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Abstract. This work introduces a novel snow metric, snow
water storage (SwS), defined as the integrated area under
the snow water equivalent (SWE) curve (units: length-time,
e.g., m d). Unlike other widely used snow metrics that cap-
ture snow variables at a single point in time (e.g., maximum
SWE) or describe temporal snow characteristics (e.g., length
of snow season), SwS is applicable at numerous spatial and
temporal scales. This flexibility in the SwS metric enables
us to characterize the inherent reservoir function of snow-
packs and quantify how this function has changed in re-
cent decades. In this research, changes in the SwS metric
are evaluated at point, gridded and aggregated scales across
the conterminous United States (hereafter US), with a par-
ticular focus on 16 mountainous Environmental Protection
Agency (EPA) Level III Ecoregions (ER3s). These ER3s ac-
count for 72 % of the annual SwS (SwSA) in the US, despite
these ER3s only covering 16 % of the US land area. Since
1982, spatially variable changes in SwSA have been observed
across the US with notable decreasing SwSA trends in the
western US and in the 16 mountainous ER3s. All moun-
tainous ER3 (except for the Northeastern Highlands in New
England) exhibit decreasing trends in SwSA resulting in a
22 % overall decline in SwSA across mountainous ER3s. The
peak monthly SwS (SwSM) occurs in March at all spatial
scales, while the greatest percentage loss of SwSM occurs
early in the snow season, particularly in November. Unsur-
prisingly, the highest elevations contribute most to SwSA in
all mountain ranges, but the specific elevations that have ex-
perienced loss or gain in SwSA over the 39-year study period
vary between mountain ranges. Comparisons of SwS with
other snow metrics underscore the utility of SwS, providing
insights into the natural reservoir function of snowpacks, ir-
respective of SWE curve variability or type (e.g., ephemeral,
mountain, permanent). As we anticipate a future marked by

increased climate variability and greater variability in moun-
tain snowpacks, the spatial and temporal flexibility of snow
metrics such as SwS may become increasingly valuable for
monitoring and predicting snow water resources.

1 Introduction

Seasonal snow is a critical resource in mountainous regions
and at high latitudes across the United States (US), and many
other countries, providing an important ecosystem service by
functioning as a natural and spatially distributed reservoir
(Barnett et al., 2005). These snow reservoirs play a key role
in the water cycle by storing water during the cool season
and releasing water gradually throughout the warm season
when human and ecological demand is the highest (Li et al.,
2017). The natural reservoir function of snowpacks is at risk
due to anthropogenic climate change, which has been shown
to decrease snowpack magnitude and persistence while in-
creasing snowpack variability (Siirila-Woodburn et al., 2021;
Scalzitti et al., 2016; Sospedra-Alfonso et al., 2015; Morán-
Tejeda et al., 2013). The variability in climatic variables that
drive snowpack variability, such as precipitation and temper-
ature, has increased in the recent past and is projected to
continue to increase as a result of climate change (Scalzitti
et al., 2016; Sospedra-Alfonso et al., 2015; Morán-Tejeda
et al., 2013; Pendergrass et al., 2017; Ohmura, 2012). Given
the vulnerability of seasonal snow water storage to climate
change and the importance of snow-derived water to munic-
ipalities, agriculture, ecosystems and hazard forecasters, it is
vital to understand how water storage in our natural snow
reservoirs is evolving in the context of a changing climate
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(Immerzeel et al., 2020; Sturm et al., 2017; Barnett et al.,
2005; Li et al., 2017; Siirila-Woodburn et al., 2021).

Snow water equivalent (SWE) is a relevant snowpack char-
acteristic for many water resources applications. SWE is the
depth of water obtained upon melting a column of snow.
Having an estimate of SWE across a watershed is analogous
to knowing the stage (water elevation) in a surface reser-
voir; it quantifies the amount of water being stored for later
use. Other directly measurable snow characteristics largely
fall into two categories: (1) they can be temporal snapshots
that give us information about snow magnitude at a cer-
tain point in time or (2) they can provide information about
snow timing (Nolin et al., 2021). The 1 April SWE, snow-
covered area (SCA) and peak SWE (SWEmax) are examples
of temporal snapshot metrics. Snow metrics that give us in-
formation about the timing of snow include snow cover du-
ration (SCD), date of snow onset (DSO) and date of snow
disappearance (DSD).

Composite snow metrics, such as the snow storage in-
dex (SSI) (Hale et al., 2023) and the water tower index (WTI)
(Viviroli et al., 2007), are not directly measurable, but they
combine information streams in order to relate snowpack to
water storage. The SSI indicates the degree to which snow-
pack delays the timing and magnitude of surface water in-
puts relative to when it falls as precipitation, whereas the
WTI identifies locations where mountain runoff contributes
disproportionately to lowland water supplies. Additionally, a
global WTI was developed, which ranks all water towers in
terms of their water-supplying role and downstream societal
and ecological demand (Immerzeel et al., 2020).

A conceptual SWE curve is shown in Fig. 1a. The con-
ceptual SWE curve referenced throughout this paper is for
mountain snowpacks and is delineated by three points: the
DSO, the peak SWE (SWEmax) and the DSD. SWE accu-
mulation begins at the DSO and continues up to a SWEmax,
which may or may not occur on 1 April (Northern Hemi-
sphere). After SWEmax, the ablation phase of the snow sea-
son begins and the SWE depth declines until it reaches zero
at the DSD. The SCD is captured by the width of the SWE
curve. Multiple factors can result in systematic changes in
the shape of the SWE curve, including climate change (Lute
et al., 2015); natural land cover change, such as wildfire
(Gleason et al., 2019) or beetle kill (Pugh and Small, 2012;
Boon, 2007; Winkler et al., 2014); and anthropogenic land
cover change, such as forest thinning (Krogh et al., 2020;
Sun et al., 2022) or logging (Winkler et al., 2005; Troendle
and Reuss, 1997).

The shaded regions in the other panels of Fig. 1 provide
plausible examples of how the SWE curve may have changed
from the past to present day. For example, a current SWE
curve could be a scaled (reduced) version of a past SWE
curve (Fig. 1b). This would result in a later DSO, a lower
SWEmax, an earlier DSD and a shorter SCD. Changes in
SWE curves could also result from a temporal shift in the
historic curve (Fig. 1c). This would not impact SWEmax or

Figure 1. Conceptual illustration of a SWE curve and various ways
that it could change from past to present.

SCD, but the metrics including 1 April SWE, DSO and DSD
would be affected. Figure 1d gives yet another example of
a theoretical current scenario, compared to a historic one. In
this case, the shape of the conceptual SWE curve is changed
by repeated accumulation and melt events during the accu-
mulation season. As shown in this graphic, metrics such as
DSO, DSD, SCD, SWEmax and 1 April SWE could all re-
main unchanged, but it is clear that the snowpack is different
than in the past. Previous literature has quantified increas-
ing ablation during the accumulation period by defining a
“melt fraction” (Musselman et al., 2021), which is the ratio
of the melt that occurs during the accumulation phase to the
total melt. Their metric helps to identify snowpacks that have
considerable variance and vulnerability to warming and rain-
on-snow events. Another example of changing snowpack is
shown in Fig. 1e. Here, the SCD remains constant due to con-
sistent DSO and DSD, but SWEmax decreases in magnitude,
resulting in less snow overall. Finally, Fig. 1f shows a theo-
retical future in which DSO, DSD, SCD, 1 April SWE and
SWEmax all remain constant, but it is clear that there is less
snow present throughout the season.

The conceptual SWE curve and the above discussion is fo-
cused on a mountain snowpack, a snowpack with a distinct
period of steady accumulation up to a SWEmax, followed
by a similarly steady ablation season that persists through-
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out the winter. While mountain snowpacks play a key role
in natural water storage, other types of snowpacks also have
distinct characteristics and are important to the hydrological
cycle. For example, ephemeral snowpacks, snowpacks that
tend to be have a lower cold content than mountain snow-
packs and come and go throughout the winter (Sturm et al.,
1995; Hatchett, 2021), play a role in soil moisture and runoff
regimes (Livneh and Badger, 2020; Hamlet and Lettenmaier,
2007). Ephemeral snowpacks tend to experience accumula-
tion and ablation processes nearly in tandem (Liston and El-
der, 2006). Alternatively, Greenland and Antarctic ice sheets
primarily experience accumulation processes (Liston and El-
der, 2006). While metrics such as 1 April SWE, SWEmax
and SCD do a good job of characterizing mountain snow-
packs, they are not as useful at capturing the transient nature
of ephemeral snowpacks or the lack of an ablation season on
ice sheets.

This work aims to characterize the extent to which snow-
packs serve as natural reservoirs and evaluate spatial and
temporal changes in snow water storage in a new, integrated
way. As we move into a future of increased climate and
snowpack variability, we need snow metrics that can capture
diverse and dynamic snowpack regimes. As the majority of
natural snow water storage in the US occurs in mountain-
ous regions, it is important to understand how the natural
reservoir function of snowpacks is changing across individ-
ual mountain ranges. When attempting to quantify snow wa-
ter storage change, it can be difficult to merge the scale at
which most in situ observations are available (at the point/s-
tation scale) and the scale at which snowpacks operate as
natural reservoirs (at the mountain range scale). This study
presents a new spatially and temporally flexible snow met-
ric, snow water storage (SwS), in order to address the reality
of changing snowpack regimes and the challenge of spatial
variability between snow observations and decision-making.
This study examines SwS trends in mountain snowpacks by
addressing the following research questions:

1. What are the trends in monthly and annual SwS across
the US at discrete point, gridded and aggregated scales?

2. What is the role of mountainous ER3s in US SwS and
how has this changed in recent decades?

3. How does SwS relate to other common snow metrics?

2 Methods

2.1 Snow water storage metric (SwS)

SwS quantifies the depth of water stored in snow reservoirs
over time and is calculated by integrating the area under the
SWE curve:

SwS=
∫

SWE(t)dt, (1)

where SWE has dimensions of length, and integration occurs
over a time period (water year, a given month, etc.) of inter-
est. If daily SWE data are used for this calculation at a given
point, SwS will have dimensions of meter-days (or md).

As defined above, SwS is a quantity computed at a single
point, e.g., a SNOTEL location. However, the SwS metric
can also be aggregated across various spatial scales. There
are numerous reanalysis products that provide spatially dis-
tributed SWE information on a regular grid. In this case, SwS
can be computed for a horizontal area (say a particular wa-
tershed) of interest, resulting in SwS having dimensions of
cubic meter days (m3 d).

SwS can also be computed for various integration peri-
ods. If the integration is done over the entire water year, this
yields annual SwS (SwSA). In the integration is for a par-
ticular month, this yields monthly SwS (SwSM). Integrating
daily SWE data over a single day produces the daily value of
SwS (SwSD), but this is simply is the same as daily SWE.

SwS is the integrated area under the SWE curve, indicat-
ing the cumulative meter-days of water stored as a snowpack.
SwS quantifies the degree to which a snowpack functions as
a water storage reservoir. Unlike 1 April SWE or SWEmax,
SwS can be applied to mountain, ephemeral or permanent
snowpacks. Unlike other storage-related metrics such as SSI
and WTI, SwS is directly measurable and does not require
the combination of multiple data streams to calculate. Ul-
timately, this integrated metric helps us to understand how
much water is held in our snow reservoirs and for how long.

2.2 Data

Daily observations of SWE were obtained from Natural
Resources Conservation Service (NRCS) Snow Teleme-
try (SNOTEL) stations (Serreze et al., 1999) and from Co-
operator Snow Sensors (COOP). The SNOTEL network pro-
vides data at discrete scattered points across the western US,
while the COOP stations used in this study provide data
across California. This study used the 465 stations that have
a period of record from at least water year 1982 to water year
2020 with less than 10 % of days missing during that period.

This study also uses the University of Arizona SWE
(UASWE) dataset (Zeng et al., 2018; Broxton et al., 2019),
a daily 4 km gridded dataset that spans the US. The UASWE
dataset assimilates SWE and snow depth observations into
an empirical temperature index snow model that is forced
with PRISM temperature and precipitation data (Daly et al.,
2008). The primary value of this dataset is that it provides
SWE estimates at locations other than the SNOTEL stations.
This allows for the aggregation of SWE information over
areas of interest (Zeng et al., 2018). The UASWE product
has been shown to outperform (Dawson et al., 2018) other
gridded SWE products such as the SWE estimates from the
Snow Data Assimilation System (SNODAS; NSIDC, 2004).
Additionally, a spatially continuous, gridded product allows
us to build a more complete picture of spatial changes in
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Figure 2. Map of ER3s in the US. Mountainous ER3s are colored and labeled.

SwS and how changes in SwS are occurring at aggregated
scales. Despite the good performance of the UASWE prod-
uct, there are limitations to using any modeled SWE product.
Factors such as imperfect physics, inaccurate boundary con-
ditions and rescaling errors can contribute to inaccuracies in
the modeled field, SWE in this case (Sturm, 2015; Zhang
et al., 2007).

The Environmental Protection Agency (EPA) Level III
Ecoregions (ER3s) (McMahon et al., 2001; Omernik and
Griffith, 2014), which are regions with similar ecosystems
and environmental resources, were used to identify moun-
tainous regions and to delineate the grid cells in the UASWE
dataset that were associated with each ER3 (Fig. 2). Moun-
tainous ER3s were included in this study if at least half of
their area resided in the snow-covered mask (described in
Sect. 2.3 below). As each ER3 has similarities in biotic, abi-
otic, terrestrial and aquatic ecosystem components, examin-
ing SwS change in any given ecoregion may help us under-
stand ecosystem impacts that are related to changes in SwS.
Numerous ER3s correspond to the major mountain regions
in the western and eastern US that serve as the largest natural
reservoirs in the country.

Finally, NASA Shuttle Radar Topography Mission
(SRTM) digital elevation data (Farr et al., 2007) were re-
gridded to create a digital elevation model (DEM) matching

the grid of the UASWE product. Elevation data were used
to calculate watershed hypsometry in each ER3. The pro-
cedure used to calculate a hypsometry grid is described in
Sect. 2.4.2.

Although the station and ER3 datasets extend beyond the
conterminous US, the UASWE dataset does not. All datasets
were spatially constrained to the conterminous US in order
to facilitate the comparison of results between spacial scales.
A summary of all of these datasets is provided in Table 1.

2.3 Study area

As noted above, this study considers both discrete station
data that focus on the western US and spatially continuous
gridded data that cover the conterminous US. Regarding the
gridded data, many locations have little to no snow. There-
fore, the analysis of the gridded product is restricted to loca-
tions that have a mean of at least 30 snow-covered days per
year based on the 39-year climatology (1982–2021) of the
UASWE dataset (Fig. 3). As expected, snow cover duration
increases with latitude and elevation, with the longest snow
cover duration found along mountain tops in the western US.
In the ER3 SwS change analysis, all ER3s are considered that
contain grid cells that meet the 30 d snow cover threshold,
although the mountainous ER3s are more closely examined
because they store the bulk of our winter water.
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Table 1. Summary of data used in this work. n/a stands for not applicable.

Dataset Hosting agency Data type Temporal resolution Spatial
resolution

Snow Telemetry Natural Resources Point Stations were selected with a n/a
(SNOTEL) Conservation observations period of record starting in

Service (NRCS) water year 1982 and less than
10 % of days missing

Cooperator Snow Natural Resources Point Stations were selected with a n/a
Sensors (COOP) Conservation observations period of record starting in water

Service (NRCS) year 1982 and less than
10 % of days missing

University of National Snow and Gridded Water year 1982–present 4 km× 4 km
Arizona SWE Ice Data Center product
(UASWE) (NSIDC)

NASA SRTM Google Earth Engine Gridded n/a 30 m× 30 m
digital (GEE) product
elevation

EPA Level III Google Earth Engine Vector data n/a n/a
Ecoregions (GEE)

Figure 3. Study area for the UASWE dataset, indicated by color
shading, showing the mean number of SCDs across the contigu-
ous US in locations that have a minimum average of 30 snow-
covered days per year over the period of study.

2.4 Analysis

2.4.1 SwS trends

To evaluate significant trends in SwSA and SwSM across the
US, these quantities were computed over a 39-year period
of study (water years 1982–2020) at stations and at UASWE
grid cells, which have an area of 16 km2. The grid-cell-based
SWE from the UASWE product was additionally aggregated
for each ER3 in order to assess trends at larger scales. To
compute SwS at aggregated ER3 scales, the gridded SWE
data within an individual ER3 were simply integrated spa-
tially, resulting in SwS with units of cubic meter days (m3 d).

This study used the Hamed and Rao modified Mann–
Kendall (MK) test from the pyMannKendall Python pack-

age to compute trends in SwS (Hussain and Mahmud, 2019).
The MK test is a rank-based nonparametric test that is used
to evaluate monotonic (increasing or decreasing) trends in
temporally varying data (Hirsch et al., 1982). Thus, the null
hypothesis is that the data are randomly and independently
ordered, whereas the alternative hypothesis is that a mono-
tonic trend exists in the data. Although the MK test is widely
used in hydrological studies, it does not account for positive
autocorrelation, which increases the probability of detecting
trends when no trends exist. Because of this, many studies
have turned to a modified MK test that does account for au-
tocorrelation (Hamed and Rao, 1998).

2.4.2 Trends by elevation in mountainous ecoregions

This analysis focused on 16 ER3s corresponding to the
mountain ranges that receive substantial snowfall relative to
surrounding ecoregions. A total of 12 of these ER3s are lo-
cated in the western US and 4 are located in the eastern US.
The relative elevation of SwSA change in each ER3 is exam-
ined in this study. In order to make trends in SwSA compara-
ble over the wide range of elevations across the US, the eleva-
tions of each ER3 are converted to hypsometry scores. Each
ER3 boundary is used to select co-located elevation data
from the regridded NASA SRTM digital elevation dataset.
ER3 hypsometry is calculated by determining the percentage
of the ER3 area that falls below a given elevation within that
ER3. Thus, there is 0 % of the ER3 at the lowest elevation
of the ER3 and 100 % of the ER3 is below the highest el-
evation. Each elevation grid cell in the DEM is turned into
a value between zero and one based on where that grid cell
lies relative to other elevation grid cells within the same ER3.
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Hypsometry scores in each mountainous ER3 are then binned
into 10 % increments, from 0 % of an ER3 below to 100 % of
an ER3 below, in order to compute the mean SwSA and the
percentage change in each hypsometry band from 1982 to
2020. The percentage change in the interquartile range (IQR)
of SWE was also computed for each hypsometry band from
1982 to 2020. To calculate the percent change in the IQR,
the IQR in each ER3 is calculated for each year in the study
by subtracting the 25th percentile from the 75th percentile of
SWE. The trend is evaluated in each hypsometry band fol-
lowing the trend analysis described in Sect. 2.4.1.

2.4.3 SwSA compared with other snow metrics

SwSA trends are compared with other commonly used snow
metrics including 1 April SWE, SWEmax, day of SWEmax
and SCD in order to evaluate what type of information the
SwSA metric provides that other metrics do not. This is done
in four ways using the station data. First, the percentage of
stations with positive, positive significant, negative and neg-
ative significant trends in each metric is computed. Second,
the trend in the annual number of snow-free periods is calcu-
lated at each station from 1982 to 2020 to evaluate whether
snowpacks are becoming more ephemeral using the Hamed
and Rao modified MK test described in Sect. 2.4.1. The an-
nual number of snow-free periods is defined as the number
of times in a water year that there is no snow following a
period of snow. Next, the utility of the SwS metric compared
with other snow metrics is shown using a case study of SNO-
TEL station 706 (Quartz Mountain, Oregon), a station that
has transitioned from a mountain snowpack to an ephemeral
snowpack. Third, a regression is computed between the per-
centage change in SwSA and each other metric above using
empirical data from the stations. Finally, the relationship be-
tween the percentage changes in the empirical data is com-
pared with the percentage changes that would be expected
based on the conceptual SWE curve. For example, the em-
pirical relationship between the percentage change in SwSA
and the percentage change in SWEmax is compared with what
it would be if there was a uniform scaling in the conceptual
SWE curve as shown in Fig. 1b.

3 Results

3.1 SwS change trends

3.1.1 SwSA change trends

The average SwSA across all stations in this analysis is
60 md. The lowest SwSA found at a single station was 0 md,
whereas the maximum SwSA observed was 510 md. Changes
in SwSA range from a decrease of 122 md to an increase of
69 md over the period of study (Fig. 4). Of the 97 SNOTEL
and COOP stations with increasing trends in SwSA, only
10 had significant (p < 0.1) increases (Fig. 4). Significant

decreasing SwSA trends were found at 123 of the 367 sta-
tions. Losses in SwSA ranged from 2 to 122 md. Spatially,
there are widespread decreasing SwSA trends across most of
the 11 western states that contain snow stations, with declines
ranging from 17 % to 87 %. The 10 stations with significant
increases in SwSA range from a 6 % increase to a 78 % in-
crease. The stations with increasing SwSA trends are mostly
located in the Northern and Middle Rockies and also include
a few station in the Southern Rockies and in the Cascades.

Moving from discrete station data to the spatially contin-
uous gridded UASWE data, there is a mean SwSA of 1.8×
108 m3 d across grid cells (Fig. 5). Mountainous ER3s in the
western US have an average SwSA of over 1.4×109 m3 d and
the maximum SwSA is 2.6×1010 m3 d. The average SwSA in
much of New England and the Upper Peninsula of Michigan
ranges from 3.2× 108 to 6.4× 108 m3 d.

The grid-cell-scale change analysis yields similar geo-
graphic patterns of significant changes in SwSA in the west-
ern US to the station-scale analysis (Fig. 5). This is not sur-
prising given that the UASWE product assimilates SNOTEL
(and other) station data. The benefit of including a spatially
distributed product such as UASWE in this analysis is that it
adds detail and insight as to where changes in SwSA are oc-
curring beyond the western US and in between the locations
where discrete stations are located. Significant increases in
grid-cell SwSA are primarily found in the north central and
northeastern US. Only 5 % of US grid cells have significant
increasing trends with a mean increase of 84 %. From 1986
to 2015, the north central and northeastern US experienced
an increase in annual precipitation, particularly in spring and
fall, although these regions also show spatially variable in-
creases in precipitation during the winter (Easterling et al.,
2017). These precipitation changes may partially explain the
increases in SwSA, although these regions have also experi-
enced increases in winter temperatures over the same time
period. Significant decreases in SwSA are more widespread
and are found across the western US, the Appalachian Moun-
tains, the Blue Ridge Mountains and in the Ozarks. Of the
54 % of US grid cells that have decreasing trends in SwSA,
11 % have significant decreasing trends. The mean decline in
SwSA for the grid cells with significant trends is 44 %.

Figure 6 indicates the raw change and percentage change
in SwSA across ER3s. Aggregating UASWE SwSA at ER3
scales spatially filters (and thus mutes) some of the grid-cell-
scale trends in SwSA, as can be seen when comparing Figs. 4
and 5. Of the 51 ER3s that are evaluated in this study, 19 have
increasing trends and 32 have decreasing trends. Only one
ER3, the non-mountainous Lake Agassiz Plain, has a signif-
icant positive trend in SwSA (86 % increase). None of the
non-mountainous ER3s have significant decreasing SwSA
trends. The specific ways in which SwSA has changed across
the 16 mountainous ER3s and how these changes relate to
other snow metrics will be discussed in Sect. 3.3.
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Figure 4. Change in SwSA (md) (a) and percentage change in SwSA (b) across US stations from water years 1982 to 2020. Large outlined
circles indicate stations with p < 0.1.

Figure 5. Change in SwSA (md) (a) and percentage change in SwSA (b) across the UASWE dataset. Stippling indicates locations with
p < 0.1.
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Figure 6. Change in SwSA (md) (a) and percentage change in SwSA (b) aggregated across ER3s over water years 1982–2020. Stippling
indicates ER3s with p < 0.1.

3.1.2 SwSM change trends

The highest monthly mean SwSM occurs in March at sta-
tions (12.8 md), grid cells (2.7× 107 m3 d) and in mountain-
ous ER3s (7.4 m3 d). Figures 7–9 summarize trends in SwSM
change evaluated at stations, UASWE grid cells and ER3s,
respectively. Significant decreases in SwSM occur across all
months at all spatial scales examined. November experienced
the highest number of stations, grid cells and ER3s with sig-
nificant SwSM losses compared with any other month. The
greatest monthly median percentage loss of SwSM occurred
in November at stations (56 %) and grid cells (44 %), while
it occurred in March at mountainous ER3s (61 %). Looking
at raw change values, the months with the greatest decrease
in SwSM are not the same as the months with the largest
percentage changes. March, December and January are the
months with largest decrease in median SwSM at stations
(4.6 md), grid cells (6.4× 106 m3 d) and mountainous ER3s
(1.1× 1011 m3 d), respectively.

Although there is an overall negative median percentage
change in SwSM in all winter months at the station and grid-
cell scale, February and March have higher occurrences of
significant SwSM increase than any other months. At the
grid-cell scale, October, March–May and July–August all
have a 0 % median change in SwSM because most grid cells
within the snow-covered mask are snow-free during these
times. At the ER3 scale, the median percentage change in
SwSM is negative in all months. Most data points that in-
dicate significant positive increases in monthly storage are
considered outliers at all spatial scales.

3.2 SwSA change trends in mountainous ER3s

Analysis of mountainous ecoregions illuminates the large
role that mountains play in storing winter snow water re-
sources as snowpack, particularly in the western US. An av-
erage of 72 % of the annual SwSA in the US (3.5×1013 m3 d)
is held in the 16 mountainous ER3s, despite these ER3s
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Figure 7. Changes (significance p < 0.1) in SwSM across US sta-
tions, in dimensional units (a) and in terms of percentage
change (b). The rectangle indicates the interquartile range, with the
middle bar indicating the median. The blue pluses are outlier points.
Panel (c) shows the fraction of stations that had significant increases
or decreases in SwS.

only covering 16 % of the US land area (Figure 6). West-
ern mountainous ecoregions cover 12 % of the US land sur-
face and store an average of 65 % of the annual SwSA.
Across all mountainous ER3s, there has been a 22 % decline
(6.1× 1012 m3 d) in SwSA over the 39-year period of study.
Over the same time span, there has been a 24 % decline in
SwSA in western mountainous ER3s, indicating that western
snow reservoirs are shrinking faster than eastern snow reser-
voirs.

Of the 16 mountainous ER3s (outlined in red), only the
Northeastern Highlands has a (nonsignificant) increasing
SwSA trend, whereas the other 15 mountainous ER3s have
decreasing SwSA trends. This means that the snow water
storage in 94 % of mountainous ER3s has declined from
1982 to 2020. Five of the mountainous ER3s, the Cas-
cades, the Eastern Cascade Slopes and Foothills, the South-

Figure 8. As in Fig. 7 but for the gridded UASWE dataset.

ern Rockies, the Idaho Batholith, and the Arizona/New Mex-
ico Mountains, have significant decreasing SwSA trends,
with a mean decrease of 38 %.

Table 2 summarizes the fraction of US SwSA in each
mountainous ER3, the percentage change in SwSA from wa-
ter years 1982 to 2020 and the p value associated with the
change. In the western US, the Middle Rockies are respon-
sible for the greatest fraction (12 %) of SwSA in the coun-
try, followed by the Southern Rockies (10 %) and the Idaho
Batholith (8 %). SwSA has declined in all mountainous ER3s
in the western US over the last 39 years. The greatest declines
in western SwS were in the Arizona/New Mexico Mountains
(56 % decline), the Eastern Cascade Slopes and Foothills
(40 % decline), and the Cascades (39 % decline). All east-
ern mountainous ER3s showed declines in SwSA over the
last 39 years with the exception of one, the Northeastern
Highlands. The Northeastern Highlands are responsible for
the greatest fraction (4 %) of SwSA in the eastern US; SwSA
has increased 13 % in this region over the last 39 years. The
greatest decline in SwSA in the eastern US was in the Ridge

https://doi.org/10.5194/hess-28-781-2024 Hydrol. Earth Syst. Sci., 28, 781–800, 2024



790 C. M. Aragon and D. F. Hill: Changing snow water storage in natural snow reservoirs

Figure 9. As in Fig. 7 but for changes in SwSM aggregated across
ER3s from water years 1982 to 2020. Red components of this figure
indicate the results only considering mountainous ER3s.

and Valley (11 % decline), which holds an average of 0.2 %
of US SwSA.

The greatest SwSA is found in the highest 10 % of moun-
tainous ER3s elevations (Fig. 10). Most mountainous ER3s
have decreasing trends in SwSA across all hypsometry bins,
although the Sierra Nevada (5), the Wasatch and Uinta
Mountains (19), the Southern Rockies (21), the North Cen-
tral Appalachians (62), and the North Cascades (77) show
increasing trends in SwSA at low elevations and decreasing
trends at higher elevations. The Northeastern Highlands is
the only ER3 that shows increasing trends in SwSA at all ele-
vations. Increasing trends in SwSA at low elevations in some
ER3s may partially be a result of very low SwSA to begin
with; thus, small changes in SwSA may suggest large per-
centage changes.

By looking at the percentage change trends in the IQR
of SWE, this study gives an idea of how interannual SWE
variability has changed from 1982 to 2020 (Fig. 10). Several

ER3s have increases in the SWE IQR of the lowest hypsom-
etry bands, which correspond to the lowest parts of ER3s.
This could be a result of increasing snow variability as freez-
ing levels move to higher elevations, resulting in increased
irregularity in precipitation form. In the middle and upper
hypsometry bands of most ER3s, there is largely a decrease
in the IQR. This may be a result of declining snowpacks,
which would allow for less variability in the range of SWE
values overall. The Northeastern Highlands, Ridge and Val-
ley, Central Appalachians, and North Cascades stand out in
that they have increasing tends in IQRs across most hypsom-
etry bands.

3.3 SwSA compared with other snow metrics

Figure 11 demonstrates how the conceptual SWE curve is
changing in each of the ER3s based on the trend analysis of
four common snow metrics: DSO, SWEmax, SWEmax day of
water year (Dmax) and DSD. Trends in DSO, SWEmax, Dmax
and DSD were evaluated because these metrics serve as an-
chor points that define the boundaries of the conceptual SWE
curve. These conceptual SWE curves are superimposed on
the observed mean SWE curves for the first and last 20 years
of study in each ER3. With the exception of the Northeast-
ern Highlands and the North Cascades, the 2020 SWE curve
(solid red line) delineates a smaller conceptual SWE curve
than in 1982 (dotted red line). The specific anchor points that
cause the shrinkage of the conceptual SWE curve are vari-
able across ER3s. Of the ER3s that experienced significant
(p < 0.1) decreases in SwSA, the Southern Rockies and the
Arizona/New Mexico mountains also had significant changes
in the DSO, DSD and SWEmax. The Cascades, the East-
ern Cascade Slopes and Foothills, and the Idaho Batholith
also experienced significant declines in SwSA. These three
ER3s had significantly earlier DSDs. Although evaluating
change at the anchor points tells us how the conceptual SWE
curve is changing, the actual SWE curve is not a triangle and
is subject to complex patterns of change including notable
accumulation- and ablation-season SWE variability. A com-
parison of the mean SWE curves from the beginning and end
of the study period yields a smaller SWE curve in the last
decade of study in all western ER3s, although the eastern
ER3s (Northeastern Highlands, North Central Appalachians,
Ridge and Valley, and Central Appalachians) have more nu-
anced change in the SWE curve. These subtler shifts involve
certain aspects of the snow season having higher SWE val-
ues in the first decade of study, while other parts of the snow
season have higher SWE values in the later period of study.
The SwS metric accounts for these complex patterns and is
able to quantify natural reservoir storage and change.

Trends in snow metrics (SwSA, 1 April SWE, SWEmax
and SCD) are not changing in the same direction at all sta-
tions (Fig. 12). SNOTEL and COOP stations were placed to
capture mountain snowpack regimes where snow increases
up to a maximum value throughout the accumulation season
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Table 2. Overview of SwSA in mountainous ER3s. Bold p values are significant at p < 0.1.

ER3 code and name ER3 elevation Average Percentage p value
(m) (minimum, fraction change from

maximum) of US SwSA 1982 to
2020

West

4: Cascades 4, 3531 0.078 −39.0 0.08
5: Sierra Nevada 402, 3910 0.036 −37.7 0.23
9: Eastern Cascade Slopes and Foothills 73, 2622 0.023 −38.6 0.09
11: Blue Mountains 386, 2647 0.034 −25.6 0.16
15: Northern Rockies 368, 2106 0.08 −24.8 0.15
16: Idaho Batholith 618, 3298 0.083 −22.3 0.09
17: Middle Rockies 937, 3796 0.116 −18.7 0.19
19: Wasatch and Uinta Mountains 1107, 3671 0.032 −29.1 0.14
21: Southern Rockies 1473, 4032 0.098 −33.5 0.001
23: Arizona/New Mexico Mountains 805, 3451 0.009 −56.2 0.02
41: Canadian Rockies 973, 2550 0.039 −12.7 0.33
77: North Cascades 48, 2359 0.072 −6.7 0.66

East

58: Northeastern Highlands 23, 1436 0.035 13.1 0.68
62: North Central Appalachians 170, 755 0.002 −2.4 0.94
67: Ridge and Valley 61, 1315 0.002 −11.5 0.73
69: Central Appalachians 215, 1337 0.003 −9.8 0.68

and then disappears across the ablation season. The 1 April
SWE, SWEmax, SwS and SCD measures are snow metrics
that are useful for characterizing and monitoring change in
mountain snowpack regimes and describe points relevant to
a conceptual SWE curve. While trends in these metrics have
changed in the same direction at 286 of the 465 SNOTEL and
COOP stations, 38.5 % of stations have nonuniform inter-
metric trend directions. This means that if trends in only one
snow metric were to be examined, it could paint an incom-
plete picture of change.

The inability of common one-dimensional snow metrics
to reflect snow storage change is particularly apparent when
snowpacks transition from one snow regime to another, such
as a permanent snowpack transitioning to a mountain snow-
pack or a mountain snowpack transitioning to an ephemeral
snowpack. In our observational record, this study finds that
snow regimes are becoming increasingly ephemeral at many
station locations. This study found the number of annual
snow-free periods has significantly increased at 23 % of sta-
tions over the last 38 years. The Quartz Mountain (OR) SNO-
TEL station (706) provides an example of where a snowpack
has increased in ephemerality (Fig. 13). This station went
from an average of 1.7 snow-free periods per water year over
the first decade of study to an average of 6.3 snow-free peri-
ods per water year over the last decade of study. A side-by-
side comparison of trends in SwSA, 1 April SWE, SWEmax
and SCD illustrates how the SwS metric is able to capture
complex change, such as that associated with an ephemeral

snowpack. At the Quartz Mountain station, there are signifi-
cant negative trends in SwS and SWEmax, no trend in 1 April
SWE, and a positive trend in SCD (Fig. 13). In this exam-
ple, 1 April SWE is largely not relevant as a snow monitor-
ing metric because the majority of years are snow-free on
1 April at this location. This station is interesting because it
has opposite significant trends in SWEmax, which is decreas-
ing, and SCDs, which are increasing. As SwSA is the integral
of the SWE curve, both the magnitude and duration of snow
cover are incorporated into its calculation. This allows the
SwS metric to provide a robust picture of the degree to which
the snowpack is serving as a reservoir for water storage and
how that reservoir function may be changing.

There are other ways to demonstrate the utility of SwS
as an additional tool for gaining insight into our changing
snowpack. The 1 April SWE is overwhelmingly the metric
cited by water resource managers as the singular measure of
the season’s snow. However, how do changes in that measure
correspond to changes in others? First, Fig. 14 shows the re-
lationships between percentage changes in various snow met-
rics of interest. It can next be useful to return to the idea of
a conceptual SWE curve (Fig. 1a). Based on this simple ge-
ometry, the SwSA is given by

SwSA =
1
2

SWEmaxSCD. (2)
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Figure 10. SwSA in each mountainous ER3 as a function of ER3 hypsometry. The teal line indicates the average SwSA in each hypsometry
bin from water years 1982 to 2020 (left axis). The solid red line indicates the percentage change in subscript A as a function of hypsometry
for each mountainous ER3 over the time period of study (right axis). Black “×” symbols indicate where the percentage change in SwSA
is significant (p < 0.1). The dashed red line indicates the percentage change in the IQR of daily SWE as a function of hypsometry in each
mountainous ER3 over the time period of study (right axis). Black “o” symbols indicate where the percentage change in the IQR is significant
(p < 0.1). Refer to Table 2 for ER3 names.

If the geometry of the conceptual SWE curve were to be pre-
served over time, the SWE curve would be uniformly scaled
(Fig. 1b). In this scenario, one would expect the percentage
change in SWEmax and SCD to each be half the percent-
age change in SwS. However, the regression plots in Fig. 14
reveal that the change in SCD is roughly 26 % that of the
change in SwS. Furthermore, it is found that the change in
SWEmax is 86 % that of the change in SwSA. What this
means is that the conceptual SWE curve has been flatten-
ing over the period of study of the data at stations. There-
fore, relying on a single metric like 1 April SWE gives an

incomplete assessment of the storage of snow throughout a
full season, and a more holistic metric like SwS may be more
informative when considering a full snow season.

4 Discussion

SwS is a unique snow metric because it essentially has un-
limited degrees of freedom – any change in the SWE curve
(changes in SWE magnitude, timing, variability, etc.) will be
captured in its calculation. Thus, regardless of how the SWE
curve changes, the SwS metric is able to provide information
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Figure 11. Observed SWE curves for mountainous ER3s shown with historic and current conceptual SWE curves. The black dotted line
indicates the mean SWE curve from the first 20 years of our study period in each ER3 (1982–2002). The solid black line indicates the
mean SWE curve from the last 20 years of our study period for each ER3 (2000–2020). Light blue shading indicates the IQR of observed
daily SWE and gray shading indicates the minimum and maximum range of observed daily SWE. Red ER3 labels signify ER3s that had a
significant decrease in SwSA over the period of study. The red dotted line indicates the conceptual SWE curve for each ER3 at the start of
our study period (1982) based on the trend analysis of DSO, SWEmax, Dmax and DSD. The solid red line indicates the conceptual SWE
curve for each ER3 at the end of our study period (2020). Red stars on the x axis indicate significant decreases in DSO, Dmax and DSD. Red
stars on the y axis indicate significant decreases in SWEmax. There were no significant increases in any of the snow metrics. Refer to Table 2
for ER3 names.

about water storage in natural reservoirs at a given location.
SwS is different from the other common snow metrics dis-
cussed in this paper (1 April SWE, SCD and SWEmax) be-
cause the other metrics have 1 degree of freedom: they pro-
vide data on one dimension of the SWE curve. The flexibil-
ity of the SwS metric is particularly useful when attempt-
ing to quantify storage in snowpacks that have fundamen-
tal shifts in their SWE curve. As demonstrated above, the
SwS metric can still quantify natural reservoir storage when
a snowpack has transitioned from a mountain-type snowpack

to an ephemeral type. If a snowpack were to transition from a
permanent snowpack to a mountain-type snowpack, the SwS
metric would also be able to provide information on the stor-
age.

Of the snow metrics discussed in this paper, SwS is
uniquely positioned to capture storage change at aggregated
scales, across the full SWE curve. Metrics such as DSO,
SWEmax, DSD and SCD are essentially anchor points for
the conceptual SWE curve. Although it can be beneficial to
note changes at any of these points, change can also hap-
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Figure 12. Trend directions in SwSA (a), 1 April SWE (b), SWEmax (c) and SCD (d) across stations that do not have the same trend
directions across all metrics.

pen in between these anchor points, such as an increase
in accumulation-season ablation or an increase in ablation-
season accumulation, as is seen across mountainous ER3s in
Fig. 11. This type of change has already been documented
as changing melt fractions (Musselman et al., 2021). At ag-
gregated scales, such as across a watershed, snowpack vari-
ability (due to landscape features such as aspect or elevation)
influences the SWE curve between the anchor point metrics.
Change that occurs between the anchor point metrics is not
inherently captured by these metrics. As the SwS metric can
accommodate various spatial scales, it is able to capture natu-
ral reservoir storage regardless of variability in snow change
or snowpack fluctuations that occur in between anchor point
metrics.

The widespread losses of SwSA over the last 39 years re-
ported in this study are consistent with the broader narra-
tive of snowpack change literature, which has established de-
clines in snow-covered area, snow cover duration, 1 April
SWE and SWEmax, among others (Rupp et al., 2013; Mote
et al., 2018; Notarnicola, 2020; Marshall et al., 2019; Bor-
mann et al., 2018; Choi et al., 2010; Huning and AghaK-

ouchak, 2018). Losses of winter snowpack are largely at-
tributed to increasing global temperatures (Hamlet et al.,
2005), which have resulted from a combination of natural
variability and anthropogenic climate warming (Rupp et al.,
2013; Pederson et al., 2013). The declining trends in SwSA
are a reflection of declining trends in SwSM in nearly ev-
ery month, at every scale. The greatest percentage losses
in SwSM occur early in the snow season, particularly in
November. The loss of early-season SwS is consistent with
previous work that used satellite imagery and reported that
DSO is occurring later (Notarnicola, 2020). While future
work could explore the exact mechanistic drivers of predom-
inantly decreasing SwSA trends, these findings are reason-
able in the context of mechanistic drivers explored in other
snow change literature. From an energy budget standpoint,
snow falling at warmer temperatures (as a result of climate
warming) and overall shallower snowpacks (due to reduced
snowfall fractions) contribute to reduced cold content and
more readily ripening snowpacks (Jennings and Molotch,
2020). Additionally, shallower snowpacks are susceptible to
enhanced snowmelt from the albedo feedback as vegetation
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Figure 13. SWE curves from every second water year from 1982 to 2020 at the Quartz Mountain SNOTEL station.

and soil are exposed (Kapnick and Hall, 2010). Although
the majority of SwSA trends are declining, the North Cen-
tral Plains and the Northeastern Highlands show increasing
SwSA trends. Snowmelt and rain-on-snow are known to be
flood-generating mechanisms in New England, Minnesota,
and along the Mississippi and Missouri rivers (Collins, 2009;
Novotny and Stefan, 2007; Wiel et al., 2018; Olsen et al.,
1999). The increasing SwS trends in these regions may,
therefore, have implications for flood hazards.

Spatial scale has long been a topic of conversation in snow
hydrology, as certain processes that occur at very small scales
contribute to considerable within-grid-cell heterogeneity as
one scales up from point to grid cell to regional scales
(Blöschl and Sivapalan, 1995; Molotch and Bales, 2005).
This works finds differences in the magnitude and timing of
significant changes in SwSA and SwSM when different spa-
tial scales are compared. For example, less of the US land-
scape shows significant changes in SwSA in the ER3 analysis
compared with the grid-cell analysis. Thus, the aggregation
of SwSA into ER3s filters some of the grid-cell-scale spa-
tial SwSA trends. Temporally, there is a higher fraction of

sites with a significant positive increase in SwSM from Oc-
tober to March in the grid-cell analysis compared with the
ER3 analysis. This indicates that local significant increases
in SwSM at grid-cell scales are offset by smaller-magnitude
increases in SwSM or decreases in SwSM at many locations
once the SwSM is aggregated to ER3 scales. From a water
resources perspective, these findings underscore the impor-
tance of choosing an appropriate aggregation scale in order
to accomplish management goals.

In the western US, where snowmelt is vital to supplement
warm-season water supplies, about 70 % of runoff in moun-
tainous regions originates as snow (Li et al., 2017). Snow-
packs also play an important role in climate, ecological pro-
cesses and recreation in both eastern and western mountains.
Across all mountainous ER3s, there has been a 22 % decline
in SwSA over the 39-year period of study. The ER3 moun-
tain ranges considered in this work include the headwaters
of 13 of the 18 water basins located in the US, underscoring
the importance of these natural reservoirs to water resources.
The loss of SwS in these regions is of further concern, as the
warm season is projected to increase in length due to anthro-
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Figure 14. Regression of percentage change in SwSA with percent-
age change in 1 April SWE (a), SWEmax (b) and SCD (c). Regres-
sion of SWEmax with SCD (d).

pogenic climate warming (Mallakpour et al., 2018; Padrón
et al., 2020; Siler et al., 2019). Siler et al. (2019) also sug-
gest that declining snow trends may accelerate once the cur-
rent natural climate mode changes because natural variabil-
ity has slowed the decline in western snowpacks since the
1980s. The capacity of natural snow reservoirs is declining
in most of the western US and across most mountain ranges
in the US. As declining trends are expected to continue into
the future, monitoring our natural snow reservoirs is essen-
tial. Metrics that are highly flexible in space and time (like
SwS) can be used to monitor change and evaluate future pro-
jections.

SwSA, the changes in SwSA and the variability in SWE
are all influenced by elevation. The greatest amount of snow
water storage occurs on a disproportionately small fraction
of our landscape – at the highest elevations of mountain-
ous ER3s. Almost all mountainous ER3s are losing SwSA
at all elevations. In the majority of mountainous ER3s, the
highest elevations have experienced the greatest SwSA losses
over the last 39 years. The elevation-dependent changes in
our natural snow reservoirs are likely associated with docu-
mented elevation-dependent changes in temperature and pre-
cipitation (Wang et al., 2014; Harpold et al., 2012; Pepin
et al., 2015, 2022; Qixiang et al., 2018). Winter tempera-
tures have increased significantly in the recent past (Vose
et al., 2017), which increases the vapor pressure deficit in the
atmosphere and may enhance sublimation and vapor fluxes
(Harpold et al., 2012). Higher elevations have also warmed at
faster rates than their low-elevation counterparts, where there

have been increasing trends in precipitation (Wang et al.,
2014; Pepin et al., 2022). Wang et al. (2014) suggest that
elevational warming amplification is likely associated with
effective moisture convection. These mechanistic drivers are
a plausible explanation for finding the greatest SwSA loss at
the highest elevations.

This work also finds elevation-dependent changes in SWE
variability. SWE variability has likely increased as a result of
winter freezing levels moving to higher elevations (Catalano
et al., 2019), an increased fraction of precipitation falling as
rain instead of snow and more rain falling on snow (McCabe
et al., 2007), all of which are related to increasing winter tem-
peratures. Decreases in SWE variability at higher elevations,
where there are declining trends in SwSA, may be a result of
shallower snowpacks overall.

5 Conclusions

A new snow metric, SwS, is defined and used to identify
where and to what extent water storage in natural snow reser-
voirs has already changed in the observational record. Moun-
tains, especially western mountains, play a disproportionate
role in natural water storage relative to the surrounding land-
scape. High-elevation natural snow reservoirs are responsi-
ble for the greatest SwSA and have generally experienced the
greatest declines in SwSA. Declines in SwSA are associated
with a fundamental shift in the shape of the conceptual SWE
curve, as it appears to be flattening across stations. As we
move into a future of increased snow variability and dimin-
ished snowpacks and as more of the winter snow landscape
transitions to ephemeral regimes, temporally static metrics
such as 1 April SWE and SWEmax may become less repre-
sentative of our snowpacks. Concurrently, it may be useful
to have metrics such as SwS that can adapt to a wide range
of circumstances. Spatially and temporally flexible metrics
such as SwS may become increasingly valuable, particularly
when it comes to monitoring change.

Declining storage in our natural snow reservoirs has broad
implications for human and ecological systems. Natural
snow reservoirs help to increase water storage far beyond the
capacity of artificial reservoirs in the western US, supporting
their roll in linking cool-season precipitation to warm-season
water demand. As one of the most robust projected impacts
of climate change is a continued increase in air temperatures,
it is likely that declining trends in SwSA will continue. Water
managers, planners and decision-makers will need to account
for these declines in natural snow water storage as they relate
to streamflows for fish migration and recreation, municipal
and agricultural water supplies, and flood hazards. Although
this paper does not focus on future predictions of snowpack,
SwS could be a useful tool for understanding how our natu-
ral snow reservoirs change in the future. Change in our natu-
ral snow reservoirs is multidimensional and already happen-
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ing. Metrics are needed that can capture this complexity of
change.
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