponse on flood-peak tail behaviour are based on time series
of up to 70 years (Macdonald et al., 2022; Basso et al., 2015).
Merz et al. (2022) and Gaume (2006) suggest that the rainfall
tail starts to dominate the flood peak tail for very high return
periods. Even in studies where a dominant effect of the runoff
generation was found, the rainfall might take over the dom-
inant role eventually – if longer time series were available,
which is seldom the case for observed time series.

The highly uncertain estimation of the upper-tail be-
haviour given the typical length of observations can be im-
proved by using longer time series and by better understand-
ing the processes that control the tail behaviour. For both as-
pects using a modelling approach is beneficial. With a hydro-
logical model, longer time series of discharge can be derived,
which can then be used for statistical analyses. In addition,
we can define and extract information about all relevant flood
processes that lead to a certain tail behaviour. It should be
kept in mind though that models can only be a simplified rep-
resentation of reality. Modelling approaches have been used,
for example, for analysing the effects of seasonality (Siva-
palan et al., 2005), threshold processes (Rogger et al., 2012;
Struthers and Sivapalan, 2007), and drainage density (Pal-
lard et al., 2009) on flood frequency curves. However, none
of these studies analysed the interplay of rainfall properties
and threshold processes governing runoff generation.

Previous studies suggest that runoff generation processes
strongly modulate tail behaviour of streamflow – but only up
to a certain return period (e.g. Merz et al., 2022). Beyond
this threshold return period, the flood peak distribution is as-
sumed to be governed entirely by the rainfall distribution.
Here, we aim to analyse where such a threshold return period
lies and how it varies with catchment characteristics. As we
expect the threshold return period to be potentially beyond
500 years (Gaume, 2006), but often we do not have such long
time series available, we are also interested in processes that
govern flood peak tail behaviour for smaller return periods. In
this regard, we analyse whether nonlinear runoff generation
that is caused by threshold processes leads to heavy-tailed
flood peak distributions. To address these questions, we use
a simulation-based approach deploying a weather generator
and a rainfall–runoff model. With these, long time series of
precipitation and streamflow can be generated and their tail
behaviour subsequently assessed.

2 Methods

Using a stochastic weather generator and a conceptual, spa-
tially lumped rainfall–runoff model, we generate discharge
times series (Fig. 1). This is followed by frequency analyses
of the simulated precipitation and discharge time series and
an analysis of the respective upper-tail behaviour. Different
model set-ups are designed to address the research questions.

To this end, the model is run on a synthetic catchment so that
all model parameters can be varied freely within plausible
ranges to values that are found to be most valuable for the
analyses.

2.1 Simulation model chain

The first part of the simulation model chain is a stochastic
multi-site, multi-variate weather generator which is set up
based on observational data from stations in Germany (Hun-
decha et al., 2009; Nguyen et al., 2021). It is used to gener-
ate time series of precipitation P , temperature T , and poten-
tial evapotranspiration PET as input for the rainfall–runoff
model. The weather generator has been evaluated to capture
both the daily mean and the extreme (99.9th percentile) pre-
cipitation intensities well for a large set of weather stations
in central Europe (Nguyen et al., 2021). The generated time
series are based on observational data from the weather sta-
tion in Bamberg (DWD, 2022). It is one of the stations with
the longest available records of both daily and hourly data
in Germany. For each configuration of the weather genera-
tor, 100 realizations of 60 years are generated with a daily
resolution. Ten different configurations of the weather gen-
erator are produced to generate P time series with different
tail behaviours. An extended generalized Pareto (extGP) dis-
tribution is fitted to the observed P data. While the scale and
the lower shape parameter remain as fitted, the upper shape
parameter of the extGP distribution is varied systematically
by multiplying it by a factor between 0.2 and 2.0. This way,
the upper shape parameter covers the range of values that
was found when fitting extGP distributions to observations
from the large set of central European weather stations anal-
ysed by Nguyen et al. (2021). Through this manipulation of
the extGP upper-tail shape parameter, time series with differ-
ent degrees of extreme frequency are created, despite using
observations from just one station as initial input.

As the rainfall–runoff model is run on a small catchment,
the temporal resolution of the input data needs to be higher
than daily. A non-parametric method-of-fragments (MOF)-
based method is applied to disaggregate the daily weather
variables into hourly scale (Sharma and Srikanthan, 2006).
The MOF is a commonly used method for the disaggregation
of rainfall (e.g. Carreau et al., 2019; Li et al., 2018; Lu et al.,
2015; Westra et al., 2012) and has been found to outperform
other disaggregation models, especially for extreme rainfall
characteristics (Pui et al., 2012). The MOF algorithm redis-
tributes the daily value by borrowing hourly fragments from
historical at-site records based on the k-nearest neighbour
method. The seasonality-conditioned MOF, as described by
Guan et al. (2023), is used to disaggregate P and T . As
hourly PET records are not available, the fragments for PET
daily-to-hourly disaggregation are assigned as 0.9 for day
times (12 h, from 06:00 to 17:00) and 0.1 for night times
(from 18:00 to 05:00).
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Figure 1. Sketch of the simulation model chain. Using a weather generator, time series of precipitation, temperature, and potential evapo-
transpiration are generated, which then feed into a conceptual rainfall–runoff model. From the simulated precipitation and discharge time
series, annual maximum series are derived and their tail behaviour quantified.

The second part of the simulation model chain is a lumped
conceptual rainfall–runoff model following the structure of
the HBV model (R package TUWmodel; Parajka et al.,
2007). It consists of a snow, a soil moisture, a response,
and a routing routine with a total of 15 model parameters
(Fig. 2). The model is run in a lumped way on a single syn-
thetic catchment. Given the size of the catchment of 50 km2,
we assume homogeneous conditions throughout the catch-
ment and a catchment response time at an hourly scale. This
way, sub-catchment and routing processes should not affect
the results.

The rainfall–runoff model is forced by the disaggregated
output of the weather generator. The time series of T and
PET are averaged to 1 year of data with diurnal and sea-
sonal patterns, which is then repeated 6000 times (mean
annual T = 9 ◦C, annual PET sum= 817.8 mm). This min-
imizes confounding effects of T and PET on the discharge
generation between different years and model runs. To char-
acterize the tail heaviness of P , we fit GEV distributions
to the annual maxima of hourly P series. All P series of
60 years with GEV shape parameters greater than 0.37 are
excluded. These are GEV shape parameters well outside the
observed range in Germany, where a maximum of 0.33 was
estimated for time series of at least 75 years of daily precip-
itation (Vorogushyn et al., 2023). This way, 300 time series

are excluded and the remaining 700 series of 60 years are
grouped based on their shape parameters and combined into
seven 6000-year-long time series. Using a slightly different
cut-off than 0.37 for excluding P time series with very high
GEV, shape parameters were not found to affect the findings.
The remaining P time series are shifted to three different lev-
els to represent dry, medium, and wet conditions that are typ-
ical in Germany. For this, the time series are multiplied with
a factor of 0.9, 1.25, and 1.6 to have a mean annual P of 565,
784, and 1004 mm, respectively. The first year of each time
series is used as a warm-up period for the model.

For addressing the effect of nonlinearity in the runoff gen-
eration, we focus on the exceedance of the storage capac-
ity of an upper subsurface storage LUZ as a threshold pro-
cess. Its exceedance triggers an additional and faster runoff
component q0 (see Fig. 2). The model parameters most rel-
evant for the exceedance of this storage capacity are found
through a hybrid local–global sensitivity analysis which eval-
uates local sensitivity at several places throughout the param-
eter space (Melsen and Guse, 2021; Rakovec et al., 2014).
Three parameters which physically cannot affect the storage
exceedance are excluded from the sensitivity analysis (k2,
BMAX, CROUTE; see Fig. 2). The remaining 12 parameters
are varied between a low and a high value each, and with
these parameter combinations the model is run for 3 years
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Figure 2. Schematic structure of the rainfall–runoff model TUWmodel (Parajka et al., 2007), which is a spatially lumped conceptual model
following the structure of HBV.

with the same P series as input for all runs. The parame-
ters which are found to be least relevant as they each explain
less than 3 % of the variation in the storage exceedance are
subsequently fixed. In a second iteration, the remaining six
parameters are varied between five values each. The aim of
the second iteration is to evaluate which parameters are most
relevant when the majority of parameters are already fixed to
their final values. The parameters which combined explain at
least 80 % of the variation in the exceedance of the storage
capacity are taken as the relevant ones. These are then varied
across their respective reasonable ranges for different model
runs. Reasonable ranges are based on Parajka et al. (2007)
with an adaption from the daily to the hourly timescale for
all time-dependent parameters (i.e. DDF, k0, k1, k2, CPERC,
BMAX, and CROUTE). The same parameter ranges have been
used by Ceola et al. (2015) for calibrating the TUWmodel
for European catchments with different topographic and me-
teorological conditions and are therefore deemed appropriate
for capturing many different extreme flood responses. The re-
maining parameters are kept fixed in all model runs. They
are set based on values from Merz et al. (2011), who re-

ported average parameter values based on model calibrations
for 273 Austrian catchments. Again, time-dependent param-
eters have to be adapted from the daily to the hourly scale.
All parameter values and ranges are listed in Table A1.

For each model run, the output consists of the simulated
discharge time series Q along with the time series of the
very fast runoff component q0 and the respective model pa-
rameters and precipitation time series which were used in the
model run.

2.2 Analysis of the simulated time series

For all time series of P and Q the annual maxima are de-
rived. For P this is done for different durations, namely 1,
2, 3, 6, and 12 h. For each annual maximum of Q, it is de-
rived whether the very fast runoff component q0 contributed
to the peak, i.e. whether or not the storage capacity LUZ was
exceeded (see Fig. 2). GEV distributions are fitted to the an-
nual maximum series (AMS) of P and Q using L moments.
Different time series lengths (60 to 6000 years) are used for
fitting GEV distributions to see how this affects the tail be-
haviour and its controls. It should be noted that the shape
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Figure 3. (a) Frequency curves of flood peaks (Q) and 6 h precipitation maxima (P6 h) on a log–log plot for one exemplary simulation run.
Locally estimated scatterplot smoothing (LOESS) is applied, and the slope between each pair of points is estimated. (b) Difference between
the slopes b of P6 h and Q. When the curves run in parallel, the difference between the slopes tends to zero. The dashed black lines indicate
a buffer around zero within which the difference between slopes needs to lie to assume that the flood peak distribution is governed entirely
by the rainfall distribution. The return period beyond which this is the case is referred to as threshold return period.

parameter of a GEV distribution fitted to a time series of lim-
ited length does not necessarily reflect the true tail behaviour
of the underlying distribution but is only an approximation
thereof. When fitting GEV distributions to subsets of a time
series of different lengths, the shape parameters may vary due
to differences in the estimation uncertainties. To reflect this,
we will use the terminology “apparent tail behaviour” when
drawing conclusions based on the GEV shape parameter of a
distribution fitted to a limited time series.

To examine threshold return periods beyond which the
flood peak distribution is governed entirely by the rainfall
distribution, the two distributions are evaluated on log–log
plots. On such a plot, it is assumed that beyond the threshold
return period the slope of the distribution ofQ is the same as
the slope of the distribution of P , given that P is considered
“over a duration of the order of the time of concentration”
(Gaume, 2006) of the catchment. To evaluate the identity of
slopes on a log–log plot, local slopes of the logarithmic val-
ues of the annual maxima of Q and P against their return
periods are estimated. For this, locally estimated scatterplot
smoothing (LOESS) is first applied to the annual maxima
(see an example in Fig. 3), as otherwise even small irregular-
ities in the curves could strongly affect the threshold return
period. Based on the smoothed curves, slopes are estimated
for neighbouring pairs of points.

To check which duration of P is best in line with the con-
centration time of the catchment, the differences between
slopes of P andQ are estimated for model runs for “impervi-
ous” catchments and for different durations of P , namely 1,
2, 3, 6, and 12 h. The catchment in a model run is consid-
ered to be close to impervious when the maximum soil mois-
ture storage FC, the limit of the upper subsurface storage
LUZ, and the percolation rate to the lower subsurface storage
CPERC are set to values close to zero (FC=LUZ= 1 mm and
CPERC= 0.00042 mmh−1). The duration of P for which the
sum of differences between the slopes of P and Q is lowest

Figure 4. Relevance of six model parameters for the exceedance of
the storage capacity LUZ as derived through a hybrid local–global
sensitivity analysis. The sensitivity index describes which share of
the total variation in the exceedance of LUZ observed in all model
runs of the sensitivity analysis can be attributed to changes of one
specific model parameter.

best represents the concentration time of the catchment and
is used for the subsequent analyses (denoted Pct). One might
expect that for impervious catchments, the curves of Q and
Pct do not only run in parallel but are identical. This is not
the case for our model set-up for the following reason: in
the TUWmodel, evapotranspiration is active even during ex-
treme rainfall events, and so Q is always lower than Pct by
at least the amount of actual evapotranspiration taking place.
This is a shortcoming of the model, but it does not affect our
findings as for our analyses only the slopes of the curves and
not their distance to each other are relevant.

In theory, the difference between the slopes of curves
which run in parallel is zero. However, the differences be-
tween the slopes of P and Q are hardly ever exactly zero,
even though they are based on smoothed curves. Therefore,
a buffer around zero is defined based on the differences be-
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tween the slopes of Pct and Q estimated for model runs on
close to impervious catchments (i.e. FC=LUZ= 1 mm and
CPERC= 0.00042 mmh−1). For close to impervious catch-
ments, the curves of Pct andQ are assumed to run in parallel
for all return periods. The 99th percentile of the differences
estimated for return periods of 2 years and greater is taken as
the buffer within which slope differences need to lie for the
curves to be considered parallel. To evaluate the sensitivity of
the threshold return period to the definition of the buffer, also
the 95th percentile and the maximum are briefly considered.

Finally, the return period from which onward the differ-
ence between the slopes of Pct and Q is within the buffer
is considered the threshold return period beyond which the
flood peak distribution is governed entirely by the rainfall
distribution (Fig. 3). The estimated threshold return periods
are compared to catchment characteristics, i.e. to the model
parameters which are varied between model runs and to mean
annual precipitation levels.

To analyse whether nonlinear runoff generation leads to
heavy-tailed flood peak distributions, the AMS ofQ are clas-
sified into two groups based on whether or not there is a pro-
cess shift in the AMS. A process shift means here that for
some but not all of the flood peak events the storage capac-
ity LUZ was exceeded, and the very fast runoff component
q0 was active. This is analysed for AMS of Q of different
lengths, namely 60, 200, 1000, and 6000 years. This way we
can compare results for very long time series and time series
of typically observed lengths. Finally, the relation of the tail
behaviour of P and Q is assessed for the two groups and the
four different time series lengths.

3 Results

Using a hybrid local–global sensitivity analysis, the model
parameters most relevant for the exceedance of the storage
capacity LUZ (see Fig. 2) were identified. The three most rel-
evant parameters are the upper subsurface storage capacity
itself (LUZ), the maximum soil moisture storage (FC), and
the percolation rate from the upper to the lower subsurface
storage (CPERC) (Fig. 4). It is not surprising that the value of
the storage capacity itself is most relevant for how frequently
it is exceeded. FC affects how much water enters the subsur-
face storage, while CPERC is one of the parameters affecting
the outflow from the subsurface storage (Fig. 2). In this way,
they both have an influence on the amount of water stored in
the upper subsurface storage in each time step and with that
also on whether or not the storage capacity is exceeded.

It is commonly assumed (e.g. in the rational method) that
rainfall over the duration of the time of concentration of a
catchment results in the largest flood peaks (Michailidi et al.,
2018). To analyse whether the rainfall distribution dominates
the flood peak distribution beyond a threshold return period,
the precipitation should be examined over this specific du-
ration. To find the appropriate duration, the differences be-

tween slopes of P and Q were estimated for model runs
on close to impervious catchments (FC=LUZ= 1 mm and
CPERC= 0.00042 mmh−1) for durations of P of 1, 2, 3, 6,
and 12 h. The lowest sum of differences between the slopes –
and with that the closest link between rainfall and flood
peaks – was found for a duration of 6 h (Fig. B1). A time
of concentration of 6 h is considered realistic for a catchment
of 50 km2. Different formulas for estimating the time of con-
centration based on various catchment characteristics result
in values of, for example, 2 h (Haktanir and Sezen, 1990) or
12 h (Ganguli and Merz, 2019). All subsequent analyses are
based on P over this duration (P6 h).

The curves of all P6 h series along with the respective sim-
ulated Q series are displayed on log–log plots in Fig. 5. The
shapes of the Q distributions simulated with one and the
same P distribution show a large variability. Some AMS of
Q show distinct step changes similar to the one visualized in
Fig. 3a, while others seem to run in parallel to P6 h across all
return periods. For most model set-ups, Q appears to run in
parallel to P6 h eventually. This is analysed quantitatively fur-
ther down. Figure 5 also demonstrates that P6 h andQ are not
superimposed for any of the set-ups. As stated in Sect. 2.2,
the distance between the curves of P6 h and Q is related to
the actual evapotranspiration which can occur even during
extreme rainfall events in the TUWmodel.

The threshold return period (RP) beyond which the fre-
quency curves of P6 h and Q run in parallel varies between
model runs, i.e. between catchments with different character-
istics (Fig. 6). The characteristics considered here are both
precipitation characteristics and runoff generation charac-
teristics. In some catchments, the threshold RP is around
2 years – in these catchments, the maximum soil moisture FC
and the threshold of the upper subsurface storage LUZ were
set to 1 mm each. These catchments are basically impervious,
and even small floods are governed entirely by precipitation.
For the highest number of catchments, the threshold RP is
between 100 and 500 years. In these catchments, the rainfall
distribution governs the flood peak distribution beyond a RP
of 100 to 500 years.

When grouping the results based on the mean annual pre-
cipitation (MAP) level of the P time series used as model
input, we see a shift to lower threshold return periods with
increasing MAP (Fig. 6). MAP should be interpreted here
as a measure of overall catchment wetness which controls
the mean event rainfall depth. For the two highest MAP lev-
els, the largest share of catchments exhibits a threshold RP
around 150 years. For the highest MAP of 1004 mm there is
also a substantial share of catchments with threshold RPs be-
low this, while for the medium high MAP of 784 mm many
catchments exhibit threshold RPs beyond 200 years. For the
lowest level of MAP, the highest density of threshold RPs is
found around 450 years.

For some catchments, no threshold RP was found within
6000 years of annual maxima. In these cases, either no
threshold RP exists or the threshold RP is beyond 6000 years.
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Figure 5. Logarithmic values of the annual maxima of 6-hourly rainfall P6 h and discharge Q against their return periods. Time series of Q
were simulated with a rainfall–runoff model which uses the P series as input. Different subplots vary in the mean annual precipitation (MAP)
level and the tail behaviour (characterized with the GEV shape parameter ξ ) of P . Differences in the curves of Q within each subplot are
related to different parameterizations of the rainfall–runoff model.

The first alternative would mean that the rainfall distribution
never governs the flood peak distribution entirely, which is
deemed unlikely based on the literature presented in Sect. 1
and also from physical considerations: for all catchments a
point is reached eventually where rainfall is so extreme that
saturation occurs and rainfall translates directly to runoff.
The number of catchments with no threshold RP within
6000 years varies between the different levels of MAP. While
no threshold RP within the considered time series was found
in 22 % of the model runs with a MAP of 565 mm, this
was only the case for 2 % of models runs with a MAP of
1004 mm.

To see if the threshold return period is related to catch-
ment characteristics, it was analysed against the three model
parameters that were varied between model runs. The perco-
lation rate to the lower groundwater storage (CPERC) does not
show an influence on the threshold RP (Fig. B2). The other
two characteristics, i.e. the maximum soil moisture storage
(FC) and the limit of the upper subsurface storage (LUZ),
both quantify water storages in the catchment. The ratio of
the combined storages to the MAP is related to the thresh-
old RP: larger ratios of storage to MAP tend to lead to larger
threshold RPs (Fig. 7). Threshold RPs below 30 years are
only estimated for catchments where the combined volume
of the storages is less than 7.1 % of the MAP, with one single
exception. In contrast, high threshold RPs beyond 1500 years
are only estimated for catchments with storage–MAP ratios
greater than 30 %.

The estimation of the threshold RP is based on the some-
what arbitrary definition of the buffer around zero within

Figure 6. Density plot of the threshold return periods derived in 875
model runs per mean annual precipitation (MAP) level. The num-
ber in brackets indicates for how many model runs a threshold RP
was found within 6000 years. The threshold return period describes
beyond which return period the frequency curves of discharge and
precipitation run in parallel on a log–log plot, i.e. beyond which
return period the flood peak distribution is governed by the rain-
fall distribution. For some catchments no threshold RP was found
within 6000 years of annual maxima.

which slope differences need to lie to classify curves as paral-
lel. To evaluate different buffer choices and their effect on the
resulting threshold RPs, we considered the 95th, 99th, and
100th percentile of the slope differences estimated for close-
to-impervious model runs as buffer values. As expected, a
wider buffer around zero results in overall smaller threshold
RPs. Similarly, the number of catchments without threshold

Hydrol. Earth Syst. Sci., 28, 833–850, 2024 https://doi.org/10.5194/hess-28-833-2024



E. Macdonald et al.: What controls the tail behaviour of flood series: rainfall or runoff generation? 841

Figure 7. The relation of threshold return periods and the ratios of
catchment storages to the mean annual precipitation (MAP). Catch-
ment storages are characterized by the sum of the maximum soil
moisture storage FC and the limit of the upper subsurface storage
LUZ. Results are based on 2310 model runs in which a threshold re-
turn period within 6000 years was estimated. The threshold return
period describes beyond which return period the frequency curves
of discharge and precipitation run in parallel on a log–log plot, i.e.
beyond which return period the flood peak distribution is governed
by the rainfall distribution. Different shades of green arise through
different densities of points.

RP within 6000 years increases as the buffer around zero gets
narrower. Plots such as the ones in Figs. 6 and 7 were con-
sidered for all three buffer levels along with visual inspec-
tions of selected model runs (not shown). When using the
95th percentile, many model runs with close-to-impervious
conditions showed threshold RPs beyond 5 or even 10 years.
This is not in line with the assumption that for impervious
catchments the frequency curves of P6 h and Q should run
in parallel for all return periods. On the other hand, using
the 100th percentile led to many very low threshold RPs for
curves of P6 h and Q which would not be considered parallel
in a visual inspection. Therefore, the 99th percentile is con-
sidered the most appropriate.

GEV distributions are fitted to AMS of different lengths
of Q and P6 h and their shape parameters compared. In the
following, only the results based on model runs with the
medium level of MAP, i.e. 784 mm, are presented. The re-
sults for low and high MAP are qualitatively similar and can
be found in Fig. B3. For the entire time series length, i.e.
6000 years, the estimated GEV shape parameters of P6 h vary
between 0.18 and 0.38 (Fig. 8). The estimated GEV shape
parameters of flood peak distributions vary between 0.11 and
0.85 for 6000-year-long series. Hence, one rainfall distribu-
tion can result in very different flood peak distributions –
even for time series of 6000 years.

The annual maxima of Q are classified into two groups
based on whether or not there is a process shift in the AMS.
An AMS is considered to have a process shift when for some

but not all of the flood peak events the capacity of the up-
per subsurface storage was exceeded and the very fast runoff
component of the model was active. When comparing shape
parameters of Q against those of P6 h for 6000-year-long se-
ries, the estimated shape parameters of model runs where no
process shift occurred in the runoff generation scatter closer
around the 1 : 1 line than the ones with process shift. That
means that without a process shift, a higher shape parame-
ter of P6 h tends to lead to a higher shape parameter of Q
(Fig. 8). In contrast, the range of estimated shape parameters
ofQ in model runs with a process shift is much larger. Over-
all much higher values are found in these cases, which means
that flood peak series with a process shift in the runoff gen-
eration tend to have stronger apparent heavy-tail behaviour
than those without a process shift.

For time series of shorter length, the ranges of estimated
GEV shape parameters are larger than for 6000-year-long se-
ries. This is expected due to the larger estimation uncertain-
ties for shorter time series. For 60-year-long subsets of P ,
the estimated GEV shape parameters vary between −0.31
and 0.56 (Fig. 8). As described in Sect. 2.1, P series with a
shape parameter greater than 0.37 were originally excluded.
However, this was done for the hourly P data, while the re-
sults presented here are based on 6-hourly P . The estimated
GEV shape parameters of flood peak distributions vary be-
tween −0.33 and 0.92 for 60-year-long subsets. As for the
6000-year-long series, one rainfall distribution can result in
very different flood peak distributions, and the range of esti-
mated shape parameters of Q per shape parameter of P gets
even higher for shorter time series. With regards to the occur-
rence of a process shift, similar results are observed for the
short subsets as for the long time series: higher GEV shape
parameters are estimated for the cases where a process shift
occurred as opposed to the ones without process shift in the
AMS.

4 Discussion

Threshold return periods beyond which the rainfall distri-
bution dominates the flood peak distribution were found to
vary depending on catchment characteristics. In many cases
the threshold RP is 100 years or larger. This estimate lies
between the GRADEX method and findings from Gaume
(2006). Gaume (2006) suggested to consider the “distribu-
tion of the maximum mean rainfall intensity over a duration
of the order of the time of concentration of a watershed”
for estimating floods with return periods beyond 500 years.
In contrast, in the GRADEX approach, the rainfall distribu-
tion is assumed to govern the flood peak distribution beyond
return periods of 10–20 years for impermeable and beyond
50 years for more permeable catchments (Naghettini et al.,
2012). While for a few cases with small water storages we
did find threshold RPs below 20 years, we estimated larger
threshold RPs for the majority of cases. A similar range of
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Figure 8. Shape parameters of generalized extreme value (GEV) distributions fitted to discharge series (ξQ) against GEV shape parameters
of the precipitation series (ξP ) that were used to simulate the discharge. Q is considered on an hourly scale, while P is considered on a
6-hourly scale. GEV distributions were fitted to annual maximum series (AMS) of 60, 200, 1000, and 6000 years. Results are based on 875
model runs of 6000 years – 7 P series with different tail behaviour but same MAP and 53 different parameter sets in the rainfall–runoff
model. An AMS of Q was classified as containing a process shift when for some but not all of the flood peak events a storage threshold was
exceeded and an additional and faster runoff component was triggered.

threshold RPs was found by Brunner et al. (2021) in relat-
ing future changes in precipitation magnitudes with future
changes of flood magnitudes for 78 catchments. They found
that, above a certain threshold RP, future increases in rain-
fall translate to increased flood magnitudes, while for smaller
events this is not the case. The threshold RPs that they esti-
mated range between 10 and 200 years.

In some catchments, the rainfall distribution and flood
peak distribution do not run in parallel at all within
6000 years. This means that either the threshold RP is be-
yond 6000 years or it does not exist. The latter is deemed
unlikely based on the reviewed literature (e.g. Gaume, 2006;
Merz et al., 2022) and hydrological process understanding.
Every catchment should be saturated eventually if the pre-
cipitation is extreme enough, and the corresponding part of
the flood peak distribution should then be governed entirely
by the rainfall distribution. For some catchments, the return
period of such saturating rainfall events might be extremely
large. In addition, the share of catchments where no thresh-
old RP was detected within 6000 years decreases with in-
creasing MAP, i.e. with increasing overall catchment wet-
ness. This suggests that, for very high MAP, all catchments
would have a threshold RP within 6000 years. It also clearly
supports the assumption that not detecting a threshold RP
within 6000 years simply means that it occurs at an even
larger RP.

Larger ratios of catchment storage to MAP are found to
lead to higher threshold RPs. This is explained as follows:
the smaller the storage, the more frequent it fills up and sat-
uration excess runoff is triggered. This means that already
for small rainfall events, i.e. with a low RP, saturation can

be reached and therefore rainfall also starts to dominate the
flood peak distribution for lower RPs. Similarly, Rogger et al.
(2013) found that the RP of a step change in the flood fre-
quency curve increases with increasing storage deficit in a
catchment. The relation depicted in Fig. 7 allows the esti-
mation of threshold RPs without the use of streamflow ob-
servations, simply by estimating the ratio of catchment stor-
ages to MAP. This assumes that the found relation between
storage–MAP ratio and threshold RP can be transferred to
the real world, which would still need to be verified. To test
this, comparisons with real-world observations and further
studies using, for example, other hydrological models would
be required.

The percolation rate to the lower subsurface storage does
not show an effect on the threshold RP. While it does affect
the water level in the upper subsurface storage, it seems to
do so on a longer timescale than is relevant for the genera-
tion of very fast runoff during heavy-rainfall events. In their
study on future changes, Brunner et al. (2021) found that the
threshold RP beyond which increases in precipitation trans-
late to increases in flood magnitude is modulated by eleva-
tion, season, and event type. While we did not analyse those
characteristics here, similar influences can be expected for
the link between rainfall and flood peak distributions stud-
ied here as for the link between future changes. For example,
Brunner et al. (2021) found a much lower threshold RP in
high-elevation catchments compared to low-elevation catch-
ments. This aligns with our finding of lower threshold RPs
for lower catchment storages, assuming that high-elevation
catchments usually exert lower subsurface storage capacities.
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We found that the same rainfall distribution can result
in flood peak distributions with very different apparent tail
behaviour. This is in line with the findings from McCuen
and Smith (2008) and Gottschalk and Weingartner (1998).
It might seem counter-intuitive that even for 6000-year-long
time series the GEV shape parameter of the flood peak dis-
tribution can vary strongly from the shape parameter of the
rainfall distribution, even though we found that the frequency
curves of P andQ run in parallel within 6000 years for most
catchments. However, even when the tail of the rainfall distri-
bution controls the tail of the flood peak distribution asymp-
totically, both distributions do not necessarily have the same
shape parameter when estimated for a time series of limited
length. In this case, the shape parameter quantifies the appar-
ent tail behaviour of the distribution, and fitting the distribu-
tion takes all annual maxima into account. This means that
also the smaller annual maxima – where frequencies of P
and Q usually still vary – have an effect on the estimated
GEV shape parameter.

Analysing time series of different lengths indicates the
effect that sampling uncertainty has and helps relate the
findings to the estimation of the apparent tail behaviour of
observed time series of limited length. For all time series
lengths, higher shape parameters of rainfall distributions tend
to lead to higher shape parameters of flood peak distributions,
but the variability is large. However, for time series longer
than 200 years and shape parameters of P greater than 0.2,
the shape parameter of P seems to be a kind of lower bound
for the estimated shape parameter of Q (Fig. 8). A heavy-
tailed rainfall distribution does not lead to a light-tailed flood
peak distribution. This is different for time series of 60 years:
a rainfall distribution with an estimated shape parameter of
around 0.2 can also result in a flood peak distribution with
an estimated shape parameter well below zero. This is due to
the higher sampling uncertainty for short time series as we do
not see this for the longer series. For long series of P with a
heavy-tailed distribution, it is more likely that some extreme
discharge events are generated which can make the tail of the
flood peak distribution heavy. For shorter time series, such
events are not always included in the series. When fitting a
GEV distribution to observed flood peaks, it could therefore
be useful to use the estimated shape parameter of the rainfall
distribution as a lower bound for the shape parameter of the
flood peak distribution – especially when the observed record
of precipitation is longer than that of streamflow.

Some of the estimated shape parameters of flood peak dis-
tributions are higher than what has been previously estimated
for observed data in Germany. At 480 gauges in Germany
and Austria, the maximum shape parameter estimated for ob-
served streamflow records of at least 60 years length is 0.471
(Macdonald et al., 2022). There are several reasons why we
find even heavier tails in the simulated streamflow series.
Firstly, not all model runs necessarily represent realistic cen-
tral European catchment conditions. While each model pa-
rameter individually was varied over a plausible range, we

considered all combinations of the parameter values without
checking if the combinations are reasonable as well. For ex-
ample, some combinations result in flood frequency curves
with very sharp and large step changes, similar to the one
depicted in Fig. 3. In addition, we use some P time series
as input for which the distribution shows heavier tails than
for observed P time series. As mentioned before, the max-
imum shape parameter for observed rainfall distributions in
Germany is 0.33 (Vorogushyn et al., 2023) and we use values
up to 0.37. Papalexiou and Koutsoyiannis (2013) argue based
on 15 000 precipitation records worldwide that when correct-
ing for the record length the “true” shape parameter is even
expected to be in the range between 0 and 0.23 with 99 %
confidence. Since we want to see the whole spectrum of what
could potentially be possible, we decided against further nar-
rowing the range of shape parameters of rainfall distributions
used as input, against limiting the parameter combinations,
and against filtering out frequency curves that look different
to what has been observed so far.

When there is no process shift in the runoff generation,
the estimated shape parameter of Q is more closely related
to the estimated shape parameter of P compared to cases
with a process shift. In the cases with a process shift in
the runoff generation, the estimated shape parameter of Q
can be lower than the estimated shape parameter of P – es-
pecially for short time series length – but for the majority
of model runs it is much higher. In general, much higher
shape parameters of Q are found when a threshold process
is present in the runoff generation; i.e. this nonlinear be-
haviour of the runoff generation leads to flood peak distri-
butions with apparent heavy-tail behaviour. Several studies
have linked threshold processes in the runoff generation to
step changes in flood frequency curves (e.g. Kusumastuti
et al., 2007; Struthers and Sivapalan, 2007; Rogger et al.,
2012), but now we showed that they also lead to flood peak
distributions with higher estimated GEV shape parameters
and apparent heavy-tail behaviour.

In this study, we fit one GEV distribution to the data even
when we know that there is a process shift in the runoff gen-
eration. This might actually violate the assumption of inde-
pendent and identically distributed (IID) values for distribu-
tion fitting, if the values below and above the threshold are
not identically distributed. Having values from two different
sub-distributions, i.e. below and above the threshold, would
require a mixture distribution (e.g. Fischer, 2018). If we still
fit one GEV distribution to the entire data, it does not rep-
resent the true underlying distribution and also not the true
tail behaviour. However, in practice and for observed val-
ues we usually do not know if the values are from differ-
ent sub-distributions and therefore simply fit one GEV dis-
tribution to the entire observed data. We did the same here to
make the results more relatable and applicable to observed
time series. Our results indicate though that this common
practice can be problematic at times because a GEV distri-
bution is not always a good fit, even when considering an-
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nual maxima. While the GEV distribution is the asymptotic
distribution of independent block maxima (Fisher and Tip-
pett, 1928), we usually consider time series of limited length
and pre-asymptotic behaviour. A detailed discussion about
such differences between the statistical and hydrological per-
spective on GEV distributions and their tail behaviour can be
found in Merz et al. (2022).

For return periods mainly relevant to flood risk manage-
ment, i.e. 30–200 years, runoff generation is a more pro-
nounced control of flood peak tail behaviour than precipi-
tation – at least for small homogeneous catchments in cen-
tral Europe. Assuming that the rainfall distribution can be
used to extrapolate the flood peak distribution from a return
period of 20 or 50 years onwards, as for example in the
GRADEX method (Naghettini et al., 2012), which should
only be done with care – threshold processes in the runoff
generation can strongly affect frequency curves. Approaches
like the GRADEX method should only be used for high RPs
or if it can be ruled out that process shifts in the catchment
response might occur for larger events. If within a short, ob-
served time series there are any indications that different pro-
cesses act for the largest events than for the smaller ones,
it makes sense to assume a heavy-tailed distribution even if
the fit to the data is not heavy-tailed. Such indications could
be for example when distinctively higher runoff coefficients
or shorter event timescales are estimated for the largest ob-
served events compared to smaller ones (Macdonald et al.,
2022; Rogger et al., 2012).

The findings from this study are limited in the way that
they do not include effects of spatial variability or differ-
ent catchment sizes. Spatial variability in rainfall has been
linked to heavy-tailed flood peak distributions, and it has
been shown that this effect depends on the catchment size
(Wang et al., 2023). Increasing spatial variability in soil
moisture storage leads to a decrease in step changes in flood
frequency curves as not all areas generate overland flow at
the same time (Rogger et al., 2013). It is not clear if this
would also affect the value of the threshold RP beyond which
the rainfall distribution dominates the flood peak distribution.
To address this, the simulations would have to be repeated
with spatial variability of rainfall and runoff characteristics
instead of using a spatially lumped model. Along with this,
the catchment size could be increased and results evaluated
for sub-basins of different spatial extent. However, in such
a set-up, tail heaviness could be affected by a combination
of catchment size, sub-basin response, spatial organization,
and river routing characteristics, making it difficult to isolate
the effects of precipitation and runoff generation. Based on
this rationale, we decided for a simplified catchment repre-
sentation without spatial variabilities. Expanding this set-up
in future studies is however deemed very interesting and ad-
visable.

Furthermore, our findings are based on synthetic catch-
ments and simulation runs. While such an approach has ma-
jor advantages like the generation of long time series, results

are not always directly transferable to the real world. For ex-
ample, in the adopted rainfall–runoff model only one non-
linearity in the runoff generation was considered, namely the
activation of an additional very fast runoff component. How-
ever, in a real catchment multiple nonlinearities and process
shifts might be present such as the onset of overland flow,
the onset of subsurface stormflow, the activation of macrop-
ores, or the temporary expansion of the river network. The
model does not include all these processes explicitly and is
therefore, as all models, a simplified representation of reality.
Hence, the simulated flood peak distributions are also only
representative of this simplified reality. Nevertheless, they
can help us explore results which can be valuable for real-
world applications. In fact, Brunner et al. (2021) concluded
that there is a “growing body of real-world evidence” sug-
gesting that a precipitation-flood response threshold exists
across a wide range of hydrologic and hydroclimatic regimes
(e.g. Do et al., 2020; Wasko and Nathan, 2019; Bertola et al.,
2020). This strongly supports the relevance of our findings
for real-world catchments. In addition, the model compo-
nents used have been shown to represent well real-world be-
haviour when calibrated with real-world data (e.g. Nguyen
et al., 2021; Ceola et al., 2015; Parajka et al., 2007). Never-
theless, the simulation model chain and its parameterization
has been set up for central European conditions, and so the
findings should not be directly transferred to other regions of
the world where conditions are very different.

5 Conclusions

Both runoff generation processes and rainfall characteristics
are assumed to affect the tail behaviour of flood peak distri-
butions. Rainfall distributions have been suggested to govern
flood peak distributions beyond a certain return period. Here,
we analysed where such a threshold return period lies and
if this is linked to catchment characteristics. In addition, we
were interested in processes that govern flood peak tail be-
haviour for return periods below this threshold return period.
In particular, we analysed whether nonlinear runoff gener-
ation that is caused by threshold processes leads to heavy-
tailed flood peak distributions. To address these questions,
we used a simulation-based approach consisting of a weather
generator and a rainfall–runoff model. Long time series of
precipitation and streamflow were generated and their tail be-
haviour subsequently assessed.

We found that the threshold return period (RP) beyond
which the rainfall tail dominates the flood peak distribu-
tion varies strongly between catchments. For the majority of
the analysed synthetic catchments, the threshold RP lies be-
tween 100 and 500 years. Overall, threshold RPs from below
2 years to beyond 6000 years were estimated. We found that
the threshold RP increases with an increasing ratio of catch-
ment storage to mean annual precipitation (MAP). MAP re-
flects here the overall catchment wetness and controls the
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mean event rainfall depth. The larger the storage–MAP ratio
in a catchment, the higher is the threshold RP beyond which
the rainfall tail dominates the tail of the flood peak distribu-
tion.

When comparing the shape parameters of generalized ex-
treme value (GEV) distributions fitted to precipitation and
discharge, we found a much larger variability for the latter
than for the former. Independent of the time series length,
the same rainfall distribution can result in flood peak distri-
butions that differ strongly in their tail behaviour. For time se-
ries of 200 years and more, the shape parameter of the rainfall
distribution appeared like a lower bound for the shape param-
eters of the resulting flood peak distributions. When fitting a
GEV distribution to observed flood peaks, it could therefore
be useful to assume the shape parameter of the rainfall dis-
tribution as the lowest possible value for the shape parameter
of the flood peak distribution. This can be especially useful
when the observed record of precipitation is longer than that
of streamflow, so that for the rainfall tail more robust estima-
tions can be achieved than for the flood peak tail.

Threshold processes in the runoff generation were found to
lead to flood peak distributions with stronger apparent heavy-
tail behaviour. Catchments where a process shift in the runoff
generation occurred had generally flood peak distributions
with higher estimated GEV shape parameters than the ones
without process shift. The process shift considered here is
caused by a threshold in the upper subsurface storage. When
this threshold is exceeded, an additional and faster runoff
component is triggered. Distributions with such a process
shift tend to show a step change. While the step change itself
does not characterize the tail of the distribution, it does re-
sult in a higher estimated value of the shape parameter of the
fitted GEV distribution. The finding suggests that if within a
short, observed time series there are any indications that dif-
ferent processes act for the largest events than for the smaller
ones, it might be useful to assume a heavy-tailed distribu-
tion even if the distribution originally fitted to the data is not
heavy-tailed.

Overall, both rainfall and runoff generation were found
to be important controls of the tail behaviour of flood peak
distributions. The runoff generation can strongly modulate
tail behaviour, especially through threshold processes. Be-
yond a certain return period, the influence of catchment pro-
cesses decreases and the tail of the rainfall distribution starts
to dominate the tail of the flood peak distribution. Beyond
which return period this is the case depends on catchment
characteristics, in particular on catchment storage in rela-
tion to mean annual rainfall amount. In many catchments,
the runoff generation is found to be a more pronounced con-
trol of flood heavy tails than precipitation for return periods
which are mainly of interest to flood risk management. How-
ever, these findings are based on small, spatially homoge-
neous catchments. Future studies should address the effect
that spatial variability and catchment size have on flood peak

tail behaviour and its relation to runoff generation and rain-
fall characteristics.
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Appendix A: Model parameters

Table A1. Parameter values and ranges of the TUWmodel as they are used in the sensitivity analysis (SA) and in the final model runs (MRs).
Ranges are based on Parajka et al. (2007); fixed values are based on Merz et al. (2011). A schematic of the model structure with the model
parameters can be found in Fig. 2.

Model parameter Range in SA Fixed value in MR Range in MR

TR – threshold temperature for rainfall [◦C] 1.0–3.0 2.0
TS – threshold temperature for snowfall [◦C] −3.0–1.0 0
SCF – snow correction factor [–] 0.9–1.5 1.12
TM – threshold temperature for snowmelt [◦C] −2.0–2.0 0
DDF – degree day factor [mm◦C−1 h−1] 0.0042–0.21 0.075

FC – maximum soil moisture storage [mm] 1–300 1–200
LP – limit for PET [–] 0.75–1 0.9
BETA – nonlinearity parameter [–] 1–10 3.2

LUZ – threshold storage state [mm] 1–100 1–80
CPERC – constant percolation rate [mmh−1] 0.00042–0.25 0.00042–0.25
k0 – storage coefficient for very fast response [h] 2.4–36 10.56
k1 – storage coefficient for fast response [h] 48–720 240
k2 – storage coefficient for slow response [h] 720–6000 2760

BMAX – maximum base at low flows [h] 2.4–720 120
CROUTE – free scaling parameter [h2 mm−1] 0.1× 242–50× 242 25× 242

Appendix B: Additional figures

Figure B1. Sums of absolute differences between the slopes of dis-
charge (Q) and precipitation (P ) frequency curves for different du-
rations of P . Local slopes of log(QAMS) and log(PAMS) against
their return period were estimated for 21 model runs on close-to-
impervious catchments for each duration of P . The smaller the sum
of absolute differences, the closer a duration of P is linked to Q.

Figure B2. The relation of threshold return periods and the perco-
lation rate from the upper to the lower subsurface storage (CPERC).
Results are based on 2310 model runs in which a threshold return
period within 6000 years was estimated. The threshold return pe-
riod describes beyond which return period the frequency curves of
discharge and precipitation run in parallel on a log–log plot, i.e. be-
yond which return period the flood peak distribution is governed by
the rainfall distribution.
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Figure B3. Shape parameters of generalized extreme value (GEV) distributions fitted to discharge series (ξQ) against GEV shape parameters
of the precipitation series (ξP ) that were used to simulate the discharge. Q is considered on an hourly scale, while P is considered on a
6-hourly scale. GEV distributions were fitted to annual maximum series (AMS) of 60, 200, 1000, and 6000 years. For each level of mean
annual precipitation (565 and 1004 mm), results are based on 875 model runs of 6000 years – seven P series with different tail behaviour but
the same MAP and 53 different parameter sets in the rainfall–runoff model. An AMS of Q was classified as containing a process shift when
for some but not all of the flood peak events a storage threshold was exceeded and an additional and faster runoff component was triggered.

Code availability. The code of the regional weather generator is
available in a GitLab repository (https://git.gfz-potsdam.de/hydro/
rfm/rwg, last access: 30 January 2023). Access can be granted by
Dung Viet Nguyen upon request. The rainfall–runoff model TUW-
model is available as an R package (https://CRAN.R-project.org/
package=TUWmodel, Viglione and Parajka, 2020).

Data availability. The observational data from the weather sta-
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environment/CDC/observations_germany/climate/, DWD, 2022).
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